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Abstract

Symmetries often arise in many natural sciences; rather than relying on data augmentation
or regularization for learning these symmetries, incorporating these inherent symmetries
directly into the neural network architecture simplifies the learning process and enhances
model performance. The laws of physics, including partial differential equations (PDEs),
remain unchanged regardless of the coordinate system employed to depict them, and sym-
metries sometimes can be natural to illuminate in other coordinate systems. Moreover,
symmetries often are associated with the underlying domain shapes. In this work, we con-
sider physical modelings with neural operators (NOs), and we propose an approach based
on coordinate transforms (CT) to work on different domain shapes and symmetries. Canon-
ical coordinate transforms are applied to convert both the domain shape and symmetries.
For example, a sphere can be naturally converted to a square with periodicities across its
edges. The resulting CT-FNO scheme barely increases computational complexity and can
be applied to different domain shapes while respecting the symmetries.

1 Introduction
In numerous fields, such as electromagnetism (Bermúdez et al., 2014), researchers seek to study the behavior
of physical systems under various parameters, such as different initial conditions, boundary values, and
forcing functions. Traditional numerical methods can be excessively time-consuming for simulating such
physical systems. A class of data-driven surrogate models, termed neural operators (NOs), provide an
efficient alternative (Li et al., 2021; Rahman et al., 2023; Raonic et al., 2023; Chen et al., 2023). Neural
operators approximate the mapping from parameter function space to solution function space. Once trained,
obtaining a solution for a new instance of the parameter requires only a forward pass of the network, which
can be several orders of magnitude faster than traditional numerical methods (Li et al., 2021). A prevalent
field of application is solving classes of Partial differential equations (PDEs). PDEs are widely used in
modeling physical phenomena; for example, Navier-Stokes equations in fluid dynamics (Serrano et al., 2023)
and Schrödinger equations (Dirac & M., 1981) in quantum mechanics. Although solving parametric PDEs
is a major application of neural operators, they have wider applicability in general physical modeling, even
without known physics formulations, such as in climate modeling (Bonev et al., 2023).

Various symmetries can be naturally observed in the dynamics of physical phenomena. Symmetries within
the underlying physical phenomena are reflected both in the physical model and its solution operators.
Symmetries in physical systems can manifest in various ways, indicating specific properties within the math-
ematical formulation of the physical systems. For instance, in climate modeling, we observe rotational
equivariance as the Earth rotates. In PDEs, if a PDE describing a physical phenomenon remains unchanged
when the spatial coordinates or time are shifted, it displays translational symmetry. Common symmetries
include translation symmetries, rotation symmetries, scale symmetries, Galilean symmetries, and more. In-
corporating these symmetries into network architectures can enhance model generalization, interpretability,
and reduce learning complexity (Cohen & Welling, 2016; 2017; Weiler et al., 2023; Zhang et al., 2023).

Several group equivariant architectures have been proposed and explored in diverse applications to incorpo-
rate symmtries (Kofinas et al., 2021; Weiler & Cesa, 2019; Cohen et al., 2019; Bekkers et al., 2018; Fuchs et al.,
2020). Group convolutional neural networks have achieved significant success in numerous symmetry groups,
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Figure 1: Overview of CT-FNO. We first apply an appropriate coordinate transform so that the domain
becomes rectangular, and the corresponding symmetry becomes translation symmetry. Then, FNO layers,
which are translationally equivariant, operate in a different coordinate system to predict output solutions.
Finally, an inverse coordinate transform is applied back to the original coordinate system.

encompassing Euclidean groups E(n), scaling groups, and others. Nevertheless, group convolutions can be
computationally expensive for general continuous groups (Cohen & Welling, 2017), and for some symmetry
classes, particularly those arising in PDEs, performing group convolutions can even be intractable.

In this work, we introduce the Coordinate Transform Fourier Neural Operator (CT-FNO) to address symme-
tries within physical modelings. Employing a canonical coordinate transform, we demonstrate how different
symmetries can be seamlessly transformed into translation symmetries. Leveraging the properties of the
convolution, Fourier layers in FNO exhibit equivariance to cyclic translations. Consequently, the CT-FNO
proposed herein can effectively harness symmetries, offer generalization across various domain shapes, and
does not introduce any new learnable parameters. Our contribution can be summarized in four
parts: (1) We propose the CT-FNO framework, which extends FNO into various domains while respecting
the underlying symmetries. (2) It is mathematically justified that CT-FNO is capable of approximating the
behavior of an operator within a specified precision, and this lays the foundation for our CT-FNO frame-
work. (3) Experimental results reveal that CT-FNO can effectively maintain symmetries. In instances where
symmetries exist, CT-FNO consistently outperforms FNO with a minimum increase in computation cost.
(4) Experimental results also demonstrates generalization applicability of CT-FNO across different domain
shapes while respecting the underlying symmetries, which is not achievable by existing architectures.

2 Related Work

2.1 Neural PDE Solvers

Recently, neural PDE solvers have shown great success as an alternative to traditional numerical methods for
solving PDE problems in many areas of practical engineering and life sciences (Sirignano et al., 2020; Pathak
et al., 2022; Zhang et al., 2022; Azizzadenesheli et al., 2024). Traditionally, solving a PDE involves seeking
a smooth function satisfying the derivative relationships within the equations. Based on this view, Physics-
Informed Neural Networks (PINNs) have been developed to tackle PDEs individually. Another perspective
is to regard differential operators as mappings between function spaces. Stemming from this perspective,
neural operators have been proposed for solving families of PDEs (Anandkumar et al., 2019; Lu et al., 2021;
Brandstetter et al., 2022). Neural operators parameterize solution operators in infinite dimensions and map
the input parameter functions to their respective solutions. Neural operators can be applied beyond PDEs;
they can serve as surrogates for integral operators, derivative operators, or general function-to-function
mappings (Fanaskov & Oseledets, 2022). Among neural operators, Fourier neural operators (FNOs) (Li
et al., 2021) have drawn lots of attention. FNO is a type of kernel integral solver in which the kernel integral
is imposed to be a convolution (Kovachki et al., 2023). Global convolution is performed via Fourier layers
in the frequency domain. By leveraging low-frequency modes and truncating high-frequency modes, FNO
captures global information and incurs low computational costs and achieves discretization invariance.
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2.2 Equivariant Architectures
The concept of equivariance emerge in many machine learning tasks, especially in the field of computer
vision. Convolutional Neural Networks (CNNs) are known to be equivariant to translations, a characteristic
that has propelled CNNs’ significant success. Group convolution has been studied to achieve equivariance
beyond translation (Cohen & Welling, 2016), such as rotation and scaling. A regular group convolution,
within a discrete group, convolves input features with multi-channel filters in the group space; a group
action on the input feature corresponds to cyclic shifts between channels. Later works extend equivariance
to continuous groups, for example, utilizing steerable filters (Cohen & Welling, 2017; Weiler & Cesa, 2019)
and B-spline interpolation (Bekkers, 2020). Other than group convolution, Esteves et al. (2018) brings up
an interesting idea of achieving rotation and scale equivariance by using a log-polar sampling grid. For
symmetries in PDEs, Group FNO (G-FNO) (Helwig et al., 2023) parameterized convolution kernels in the
Fourier-transformed group space, extending group equivariant convolutions to the frequency domain. The
resulting G-FNO architecture is equivariant to rotations, reflections, and translations. Nevertheless, group
convolutions can be computationally expensive; for some symmetries arising in PDEs or physical dynamics in
general, performing group convolutions can even be intractable. Symmetries such as rotation and translation
are commonly studied in computer vision. However, those that exist in PDEs or physical dynamics, in
general, are under-studied. Our work, instead of utilizing group convolution, offers an alternative approach
to incorporating symmetries in neural operators through canonical coordinate transformation.

2.3 Relations with Prior Work
G-FNO (Helwig et al., 2023) is a recent method that performs group convolution in the frequency domain. As
the Fourier transform is factually rotationally equivariant, G-FNO also achieves equivariance in the physical
domain. However, in both FNO and G-FNO, in order to benefit from the power of FFT, the domain has to be
rectangular, which limits the symmetries it can have. For example, with rotation symmetries, a rectangular
domain cannot be rotationally equivariant to arbitrary rotations. Unlike in computer vision tasks, where the
convolution kernels are usually local and can have local symmetries, the kernel in FNO and G-FNO is global.
Thus, the existence of local symmetries is unclear. For PDEs, the symmetries they can have often associate
with the underlying domain shapes. Therefore, we propose CT-FNO to adapt to various domain shapes
while also respecting the symmetries that the underlying domain shape can embody. Although both our
work and G-FNO aims to incorporate symmetries, we look at a different angle that takes both symmetries
and domain shapes into account, which cannot be solved solely by group convolution.

3 Preliminaries
3.1 Group Equivariance
Equivariance is a property of an operator, such as a neural network or a layer within one, such that if the
input transforms, the output transforms correspondingly in a predictable way. A more complete review of
necessary group theory and equivariance concepts within the scope of this work is included in Appendix A.
Definition 3.1 (Equivariance). An operator Φ : X → Y is said to be equivariant to a group G if actions of
G on X and Y, respectively denoted by LX

g : X → X and LY
g : Y → Y, satisfy

∀g ∈ G : LY
g (Φ(f)) = Φ(LX

g f), f ∈ X ,

where X and Y are subspaces of a function space. In other words, the operator Φ commutes with actions of
G.
In the context of operator learning, LX

g and LY
g can be considered as transformations, such as rotation,

of the input parameter function and the output solution function, respectively. Φ, on the other hand, can
be thought of as the solution operator that maps an input function to its corresponding output solution.
Equivariance to various groups, including but not limited to SE(n), E(n),SIM(n), can be achieved by group-
convolutions (Cohen & Welling, 2016; Weiler et al., 2023). Let v(h) and κ(h) be real valued functions on
group G with Lgv(h) = v

(
g−1h

)
, the group convolution is defined as:

(v ⋆ κ) (h) =
∫

g∈G

v(g)κ
(
g−1h

)
dg,
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where v can be regarded as the input feature and κ the convolution kernel.

Note that the first group convolution layer should be treated differently if the input functions are not defined
on G. For semi-direct product groups, Rd ⋊H, the first layer is a lifting convolution that raises the feature
map dimensions to the group space (Bekkers, 2020).

Integrability over a group and the identification of the suitable measure, dg, are necessary for group con-
volution. It has been shown that with the measure dg, group convolution consistently maintains group
equivariance. For all a ∈ G,

(Lav ⋆ κ) (h) =
∫

g∈G

v
(
a−1g

)
κ

(
g−1h

)
dg

=
∫

b∈G

v(b)κ
(
(ab)−1h

)
db

=
∫

b∈G

v(b)κ
(
b−1a−1h

)
db

= (v ⋆ κ)
(
a−1h

)
= La (v ⋆ κ) (h).

Similar arguments can show that the first layer, sometimes referred to as the lifting convolution layer, also
upholds group equivariance.

3.2 Fourier Neural Operators
Fourier neural operators learns to map an input function to the solution function in infinite-dimensional
spaces. Inspired by the kernel method for PDEs, each Fourier layer consists of a fixed non-linearity and
a kernel integral operator K modeled by network parameters, defined as (Kv)(x) =

∫
κ(x, y)v(y)dy. As a

special case of integral kernel operator, translation invariance is imposed on the kernel, (κ(x, y) = κ(x− y)),
which is a natural choice from the perspective of fundamental solutions. Thus, the integral kernel operator
in FNO is defined as a convolution operator

(Kv)(x) =
∫
Rd

κ(x− y)v(y)dy. (1)

From the famous convolution theorem, convolution in physical space can be carried out as element-wise
multiplication in the frequency domain,

(Kv)(x) = F−1(Fκ · Fv)(x), (2)

where F and F−1 are the Fourier transform and its inverse, respectively. Instead of learning the kernel κ in
the physical space, FNO directly learns Fκ in the frequency domain.

4 Coordinate Transform Neural Operators
In FNOs, the kernel integral operator is a convolution operator over the translation group Rn, equipped
with its canonical additive group structure. This assumes that the kernel is translation invariant, thereby
making the operator itself translation equivariant. Following this idea, FNO can be extended to respect
other symmetries through canonical coordinate transform. The geometry and boundaries of the domain
often dictate certain symmetries that the solution operators might exhibit. For example, if the domain is
a square, rotations other than a multiple of 90 degrees do not make sense. Traditional numerical schemes
frequently maintain specific symmetry properties of the underlying PDE in different coordinate systems.
Symmetries in physics, including PDEs, correlate with the shape and characteristics of the domain. For
example, if the domain is circular, it does not make sense to think about (global) translation symmetries
anymore. This motivates the pursuit of formulating a coordinate-transform neural operator method that can
be applied to different domain shapes and respect the symmetry of the underlying domain shape. In spite
of that, we propose the Coordinate Transform Fourier Neural Operators (CT-FNO) framework; CT-FNO
is an extension of the FNO architecture in a different coordinate system. A coordinate transformation is
first applied to the underlying PDE systems such that the domain shape and symmetries can be natural for
FNOs to handle. Then the PDE solution operator is approximated by the neural operator.
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(a) (b) (c) (d) (e) (f)

Figure 2: Examples of shapes to which CT-FNO can be applied. (a) Sphere: Polar Coordinates (b) Torus:
Polar Coordinates (c) Ellipse: Polar Coordinates (d) Spherical Sector: Polar Coordinates (e) Cylinder:
Cylindrical Coordinates (f) Hyperbolic Plane: Hyperbolic Coordinates

4.1 Universal Approximation with Coordinate Transform
In this subsection, we provide justification for applying FNO with coordinate transformation. Although it
is intuitive that FNO can be applied to different coordinate systems, given that the laws of physics are not
dependent on the coordinate system to which they adhere, one may still question the mathematical rigor of
such operations. Therefore, we provide the following corollary to justify the use of coordinate transformation
in FNOs. A prior work has established the universal approximation theorem for FNOs (Kovachki et al., 2021);
importantly, the theorem asserts that, under certain conditions, FNOs maintain continuity as a mapping
between Sobolev spaces; thus, FNOs can approximate the behavior of an operator within a specified precision
over the considered function space (a given compact subset of a Sobolev Space). A complete treatment of
this theoretical aspect is included in Appendix D. In this work, we discuss a modification to FNOs for the
purpose of coordinate transformation, which is a parameter mapping; therefore, we present the following
corollary.
Corollary 4.1 (Universal Approximation with Parameter Mapping). Let s, s′ ≥ 0. Assuming that G, a
continuous operator mapping from Hs(T d;Rda) to Hs′(T d;Rdu), holds true. For any compact subset K
contained in Hs(T d;Rda) and any given positive ϵ, there exists a modified Fourier Neural Operator, denoted
as N ′ . This operator N ′ , mapping from Hs(T d;Rda) to Hs′(T d;Rdu), incorporates the continuous and
compact operators Pa and Pu on Hs(T d;Rda) and Hs′(T d;Rdu), respectively. The structure of N ′ is as
per equation 15, and it maintains continuity as an operator from Hs to Hs′ , thereby ensuring the following
condition is met:

sup
a∈K

∥G(a) − N
′
(a)∥Hs′ ≤ ϵ.

This corollary incorporates additional compact operators Pa and Pu on the respective Sobolev spaces as
parameter mappings (coordinate transform and its inverse), and such compact operators maintain the con-
tinuity property of FNOs; thus, the modified FNOs can still approximate the behavior of an operator within
a specified precision. Consequently, this corollary enables us to consider CT-FNO by providing theoretical
guarantee that CT-FNO can approximate operators in another coordinate system.

4.2 Coordinate Transforms and Symmetries
In this subsection, we introduce coordinate transformation and provide an overview of applying coordinate
transforms to adapt FNO to various domains while respecting the underlying symmetries. For illustration,
we take rotation symmetries and circular domains in 2D as an example. While we focus on 2D circular
domains for simplicity, the concept of coordinate transformation readily extends to higher dimensions and
other domain shapes. A coordinate transform, in mathematics, is a mapping that relates coordinates in one
coordinate system to coordinates in another coordinate system. Symmetries also transform along with coor-
dinate systems. For instance, if the model is isotropic, we would consider convolution over the rotation groups
SO(2). To perform convolution over SO(2), an approach outlined in Helwig et al. (2023) involves adapting
the workflow of group-equivariant CNNs: rotating the convolution kernels to incorporate a dimension for
rotations in the resulting feature maps:

(Kv)(Rϕ) =
∫
R2
κ(R−1

ϕ (x, y))v(x, y)dxdy, (3)

5



Under review as submission to TMLR

(a) (b) (c)

Figure 3: (a): Plot of a function in Cartesian coordinates. (b): The resulting frequency information after
applying 1D FFT to the function in polar coordinates for the angular axis. Rows are the coefficients of the
Fourier modes of the rings. This is generated from a high-resolution grid in polar coordinates. (c): Plot of
the same function in polar coordinates.

where Rϕ =
(

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
∈ SO(2).

Letting x = r cos(θ), y = r sin(θ), the input function v(x, y) and the kernel κ(x, y) are transformed to
polar coordinates as v(r, θ) and κ(r, θ), respectively. Although written in a different coordinate system, the
underlying physical dynamics remain unchanged. We adapt to the kernel convolution defined in Li et al.
(2021) for polar coordinates:

(Kv)(r, θ) =
∫
κ(r − r′, θ − ϕ)v(r′, ϕ)dr′dθ′. (4)

The natural domain shape and symmetry to consider are circular domains with rotation symmetries, denoted
by Rϕ ∈ SO(2). Through the use of canonical coordinates for abelian Lie-groups (Segman et al., 1992),
convolution in equation 4 respects the rotation symmetry. It is worth noting that while we have rotational
symmetries, it does not make sense to translate the radial axis; in other words, the angular axis is periodic,
but the radial axis is not. We apply padding to practically solve this issue. Moreover, the function basis for
transformation should be treated differently as these two axes are not equivalent. However, empirically, we
observe that the FFT basis is still effective as demonstrated in Section 5.

Therefore, we have extended FNOs to circular domains while respecting the underlying symmetry associated
with them. After transforming them into polar coordinates, the domain’s shape nicely converts to a rectangle,
enabling us to leverage the power of Fast Fourier Transforms (FFTs) to compute the convolution:

(Kv)ξ = F−1(Fκ · Fv)ξ, (5)

where ξ denotes (r, θ).
Analogously, FNO can be extended to other domain shapes while respecting the underlying symmetries. As
illustrated by examples in Figure 2, CT-FNO can handle various domain shapes. It is important to note that
this list contains only a small portion of the shapes CT-FNO can operate on. It is not possible to provide a
complete list, as there are numerous examples. These shapes, commonly found in numerical PDE literature,
have broad applications across various natural sciences and engineering fields (Adler et al., 2013; Leng et al.,
2016; Nissen-Meyer et al., 2014). It should be mentioned that there are numerous real-life applications that
are naturally modeled in polar coordinates, and achieving rotational equivariance is desirable. Examples
of such applications include global weather forecasting, water pipe modeling, electromagnetism, and more.
Notably, previous work, such as Bonev et al. (2023), has successfully applied FNO to spherical domains for
atmospheric dynamics forecasting. In our study, we generalize the application of FNO to different domain
shapes through coordinate transformation. In another line of research, it has been concluded that some
symmetries become manifest only in a new coordinate system that must be discovered (Liu & Tegmark,
2022), and group convolution might not be suitable for such symmetries. It is essential to note that CT-
FNO has the potential to handle more complex domain geometries or to incorporate hidden symmetries
within the underlying PDEs through canonical coordinate transformation.
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(a) (b) (c) (d)

Figure 4: Different Sampling Methods (a): Uniform grid sampling in a ratio of 1 : 1 for the radial and
augular axes. (b): Uniform grid sampling in a ratio of 1 : 6. (c)(d): Sampled points in polar coordinates
corresponding to (a) and (b), respectively.

4.3 Sampling Grid for Different Coordinate Systems
In this subsection, we discuss the importance of the sampling grid under different coordinate systems and
propose a sampling grid for circular domains as an example to address this issue. Although operator learning
is a task involving the mapping of functions, which is grid-independent, oftentimes, we only have access to
function values at some finite collocation points. In FNO, to harness the power of FFTs, the sampling
grid must be rectangular and equidistant. If the provided grid points are not equidistant, interpolation is
applied to obtain uniform grids (equidistant grids) (Liu et al., 2023c). If the PDE is described in a Cartesian
coordinate system, and the inference for the solution is uniform in a Cartesian coordinate system, it is critical
to choose a sampling grid that represents the function well. Taking polar coordinates as an example, this
can also be observed in the frequency domain. If we apply FFT on the angular axis, as shown in Figure
3, the magnitude of high-frequency coefficients increases as r increases. For different applications, different
samplings might be preferred, but the message to convey is that sampling grids have to be carefully handled
after transformation.

To mediate this issue, we propose sampling an equidistant grid on the radius axis and the angular axis based
on a ratio of 1 : 6; this is to respect the geometric nature of a ring in Cartesian coordinate systems, where
the ratio of the ring’s length to its radius is 2π : 1. For example, if 40 equidistant points are sampled over
the radius axis, 240 equidistant points should be sampled over the angular axis. This 1 : 6 ratio is a heuristic
made for simplicity; a 1 : 2π sampling and taking the closest integer for the angular axis can also be used.
An illustration of different sampling grids is provided in Figure 4; it is clear that the sampling on the right,
which follows the 1 : 6 rule, better represents the function in Cartesian coordinates under a similar number of
total sampling points. Although this construction seems simple, it plays a crucial role in reducing the error
of interpolation if the points come from a uniform distribution in Cartesian coordinates or an equidistant
grid in Cartesian coordinates. We demonstrate this simple yet important aspect in Section 5.3.2.

5 Experiments
In this section, we evaluate the proposed CT-FNO based on the following criteria:

• Symmetry Preservation Study: We demonstrate that CT-FNO is effective in preserving symmetries.

• Generalizability Study: We showcase CT-FNO’s broader applicability in terms of operating on other
domain shapes while respecting the symmetries inherent in the domain shape.

5.1 Diffusion of Heat on a Cylinder
In this example, we show that the resulting CT-FNO architecture can work well on domains to which FNO or
GFNO cannot be directly applied and outperform baselines that are applicable to such domains. Moreover,
we demonstrate CT-FNO’s capability to preserve symmetries.

Simulation Description. We consider the conduction of heat over time in an isolated medium defined
on the surface of a cylinder. There is no heat flux across the top and bottom surfaces of the cylinder. As
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a result, this system is invariant under translation and equivariant under rotations. We simulate such data
with a 3D heat equation on the surface of a cylinder:

∂U(x, y, z, t)
∂t

= α∆U(x, y, z, t), (x, y, z, t) ∈ D × [0, 1]

∂U (x, y, z, t)
∂z

= 0, z ∈ ∂D,

where D := {(x, y, z) ∈ R3|x2 + y2 = 1, 0 < z < 6}, U denotes the temperature, α = 1 denotes the thermal
diffusivity of the material, z is the axial coordinate, and t denotes time.

(a) (b)

Figure 5: (a): Sample Initial Condition
(b): Sample Solution at t = 1

Setup. We provide details on generating initial conditions in Ap-
pendix C. Solutions are obtained by transforming this system into
cylindrical coordinates and employing a second-order finite differ-
ence scheme for spatial domain and an implicit Euler scheme for
time, using a spatial grid of size 128 × 128 and a temporal step-
size of 0.01. The resolutions are down-sampled to 64 × 64 for
training, with point locations stored in both Cartesian and po-
lar coordinates for further usage. A total of 1100 different initial
conditions are generated, and the corresponding solutions are ob-
tained. The dataset is divided into 1000 training data samples
and 100 testing data samples, referred to as the Normal Testing
Set. Additionally, each testing sample in the Normal Testing Set
is rotated by a random degree within the discretization tolerance,
resulting in the Rotated Testing Set. It is worth noting that rotations will alter the distribution of the data,
potentially leading to suboptimal performance due to out-of-distribution issues. Therefore, it is desirable
to have an equivariant model to be robust under the Rotated Testing Set. Timing results are recorded on
an NVIDIA Tesla V100 32GB GPU. All results are averaged over 10 different runs, and the mean
and standard deviation of relative ℓ2 error are reported. This is the setting for all subsequent
experiments unless otherwise specified.

As the origin is fixed for all generated data; in other words, all spatial collocation positions are the same, and
there is no translation to be considered. Therefore, even for models that are not translation-invariant, the
performance will not be affected negatively. However, CT-FNO does maintain both translation invariance and
rotation equivariance as a natural result of coordinate transformation. Since the domain is not rectangular,
FNO cannot be directly applied without sacrificing the power FFTs. We compare CT-FNO with baselines
applicable to cylindrical surfaces. The results will be compared with GNO (Anandkumar et al., 2019), GINO
(Li et al., 2023), and DeepOnet (Lu et al., 2021). For GNO, GINO, and DeepOnets, Cartesian coordinates
are used for node connectivity based on radius or as collocation positions. It is worth noting that GNO can
also be made equivariant by using relative information, e.g., distances; we included the comparison here.
More experimental details can be found in Appendix C, where we also show that this PDE is equivariant to
rotations and included more results and details for equivariant GNOs.

Results and Analysis. In Table 1, we present the results for the diffusion of heat on a cylinder. CT-FNO
outperforms all other baselines in terms of accuracy under the Normal Testing Set. This result is expected,
as it is observed in many existing works that FNO outperforms GNO on rectangular domains (Li et al., 2021;
Liu et al., 2023a). Compared to DeepOnet, although CT-FNO is slower in inference time, the difference
in accuracy is significant. We observe a large standard deviation for DeepOnet; thus, we include results
from every single run in Appendix C. We rotate every data sample in the Normal Testing Set to create a
new testing set of 100 data samples, denoted as the Rotated Testing Set. Since only CT-FNO is rotation
equivariant, it outperforms all other baselines to a greater extent. These results suggest that CT-FNO can
extend FNO well to various domain shapes while respecting the underlying symmetries.

5.2 Synthetic Operator
In this example, we demonstrate that CT-FNO provides greater generalizability to various domain shapes.
Since FNO operates on rectangular domains, we cannot directly compare CT-FNO with FNO or GFNO.
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Table 1: Results on Diffusion of Heat on a Cylinder. CT-FNO achieves the best performance under the
normal testing set and it outperforms all other baselines to a greater extend when symmetries exist. Standard
deviations are given in parentheses.

Common Information Normal Testing Set Rotated Testing Set
# Par. (M) Train(%) Timea (s) Test (%) Test (%)

CT-FNO 2.18 0.147(0.02) 0.00197 0.773(0.08) 0.774(0.08)
DeepOnetb 2.40 1.508(0.967) 0.00085 1.659(0.992) 47.783(6.34)

GNO 4.61 3.079(1.37) 0.08062 5.885(0.20) 26.783(4.23)
GNOE 4.61 2.763(1.29) 0.08133 5.279(0.28) 5.279(0.28)
GINO 4.63 1.386(0.43) 0.02734 1.973(0.51) 33.374(4.99)

a Evaluation/inference time for a batch of 20 input initial conditions.
b Compared to other baselines, DeepOnet is not discritization invariant on the input.
E Equivariant Adaptation of GNO; details can be found in Appendix C.2.

However, we consider an inscribed square domain for the other baseline models to demonstrate that the
performance of CT-FNO is comparable to all other baselines while providing greater generalizability.

Simulation Description. We aim to learn a synthetic operator G : f 7→ u, where f : Ω 7→ R is defined as

f(x, y) = π

K2

K∑
i,j=1

aij ·
(
i2 + j2)−l sin(πix) sin(πjy),

and u : Ω 7→ R is defined as

u(x, y) = 1
πK2

K∑
i,j

aij ·
(
i2 + j2)l−1 sin(πix) sin(πjy),

with l = −0.5,K = 16, and aij are i.i.d. uniform on [−1, 1]. The dataset is created by setting different sets
of random numbers aij .

Setup. We define the domain as a circle centered at (0.5, 0.5) with a radius of
√

2
2 for CT-FNO:

Ω := {(x, y) ∈ R2 : (x− 0.5)2 + (y − 0.5)2 <
1
2}.

Figure 6: Sample input function and output
solution. Input function and output solution
values are the same in the shared square.

For comparison with other baselines, including FNO, G-
FNO, and Radial-FNO, we consider the domain to be a unit
box: Ω := {(x, y) ∈ (0, 1)2}, bounded by the circular domain
considered in CT-FNO as demonstrated in Figure 6. For the
square domain, the grids are 64×64, and for the circular do-
main, the grids are 26×156. We intentionally choose to have
a circular domain to show that CT-FNO can operate on cir-
cular domains, and its performance is comparable with other
baselines on rectangular domains. We bound the square do-
main with the circular domain for testing purposes. In the
shared square, the values are identical given the analytical
expressions; if CT-FNO can perform well on the bounding
circular domains, it indicates that CT-FNO performs well
on the square domain as well. This operator learning task
is inspired by a Poisson Equation in Raonic et al. (2023); in
fact, for the square domain, f and u are the input function and solution pairs for the Poisson Equation in
Appendix E.

The training dataset contains 1000 input-output function pairs, whereas the testing dataset contains 200
input-output function pairs. It is evident that this operator is equivariant to SO(2) rotations; we randomly
select 30% and 60% of the testing input-output function pairs and rotate them by an element in the C4
group for square domains and by an arbitrary degree for the circular domain. These rotated pairs are then
added to the testing set, referred to as Testing Set A and Testing Set B, respectively.
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Results and Analysis. In Table 2, we present results for the Synthetic Operator. Considering that the
square domain for other baselines is bounded by the circular domain for CT-FNO, we may conclude that
CT-FNO achieves roughly the same level of accuracy compared to all other baselines. It can be seen that CT-
FNO is able to operate on circular domains while respecting the underlying rotational symmetries without
a noticeable increase in computational costs. Although we do not observe superior performance of CT-FNO
over other baselines, our contribution focuses on the generalizability of CT-FNO to extend FNO to other
domain shapes while maintaining the underlying symmetries. Moreover, with such generalization, CT-FNO
is robust under arbitrary rotations as the discretization tolerates, whereas other baselines are constrained to
C4 rotations due to the nature of square domains. The experimental findings in this example corroborate
with the conclusion from Section 4.1 that CT-FNO, similar to FNO, can approximate operators in another
coordinate system with theoretical guarantees.

Table 2: Results on 2D Synthetic Operator. CT-FNO achieves rotational equivariance without significantly
increasing computational complexity; the training time per epoch is close to that of FNO and much less than
that of G-FNO. Moreover, it can be seen that CT-FNO can operate on circular domains while maintaining
similar performance as all other baselines. Standard deviations are given in parentheses.

Common Information Testing Set A Testing Set B
# Par. (M) Train(%) TPEa (s) Test (%) Test (%)

FNO (C4) 2.37 0.412(0.03) 0.416 22.537(1.53) 31.942(1.53)
G-FNO (C4) 2.24 0.378(0.04) 0.709 0.400(0.04) 0.402(0.04)

Radial-FNO (C4) 2.63 0.386(0.03) 0.540 0.431(0.04) 0.434(0.04)
CT-FNO (Arbitrary) 2.31 0.399(0.06) 0.459 0.403(0.07) 0.402(0.06)
a TPE: Average Time Per Epoch since G-FNO will increase the channel width and increase FFT computations.

5.3 2D Darcy Flow Equation
5.3.1 Symmetry Study
In this example, we specifically demonstrate CT-FNO’s capability to preserve rotation symmetries, even for
rectangular domains.

Simulation Description. The Darcy flow equation is a fundamental equation in fluid dynamics that
describes the flow of fluids through porous media. It is crucial in various fields like hydrogeology, petroleum
engineering, soil mechanics, and environmental science. We consider the steady-state of the 2D Darcy Flow
equation from Li et al. (2021) given by:

−∇ · (a(x)∇u(x)) = f(x) x ∈ (0, 1)2

u(x) = 0 x ∈ ∂(0, 1)2

where a ∈ L∞ (
(0, 1)2;R+

)
is the diffusion coefficient and f ∈ L2 (

(0, 1)2;R
)

is the forcing function that is
kept fixed f(x) = 1. We are interested in learning the operator mapping the diffusion coefficient a(x) to
the solution u(x). It can be shown that this operator is equivariant to the C4 rotation group (rotational
symmetry group of order 4) as shown in Appendix B.

Setup. The input diffusion coefficient field a(x, y) is generated by the Gaussian random field with a piecewise
function, namely a(x, y) = ψ(µ), where µ is a distribution defined by µ = N

(
0, (−∆ + 9I)−2)

. The mapping
ψ : R → R takes the value 12 on the positive and 3 on the negative, and the push-forward is defined point-
wise. Solutions are obtained using a second-order finite difference scheme on a 241 × 241 grid and then
downsampled to 49×49. For CT-FNO, we use bilinear interpolation to convert Cartesian grids into 40×240
equidistant grids in polar coordinates.

For this 2D Darcy Flow, we apply CT-FNO to achieve rotation equivariance. As the domain is a unit
box, we test rotation equivariance under the C4 group. The results will be compared with FNO (Li et al.,
2021), G-FNO (Helwig et al., 2023), and radial-FNO (Shen et al., 2022; Helwig et al., 2023), which is a
frequency domain radial kernel that is invariant to rotations. The data comes in an equidistant grid in
Cartesian coordinates. To apply CT-FNO, we convert it to polar coordinates using bi-linear interpolation,
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and the solution will be interpolated back to Cartesian coordinates through bi-linear interpolation. Since
the resulting domain is not rectangular in polar coordinates, reflection padding is applied. The reported
errors are based on Cartesian coordinates. The training dataset contains 1000 input-output function pairs,
whereas the testing dataset contains 200 input-output function pairs, denoted as the Normal Testing Set.
We rotate every testing sample in the Normal Testing Set by an element in the C4 group and denote this
testing dataset as the Rotated Testing Set to test rotation equivariance.

Table 3: Results on the 2D Darcy Flow equation. CT-FNO achieves the best performance without signifi-
cantly increasing computational complexity; the training time per epoch is close to that of FNO. We rotate
the testing input-output function pairs and rotate by an element in the C4 group; these testing data-set is
called the Rotated Testing Set. Standard deviations are given in parentheses.

Common Information Normal Testing Set Rotated Testing Set
# Par. (M) Train(%) TPEa (s) Test (%) Test (%)

FNO 2.37 0.335(0.03) 0.413 0.701(0.04) 1.765(0.10)
G-FNO 2.24 0.315(0.03) 0.710 0.693(0.05) 0.693(0.05)

Radial-FNO 2.63 0.331(0.04) 0.539 0.713(0.08) 0.713(0.08)
CT-FNO 2.31 0.276(0.06) 0.462 0.664(0.10) 0.669(0.10)

a TPE: We record the average time per epoch since G-FNO increases the channel width and increase FFT computations.

Results and Analysis. In Table 3, we present the results for the Darcy Flow equation. CT-FNO performs
slightly better compared to all other baselines under normal data conditions. However, it does not provide
enough evidence that CT-FNO performs better than other baselines under normal testing data, and this
is expected as the objective of CT-FNO is to target symmetries and generalizability to other shapes for
which FNO cannot be directly applied. For C4 testing data, the performance of FNO degrades moderately,
although not as obviously as in previous examples as the coefficient functions are sampled from Gaussian
random fields and then mapped to piecewise constants, and thus, the distribution of the rotated testing set
does not deviate much from the normal testing set.

CT-FNO, G-FNO, and radial-FNO are all equivariant to rotations; thus, their performances are robust
against rotations in the testing set. The testing errors do not change for G-FNO and Radial-FNO; the
testing error varies slightly for CT-FNO due to interpolation applied. Equivariant architectures can extract
local symmetries (Cohen & Welling, 2016; 2017) and thus improve results even on data without global
symmetries. However, in FNO-based architectures, convolution kernels are global; it is unclear whether
group global convolution can capture local symmetries. The group-equivariant architecture can still enhance
network performance as it provides broader expressive power to the neural network in the frequency domain;
however, this increase also raises the computational complexity of FFT due to the larger number of channels.

5.3.2 Ablation Study on Sampling Grid
Table 4: Results for CT-FNO on 2D Darcy Flow un-
der different grid samplings. The more it deviates
from the proposed grid sampling, the larger the error
becomes. CT-FNO is trained on grid values in polar
coordinates obtained by interpolation.

Sampling Grid Size Test (%) Train (%)
20 × 120* 0.687 0.276
30 × 80 0.738 0.301
40 × 60 0.847 0.331
49 × 49 0.966 0.354
15 × 160 0.754 0.359
12 × 200 0.873 0.432
10 × 240 1.057 0.501
8 × 300 1.361 0.616

* Proposed Sampling Grid

We compare the results under different sampling
grids as discussed in Section 4.3. Bilinear interpola-
tion is applied for all cases. In Table 4, we demon-
strate the impact of using different sampling grids. It
can be observed that the proposed 1 : 6 rule exhibits
superior performance compared to other sampling
grids. As the ratio deviates further from 1 : 6, the
performance decreases monotonically. Therefore, we
conclude that the proposed sampling grid is highly
effective and important. Analogously, for other do-
main shapes and coordinate transformations, one
can identify a sampling grid similar to this to respect
the geometric nature of the Cartesian coordinate sys-
tem. For this example, the results are averaged over
5 runs.
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6 Conclusion, Limitations, and Future Work
In this work, we propose designing an FNO architecture based on coordinate transformation. Specifically,
by considering the underlying shape and symmetries of the domains it embeds, we may apply a coordinate
transformation to seamlessly convert the domain into a rectangular domain in which FNO can be applied.
Through coordinate transform, we convert rotational symmetries into translation symmetries, which are
naturally inherent in FNO architectures. We conduct experiments to evaluate our proposed CT-FNO.
Results show that operator learning with coordinate transformation can achieve similar performance to
FNO while being able to generalize to various domain shapes while respecting the symmetries.

Limitations. Although this work generalizes FNO to various domains, it is still not broad enough; it
would be interesting to see if coordinate transformation can be applied with other methods to work on
general domains while respecting the symmetries.

Future Work. In Bonev et al. (2023), the authors have explored the use of a different coordinate system
for climate modeling. As our work is a generalization of coordinate transformation for neural operators, it
will be interesting to see if CT-FNO can be applied to more practical real physical systems. Moreover, some
symmetries become manifest only in a new coordinate system that must be discovered (Liu & Tegmark,
2022); it is worth exploring whether such symmetries can be captured by CT-FNO.
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A Group Equivariance Preliminaries

Definition A.1. A group is an algebraic structure that consists of a set G together with a binary operator,
·, the group product, that satisfies the following axioms:

• Closure: For all h, g ∈ G we have h · g ∈ G.

• Identity: There exists an identity element e.

• Inverse: for each g ∈ G there exists an inverse element g−1 ∈ G such that g−1 · g = g · g−1 = e.

• Associativity: For each g, h, i ∈ G we have (g · h) · i = g · (h · i).

Definition A.2. A subset H ⊆ G of a group G forms a subgroup if it is closed under composition and
taking inverses:

• Composition: for all g, h ∈ H one has gh ∈ H

• Inversion: for all g ∈ H one has g−1 ∈ H

Subgroups are also groups; in other words, they satisfy the group axioms.
Definition A.3. Let (G, ·G) and (H, ·H) be two groups. Their (outer) direct product (G, ·G) × (H, ·H) is
defined on the Cartesian product G×H of the underlying sets, equipped with the group product · defined
as

G×H → G×H, (g1, h1) · (g2, h2) = (g1 ·G g2, h1 ·H h2)

with the condition that the elements of the factors G and H are independent from each other. If the group
H acts on G, the notion of direct product groups is generalized to semi-direct product groups, denoted as
G⋊H.

In this work, we have mentioned several special groups. Herein, we provide the definitions for the general
audience:

• The Orthogonal group O(n) is the group of orthogonal matrices in n dimensional Euclidean space.
These matrices preserve the dot product, representing rotations and reflections.

• The Special Orthogonal group SO(n) is a subgroup of O(n) and consists of proper rotations in
n-dimensional Euclidean space without reflections.

• The Euclidean group E(n) = Rn ⋊ O(n) is the group of isometries of Euclidean space Rn, which
includes translations and rotations.

• The Special Euclidean group SE(n) = Rn ⋊ SO(n) is a subgroup of E(n) and consists of rigid
transformations, which include translations and rotations, but the rotations are limited to proper
rotations (no reflections).

• The cyclic group C4, also known as the cyclic group of order 4 , is defined as the group consists of
four elements, denoted by C4 = {R0, R90, R180, R270}, representing rotations of 0◦, 90◦, 180◦, and
270◦, repectivelly.

• The group p4 consists of all compositions of translations and rotations in the C4 group.

Definition A.4. Let G be a group and X be a set. A (left) group action is a mapping from G × X to X
that satisfies the following properties:

• Identity Element: e · x = x for all x ∈ X, where e is the identity element of G.

• Compatibility: (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.
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B Rotation Equivariance of the Darcy Flow Equation

Lemma B.1. Let D ⊆ R2 be a domain. Suppose that the functions u : D → R, a : D → R+, and f : D → R
solve the partial differential equation

−∇ · (a(x)∇u(x)) = f(x) (6)

Take R to be an orthogonal matrix describing a rotation. Then the functions uR : R−1D → R, aR : R−1D →
R+, and fR : R−1D → R also satisfy equation 6, where:

uR(x) := u(Rx)
aR(x) := a(Rx)
fR(x) := f(Rx)

(7)

Note that Lemma B.1 is most meaningful when the domain D is invariant under the rotation R, e.g., the
domain is a circle or the domain is R2. If the domain is a unit box, D = (0, 1)2, it is most meaningful to
consider rotation by 0◦, 90◦, 180◦ or 270◦.

Proof. Since fR(x) = f(x) = 1 is invariant under rotation, to show that uR, aR, and fR satisfy equation 6,
it is sufficient to show that ∇ · (aR∇uR)(x) = (∇ · a∇u) (Rx). We have

∇ · (aR(x)∇uR(x)) =
2∑

i=1

∂

∂xi

(
aR(x) ∂

∂xi
uR(x)

)

=
2∑

i=1

∂

∂xi

(
a(Rx) ∂

∂xi
u(Rx)

)

=
2∑

i=1

2∑
j=1

2∑
k=1

(
∂a

∂xk
(Rx) ∂u

∂xj
RkiRji + a(Rx) ∂u

∂xk

∂u

∂xj
RkiRji

)

= ∂a

∂x1
(Rx) ∂u

∂x1
(Rx) + a(Rx)∂

2u

∂x2
1

(Rx) + ∂a

∂x2
(Rx) ∂u

∂x2
(Rx) + a(Rx)∂

2u

∂x2
2

(Rx)

= (∇ · a∇u) (Rx).

(8)

C Diffusion of Heat

C.1 Initial Conditions

We generate the initial conditions

U(ξ, 0) = U0(ξ) = U0(x, y, z) =
N∑

n=−N

M∑
m=−M

[Anm cos(n arccosx) +Bnm sin(n arcsin y)] cos
(
mπz

Lz

)
· Snm

+ π

5 exp
(

−10(arccosx− π)2

2π

)
+ 1,

where Anm, Bnm ∼ N (0, 0.5), Snm = τ (γ−1) ·
(
π2λnm + τ2)− γ

2 with τ = 1 and γ = 2, and λnm =
(

n2

L2
θ

+ m2

L2
z

)
with Lθ = 2π and Lz = 6. The initial temperature generated satisfies periodic conditions for continuity
around the cylinder’s circumference. These initial temperatures distributions are made to demonstrate the
effectiveness and importance of the equivariant nature of CT-FNO. The second term introduces a higher
initial temperature at fixed locations on the cylinder; consequently, rotations will alter the initial heat
distribution. In various real-world applications, rotations will have a significant impact as well.
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C.2 Details and Additional Results on Equivariant Adaptation of GNO

For the implementation of GNO, we directly adopt the settings from Anandkumar et al. (2019). In this
approach, the node features, denoted as fi for node i, comprise the function value and the positional vector
in Euclidean space (x, y, z coordinates) associated with the node. Similarly, the edge features, denoted as
eij for the edge between nodes i and j, encompass all the function values and positional vectors of nodes i
and j.

How to design more sophisticated equivariant GNNs is a field of study (Satorras et al., 2021; Liu et al., 2023b;
2022). Moreover, lately, there have been studies on more sophisticated designs of GNOs or their variants,
such as Liu et al. (2023b); Xu et al. (2024), for certain tasks. A straightforward equivariant adaptation of
GNO, which we use to compare with CT-FNO, is to use a reference to embed geometric information, in
a way that respects the underlying symmetries, in the node and edge features. For node i, we denote its
coordinates by xi, and we take the two points with the maximum and minimum function values, respectively,
among its neighbors defined by the cut-off radius as reference points. We denote these two points as xmin
and xmax. Now, the node feature of the ith node, fi, comprises the function value and the distances between
node i and the two reference points:

dmin
i = ||x⃗i − x⃗min||, and dmax

i = ||x⃗i − x⃗max||.

For edge features, eij , between nodes i and j, we include the four distances [dmin
i , dmin

j , dmax
i , dmax

j ] and the
pairwise distance, dij = ||x⃗i − x⃗j ||, between nodes i and j. It is clear that such construction of node and
edge features is equivariant to rotations. Therefore, GNO is made equivariant.

C.3 Rotation Equivariance

Lemma C.1. Let D = {(x, y, z) ∈ R3|x2 + y2 = 1, 0 < z < 6} ⊆ R3 be the cylindrical domain considered
with the center of the base being the origin and T ⊂ R≥0 be the space of time. Suppose that the functions
U : D × T → R solve the partial differential equation

∂U(x, y, z, t)
∂t

= α∆U(x, y, z, t), (x, y, z, t) ∈ D × T

∂U (x, y, z, t)
∂z

= 0, z ∈ ∂D,

(9)

Take Rθ to be the representation of a rotation around z-axis acting on D, which can be described by unitary
matrices:

Rθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Then the function UR : RθD × T → R also satisfy equation 9 for all θ ∈ [0, 2π], where UR (x, y, z, t) :=
U (Rθ(x, y, z), t)

Proof. Equation 9 can be written as:

∂U(β, z, t)
∂t

= α

(
1
r2
∂2U(β, z, t)

∂β2 + ∂2U(β, z, t)
∂z2

)
∂U(β, z, t)

∂z
= 0

(10)

where β = arccosx = arcsin y ∈ [0, 2π]. The representation of rotation around z-axis will just result in a
periodic translation in θ. Thus, it suffices to show that if U(β, z, t) satisfies equation 10, then U(z, β − θ, t)
also satisfies equation 10, which is trivial.
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Table 5: Test and train errors from all runs for DeepOnet vary greatly. However, even in the case of the
best result, it is still slightly less accurate than FNO.

Test Error Train Error
1 0.00996 0.00799
2 0.00998 0.00817
3 0.01003 0.00821
4 0.01033 0.00866
5 0.01040 0.01008
6 0.01097 0.01021
7 0.01138 0.01036
8 0.03011 0.02798
9 0.03129 0.02954
10 0.03146 0.02957

C.4 DeepOnet Results

The results for DeepOnet from every single run are recorded in Table 5.

D Theoretical Analysis of Parameter Transformation

The concept of FNOs, as introduced in the seminal work (Li et al., 2021), holds significant relevance in the
context of the periodic domain T d. In this setting, FNOs are conceptualized as a mapping N : A(D;Rda) →
U(D;Rdu). The formulation of this mapping is as follows:

N (a) := Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R(a), (11)

where R and Q represent the lifting and projection operators, respectively, as elaborated in equation 13 and
equation 14. Further, the non-linear layers Lℓ within this structure are represented by

Lℓ(v)(x) = σ

(
Wℓv(x) + bℓ(x) + F−1

(
Pℓ(k) · F(v)(k)

)
(x)

)
. (12)

Here, Wℓ ∈ Rdv×dv and bℓ(x) constitute a pointwise affine mapping (reflecting weights and biases), while
Pℓ : Zd → Cdv×dv specifies the coefficients for a non-local, linear mapping via the Fourier transform.

Moreover, the lifting operator R : A(D;Rda) → U(D;Rdv ), where dv ≥ du, functions locally and is defined
as

R(a)(x) = Ra(x), R ∈ Rdv×da , (13)

and the projection operator Q : U(D;Rdv ) → U(D;Rdu) operates locally, given by

Q(v)(x) = Qv(x), Q ∈ Rdu×dv . (14)

An adaptation to the FNO architecture is proposed by integrating two additional parameter mapping mod-
ules. This leads to a revised mapping N ′ : A(D;Rda) → U(D;Rdu), expressed as

N
′
(a) := Pu ◦ Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R ◦ Pa(a), (15)

where Pa : A(D;Rda) → A(D;Rda) and Pu : U(D;Rdu) → U(D;Rdu) function as parameter mappings.

In accordance with the foundational principles outlined in the universal approximation theorem for
FNOs (Kovachki et al., 2021), we extend these concepts through the following theorem:
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Theorem D.1 (Universal Approximation for FNOs). Let us consider two non-negative integers, s and s′,
where both s, s′ ≥ 0. Let G be a continuous operator, defined from Hs(T d;Rda) to Hs′(T d;Rdu). Given any
compact subset K within Hs(T d;Rda) and for any arbitrary positive value of ϵ, there exists a Fourier Neural
Operator, denoted as N , mapping from Hs(T d;Rda) to Hs′(T d;Rdu). This operator N , structured according
to the form delineated in equation 11, maintains continuity as a mapping from Hs to Hs′ . Consequently,
this results in the following inequality being satisfied:

sup
a∈K

∥G(a) − N (a)∥Hs′ ≤ ϵ.

Building upon this theorem, we derive a corollary, that follows immediately from Theorem D.1, to address
the modifications involving parameter mapping within the FNO framework:
Corollary D.2 (Universal Approximation with Parameter Mapping). Let s, s′ ≥ 0. Assuming that G, a
continuous operator mapping from Hs(T d;Rda) to Hs′(T d;Rdu), holds true. For any compact subset K
contained in Hs(T d;Rda) and any given positive ϵ, there exists a modified Fourier Neural Operator, denoted
as N ′ . This operator N ′ , mapping from Hs(T d;Rda) to Hs′(T d;Rdu), incorporates the continuous and
compact operators Pa and Pu on Hs(T d;Rda) and Hs′(T d;Rdu), respectively. The structure of N ′ is as
per equation 15, and it maintains continuity as an operator from Hs to Hs′ , thereby ensuring the following
condition is met:

sup
a∈K

∥G(a) − N
′
(a)∥Hs′ ≤ ϵ.

E Poisson Equation

This prototypical linear elliptic PDE from Raonic et al. (2023) is given by,

−∆u = f, in D, u|∂D = 0.

The solution operator G : f 7→ u, maps the source term f to the solution u. With source term,

f(x, y) = π

K2

K∑
i,j=1

aij ·
(
i2 + j2)−r sin(πix) sin(πjy), ∀(x, y) ∈ D,

with r = −0.5, D := {(x, y) ∈ (0, 1)2}, the corresponding exact solution can be analytically computed:

u(x, y) = 1
πK2

K∑
i,j

aij ·
(
i2 + j2)l−1 sin(πix) sin(πjy),

we fix K = 16 and choose aij to be i.i.d. uniformly distributed from [−1, 1].
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