
Proceedings of Machine Learning Research 1–13, 2020 Full Paper – MIDL 2020

MAC-ReconNet: A Multiple Acquisition Context based
Convolutional Neural Network for MR Image

Reconstruction using Dynamic Weight Prediction

Sriprabha Ramanarayanan ∗ 1,2 sriprabha.r@htic.iitm.ac.in
1 Indian Institute of Technology Madras (IITM), India
2 Healthcare Technology Innovation Centre (HTIC), IITM, India

Balamurali Murugesan ∗1,2 balamurali@htic.iitm.ac.in

Keerthi Ram 2 keerthi@htic.iitm.ac.in

Mohanasankar Sivaprakasam 1,2 mohan@ee.iitm.ac.in

Abstract

Convolutional Neural network-based MR reconstruction methods have shown to provide
fast and high quality reconstructions. A primary drawback with a CNN-based model is
that it lacks flexibility and can effectively operate only for a specific acquisition context
limiting practical applicability. By acquisition context, we mean a specific combination
of three input settings considered namely, the anatomy under study, undersampling mask
pattern and acceleration factor for undersampling. The model could be trained jointly on
images combining multiple contexts. However the model does not meet the performance of
context specific models nor extensible to contexts unseen at train time. This necessitates a
modification to the existing architecture in generating context specific weights so as to in-
corporate flexibility to multiple contexts. We propose a multiple acquisition context based
network, called MAC-ReconNet for MRI reconstruction, flexible to multiple acquisition
contexts and generalizable to unseen contexts for applicability in real scenarios. The pro-
posed network has an MRI reconstruction module and a dynamic weight prediction (DWP)
module. The DWP module takes the corresponding acquisition context information as in-
put and learns the context-specific weights of the reconstruction module which changes
dynamically with context at run time. We show that the proposed approach can handle
multiple contexts based on cardiac and brain datasets, Gaussian and Cartesian undersam-
pling patterns and five acceleration factors. The proposed network outperforms the naive
jointly trained model and gives competitive results with the context-specific models both
quantitatively and qualitatively. We also demonstrate the generalizability of our model by
testing on contexts unseen at train time.

Keywords: Multiple acquisition contexts, Dynamic weight prediction, MRI reconstruc-
tion.

1. Introduction

Magnetic Resonance imaging (MRI) offers several benefits of non-invasive acquisition and
high soft-tissue contrast but suffers from the inherent slow acquisition. The fundamental
challenge in MRI is to mitigate the time-intensiveness of acquisition for the betterment of
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patient comfort. Compressed sensing MRI (CS-MRI) methods have been used to accelerate
the acquisition and deployed in clinical environments (Jaspan et al., 2015), however, param-
eter tweaking and iterative computation of non-linear optimization solvers lead to relatively
long reconstruction times (Yang et al., 2018). An emerging active research area for faster
and efficient reconstruction is the use of convolutional neural networks (CNN) to learn an
offline non-linear mapping between the under-sampled (US) input and fully-sampled (FS)
target image. Several existing CNN based methods have shown to provide higher quality
reconstruction as compared with the CS-MRI methods (Lundervold and Lundervold, 2019).
However, the fundamental challenge in translating these methods to an MRI workstation
in real clinical environments is that these methods can effectively operate only for a specific
input setting used at train time.

Typically, the weights of CNN are learned using abundant training data. In MR recon-
struction, the combination of input settings namely anatomy under study, undersampling
pattern and acceleration factor decides the distribution of the training data (Lundervold
and Lundervold, 2019). We call each combination of input setting as an acquisition context.
In general, deep learning models suffer from covariate shift wherein a model trained using
data from a particular distribution tend to perform poorly on data from a different distri-
bution (Li et al., 2018a). Hence, the model must be trained separately for each acquisition
context. For instance, two anatomical studies (brain and cardiac), five acceleration factors
(2x, 3.3x, 4x, 5x and 8x) and two under-sampling patterns (Cartesian and Gaussian) would
generate 20 training contexts. We call each such model, a context-specific model (CSM).
Training and storing models specifically for each of these contexts raise demands on time
and memory thereby limiting applicability in a real clinical setting.

We consider the problem of MR reconstruction flexible to multiple acquisition contexts
using a single network. One naive approach to bring in flexibility is to jointly train the model
using a large corpus of training data obtained from various contexts. We call this jointly
trained model as joint context model (JCM). The JCM is memory efficient as compared to
the CSMs. However, CSMs serve as experts in their respective contexts and hence provide
better reconstruction as compared to the JCM. Furthermore, a JCM, trained for a set of
contexts (for instance 2x, 3.3x, 4x, 5x and 8x) might not be optimal for unseen contexts
(like 4.5x).

The decouple learning framework proposed by (Fan et al., 2019) has been applied for
multiple parameterized image operators, wherein the weights of the task-oriented base net-
work are decoupled from the network structure and directly learned by a weight prediction
network to suit multiple parameter configurations. The framework has also shown to work
for unseen parameters in image operators. In MR image reconstruction, each CSM can
be viewed as an image operator parameterized by the acquisition context. The structure
of each CSM is the same, however they differ by the set of weights. Weight prediction
enables the generation of different set of weights for different contexts including unseen
contexts. Hence we have chosen the decouple learning framework for handling multiple
contexts in a single network. We demonstrate through extensive experiments, that an MR
image reconstruction architecture based on decouple learning framework is able to match
the performance of all the trained CSMs and also offer reliable reconstruction on unseen
acquisition contexts. We summarise our contributions as follows.
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• We propose a multiple acquisition context-based network for MRI reconstruction,
called MAC-ReconNet, consisting of a reconstruction module and a dynamic weight
prediction (DWP) module. The reconstruction module acts as the base network that
performs the intended task of undersampled MRI reconstruction. The DWP mod-
ule takes as input, the numerically encoded acquisition context vector and learns to
predict the convolution layer weights of the reconstruction module that dynamically
changes with context at run time.

• We show that the proposed approach can handle multiple contexts involving input
settings: 1) anatomy under study: cardiac and brain, 2) undersampling pattern:
Cartesian and Gaussian 3) acceleration factors: 2x, 3.3x, 4x, 5x and 8x. The contexts
considered for the experimental study are (a) Fixed study while sampling pattern and
acceleration factors are varied, (b) Fixed US mask pattern while study and acceleration
factors are varied. Results show that the proposed network outperforms the JCM and
gives competitive results with the CSMs both quantitatively and qualitatively.

• We also show that our proposed approach can provide better reconstruction for 26
out of 28 unseen acceleration factors as compared to the JCM and equally good
performance as compared to the CSMs. Our model for this scenario has been trained
for five acceleration factors (2x, 3.3x, 4x, 5x, 8x) with Gaussian undersampling pattern
and cardiac MRI as the study of interest.

2. Related work

Deep learning based MRI Reconstruction: Several CNN-based MR reconstruction
methods, ranging from standalone architectures (Wang et al., 2016) (Lee et al., 2017) to deep
cascade networks (Schlemper et al., 2017) (Sun et al., 2019), (Huang et al., 2019), (Wu et al.,
2018), exist in the literature. Among these, the data driven deep cascaded architectures
which map US image to FS image have gained more interest owing to their improved learning
capabilities and ability to model complex structures from images (Liang et al., 2019). The
deep cascaded architectures consist of alternating CNNs with residual connections and data
fidelity (DF) blocks. These models are similar to the unrolled optimization steps in CS-MRI,
yielding better reconstruction quality (Diamond et al., 2017).

Dynamic Weight Prediction: Several recent works on computer vision explore the
idea of introducing more flexibility in the network architecture and learning strategies in
various aspects like domain generalization and meta learning (Li et al., 2018b). We focus on
weight prediction which is a form of meta-learning strategy in neural networks (Lemke et al.,
2015). (Hu et al., 2019) uses a dynamic filter generation network for super-resolution of
natural images to support arbitrary scale factors. (Jo et al., 2018) proposed a dynamic filter
generation network for video super resolution for capturing spatio-temporal neighborhoods
of pixels, to eliminate explicit motion compensation. (De Brabandere et al., 2016) used
dynamic filter networks for predicting a sequence of future frames in video.
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3. Methodology

3.1. Problem formulation for deep learning based MRI reconstruction with
Dynamic Weight Prediction

Let x ∈ CN be the desired image to be reconstructed from undersampled k-space mea-
surements y ∈ CM , M << N , such that y = Fux, where Fu is the undersampled Fourier
encoding matrix. For undersampled k-space measurements, this system of equations is
under-determined and hence the inversion process is ill-defined. The zero-filled reconstruc-
tion xu = FHu y is an aliased image due to sub-Nyquist sampling. A CNN-based MRI
reconstruction can be formulated as an optimization problem:

argmin
x,WCNN

||x− CNN(xu|WCNN )||22 + α||Fux− y||22 (1)

The CNN reconstruction is xCNN = CNN(xu|WCNN ), where CNN is the forward mapping
from US to FS image, parameterized by the network weights WCNN . The acquisition
context, −→γ , a numerically encoded vector representing a combination of input settings, maps
to a set of learned weights WCNN . A change in the context vector is reflected in the weights
of the CNN block. We represent this relationship by a mapping WCNN = h(−→γ ) where
h could be a linear or a non-linear mapping. In the proposed approach the mapping h is
learned by a dynamic weight prediction block DWP . The CNN block is a fully convolutional
network with n layers. The DWP block takes the context vector −→γ as input and outputs
the weights of each layer of CNN for that context.

WCNN = (W1,W2, ...,Wn) = DWP (−→γ ) (2)

Here WCNN = W1,W2, ...,Wn are the weights of the n layers of the CNN block. We use
data fidelity (DF) block in k-space domain after the CNN block to ensure that the CNN
reconstruction is consistent with the acquired k-space measurements. The data fidelity
operation fdf can be expressed as,

x̂df =

{
x̂CNN (k) k /∈ Ω
x̂CNN (k)+λx̂u(k)

1+λ k ∈ Ω
(3)

Here, x̂CNN = FfxCNN , x̂u = Ffxu, Ω is the index set of sampled k-space data, Ff is the
Fourier encoding matrix, and x̂df is the corrected k-space and λ → ∞. The reconstructed
image is obtained by inverse Fourier encoding of x̂df , i.e. xdf = FHf x̂df .

The reconstruction module is a cascade of Nc CNN blocks with residual connections in
each and k-space data fidelity blocks which can be formulated as,

xCNN,n = CNNn(xdf,n−1) + xdf,n−1 (4)

xdf,n = DFn(xCNN,n) (5)

Here CNNn and DFn denote the nth CNN and DF block respectively, n = 1, 2..Nc, xdf,0 =
xu and xrec = xdf,Nc is the output of the last DF block.

The DWP module consists of Nc DWP blocks, providing weights to the respective CNN
block. The weights of the nth CNN block, WCNNn is given by,

WCNNn = DWPn(−→γ ) (6)
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Figure 1: MAC-ReconNet: Proposed architecture for multiple acquisition context based
MR Reconstruction. The DWP module takes context vector as input. Recon-
struction module takes US image and US k-space as inputs.

3.2. Design choices and proposed architecture

Reconstruction module: Our design choice for the reconstruction module is the Deep
Cascaded Convolution Neural Network (DC-CNN) (Schlemper et al., 2017), one of the
state-of-the-art MRI reconstruction network. Other deep cascaded architectures featuring
additional computation units like max pooling (Sun et al., 2019), channel attention (Huang
et al., 2019) or dense connections (Wu et al., 2018) could still be considered. However, we
count on the benefits of DC-CNN from the perspective of simple design yet good quality
MRI reconstruction using just the fundamental building units like convolution layers, non-
linear activation function and residual connections.

Dynamic Weight Prediction module: The core idea of weight prediction is that
instead of directly learning the model parameters of a base network, another network could
be used to predict the weights of the base network to effectively handle multiple contexts
(Ha et al., 2016). The building block of our DWP module is a network with fully connected
layers without any non-linear activation units. Using this simple design choice, we explore
the possibility of incorporating multiple contexts at the same time meet the performance
of CSMs.

Proposed Architecture: The proposed architecture (Figure 1) takes the context
vector (−→γ ), the corresponding US image (xu) and k-space data (y) as inputs and gives
the FS image (xrec) as output. The architecture has five cascaded functional units. Each
functional unit has a CNN block assisted by a DWP block and followed by a DF block. The
CNN block has 5 layers and a residual connection wherein the CNN block output is summed
with its input. The layers other than the last one has convolution followed by a ReLU while
the last layer has only convolution operation. The filter dimensions of convolution layers are
given by (Nout, Nin, h, w), where Nout is the number of output channels, Nin is the number
of input channels and h× w, the kernel size. In our case, the filter dimensions of first and
last CNN layer are (32, 1, 3, 3) and (1, 32, 3, 3) respectively and those of the second, third
and fourth CNN layer are (32, 32, 3, 3).
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The DWP block has 5 fully connected networks FC1 to FC5 corresponding to the weights
(filters) W1 to W5 of convolution layers of the CNN block respectively. The number of neu-
rons in each FC network in a DWP block is equal to the size of corresponding convolutional
layer weights in the corresponding CNN block. FC1 and FC5 have 288 neurons each cor-
responding to W1 and W5. Similarly, FC2, FC3 and FC4 each have 9216 neurons each
corresponding to W2, W3 and W4.

If WFC
i and BFC

i are the weights and bias values of the ith FC network in a DWP block,
the corresponding weight matrix Wi of the ith convolution layer in the CNN block is given
by, Wi = WFC

i
−→γ + BFC

i . Here the size of WFC
i is (Nw, Nγ) and BFC

i is (Nw, 1), where
Nw = Nout ∗Nin ∗ k ∗ k and Nγ is size of the context vector −→γ (i.e. 1 or 2). The dimension
of −→γ is Nγ × 1. During training, the loss calculated between the predicted reconstructed
image and the fully sampled target image is back propagated to learn the weights of the
DWP block. The weights of the MRI reconstruction network are not made learnable. As
a result, the weights of the DWP module are based on context vector input and the image
domain loss. The weights Wi are then resized to the actual CNN layer weight sizes and
then copied. The five DWP blocks (DWP1 to DWP5) form the DWP module and the five
cascaded alternating blocks of CNN (CNN1 to CNN5) and data fidelity (DF1 to DF5)
form the reconstruction module.

4. Experiment and Results

4.1. Dataset and Evaluation metrics

Dataset Description: 1) Cardiac MRI dataset: Automated Cardiac Diagnosis Chal-
lenge (ACDC) (Bernard et al., 2018) consists of 150 and 50 patient records for training and
validation respectively. The 2D slices are extracted and cropped to 150×150. The number of
images for training and validation are 1841 and 1076 respectively. 2) Brain MRI dataset:
MRBrainS dataset (Mendrik et al., 2015) contains T1, T1-IR and T2-FLAIR volumes of
brain for 7 subjects. We use T1 and FLAIR images each with size 240×240. For training
and validation, 5 subjects with 240 slices and 2 subjects with 96 slices are used. The under-
sampled images are retrospectively generated for training and testing using Cartesian and
Gausian mask patterns for different acceleration factors (Refer Appendix B). We have lim-
ited to real single coil images to demonstrate the ability of the network to multiple contexts.
The k-space data used in our simulations is obtained by taking a Fourier transform of the
magnitude of the images. Evaluation metrics: Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) metrics are used to evaluate the reconstruction quality.

4.2. Implementation Details

A two stage training process is adopted for the proposed architecture. In the first stage, a
functional unit consisting of a CNN and DWP block with a DF block are jointly trained
using the L2 loss function. For the training set D consisting of a number of US and FS
images as input-target pairs (xu, xt),

L(θ) =
∑

(xu,xt)∈D

‖xt − xcnn||22 (7)
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Table 1: Testing on Context with fixed anatomy, varying sampling pattern and acceleration
factors. Red denotes best and blue second best performance

−→γ ZF JCM MAC-ReconNet (ours) CSM
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

G
a
u
ss
ia
n 2x 34.11 ± 2.86 / 0.932 ± 0.02 45.37 ± 5.98 / 0.992 ± 0.00 46.12 ± 6.82 / 0.994 ± 0.00 46.39 ± 6.93 / 0.994 ± 0.00

3.3x 29.2 ± 2.76 / 0.844 ± 0.04 40.45 ± 5.01 / 0.98 ± 0.01 41.02 ± 5.53 / 0.982 ± 0.01 40.99 ± 5.50 / 0.982 ± 0.01
4x 26.96 ± 2.70 / 0.783 ± 0.04 38.78 ± 4.62 / 0.972 ± 0.02 39.35 ± 5.16 / 0.975 ± 0.02 39.14 ± 5.00 / 0.974 ± 0.02
5x 25.56 ± 2.74 / 0.728 ± 0.05 37.13 ± 4.27 / 0.961 ± 0.03 37.66 ± 4.77 / 0.964 ± 0.03 37.35 ± 4.59 / 0.963 ± 0.03
8x 23.30 ± 2.74 / 0.633 ± 0.04 33.27 ± 3.78 / 0.918 ± 0.04 33.68 ± 3.99 / 0.923 ± 0.04 33.42 ± 3.82 / 0.92 ± 0.04

C
a
rt
e
si
a
n 2x 29.63 ± 3.17 / 0.843 ± 0.05 40.97 ± 4.49 / 0.981 ± 0.01 41.64 ± 5.14 / 0.983 ± 0.01 41.8 ± 5.37 / 0.983 ± 0.01

3.3x 26.95 ± 3.12 / 0.790 ± 0.06 34.81 ± 3.49 / 0.946 ± 0.03 34.98 ± 3.54 / 0.948 ± 0.03 35.08 ± 3.59 / 0.95 ± 0.03
4x 24.27 ± 3.10 / 0.699 ± 0.08 32.79 ± 3.36 / 0.920 ± 0.04 33.03 ± 3.36 / 0.923 ± 0.04 32.75 ± 3.29 / 0.919 ± 0.04
5x 23.82 ± 3.11 / 0.674 ± 0.08 31.79 ± 3.59 / 0.907 ± 0.05 32.05 ± 3.47 / 0.909 ± 0.04 31.75 ± 3.40 / 0.905 ± 0.05
8x 22.83 ± 3.11 / 0.634 ± 0.09 28.53 ± 3.29 / 0.838 ± 0.07 28.78 ± 3.21 / 0.842 ± 0.07 28.5 ± 3.11 / 0.836 ± 0.07

Figure 2: Fixed anatomy, varying sampling pattern and acceleration factors. (Left to right):
Ground truth (GT), zero-filled image (ZF), JCM, Ours, CSM, residual image for
JCM, Ours and CSM respectively. Top: Cardiac, Cartesian, 5x undersampling.
Bottom: Cardiac, Gaussian, 8x undersampling

Here xcnn = CNN(xu|W ) = CNN(xu|DWP (−→γ )) is the predicted image. In the second
stage, the weights of this standalone network is used as pretrained weights for the cascaded
functional units. The reconstruction and the DWP modules are then trained jointly. In
both stages, the models are trained for 150 epochs on Nvidia GTX-1070 GPUs. The models
are implemented in PyTorch Adam optimizer is used with a learning rate of 0.001.

4.3. Results and Discussion

We evaluate our method on three contexts involving input settings: 1) anatomy under
study: cardiac, T1 and FLAIR brain, 2) undersampling pattern: Cartesian and Gaussian
3) acceleration factors: 2x, 3.3x, 4x, 5x and 8x. The contexts considered for the experi-
mental study are (a) Fixed US pattern while study and acceleration factors are varied (b)
Fixed study while sampling pattern and acceleration factors are varied. (c) Contexts with
acceleration factors unseen at train time.

Fixed study, varying undersampling pattern and varying acceleration fac-
tors: In this context a combination of mask (Cartesian, Gaussian) pattern for multiple
acceleration factors (2x, 3.3x, 4x, 5x and 8x) and for a fixed study i.e cardiac is used. The
context is flexible to both scenarios where Cartesian undersampling which is practical to im-
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Table 2: Testing on context with Fixed sampling pattern, varying study and acceleration
factors. Red and blue indicate the best and the second best performance respec-
tively

−→γ : 2× 1
ZF JCM MAC-ReconNet (ours) CSM

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

T1
4x 31.38 ± 1.02 / 0.665 ± 0.02 37.05 ± 1.44 / 0.946 ± 0.00 39.35 ± 2.04 / 0.968 ± 0.00 40.37 ± 2.09 / 0.980 ± 0.00
5x 29.93 ± 0.80 / 0.630 ± 0.02 35.75 ± 1.01 / 0.935 ± 0.00 38.65 ± 1.75 / 0.954 ± 0.00 39.5 ± 1.63 / 0.974 ± 0.00
8x 29.93 ± 0.80 / 0.630 ± 0.02 33.47 ± 1.15 / 0.905 ± 0.01 34.3 ± 0.59 / 0.907 ± 0.00 35.21 ± 1.34 / 0.939 ± 0.00

T2
4x 28.4 ± 0.84 / 0.642 ± 0.02 35.4 ± 0.09 / 0.94 ± 0.00 37.43 ± 0.37 / 0.966 ± 0.00 39.35 ± 2.04 / 0.968 ± 0.00
5x 26.99 ± 0.74 / 0.609 ± 0.02 33.99 ± 0.22 / 0.924 ± 0.00 37.09 ± 0.23 / 0.956 ± 0.00 37.81 ± 0.05 / 0.970 ± 0.00
8x 26.49 ± 0.79 / 0.588 ± 0.03 31.7 ± 0.03 / 0.899 ± 0.00 32.68 ± 0.91 / 0.912 ± 0.00 33.35 ± 0.27 / 0.93 ± 0.00

Figure 3: Context with Fixed sampling pattern, varying study and acceleration factors.(Left
to right): GT, ZF, JCM, Ours, CSM, residual image for JCM, Ours and CSM
respectively. Top: Cartesian, T1 Brain, 5x undersampling: Bottom: Cartesian,
Flair brain, 5x undersampling.

plement and simple to reconstruct, is preferred and other kinds of undersampling (Gaussian,
spiral or radial) where higher accuracy metrics are preferred (Geethanath et al., 2013). The
context vector is a tuple with acceleration factor as the first element and the mask pattern
enumerated as 1: Cartesian, 2: Gaussian, as the second element. (For example, context
vector [4 2] indicates 4x Gaussian acceleration). We compare our model with 10 respective
CSMs and the JCM.

From Table 1, the observations are, 1) The proposed method outperforms the JCM for
all the acceleration factors and mask patterns. 2) The proposed approach gives competitive
performance as compared to CSMs and for higher acceleration factors (specifically 8x), our
model performs better. Our model has the benefit of learning both the common and context
specific aspects since it is trained on images with multiple undersampling degradations as
compared with the CSMs which are trained on images with fixed degradation. 3) The
Gaussian undersampled images exhibit higher PSNR and SSIM metrics than the Cartesian
couterparts as intended.

In Figure 2, the regions marked with blue and red arrows in the JCM and CSM show
faint and aliased structures, the corresponding regions in our images are more closer to the
ground truth. Our method gives least residual errors with respect to the ground truth.
The dealiasing effect of our approach (yellow arrow marks in JCM) is more prominent in
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Table 3: Testing for unseen contexts. Red and blue indicate the best and the second best
performance respectively

−→γ JCM MAC-ReconNet (ours) CSM
PSNR/SSIM PSNR/SSIM PSNR/SSIM

4.8 35.57 +/- 3.75 / 0.9493 +/- 0.03 36.97 +/- 4.79 / 0.9594 +/- 0.03 36.85 +/- 4.46 / 0.9592 +/- 0.03
5.2 34.92 +/- 3.71 / 0.9434 +/- 0.03 36.34 +/- 4.64 / 0.9546 +/- 0.03 36.37 +/- 4.53 / 0.9541 +/- 0.03
6 33.96 +/- 3.57 / 0.9301 +/- 0.03 35.21 +/- 4.32 / 0.9425 +/- 0.04 35.06 +/- 4.06 / 0.9418 +/- 0.03
6.4 33.02 +/- 3.58 / 0.9193 +/- 0.04 33.99 +/- 4.26 / 0.9321 +/- 0.04 34.03 +/- 3.89 / 0.9315 +/- 0.04
6.8 32.68 +/- 3.55 / 0.913 +/- 0.04 33.93 +/- 4.21 / 0.9284 +/- 0.04 33.98 +/- 3.98 / 0.9277 +/- 0.04
7.2 32.15 +/- 3.60 / 0.904 +/- 0.04 33.29 +/- 4.04 / 0.9203 +/- 0.05 33.18 +/- 3.72 / 0.9189 +/- 0.04
7.6 31.58 +/- 3.58 / 0.8955 +/- 0.05 32.58 +/- 3.93 / 0.9115 +/- 0.05 32.55 +/- 3.68 / 0.9102 +/- 0.05

Figure 4: Testing for unseen contexts. Trained model: (Left to right): GT, ZF, JCM, Ours,
CSM, residual image for JCM, Ours and CSM respectively.Top: Unseen context
1: Cardiac, Gaussian pattern, 5.2x under-sampling. Bottom: Unseen context 2:
Cardiac, Gaussian pattern, 7.6x under-sampling.

the Cartesian case. Preliminary experiments with varying acceleration factors also showed
similar performance (Appendix A).

Fixed under sampling pattern, varying Acceleration Factors and varying
studies: This context demonstrates the flexibility of our model when multiple study
sequences of the same anatomy is acquired on the same scanner. One example for such a
scenario is the multi-contrast MRI (Liang and Lauterbur, 2002), where in multiple sequences
(T1, T2, and proton-density weighted MRI) of the same anatomy are acquired for diagnosis.
The context combines multiple studies - T1 and T2 FLAIR brain images with multiple
acceleration factors - 4x, 5x and 8x, for a fixed Cartesian mask pattern. The context vector
is a tuple with acceleration factor as the first element and the study sequence enumerated
as 1: T1, 2: T2 MRI, as the second element. We compare our model with six CSMs and
the JCM. From Table 2 we observe that our method consistently outperforms the JCM and
approaches the performance of CSMs. Figure 3 shows smudged structures (top blue arrows)
and faint structures (bottom red arrow) in the JCM images, our images closely resembles
that of the CSM and the target. The residue image is closer to that of the CSM.

Testing on Unseen Acceleration Factors: We evaluate our model trained with
fixed study (cardiac), fixed undersampling pattern (Gaussian) and varying acceleration
factors (2x, 3.3x, 4x, 5x, 8x) on unseen contexts. This experiment gives better insight
on the weight generalization behavior of the proposed method on unseen contexts. The
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Figure 5: PSNR / SSIM plots for unseen contexts. Left: PSNR metrics vs unseen accel-
eration factors. Right: SSIM metrics vs unseen acceleration factors. Plots show
consistent improvements in metrics of our method as compared with the JCM.
For higher acceleration factors, better SSIM values are obtained

context vector has only one element indicating acceleration factor. We create Gaussian
undersampled test images with factors varying from 2.4x to 7.6x (not used at train time)
in increments of 0.2 making it to 28 unseen contexts. We evaluate our method on all these
contexts and compare with the JCM. Training CSMs for all the 28 contexts is cumbersome.
So we randomly trained 7 CSMs for 4.8x, 5.2x, 6.0x, 6.4x, 6.8x, 7.2x and 7.6x factors.

Our observations are 1) For 26 out of the 28 unseen contexts, our model outperforms
the JCM as shown in the PSNR and SSIM box whisker plots in Figure 5 for 14 of them.
2) Table 3 shows quantitative metrics for 7 unseen contexts. Our model gives equally good
metrics as compared to the CSMs and much better metrics than the JCM. Our model and
the JCM are trained with the same set of images with just five randomly chosen acceleration
factors (2x, 3.3x, 4x, 5x, 8x) covering a wide range from 2x to 8x. The DWP module has
no non-linear activation units. Hence the CNN weights and the DWP weights are linearly
related thereby providing context-suitable weights for the CNN and meets the performance
of the trained CSMs. The JCM, on the other hand, is not generalizable enough for unseen
contexts. 3) Figure 4 shows the unseen images for 5.2x and 7.6x undersampling. Figures
show that the images are dealiased much better as compared with the JCM or the CSM
(region shown with yellow arrow marks in JCM and CSM).

4.3.1. Storage efficiency

The number of models to be stored increases linearly with the acquisition contexts. The
complexity of storage for existing CNN based MR reconstruction methods is O(N) where
N is the number of contexts. For our approach, reconstruction modules are not saved since
context-specific weights are provided by the DWP module. Hence storage complexity is
O(1) in our case.
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4.4. Conclusion

In this work, we show that a CNN-based MR reconstruction that exhibits flexibility to
multiple acquisition contexts is more appropriate for a clinical scenario. The acquisition
contexts are combination of input settings namely anatomy under study, undersampling
mask pattern and acceleration factor. The proposed method, called the MAC-ReconNet
incorporates flexibility to multiple contexts in a single model, by using a dynamic weight
prediction module to generate context-specific weights to our MR reconstruction module.
We show that the proposed method performs much better than a model that is jointly
trained for multiple contexts and gives competitive results as compared to the context
specific models. We also show that the proposed method generalizes well to unseen contexts.
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