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ABSTRACT

The design of RNAs that fulfill desired functions is one of the major challenges
in computational biology. The function of an RNA molecule depends on its struc-
ture and a strong structure-to-function relationship is already achieved on the sec-
ondary structure level of RNA. Therefore, computational RNA design is often
interpreted as the inversion of a folding algorithm: Given a target secondary struc-
ture, find an RNA sequence that folds into the desired structure. However, existing
RNA design approaches cannot invert state-of-the-art folding algorithms because
they can only predict a limited set of base interactions. In this work, we propose
RNAinformer, a novel generative transformer based approach to the inverse RNA
folding problem. Leveraging axial attention, we are able to process secondary
structures represented as adjacency matrices, which allows us to invert state-of-
the-art folding algorithms. Consequently, RNAinformer is the first model capa-
ble of designing RNAs from secondary structures without base pair restrictions.
We demonstrate RNAinformer’s strong performance across different RNA design
benchmarks and showcase its novelty by inverting a state-of-the-art deep learning
based secondary structure prediction algorithm.

1 INTRODUCTION

Ribonucleic acid (RNA) is one of the major regulatory molecules inside the cells of living organisms
with key roles during differentiation and development (Morris & Mattick, 2014). RNAs fold hierar-
chically (Tinoco Jr & Bustamante, 1999) and the structure is key to their function: Base interactions
via hydrogen bonds result in a fast formation of a secondary structure, with tertiary interactions sta-
bilizing the formation of the final 3D shape (Vicens & Kieft, 2022). A strong structure-to-function
relationship is already achieved on a secondary structure level (Hammer et al., 2019), and therefore,
RNA secondary structure prediction recently got into the focus of the deep learning community,
achieving state-of-the-art results (Singh et al., 2019; Fu et al., 2022; Chen et al., 2022; Franke et al.,
2022; 2023). Compared to more traditional methods, these algorithms predict an L × L adjacency
matrix representation of the secondary structure instead of the commonly used but less expressive
dot-bracket string notation (Hofacker et al., 1994). This has the advantage that they are not limited
to the prediction of specific kinds of base pairs but can predict non-Watson-Crick interactions, pseu-
doknots (Staple & Butcher, 2005), as well as base multiplets (nucleotides that pair with more than
one other nucleotide) (Singh et al., 2019), which all play significant roles for RNA structures and
functions (Reyes et al., 2009; Vicens & Kieft, 2022).

Structure-based RNA design considers the inverse problem: Given a target structure, find an RNA
primary sequence that folds into the desired structure. It is thus intricately tied to RNA folding.
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However, there is currently no structure-based RNA design algorithm available that can invert state-
of-the-art deep learning-based secondary structure prediction algorithms, which could clearly lead
to better designs.

In this work, we propose RNAinformer, the first inverse RNA folding algorithm that is capable of
designing RNAs while considering all kinds of base interactions. We show that a vanilla transformer
architecture, enhanced with axial attention inspired by the RNAformer (Franke et al., 2023), can
reliably design RNAs in different settings, including RNA design with non-canonical interactions,
pseudoknots, and base multiplets. We see our main contributions as follows:

• We propose RNAinformer, a novel generative transformer model for the inverse RNA fold-
ing problem. Using axial attention, our model is the first RNA design algorithm that can
design RNAs from secondary structures with all types of base interactions.

• We show that our model outperforms existing algorithms on nested and pseudoknotted
structures, while further being capable of designing sequences that form base multiplets.

2 RELATED WORK

Traditional Methods The problem of computational RNA design was first introduced as the in-
verse RNA folding problem by Hofacker et al. (1994). Since then, different methods were proposed
for solving the problem using approaches like local search (Hofacker et al., 1994; Andronescu et al.,
2004), constraint programming (Garcia-Martin et al., 2013; 2015; Minuesa et al., 2021), or evo-
lutionary methods (Esmaili-Taheri et al., 2014; Esmaili-Taheri & Ganjtabesh, 2015). However, in
contrast to our approach, these methods are limited to the design of nested structures, typically
considering canonical base pairs only.

Learning Based Approaches More recently, RNA design was also approached with learning
based methods. One line of research use human priors to design RNAs based on player strategies
obtained from the online gaming platform Eterna (Shi et al., 2018; Koodli et al., 2019). However,
these models incorporate human strategies that might not be available for all designs and consider
nested structures only. The other, more general approach seeks to learn RNA design purely from
data. Eastman et al. (2018) propose to use reinforcement learning (RL) to adjust an initial input
sequence by replacing nucleotides based on structural information. In contrast, Runge et al. (2019)
and Riley et al. (2023) use a generative approach to the problem. Runge et al. (2019) employs a joint
architecture and hyperparameter search approach (Bansal et al., 2022) via automated reinforcement
learning (AutoRL) (Parker-Holder et al., 2022) to derive an RL system that is capable of generatively
designing RNAs that fold into a desired target structure. Riley et al. (2023) uses a GAN (Goodfellow
et al., 2020) approach specifically for the design of toehold switches (Green et al., 2014). However,
all learning-based approaches so far consider RNA design for nested structures only, ignoring pseu-
doknots and base multiplets, while often being limited to the design of canonical base interactions.

Pseudoknotted Structures Pseudoknots are an important type of base pairs that influence the
function of an RNA (Staple & Butcher, 2005). Therefore, some approaches tried to design RNAs
from pseudoknotted structures (Taneda, 2012; Kleinkauf et al., 2015; Merleau & Smerlak, 2022).
However, these algorithms work on a string notation in dot-bracket format (Hofacker et al., 1994),
and thus, they cannot express base multiplets.

Overall none of the existing algorithms can design RNAs including non-canonical base pairs, pseu-
doknots, and base multiplets.

3 METHODS

RNA secondary structures can be represented in different ways, including the common dot-bracket
string notation (Hofacker et al., 1994) or adjacency matrices. We show different representations in
Figure 1. One advantage of an adjacency matrix representation is that it can model all types of base
interactions, especially if a nucleotide interacts with more than one other, a situation prevalent for
most experimentally solved structures (Singh et al., 2019). In the following, we detail our generative
approach to design RNAs from secondary structures using matrix representations.
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Figure 1: Representations of RNA secondary structures. (Left) Common graph representation of the
RNA. (Middle) Dot-bracket notation in the graph structure. A pair of nucleotides is indicated by a
pair of matching brackets, unpaired nucleotides are indicated by a dot. (Right) Matrix representation
of the RNA. The matrix is a binary L×L square matrix, where L is the sequence length of the RNA.
Pairing nucleotides are shown in yellow.

Loss The problem of RNA design is often addressed by defining a structural loss function Lω =
d(ω,F(ϕ)) that quantifies the difference between the target structure ω and the folding, F(·), of
the designed candidate sequence ϕ (Runge et al., 2019). However, a folding engine might not be
differentiable, which makes it hard to employ this strategy to deep learning based design approaches.
Therefore, we train a model to maximize the sequence recovery by minimizing the mean Cross
Entropy Loss Lψ over a nucleotide sequence. For a designed candidate ϕ ∈ {A,C,G,U}l of length
l and a given target nucleotide sequence ψ ∈ {A,C,G,U}l of the same length, this loss is defined
as:

Lψ =
1

l

l∑
i=1

LCE(ψi, ϕi) , (1)

where LCE(ψi, ϕi) is the cross entropy loss between the target sequence and the designed sequence
at position i.

Model Our model is a vanilla auto-regressive encoder-decoder transformer model (Vaswani et al.,
2017) with a next token prediction objective. The encoder embeds the structure information, while
the decoder auto-regressively generates RNA nucleotide sequences by sampling from the softmax
distribution. For RNAinformer we use axial attention in the first encoder block to process the matrix
input similar to the RNAformer (Franke et al., 2023). However, instead of working on a 2D latent
space, we use pooling to reduce the 2D representation to a 1D vector that is then passed through the
encoder and the decoder to generate candidate sequences. Figure 3 and Figure 4 in Appendix A give
an overview over our model.

Training Details Due to hardware limitations we set the maximum sequence length to 100 for all
our experiments. We train our model with 6 encoder blocks and 6 decoder blocks with an embedding
dimension of 256. The model is trained using cosine annealing learning rate schedule with warm-up
and AdamW (Loshchilov & Hutter, 2019). The hyperparameters used for training our model are
described in Table 2 in Appendix B.

4 EXPERIMENTS

We evaluate the RNAinformer in three settings with increasing complexity: We design RNAs for
nested structures (Section 4.1), pseudoknotted structures (Section 4.2), and for experimentally val-
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Table 1: Performance on the Rfam and bpRNA datasets for nested and pseudoknotted structures,
respectively.

Model Rfam bpRNA

Solved Solved Solved PK

RNAinformer 98.7% 31.7% 9.7%

LEARNA (Runge et al., 2019) 64.8% ✗ ✗
Meta-LEARNA (Runge et al., 2019) 64.3% ✗ ✗
Meta-LEARNA-Adapt (Runge et al., 2019) 64.1% ✗ ✗

aRNAque (Merleau & Smerlak, 2022) ✗ ✗ 9.7%

idated structures obtained from the Protein Data Bank (PDB) (Berman et al., 2000), including all
kinds of base interactions (Section 4.3). For each of the experiments we train a separate model on
the different datasets. We use two different folding algorithms: RNAfold (Lorenz et al., 2011) and
RNAformer (Franke et al., 2023). While the former is the most widely used folding algorithm, the
latter is the current state-of-the-art deep learning based approach, capable of predicting RNA struc-
tures with all kinds of base pairs. We use RNAfold for our experiments on nested structures and
the RNAformer for all other experiments, since RNAfold can provide solutions for nested structures
only. During evaluation, we generate between 20 and 100 candidate sequences for each task. The
first sequence is generated using a greedy strategy and the rest of the sequences are generated using
multinomial sampling. All datasets used for our experiments are detailed in Appendix C.

Metrics The ultimate goal of structure-based RNA design is to generate sequences that fold back
into the target structure. Following the common convention in the field of RNA design, we report the
number of solved tasks for a given benchmark dataset. However, we provide a more comprehensive
analysis of all experiments with different performance measures in Appendix D.

4.1 RNA DESIGN FOR NESTED STRUCTURES

We compare the performance of RNAinformer against one of the currently best performing set of
algorithms, LEARNA, Meta-LEARNA and Meta-LEARNA-Adapt (Runge et al., 2019). For each
task, we generate 20 sequences with each algorithm and report the percentage of solved tasks. A
task thus counts as solved if one of the 20 sequences folds into the desired target structure.

Data We use the Rfam dataset provided by Franke et al. (2023). While the set was originally built
for learning a simplified biophysical model of RNA folding, it serves exactly our needs: Homologies
between the training- and test set have been removed using RNA family annotations from the Rfam
database (Griffiths-Jones et al., 2003), it contains a large amount of training data, and all sequences
have been folded with RNAfold to obtain secondary structures. Hence, the dataset contains only
canonical base pair interactions.

Results The results on the Rfam dataset are shown in Table 1 (left). We observe that RNAinformer
clearly outperforms the other methods, solving 98.7% of the tasks. Notably, these are ∼35% more
solved tasks compared to the next best competitor, LEARNA (64.8% solved tasks). Furthermore,
RNAinformer generates multiple, highly diverse solutions for each task, indicated by a high diversity
score of 0.713 as depicted in Table 6 in Appendix E.

4.2 RNA DESIGN WITH PSEUDOKNOTS

In this section, we assess the performance of RNAinformer when designing RNAs for pseudoknotted
input structures. We compare against aRNAque (Merleau & Smerlak, 2022) a recently proposed
Lévy flight mutation based design algorithm that supports pseduoknotted structures. However, the
evaluation of aRNAque is computationally expensive with rather high runtimes (an evaluation for 31
pseudoknotted structures nearly took 24 hours on two CPUs using 50 generations). We, therefore,
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Figure 2: Example design predictions of solved structures including base multiplets and pseudoknot
interactions.

evaluate aRNAque only on the pseudoknotted samples for our comparison. We again generate 20
candidate sequences per task for the evaluation of RNAinformer.

Data We use the bpRNA dataset provided by Franke et al. (2023) which uses VL0 and TS0 pro-
vided by Singh et al. (2019) for validation and testing, respectively. The datasets include non-
canonical base interactions and pseudoknotted structures. As the dataset was originally created for
structure prediction based on sequence similarity, it contains test structures that are also present
in the training set. To ensure that there is no overlap between training- and test set, we remove
pseudoknot-free test samples with identical structures in the training set, and pseudoknotted train-
ing samples with identical structures in the test set, since there are only a few pseudoknotted test
structures available.

Results We report results in Table 1 (right). The RNAinformer solves nearly a third of the tasks
(31.7% solved tasks) with over half (52.5%) of the designed sequences that solve a task having
non-canonical base pairs (see Table 7). We solve the same number of pseudoknotted structures
as aRNAque, but are able to predict more pseudoknot base pairs correctly on average as shown
in Table 8 in Appendix E. Remarkably, all of the solutions generated by the RNAinformer for the
pseudoknotted structures also contain non-canonical base pairs (Table 7).

4.3 RNA DESIGN WITH ALL KINDS OF BASE INTERACTIONS

In this section, we investigate the ability of RNAinformer to design RNAs from structure data that
contains all kinds of base pairs. To account for the difficulty of the task, we sample 100 sequences
instead of only 20 sequences.

Data For our evaluations, we use the inter-family dataset provided by RnaBench (Runge et al.,
2024). The dataset was prepared to ensure no data homologies between train- and test data based
on sequence and structure similarity. The underlying test sets, TS1, TS2, TS3, and TS hard, are
derived from experimental structures of the Protein Data Bank (PDB) and were originally provided
by Singh et al. (2021). All datasets contain structures with both pseudoknots and base multiplets.

Results We observe that RNAinformer cannot solve structures for the different test sets, indicating
that designing sequences for structures with all kinds of base pairs seems to be much more challeng-
ing than for nested structures or structures with pseudoknots only. However, for all samples with
base multiplets, we predict more than two of the multiplets present in the structures correctly on
average, reported in Table 9 in Appendix E. Furthermore, Figure 2 shows examples of the training
predictions that solve structures that contain base multiplets as well as pseudoknots. We conclude
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that RNAinformer is generally capable of designing RNA sequences from structures that contain
all kinds of base interactions. Nevertheless, we admit that further improvements in performance
might require adjustments to our model like scaling in terms of model size or applying a finetuning
strategy.

5 CONCLUSION

In this work, we propose RNAinformer, the first RNA design algorithm capable of designing RNA
sequences for structures that contain all kinds of base interactions, including non-canonical base
pairs, pseudoknots, and base multiplets. We demonstrate the strong performance of RNAinformer
on tasks with nested structures only, tasks that contain pseudoknots, as well as on experimentally
derived structures with all kinds of base interactions. We think that RNAinformer is a useful basis for
future approaches to RNA design and expect it to be of great value for the RNA design community.
For the future, we plan to further condition our model on different properties of RNA, to e.g. design
RNAs with desired G and C nucleotide ratios.
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A MODEL DETAILS

Figure 3: Overview of matrix input processing in RNAinformer.

Figure 4: Overview of nucleotide sequence generation.
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B TRAINING DETAILS

Table 2: Hyperparmeters for RNAinformer training.

Group Parameter Value

Optimizer

lr 0.001/0.0003
weight decay 0.1

betas 0.9,0.98
Warmup steps 1000

LR schedule cosine annealing
LR decay factor 0.1

Model

Model dim 256
Layers 6

Num head 4
FeedForward factor 4
FeedForward kernel 3

Dropout 0.1

Training Batch size 128/64
Max steps 50k/100k

C DATASETS

Table 3: Overview of the Rfam dataset.

Set #Samples Avg Length Pseudoknots Multiplets
Rfam-Train 276242 75 0(0.00%) 0(0.00%)
Rfam-Valid 2291 73 0(0.00%) 0(0.00%)
Rfam-Test 2979 71 0(0.00%) 0(0.00%)

Table 4: Overview of the bpRNA dataset.

Set #Samples Avg Length Pseudoknots Non-Canonical BP Multiplets
TR0 (Train) 25309 77 907(3.58%) 12802(50.55%) 0(0.00%)
VL0 (Valid) 603 78 30(4.98%) 373(61.86%) 0(0.00%)
TS0 (Test) 462 77 31(6.7%) 282(61.0%) 0(0.00%)

Table 5: Overview of the Inter-family Dataset.

Set #Samples Avg Length Pseudoknots Non-Canonical BP Multiplets
Train 19540 73 2047(10.47%) 11114(56.70%) 1330(6.80%)
Valid 494 77 12(2.43%) 287(57.86%) 13(2.63%)
TS1 54 61 43(79.62%) 49(90.74%) 40(74.07%)
TS2 36 45 23(63.88%) 35(97.22%) 26(72.22%)
TS3 16 67 15(93.75%) 15(93.75%) 15(93.75%)
TS-Hard 25 55 17(68.00%) 21(84.0%) 18(72.00%)
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D METRICS

Valid Sequences We refer any candidate sequence that solves a task as a valid sequence. We
measure the efficiency of the generative process by the number of valid sequences that are produced
for each task.

V alidSequences =
#V alidSequences

#CandidateSequences
(2)

Diversity To measure the diversity of the valid sequences generated for a target structure, we use
the pairwise Hamming distance. For N valid sequences of length l the diversity is defined as,

Diversity =
1

N

N∑
i

N∑
j

1

l

l∑
k=1

H(Sik, Sjk) , (3)

where H(Sik, Sjk) describes the positional Hamming distance:

H(Sik, Sjk) =

{
0 if Sik = Sjk
1 else

. (4)

NC To measure the models ability to design with non-canonical base pair interactions we report
the number of valid sequences containing non-canonical base pairs.

F1 Score The F1 Score is a commonly used performance measure to assess the quality of sec-
ondary structure prediction algorithms. It is based on the confusion matrix, which describes the
number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
when comparing a predicted structure to the ground truth. The F1 score is the harmonic mean of
precision and sensitivity, defined as:

F1 =
2 · TP

(2 · TP + FP + FN)
(5)

Matthews Correlation Coefficient Compared to the F1 score that emphasizes on positives, the
MCC is a more balanced measure (Chicco & Jurman, 2020). The MCC can be calculated as follows.

MCC =
(TP · TN)− (FP · FN)√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(6)

For each task in a test set we take the maximum F1 and MCC scores achieved by a candidate
sequence, and report the average over these values across three random seeds.

E ADDITIONAL RESULTS

Table 6: Results for the design of RNAs for nested structures of the Rfam dataset.

Model Test Set Solved Valid Sequences Diversity F1 MCC
RNAinformer Rfam 0.987±0.007 0.409±0.008 0.713±0.001 0.999±0.001 0.999±0.001
LEARNA Rfam 0.648 0.222 0.547 0.965 0.966
Meta-LEARNA Rfam 0.643 0.223 0.547 0.965 0.966
Meta-LEARNA-Adapt Rfam 0.641 0.222 0.542 0.963 0.964

Table 7: Results for the design of RNAs including pseudoknots using the bpRNA dataset.

Model Test Set Solved Valid Sequences Diversity F1 MCC NC

RNAinformer BpRNA 0.317±0.013 0.512±0.012 0.347±0.001 0.589±0.008 0.601±0.008 0.525±0.023
pK 0.097±0.032 0.136±0.042 0.080±0.027 0.467±0.030 0.481±0.030 1.0±0.0

aRNAque pK 0.097 1.000 0.222 0.824 0.831 -
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Table 8: Comparison between RNAinformer and aRNAque on pseudoknotted structures from the
bpRNA dataset.

Model Test Set Pseudoknot hits Total Pseudoknots
RNAinformer pK 4.56±0.46 9.81
aRNAque pK 3.35 9.81

Table 9: Results for RNA design for experimentally validated structures with all kinds of base
interactions.

Test Set F1 MCC Multiplet Hits Total Multiplets
TS1 0.388±0.018 0.426±0.018 2.35 13.00
TS2 0.498 ± 0.006 0.524±0.009 2.31 9.92
TS3 0.297 ± 0.015 0.333±0.019 2.58 13.87
TS-Hard 0.363± 0.025 0.391±0.026 2.19 12.67

F FOLDING ALGORITHMS

Table 10: Tasks and folding algorithms.

Task Folding Algorithm
Biophysical Model Inversion RNAfold
Pseudoknot Design RNAformer
Multiplet Design RNAformer
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