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Abstract

Optimization over permutations is typically an NP-hard problem that arises ex-
tensively in ranking, matching, tracking, etc. Birkhoff polytope-based relaxation
methods have made significant advancements, particularly in penalty-free optimiza-
tion and probabilistic inference. Relaxation onto the orthogonal group offers unique
potential advantages such as a lower representation dimension and preservation
of inner products; however, equally effective approaches remain unexplored. To
bridge the gap, we present a temperature-controlled differentiable transformation
that maps unconstrained vector space to the orthogonal group, where the temper-
ature, in the limit, concentrates orthogonal matrices near permutation matrices.
This transformation naturally implements a parameterization for the relaxation
of permutation matrices, allowing for gradient-based optimization of problems
involving permutations. Additionally, by deriving a re-parameterized gradient
estimator, this transformation also provides efficient stochastic optimization over
the latent permutations. Extensive experiments involving the optimization over
permutation matrices validate the effectiveness of the proposed method.

1 Introduction

Permutation refers to the reordering of elements within a finite set, commonly encountered in
problems involving bijections between two equally sized sets [17, 42, 15, 12]. A permutation of n
elements can be denoted by an n× n permutation matrix, which is a square binary matrix that has
exactly one entry of 1 in each row and each column, with all other entries being 0. We denote the set
of all n-order permutation matrices as Pn := {P ∈ {0, 1}n×n |

∑
i Pi,j = 1,

∑
j Pi,j = 1 (∀i, j)}.

This work considers optimization over permutation matrices:

min
P∈Pn

f(P ). (1)

Due to the combinatorial nature of permutation matrices, the cardinality of the set Pn grows factorially
with the dimension n, typically rendering the problem NP-hard [26]. From a theoretical perspective,
one of the most renowned special cases of Equation (1) is the quadratic assignment problem, which
has attracted extensive research [37, 44]. In practical terms, Equation (1) also arises extensively in
various machine learning tasks, including ranking [20, 75, 67, 68], matching [2], tracking [43], etc.

Previous studies have proposed relaxing permutation matrices into continuous spaces, including the
convex hull of permutation matrices—the Birkhoff polytope [15, 42]—and their embeddings in a
differentiable manifold—the orthogonal group [72, 27]. Recently, relaxation methods involving the
Birkhoff polytope have made significant advancements, particularly in penalty-free optimization
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Figure 1: Illustration of OT4P with colored dots to help visualize the transformation. In the limit of
temperature, the orthogonal matrices obtained from OT4P converge near the permutation matrices.

and probabilistic inference [59, 43, 49]. As a notable example, Mena et al. [49] utilize the Sinkhorn
operator [61] to transform matrices into the Birkhoff polytope, bringing them closer to permutation
matrices under temperature control. This approach avoids introducing penalty terms and supports
variational inference.

However, providing equally good relaxation methods within the orthogonal group remains an unex-
plored area. Indeed, relaxation onto the orthogonal group offers several unique potential advantages,
such as: i) a lower representation dimension (n(n−1)

2 ) compared to the Birkhoff polytope ((n− 1)2),
leading to a smaller search space; ii) the orthogonal matrix preserve the inner product of vectors,
which is useful for tasks requiring the maintenance of geometric structures. In light of the above
advantages, this work aims to develop an effective method for relaxing the permutation matrices onto
the orthogonal group, with a particular focus on:

• Flexibility: can control the degree of approximation to permutation matrices.
• Simplicity: does not rely on additional penalty terms.
• Scalability: enables learning the latent variable model with permutations.

In this paper, we present Orthogonal Group-based Transformation for Permutation Relaxation
(OT4P), a temperature-controlled differentiable transformation. OT4P maps unconstrained vector
space to the orthogonal group, where the temperature, in the limit, concentrates orthogonal matrices
near permutation matrices. As illustrated in Figure 1, OT4P involves two steps: I) map a vector ( ) to
an orthogonal matrix ( ) utilizing the Lie exponential; II) move the orthogonal matrix ( ) along the
geodesic, controlled by temperature, to another orthogonal matrix ( ), making it nearer to the closest
permutation matrix ( or ). OT4P naturally implements a parameterization for the relaxation of
permutation matrices, allowing for gradient-based optimization of problems involving permutations.
In addition, OT4P, combined with the re-parameterization trick, provides stochastic optimization over
the latent permutations.

In summary, our main contributions are as follows:

1. We present OT4P, a differentiable transformation for relaxing permutation matrices onto the
orthogonal group, characterized by its flexibility, simplicity, and scalability (Section 3.1).

2. We use OT4P to implement a parameterization for the relaxation of permutation matrices,
which has the advantages of not altering the original problem, not complicating the original
problem, and an efficient optimization process (Section 3.2).

3. We derive a gradient estimator using OT4P and the re-parameterization trick, providing an
efficient tool for stochastic optimization over latent permutations (Section 3.3).

4. We validate the effectiveness of the proposed method through extensive experiments involv-
ing the optimization of permutation matrices, including finding mode connectivity, inferring
neuron identities, and solving permutation synchronization (Section 4).

2 Preliminaries

In this section, we give a brief overview of the Riemannian geometry [38] and the Lie group
theory [21] involved, with a more comprehensive version available in Appendix B.
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An n-dimensional manifold M is a space that can be locally approximated by a Euclidean space
Rn, where each point x ∈ M possesses a tangent space TxM as a first-order local approximation
of M around x. The Riemannian metric is a collection m := {mx | x ∈ M} of inner products
mx(·, ·) : TxM× TxM → R, which may define distances on the manifold. A geodesic is a smooth
curve that the tangent vector is parallel transported along the curve w.r.t. the Levi-Civita connection.

A Lie group G is a differentiable manifold equipped with differentiable group operations, whose
tangent space at the identity e is the Lie algebra g. For each g ∈ G, there exist diffeomorphisms
(Definition 2) given by the left translation Lg(x) := gx (∀x ∈ G), which lead to a vector space
isomorphism (Definition 1) that relates the tangent space TgG to the Lie algebra g, i.e., (dLg)e :
g → TgG. Analogously, one can introduce the right translation: Rg(x) := xg (∀g, x ∈ G). A
Riemannian metric m on Lie group G is called left-invariant (right-invariant) if it renders each left
(right) translation an isometry (Definition 3), allowing us to associate neighborhoods of the identity e
with any point g ∈ G using left (right) translation. If a metric on the Lie group is both left and right
invariant, it is termed the bi-invariant metric.

The Lie group we are interested in is the orthogonal group O(n), which consists of all n × n
orthogonal matrices O satisfying O⊤O = OO⊤ = I . We equip O(n) with the canonical metric, a bi-
invariant metric defined as ⟨A,B⟩F := trace(A⊤B), where ⟨·, ·⟩F is the Frobenius inner product and
trace(·) is the trace of a matrix. The subset of O(n) with determinant +1 forms a subgroup known
as the special orthogonal group, denoted by SO(n) := {O ∈ Rn×n | O⊤O = I, detO = +1}. The
Lie algebra so(n) of the Lie group SO(n) comprises n × n skew-symmetric matrices, expressed
as so(n) := {A ∈ Rn×n | A⊤ = −A}. The Lie exponential expm(·), coinciding with the matrix
exponential in the context of the matrix Lie group, maps elements in so(n) to SO(n), defined by

expm(A) := I +

∞∑
k=1

Ak

k!
. (2)

The series in Equation (2) converges for all matrices A. The local inverse function of the matrix
exponential is supposed to be the matrix logarithm, which is defined as follows:

logm(A) :=

∞∑
k=1

(−1)k+1 (A− I)k

k
. (3)

The series in Equation (3) converges whenever ∥A− I∥F < 1, where ∥A∥F :=
√

⟨A,A⟩F represents
the Frobenius norm induced by the Frobenius inner product.

3 Relaxing permutation on orthogonal group

In Section 3.1, we introduce the two steps of the proposed OT4P and analyze its key properties.
Then, in Section 3.2, we demonstrate how to use OT4P to implement a parameterization for the
relaxation of permutation matrices, emphasizing the advantages of such a parameterization. Finally,
in Section 3.3, we provide efficient stochastic optimization over the latent permutations using OT4P
and the re-parameterization trick.

3.1 The proposed OT4P transformation

The proposed OT4P comprises two steps: I) map a point in the vector space to an orthogonal matrix;
II) move the orthogonal matrix along the geodesic under temperature control, bringing it nearer to the
closest permutation matrix. We summarize the pseudo-code of OT4P in Algorithm 1.

Step I

Consider an unconstrained vector space R
n(n−1)

2 . For a vector a ∈ R
n(n−1)

2 , we can fill it into an
upper triangular n× n matrix with zero in the diagonal. For example, in the case of n = 3:

[a1, a2, a3] = a⇌ A =

(
0 a1 a2
0 0 a3
0 0 0

)
.
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Algorithm 1 OT4P

Input: Input matrix A ∈ Rn×n, hyperparameters τ ∈ (0, 1], B ∈ SO(n)
1: Map A to an orthogonal matrix: O = ϕ(A) ▷ Defined in Equation (6)
2: Shift O to handle boundary issues: O = BO ▷ Details in Appendix C
3: Find the closest permutation matrix: P = ρ(O) ▷ Defined in Equation (7)
4: if det(P ) = −1 then
5: Set D = diag({1, . . . , 1,−1}) ▷ Extension to odd permutations, see Appendix D
6: else
7: Set D = I
8: end if
9: Move O toward P along the geodesic controlled by τ : Õ = ψτ (O) ▷ Defined in Equation (11)

Output: The resulting orthogonal matrix Õ converge near the permutation matrix P

In the following, we employ matrices A ∈ Rn×n rather than vectors a to represent the elements in
R

n(n−1)
2 . A skew-symmetric matrix is uniquely determined by n(n−1)

2 scalars, i.e., the entries above

the main diagonal. Therefore, there exists an isomorphism between the vector space R
n(n−1)

2 and the
Lie algebra so(n) formed by skew-symmetric matrices, given by

α : R
n(n−1)

2 → so(n)

A 7→ A−A⊤.
(4)

As mentioned in Section 2, we can use the matrix exponential (Lie exponential) expm(·) to map the
Lie algebra so(n) to the Lie group, i.e., special orthogonal group SO(n):

β : so(n) → SO(n)

A 7→ expm(A).
(5)

Combining Equation (4) and Equation (5), we can map the unconstrained vector space R
n(n−1)

2 to
the special orthogonal group SO(n), denoted as

ϕ : R
n(n−1)

2 → SO(n)

A 7→ expm(A−A⊤).
(6)

This mapping belongs to the classical category in Lie group theory and serves as an efficient solution
for addressing orthogonal constraints in the field of machine learning [40, 53, 48]. Similarly to
Lezcano Casado [39], we present the important properties of the mapping ϕ(·) below.
Theorem 1. The mapping ϕ(·) is differentiable, surjective, and it is injective on the domain U :=

{A ∈ R
n(n−1)

2 | Imλk(A− A⊤) ∈ (−π, π), ∀k} with λk(·) the eigenvalues. Additionally, the set
SO(n) \ ϕ(U) has a zero Lebesgue measure in SO(n).

The theorem indicates that each orthogonal matrix in SO(n) can be represented by a vector in
R

n(n−1)
2 , with each representation being uniquely defined within set U , provided it exists there.

However, permutation matrices may include −1 as one of their eigenvalues (see Figure 4), with
their corresponding representations precisely lying on the boundary of U . If the optimal solution to
Equation (1) is a permutation matrix with an eigenvalue of −1, it may lead the optimization path
to deviate from U . To counter this, we propose shifting the boundary of U to other eigenvalues by
left-multiplying the result of Equation (6) with an orthogonal matrix B ∈ SO(n). Theoretically,
the left translation LB(O) := BO (∀O ∈ SO(n)) creates a diffeomorphism (Definition 2) on
SO(n), where the representation of the permutation matrix P in U is changed from logm(P ) to
logm(B⊤P )2. We have empirically observed that the left translation LB effectively relocates the
majority of permutation matrices’ representations into the interior of U . More discussion can be
found in Appendix C.

2Here, the term ‘logm’ refers to the generalized matrix logarithm, accommodating instances where the
principal logarithm may not be defined.
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Step II

Given an orthogonal matrix O ∈ SO(n), we would like to move it toward the closest permutation
matrix along the geodesic. To achieve this, we first need to find the permutation matrix P ∈ Pn

closest to O, which can be expressed as

ρ(O) := argmax
P∈Pn

⟨P,O⟩F, (7)

where ⟨A,B⟩F = trace(A⊤B) denotes the Frobenius inner product. Equation (7) is a linear
assignment problem that can be solved in cubic time using the Hungarian algorithm [36], with further
details available in the Appendix E.

Figure 2: Illustration of the mappings logmP and
expmP . The left translation LP establishes an isometry
between the neighborhoods of I and P , and its deriva-
tive (dLP )e provides an isomorphism between so(n)
and TPSO(n).

Once P is found, we can move O towards
P along the geodesicOP . In the Lie group,
utilizing the mapping logm(·), movement
along the geodesic can be transformed into
a more manageable movement on the Lie
algebra. However, since O or P may be far
from the identity matrix I , the convergence
speed of the series expansion of logm(·)
may be slow or even fail to converge.

We propose to carry out the above process
in the tangent space TPSO(n) rather than
in the Lie algebra so(n). Due to the bi-
invariant metric ⟨·, ·⟩F equipped on SO(n),
the left translation LP (O) = PO (∀O ∈
SO(n)) establishes an isometry (Defini-
tion 3) between the neighborhoods of I
and P , and its derivative (dLP )e : so →
TPSO(n) provides an isomorphism (Def-
inition 1) between the Lie algebra so(n)
and the tangent space TPSO(n). Hence,
we first pushO ∈ SO(n) into the neighbor-
hood of I , then map it to the Lie algebra so(n) using logm(·), and finally pull the result into the
tangent space TPSO(n). In this way, we define the logarithm map at P as

logmP : SO(n) → TPSO(n)

O 7→ P logm(P⊤O).
(8)

Equation (8) maps O ∈ SO(n) near P to the tangent space TPSO(n), and its convergence domain
also concentrates near P . Similarly, we can define its local inverse mapping:

expmP : TPSO(n) → SO(n)

A 7→ P expm(P⊤A).
(9)

Equation (9) maps A ∈ TPSO(n) onto the special orthogonal group SO(n) located near P . With
the aforementioned tools, we can easily move orthogonal matrix O toward its closest permutation
matrix P by interpolation. Specifically, we map P and O to the tangent space TPSO(n) for linear
interpolation, and then map the interpolation result back to SO(n), given as

Õ = P expm(P⊤ [τP logm(P⊤O) + (1− τ)P logm(P⊤P )
]
)

= P expm(P⊤ [τP logm(P⊤O)
]
)

= P expm(τ logm(P⊤O))

= P (P⊤O)τ .

(10)

The second equation stems from the fact that logm(I) = 0, and the last equation follows from
Aτ = expm(τ logm(A)) when ∥A − I∥F < 1. The temperature parameter τ ∈ (0, 1] is used
to control the degree to which the resulting orthogonal matrix Õ approaches P . It is clear that
limτ→0+∥Õ − P∥F = 0.
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Remark on odd permutations. The attentive reader may notice that Equation (10) presupposes
P ∈ SO(n), which works only for P corresponds to even permutations. However, we can readily
extend it to cases where P corresponds to odd permutations. Firstly, we solve argminP̂∈SO(n)∥P̂ −
P∥2F to identify an agent of P within SO(n), which admits an analytical solution P̂ = PD with
D = diag({1, . . . , 1,−1}). Then, by substituting P with P̂ in Equation (10), O is moved toward
P̂ to obtain Ô. Finally, we right-multiply Ô by D⊤ to map it to the neighborhood of P , resulting
in Õ = ÔD⊤. Essentially, the neighborhoods of P and its agent P̂ are linked through an isometry,
specifically the right translation RD(O) := OD (∀O ∈ O(n)). Consequently, when Ô is moved
close enough to P̂ , the resulting orthogonal matrix Õ will also be sufficiently close to P . Please refer
Appendix D for more theoretical details.

Let SP denote the set of orthogonal matrices in SO(n) whose closest permutation matrix is P , and
let S ′

P represent its image obtained through Equation (10). Equation (10) actually transforms the
submanifold SP into a new submanifold S ′

P that is closer to the permutation matrix P . We define the
manifold consisting of all images as MP := {S ′

P ⊂ O(n) | P ∈ Pn}. Consequently, the special
orthogonal group SO(n) is mapped to a manifold MP that tightly wraps around the permutation
matrices, which can be more formally expressed as:

ψτ : SO(n) → MP

O 7→ ρ(O)D
(
[ρ(O)D]⊤O

)τ
D⊤.

(11)

The aforementioned mapping covers all cases, whereD = diag({1, . . . , 1,−1}) for odd permutations
and D = I for even permutations. In Figure 5, we provide a visualization of the results of ψτ (·) as
the temperature parameter τ varies. The mapping ψτ (·) is meaningless at points where ρ(·) w.r.t.
Equation (7) is discontinuous. It is important to note that ρ(·) is a piecewise constant function,
changing only at points where multiple permutation matrices are equidistant. The following theorem
presents key properties of the mapping ψτ (·).
Theorem 2. The mapping ψτ (·) is differentiable, surjective, and injective on each submanifold SP .
Additionally, the set of meaningless points for ψτ (·) has a zero Lebesgue measure in SO(n).

The theorem shows that any point in the relaxation manifold MP of permutation matrices can
be uniquely identified by an orthogonal matrix in the special orthogonal group SO(n), where the
set of meaningless elements (i.e., not mapped any point in MP ) can be disregarded. Using the
composite mapping ψτ ◦ ϕ, we create a one-to-one correspondence between U := {A ∈ R

n(n−1)
2 |

Imλk(A − A⊤) ∈ (−π, π), ∀k} and MP , except for points associated with zero measure sets in
SO(n) that are either not representable by ϕ(·) or are meaningless for ψτ (·). In other words, points in
the manifold MP , which tightly wraps around the permutation matrices, can almost be represented
one-to-one by points in U that lie in the unconstrained vector space.

3.2 Parameterization for gradient-based optimization

This section demonstrates how to use OT4P to implement a parameterization for the relaxation
of permutation matrices, thereby allowing gradient-based optimization for Equation (1). More
importantly, we present three advantages of this parameterization, making it a reasonable solution.

Recalling the manifold MP obtained from Equation (11), which converges around the permutation
matrices controlled by the temperature parameter τ . We first relax Equation (1) into an optimization
problem on the manifold MP :

min
O∈MP

f(O). (12)

Using the composite mapping ψτ ◦ ϕ, we transform the constrained optimization problem on the
manifold MP into an unconstrained optimization problem in the vector space R

n(n−1)
2 :

min
A∈R

n(n−1)
2

f(ψτ ◦ ϕ(A)). (13)

For the aforementioned optimization problem, we can employ standard optimization techniques, such
as SGD and Adam algorithms [58], to approximate the solution. Below, we thoroughly discuss the
three advantages brought about by the parameterization of OT4P.
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The surjectivity does not alter the original problem. The surjectivity of the mapping ψτ ◦ ϕ
implies that every point in the manifold MP has at least one corresponding pre-image in the vector
space R

n(n−1)
2 . This guarantees that, during the optimization process, any point within the manifold

MP can be reached, thereby preventing the overlooking of any potential solutions to Equation (12).
In particular, if we find a solution A while dealing with Equation (13), we can solve Equation (12) by
mapping O = ψτ ◦ ϕ(A).

The injectivity does not complicate the original problem. If the optimization stays within
U := {A ∈ R

n(n−1)
2 | Imλk(A−A⊤) ∈ (−π, π), ∀k}, the mapping ψτ ◦ ϕ map different elements

in U to different elements on MP . This means that each update in U results in a unique outcome in
MP , thereby reducing unnecessary redundant searches. Furthermore, the mapping ψτ ◦ ϕ does not
introduce spurious local minima, as each local minima in MP creates a single local minima in U .

The efficient optimization process. At first glance, the mapping ψτ ◦ϕ involves matrix exponential
and matrix power, which might demand substantial computational resources during the optimization
process. Lezcano-Casado and Martınez-Rubio [40] has proposed a cheap method for computing
matrix exponential expm(·) and its gradient, thanks to the efficient utilization of the scaling-squaring
technique and Padé approximation [3]. Therefore, we will focus on how to handle the matrix power
function efficiently.

• Forward process. The orthogonal matrix O can be factorized, utilizing eigendecompo-
sition, as O = QXQ−1, where Q ∈ Rn×n with each column representing an eigen-
vector of O, and X = diag({λ1, . . . , λn}) is a diagonal matrix whose elements are the
eigenvalues of O. In this case, the matrix power Oτ can be computed by applying the
power function to the eigenvalues while keeping the eigenvectors unchanged [24], yielding
Oτ = Qdiag({λτ1 , . . . , λτn})Q−1. It is evident that calculating Oτ is not significantly more
complex than computing n scalar powers.

• Backward process. Given an orthogonal matrix O, we assume that Õ = ψτ (O) has
been obtained through Equation (11). Then, there exists a unique orthogonal matrix Wτ

such that Õ = WτO due to the closure property of the Lie group. Therefore, in the
forward pass, one can initially acquire Õ using Equation (11), followed by computing the
equivalent transformation of the mapping ψτ as Wτ = ÕO⊤. In this way, the forward pass
is streamlined into Õ =WτO, thereby rendering the backward pass highly efficient, as it
only involves one linear transformation.

3.3 Re-parameterization provides stochastic optimization

In the previous section, we considered deterministic optimization over permutation matrices. However,
in many scenarios, we commonly build a probabilistic model to express the uncertainty inherent in the
problem [7]. For such a task, it is crucial to have the ability to learn latent variable models associated
with the latent nodes corresponding to permutations [20]. This section demonstrates how to perform
stochastic optimization over the latent permutations using OT4P and the re-parameterization trick.

We restrict our attention to the scenario where the latent variable is a permutation matrix, z = P ,
without loss of generality. Therefore, consider the probabilistic form of Equation (1) as follows

minEP∼q(P ;θ)f(P ). (14)

The above equation deals with a distribution over permutation matrices rather than a single permuta-
tion matrix as in Equation (1). Evaluating and differentiating Equation (14) is challenging due to
the expectation involving a sum of n! terms. To remedy this, we employ the re-parameterization
trick [32, 56, 14]. In particular, we simulate q(P ; θ) using the mappings ρ(·) w.r.t. Equation (7) and
ϕ(·) w.r.t. Equation (11), expressed as

P ∼ q(P ; θ) ⇐⇒ P = ρ(ϕ(A+Bϵ)) with θ := {A,B ∈ R
n(n−1)

2 }, (15)

where ϵ ∼ q(ϵ) is a random noise distribution. Equation (15) cleverly decouples the stochastic nature
of the distribution q(P ; θ), thereby obviating the dependence of the expectation on the parameters θ.
This enables us to draw multiple samples for the evaluation of Equation (14) with lower variance.
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However, there exists a not differentiable mapping ρ(·), which hinders gradient-based optimization
for θ. Recalling OT4P, we can approximate Equation (15) by relaxing the mapping ρ(·) to ψτ (·). It is
evident that samples drawn from distribution ψτ (ϕ(A+Bϵ)) converge almost surely to those from
distribution ρ(ϕ(A+Bϵ)) owing to limτ→0 ψτ = ρ. To summarize, we can bring the gradient inside
the expectation, as depicted below:

∇Eϵ∼q(ϵ)f (ψτ (ϕ(A+Bϵ))) = Eϵ∼q(ϵ)∇f (ψτ (ϕ(A+Bϵ))) , (16)

which can now be computed using Monte Carlo [50].

4 Experiments

This section conducts experiments to evaluate the performance of OT4P in optimization problems and
probabilistic tasks. All experimental details not stated here, along with additional results, can be found
in Appendix F. The core code for OT4P is available at https://github.com/YamingGuo98/OT4P.

4.1 Finding mode connectivity

In the first experiment, we consider an optimization problem inspired by the concept of linear mode
connectivity. Recent studies have shown that neural networks trained with SGD belong to a set
whose weights can be permuted so that we linearly connect those weights with no detriment to the
loss [13, 57]. For demonstration purposes, we examine a multi-layer perceptron (MLP) with L layers
and denote its weights as θ = {Wl|l ∈ [L]}. To find the optimal permutation between models θA and
θB , Ainsworth et al. [2] propose the following data-free optimization problem:

min
π={Pi∈Pni

}
∥W (A)

1 −P1W
(B)
1 ∥2F + ∥W (A)

2 −P2W
(B)
2 P⊤

1 ∥2F + · · ·+ ∥W (A)
L −PLW

(B)
L ∥2F. (17)

The above problem is challenging because it does not admit a polynomial-time constant-factor
approximation scheme [2]. We can use OT4P to relax permutation matrices, as demonstrated in
Section 3.2, enabling a gradient-based solution to Equation (17).

We explore a variety of network architectures, including MLP5 (5-layer MLP) [54], VGG11 [60],
and ResNet18 [22]. The weights for these networks are derived from official pre-trained models
in PyTorch [52], with the exception of the MLP5, which is initialized randomly. For model θB ,
we randomly sample permutation matrices from a uniform distribution and apply them to permute
the weights, yielding model θA = π(θB). The AdamW [45] with an initial learning rate of 0.1 is
employed to minimize the loss w.r.t. Equation (17), with a maximum of 500 iterations. To evaluate
the results, we use the ℓ1-Distance, ∥θA−π(θB)∥1, to measure the difference from the target weights.
Additionally, we flatten the permutation matrices and evaluate their alignment with the ground truth
using Precision, Recall, and Hamming Distance.

We compare: 1) Weight Matching [2], which goes through each layer and greedily selects its best
permutation matrix Pi; 2) Sinkhorn [54], relaxing the permutation matrices to the vicinity of the
Birkhoff polytope utilizing the Sinkhorn operator [61, 49]; and 3) OT4P, our proposed method, which
is evaluated with various temperature parameters. The results are reported in Tables 1 and 4, with each
experiment conducted five times. The findings indicate that Weight Matching occasionally fails
to reach ground truth due to its sensitivity to random initialization. Additionally, Sinkhorn yields
poor results in the VGG11 network architecture, which we attribute to the relaxation on the Birkhoff
polytope producing unreliable local minima. In contrast, OT4P finds the optimal permutation matrix
in most cases. Indeed, a neural network can be conceptualized as a geometric object whose vertices
correspond to the rows of the weight matrices [35]. A reasonable relaxation of the matching task in
Equation (17) involves rigid transformations represented by orthogonal matrices. The proposed OT4P
relaxes the permutation matrices into the orthogonal group, which is likely the primary reason for its
powerful performance.

4.2 Inferring neuron identities

In the second experiment, we tackle a probabilistic task motivated by the study of the neural dynamics
in C. elegans [66]. This worm serves as a model organism in neuroscience, with its complete neuronal
connectivity known and represented by the adjacency matrix A ∈ {0, 1}n×n. However, matching
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Table 1: ℓ1-Distance (converted by log(1 + x)) and Precision (%) of algorithms for finding mode
connectivity across different network architectures.

Algorithm
MLP5 VGG11 ResNet18

log(1 + ℓ1) (↓) Precision (↑) log(1 + ℓ1) (↓) Precision (↑) log(1 + ℓ1) (↓) Precision (↑)
Weight Matching 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 1.215 ±2.72 99.97 ±0.06

Sinkhorn 0.000 ±0.00 100.0 ±0.00 11.61 ±0.07 63.08 ±3.14 9.830 ±0.181 95.56 ±0.88

OT4P (τ = 0.3) 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00

OT4P (τ = 0.5) 0.000 ±0.00 100.0 ±0.00 0.818 ±1.83 99.99 ±0.03 0.000 ±0.00 100.0 ±0.00

OT4P (τ = 0.7) 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00

traces from the observed neural dynamics Y ∈ Rn×1 to the neurons in the reference connectome
A poses a challenging task. Linderman et al. [43] propose simulating neural activity using a linear
dynamical system Yt = P (A⊙W )P⊤Yt−1+ ϵ, where ϵ is Gaussian noise, W ∈ Rn×n, P ∈ Pn are
latent variables, and ⊙ is element-wise product. Our goal is to infer the latent permutation P to align
the observed Y with the shared dynamics matrixW . We address this task by maximizing the marginal
log-likelihood, i.e., maxEP∼q(P ;θ) log p(Y |P ), using the techniques outlined in Section 3.3.

Taking the methodology in Linderman et al. [43], we generate parameters A, W , and P with n = 250
and randomly generate 1000 samples, where the noise follows a Gaussian distribution N (0, 0.01).
We formulate tasks of varying difficulty depending on the different proportions of known neurons [43].
Conceiving a constraint matrix C ∈ Rn×n where all elements are initialized to 1, if we ascertain that
the reference neuron i corresponds to the observed neuron j, then set all elements to 0 in the i-th
row and j-th column except for Ci,j (see Equation (22) for an example). This constraint is enforced
by zeroing corresponding entries before solving Equation (7). We conduct 500 iterations using the
Adam optimizer [31] with an initial learning rate of 0.01. We report the marginal log-likelihood of
the best model throughout the training, ranked first by Hamming Distance and then by the marginal
log-likelihood (estimated with 5 repeats). As done in Section 4.1, Precision, Recall, and Hamming
Distance are utilized to evaluate the permutation matrices obtained from the best model.

For comparison, we include: 1) Naive [43], which does not enforce that P is a permutation matrix
and instead normalizes each row using the softmax function; 2) Gumbel-Sinkhorn [49], introducing
Gumbel noise for re-parameterization before the Sinkhorn operator; and 3) OT4P, our proposed
method using the re-parameterization trick, with different temperature parameters. Each experiment
is conducted five times, and the results are presented in Tables 2 and 5. We observe that Naive fails to
produce any meaningful solutions, and Gumbel-Sinkhorn performs poorly in the more challenging
scenario (Known 5%). In contrast, OT4P consistently identifies the optimal permutation, except for
OT4P (τ = 0.7), which achieves suboptimal results in the Known 5% setting. One possible reason
why OT4P performs better is that the orthogonal group (n(n−1)

2 ) has a lower dimension than the
Birkhoff polytope ((n − 1)2). This lower dimensionality makes the randomness simulated by the
noise more effective in exploring latent permutations.

Table 2: Marginal log-likelihood and Precision (%) of algorithms for inferring neuron identities
across different proportions of known neurons.

Algorithm
Known 5% Known 10% Known 20%

E log p(Y |P ) (↑) Precision (↑) E log p(Y |P ) (↑) Precision (↑) E log p(Y |P ) (↑) Precision (↑)
Naive −3040 ±43.4 8.960 ±7.85 −2917 ±225 29.68 ±17.2 −1690 ±539 78.40 ±12.6

Gumbel-Sinkhorn −2256 ±574 62.08 ±16.0 −239.8 ±119 98.16 ±1.95 −144.8 ±27.1 99.84 ±0.358

OT4P (τ = 0.3) −130.9 ±10.9 100.0 ±0.00 −127.5 ±10.1 100.0 ±0.00 −126.7 ±11.0 100.0 ±0.00

OT4P (τ = 0.5) −164.0 ±36.8 100.0 ±0.00 −149.7 ±25.0 100.0 ±0.00 −148.2 ±27.6 100.0 ±0.00

OT4P (τ = 0.7) −829.3 ±831 74.16 ±35.9 −183.1 ±46.2 100.0 ±0.00 −171.8 ±40.3 100.0 ±0.00

4.3 Solving permutation synchronization

In the third experiment, we aim to explore the effectiveness of our proposed OT4P on large-scale
problems. We specifically focus on the permutation synchronization problem [51, 47, 5], which tries
to improve matching across multiple objects. Consider k objects with n points each, and let the
permutation matrix P (i, j) ∈ Pn to represent the correspondence between points in objects i and
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Figure 3: F-scores (%) for different algorithms on the WILLOW-ObjectClass dataset, where the size
of permutation synchronization problem instances varies along the horizontal axis.

j. Permutation synchronization seeks to identify the underlying permutations Pi(i ∈ [k]) such that
P (i, j) = PiP

⊤
j for all i, j ∈ [k], which can be expressed as the following optimization problem:

min
{Pi∈Pn}

k∑
i,j

∥P (i, j)− PiP
⊤
j ∥2F. (18)

We select baselines: 1) Reg optimizes in Euclidean space with a regularization term
∑

j(
∑

j Pi,j−1)2

that encourages each column to sum to 1. 2) OrthReg [72] optimizes over the special orthogonal
group, using a regularization term 2

3 trace(P
T (P − P ⊙ P )) (⊙ is element-wise product) to force

orthogonal matrices to converge to permutation matrices. 3) RiemanBirk [6] optimizes on Birkhoff
polytope utilizing Riemannian gradient descent. 4) Sinkhorn [49] optimizes in the vicinity of
the Birkhoff polytope, using the Sinkhorn operator to adjust positive matrices into approximate
doubly stochastic matrices. All algorithms employ the Adam optimizer for 100 iterations, with
RiemanBirk utilizing Riemannian Adam [4, 34]. The initial learning rates are tuned within the set
{0.1, 0.01, 0.001, 0.0001}.

We use the WILLOW-ObjectClass dataset [9] to generate problem instances (see Appendix F.4 for
more details) and utilize the F-score to evaluate the alignment between the flattened permutation
matrices and the ground truth. Each experiment is conducted five times, and the results are shown in
Figure 3. RiemanBirk and Sinkhorn demonstrate poorer performance. A primary reason is that
both methods are based on Birkhoff polytope to relax permutations, leading to unreliable local minima
and preventing optimal solutions. Benefiting from the potential advantages offered by the orthogonal
group, OrthReg generally produces competitive results. However, due to the instability of its
regularization term, OrthReg sometimes underperforms, which may necessitate careful adjustment of
the regularization coefficient for each class. In contrast, our proposed OT4P consistently outperforms
other methods and demonstrates robustness to variations in the hyperparameter τ .

5 Conclusion

In this paper, we present a novel differentiable transformation, OT4P, designed for relaxing permuta-
tion matrices over the orthogonal group. This method is characterized by its flexibility, simplicity, and
scalability. OT4P is utilized to parametrize the relaxation of permutation matrices, with advantages of
not altering the original problem, not complicating the original problem, and an efficient optimization
process. By deriving a gradient estimator, OT4P further provides an efficient tool for stochastic
optimization over latent permutations. Extensive experiments show that OT4P achieves competitive
results in optimization problems and probabilistic tasks compared to relaxation methods on the
Birkhoff polytope. We believe our elementary work is a significant step toward relaxing permutations
onto the orthogonal group. Please see Appendix A for further discussion, including related work,
limitations, and broader impacts.

10



Acknowledgments and Disclosure of Funding

This work is supported by the National Key Research and Development Program of China (No.
2020YFA0714103).

References
[1] Ryan Prescott Adams and Richard S Zemel. Ranking via sinkhorn propagation. arXiv preprint

arXiv:1106.1925, 2011.

[2] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.

[3] Awad H Al-Mohy and Nicholas J Higham. A new scaling and squaring algorithm for the matrix
exponential. SIAM Journal on Matrix Analysis and Applications, 31(3):970–989, 2010.

[4] Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=r1eiqi09K7.

[5] Florian Bernard, Daniel Cremers, and Johan Thunberg. Sparse quadratic optimisation over
the stiefel manifold with application to permutation synchronisation. Advances in Neural
Information Processing Systems, 34:25256–25266, 2021.

[6] Tolga Birdal and Umut Simsekli. Probabilistic permutation synchronization using the rie-
mannian structure of the birkhoff polytope. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11105–11116, 2019.

[7] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[8] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic assignment problem
library. Journal of Global optimization, 10:391–403, 1997.

[9] Minsu Cho, Karteek Alahari, and Jean Ponce. Learning graphs to match. In Proceedings of the
IEEE International Conference on Computer Vision, pages 25–32, 2013.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[11] Zvi Drezner. The quadratic assignment problem. Location science, pages 345–363, 2015.

[12] Hannah Dröge, Zorah Lähner, Yuval Bahat, Onofre Martorell Nadal, Felix Heide, and Michael
Möller. Kissing to find a match: Efficient low-rank permutation representation. Advances in
Neural Information Processing Systems, 36, 2024.

[13] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=dNigytemkL.

[14] Luca Falorsi, Pim de Haan, Tim R Davidson, and Patrick Forré. Reparameterizing distributions
on lie groups. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 3244–3253. PMLR, 2019.

[15] Marcelo Fiori, Pablo Sprechmann, Joshua Vogelstein, Pablo Musé, and Guillermo Sapiro.
Robust multimodal graph matching: Sparse coding meets graph matching. Advances in neural
information processing systems, 26, 2013.

[16] Matteo Fischetti, Michele Monaci, and Domenico Salvagnin. Three ideas for the quadratic
assignment problem. Operations research, 60(4):954–964, 2012.

11

https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=dNigytemkL


[17] Fajwel Fogel, Rodolphe Jenatton, Francis Bach, and Alexandre d’Aspremont. Convex re-
laxations for permutation problems. Advances in neural information processing systems, 26,
2013.

[18] Jean Gallier. Logarithms and square roots of real matrices existence, uniqueness and applications
in medical imaging. arXiv preprint arXiv:0805.0245, 2011.

[19] Zheng Gong and Ying Sun. An energy-centric framework for category-free out-of-distribution
node detection in graphs. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 908–919, 2024.

[20] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=H1eSS3CcKX.

[21] Brian C Hall. Lie groups, Lie algebras, and representations. Springer, 2013.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[23] Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008.

[24] Nicholas J Higham and Lijing Lin. A schur–padé algorithm for fractional powers of a matrix.
SIAM Journal on Matrix Analysis and Applications, 32(3):1056–1078, 2011.

[25] Einar Hille. On roots and logarithms of elements of a complex banach algebra. Mathematische
Annalen, 136(1):46–57, 1958.

[26] Bo Jiang, Ya-Feng Liu, and Zaiwen Wen. L_p-norm regularization algorithms for optimization
over permutation matrices. SIAM Journal on Optimization, 26(4):2284–2313, 2016.

[27] Bo Jiang, Jin Tang, Chris Ding, and Bin Luo. Nonnegative orthogonal graph matching. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[28] Ivan Karpukhin and Andrey Savchenko. Detpp: Leveraging object detection for robust long-
horizon event prediction. arXiv preprint arXiv:2408.13131, 2024.

[29] Ivan Karpukhin, Foma Shipilov, and Andrey Savchenko. Hotpp benchmark: Are we good at the
long horizon events forecasting? arXiv preprint arXiv:2406.14341, 2024.

[30] Sunyoung Kim, Masakazu Kojima, and Kim-Chuan Toh. A lagrangian–dnn relaxation: a
fast method for computing tight lower bounds for a class of quadratic optimization problems.
Mathematical Programming, 156(1):161–187, 2016.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[33] Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some
applications. IEEE Transactions on automatic control, 25(2):164–176, 1980.

[34] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in
pytorch, 2020.

[35] Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization.
arXiv preprint arXiv:2206.04041, 2022.

[36] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[37] Eugene L Lawler. The quadratic assignment problem. Management science, 9(4):586–599,
1963.

12

https://openreview.net/forum?id=H1eSS3CcKX


[38] John M Lee. Introduction to Riemannian manifolds, volume 2. Springer, 2018.

[39] Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. Advances
in Neural Information Processing Systems, 32, 2019.

[40] Mario Lezcano-Casado and David Martınez-Rubio. Cheap orthogonal constraints in neural
networks: A simple parametrization of the orthogonal and unitary group. In International
Conference on Machine Learning, pages 3794–3803. PMLR, 2019.

[41] Innar Liiv. Seriation and matrix reordering methods: An historical overview. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 3(2):70–91, 2010.

[42] Cong Han Lim and Stephen Wright. Beyond the birkhoff polytope: Convex relaxations for
vector permutation problems. Advances in neural information processing systems, 27, 2014.

[43] Scott Linderman, Gonzalo Mena, Hal Cooper, Liam Paninski, and John Cunningham. Repa-
rameterizing the birkhoff polytope for variational permutation inference. In International
Conference on Artificial Intelligence and Statistics, pages 1618–1627. PMLR, 2018.

[44] Eliane Maria Loiola, Nair Maria Maia De Abreu, Paulo Oswaldo Boaventura-Netto, Peter Hahn,
and Tania Querido. A survey for the quadratic assignment problem. European journal of
operational research, 176(2):657–690, 2007.

[45] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[46] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[47] Eleonora Maset, Federica Arrigoni, and Andrea Fusiello. Practical and efficient multi-view
matching. In Proceedings of the IEEE International Conference on Computer Vision, pages
4568–4576, 2017.

[48] Estelle Massart and Vinayak Abrol. Coordinate descent on the orthogonal group for recurrent
neural network training. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 7744–7751, 2022.

[49] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permuta-
tions with gumbel-sinkhorn networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=Byt3oJ-0W.

[50] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. Journal of Machine Learning Research, 21(132):1–62, 2020.

[51] Deepti Pachauri, Risi Kondor, and Vikas Singh. Solving the multi-way matching problem by
permutation synchronization. Advances in neural information processing systems, 26, 2013.

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[53] Gao Peifeng, Qianqian Xu, Peisong Wen, Zhiyong Yang, Huiyang Shao, and Qingming Huang.
Feature directions matter: Long-tailed learning via rotated balanced representation. In Interna-
tional Conference on Machine Learning, pages 27542–27563. PMLR, 2023.

[54] Fidel A Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20237–20246,
2023.

[55] Janez Povh. Semidefinite approximations for quadratic programs over orthogonal matrices.
Journal of Global Optimization, 48(3):447–463, 2010.

13

https://openreview.net/forum?id=Byt3oJ-0W


[56] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278–1286. PMLR, 2014.

[57] Simone Rossi, Ankit Singh, and Thomas Hannagan. On permutation symmetries in bayesian
neural network posteriors: a variational perspective. Advances in Neural Information Processing
Systems, 36, 2024.

[58] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[59] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould. Deeppermnet:
Visual permutation learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3949–3957, 2017.

[60] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[61] Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic
matrices. The annals of mathematical statistics, 35(2):876–879, 1964.

[62] Ying Sun, Hengshu Zhu, Chuan Qin, Fuzhen Zhuang, Qing He, and Hui Xiong. Discerning
decision-making process of deep neural networks with hierarchical voting transformation.
Advances in Neural Information Processing Systems, 34:17221–17234, 2021.

[63] Ying Sun, Fuzhen Zhuang, Hengshu Zhu, Qing He, and Hui Xiong. Cost-effective and
interpretable job skill recommendation with deep reinforcement learning. In Proceedings of the
Web Conference 2021, pages 3827–3838, 2021.

[64] Ying Sun, Hengshu Zhu, Lu Wang, Le Zhang, and Hui Xiong. Large-scale online job search
behaviors reveal labor market shifts amid covid-19. Nature Cities, 1(2):150–163, 2024.

[65] David M Tate and Alice E Smith. A genetic approach to the quadratic assignment problem.
Computers & Operations Research, 22(1):73–83, 1995.

[66] Lav R Varshney, Beth L Chen, Eric Paniagua, David H Hall, and Dmitri B Chklovskii. Structural
properties of the caenorhabditis elegans neuronal network. PLoS computational biology, 7(2):
e1001066, 2011.

[67] Chao Wang, Hengshu Zhu, Chen Zhu, Chuan Qin, and Hui Xiong. Setrank: A setwise bayesian
approach for collaborative ranking from implicit feedback. In Proceedings of the aaai conference
on artificial intelligence, volume 34, pages 6127–6136, 2020.

[68] Chao Wang, Hengshu Zhu, Chen Zhu, Chuan Qin, Enhong Chen, and Hui Xiong. Setrank: A
setwise bayesian approach for collaborative ranking in recommender system. ACM Transactions
on Information Systems, 42(2):1–32, 2023.

[69] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learn-
ing lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5261–5279,
2021.

[70] Tianxin Wang, Fuzhen Zhuang, Ying Sun, Xiangliang Zhang, Leyu Lin, Feng Xia, Lei He, and
Qing He. Adaptively sharing multi-levels of distributed representations in multi-task learning.
Information Sciences, 591:226–234, 2022.

[71] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang.
A short survey of recent advances in graph matching. In Proceedings of the 2016 ACM on
international conference on multimedia retrieval, pages 167–174, 2016.

[72] Michael M Zavlanos and George J Pappas. A dynamical systems approach to weighted graph
matching. Automatica, 44(11):2817–2824, 2008.

14



[73] He Zhang, Ying Sun, Weiyu Guo, Yafei Liu, Haonan Lu, Xiaodong Lin, and Hui Xiong. Inter-
active interior design recommendation via coarse-to-fine multimodal reinforcement learning. In
Proceedings of the 31st ACM International Conference on Multimedia, pages 6472–6480, 2023.

[74] Yuting Zhang, Ying Sun, Fuzhen Zhuang, Yongchun Zhu, Zhulin An, and Yongjun Xu. Triple
dual learning for opinion-based explainable recommendation. ACM Transactions on Information
Systems, 42(3):1–27, 2023.

[75] Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. Discovery of ranking fraud for mobile
apps. IEEE Transactions on knowledge and data engineering, 27(1):74–87, 2014.

15



A Additional discussions

A.1 Related work

Optimization over permutations is commonly encountered in problems involving bijections between
two sets of equal size [17, 42, 15, 12]. From a theoretical perspective, a well-known special case
is the quadratic assignment problem, which has been drawing researchers’ attention since its first
formulation [37, 8, 44]. In practical terms, optimization over permutations is also arises extensively
in various machine learning tasks, including ranking [20, 75, 67, 68], matching [2], tracking [43],
recommendation [63, 74, 73], etc. Since our interest lies in addressing generic problems defined on
permutation matrices, we will not discuss theoretical approaches for specific issues [11], such as
exact methods [16], lower bound methods [30], and vertex-based methods [65].

Previous studies have proposed relaxing the permutation matrices to continuous spaces, including
the Birkhoff polytope [17, 15, 42] and orthogonal group [72, 55, 27]. The Birkhoff polytope is the
convex hull of all permutation matrices, while the orthogonal group serves as a natural embedding of
permutation matrices in a differentiable manifold. Such relaxation techniques have proven to be very
powerful, with successful applications to various problems such as seriation [1, 17, 41] and graph
matching [15, 69, 71]. Most of the methods mentioned above rely on the explicit penalty term and
are challenging to extend to probabilistic scenarios.

Recently, relaxation methods involving the Birkhoff polytope have made significant advancements,
particularly in penalty-free optimization and probabilistic inference. For instance, Linderman et al.
[43] propose a rounding transformation regulated by a temperature parameter, which rounds matrices
towards the vertices of the Birkhoff polytope, i.e., permutation matrices. Similarly, Mena et al.
[49] utilize the Sinkhorn operator [61] to transform matrices into the Birkhoff polytope, bringing
them closer to permutation matrices under temperature control. Additionally, Grover et al. [20]
suggest mapping vectors to unimodal row stochastic matrices, a subset of the Birkhoff polytope
that removes the requirement of every column sum being equal to 1. These works not only avoid
introducing penalty terms but also provide probabilistic inference. However, providing equally
effective relaxation methods within orthogonal groups remains an unexplored area. As mentioned in
the main text, relaxation onto the orthogonal group possesses unique potential advantages. Therefore,
our elementary work aims to address this gap.

A.2 Limitations

The first concerns the computational efficiency of OT4P when dealing with very large matrices
(n > 1000), as the cost of eigendecomposition becomes prohibitive. This could benefit from
efficient implementations of eigendecomposition on GPUs. The second limitation involves the
noise distribution used for re-parameterization in OT4P, which may not equally capture the latent
permutation matrices. This can be improved by more carefully designing the noise distribution under
the characteristics of the orthogonal group. The third challenge relates to the boundary issues in
representing permutation matrices, hindering OT4P as a building block of deep neural networks.
Indeed, such integration assumes all permutation matrices lie within U . We believe that an ideal
(analytical) solution can be devised to relocate all permutation matrices back into U , given that they
constitute a finite discrete set within the orthogonal group of order n.

A.3 Broader impacts

This work presents a novel differentiable transformation for relaxing permutation matrices onto the
orthogonal group, which enables gradient-based (stochastic) optimization of problems involving
permutation matrices. Given the theoretical nature of our work, we have not identified any direct
ethical concerns or negative societal impacts related to our research. Our study may have the broader
impacts for a variety of areas of machine learning, such as deep learning [62], data mining [64].
Similar impacts were observed in multi-task learning [70] and graph learning [19].

B Riemannian Geometry and Lie Group

This section briefly summarizes the key concepts of Riemannian geometry and the Lie group theory
involved. For a comprehensive understanding, we recommend the standard textbooks Introduction to
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Riemannian manifolds [38] and Lie groups, Lie algebras, and representations [21]. Additionally, the
analysis of matrix functions can be found in Functions of matrices: theory and computation [23].

An n-dimensional manifold M is a topological space that can be locally approximated by the
Euclidean space Rn. At each point x ∈ M, there exists a tangent space TxM, an n-dimensional
vector space, serving as a first-order local approximation of M around x. The Riemannian metric
is a collection m := {mx | x ∈ M} of inner products mx(·, ·) : TxM× TxM → R. It induces
a norm ∥·∥x : TxM → R defined by ∥y∥x :=

√
mx(y, y). The length L(γ) of a smooth curve

γ : [a, b] → M is defined as L(γ) :=
∫ b

a
∥γ′(t)∥γ(t) dt. The distance d(x, y) is set as the infimum of

the lengths of all smooth curves between x and y in M. A geodesic is a smooth curve γ : [a, b] → M
that the tangent vector γ′(t) is parallel transported along the curve γ w.r.t. the Levi-Civita connection,
i.e., ∇γ′(t)γ

′(t) = 0 for all t ∈ [a, b]. With the basic concept of manifolds established, we can present
the definitions of isomorphism, diffeomorphism, and isometry.

Definition 1 (Vector space isomorphism). The vector spaces X and Y are called to be isomorphic if
there exists a bijection α : X → Y that preserves addition and scalar multiplication.

Definition 2 (Diffeomorphism). Given two differentiable manifolds M and N , a differentiable map
α : M → N is a diffeomorphism if it is a bijection and its inverse α−1 is differentiable as well.

Definition 3 (Isometry). Given two metric spaces (X ,mX ) and (Y,mY), a map α : X → Y is
called an isometry if mX (x1, x2) = mY(α(x1), α(x2)) for all points x1, x2 ∈ X .

A Lie group G is a differentiable manifold equipped with differentiable group multiplication and
inverse operations. The tangent space at the identity e is known as the Lie algebra of G, denoted
as g := TeG. For all g ∈ G, there exist diffeomorphisms given by the left translation Lg(x) :=
gx (∀x ∈ G) and the right translation Rg(x) := xg (∀x ∈ G). The left and right translations lead
to a vector space isomorphism that relates the tangent space to the Lie algebra. For left translation
Lg, the mapping (dLg)e := g → TgG maps elements of the Lie algebra into the tangent space
TgG, with its inverse mapping (dLg−1)g := TgG→ g. Similarly, for right translation Rg, there is
mapping (dRg)e := g → TgG and its inverse (dRg−1)g := TgG→ g. A Riemannian metric m on
the Lie group G is said to be left-invariant (right-invariant) if it renders each left (right) translation an
isometry. When adopting a left-invariant (right-invariant) metric on the Lie group G, we can associate
neighborhoods of the identity e with neighborhoods of any point g ∈ G using left (right) translation,
and vice versa. A metric on the Lie group that is both left and right invariant is termed a bi-invariant
metric. It is worth noting that compact Lie groups always possess the bi-invariant metric.

The Lie group we are interested in is the orthogonal group O(n), consisting of all n× n orthogonal
matrices O satisfying O⊤O = OO⊤ = I . We equip O(n) with the canonical metric, which is a
bi-invariant metric inherited from Rn×n and defined as ⟨A,B⟩F := trace(A⊤B), where ⟨·, ·⟩F is
the Frobenius inner product and trace(·) is the trace of a matrix. The orthogonal group O(n) is
divided into two connected components depending on the value of the determinant, +1 or −1. The
connected component with determinant +1 forms a subgroup known as the special orthogonal group
SO(n) := {O ∈ Rn×n | O⊤O = I, detO = +1}. The Lie algebra so(n) of the Lie group SO(n)
comprises n × n skew-symmetric matrices, expressed as so(n) := {A ∈ Rn×n | A⊤ = −A}. It
is noteworthy that so(n) is a vector space with dimension n(n−1)

2 . The Lie exponential expm(·),
coinciding with the matrix exponential in the context of the matrix Lie group, exactly maps elements
in so(n) to elements in SO(n), defined by

expm(A) := I +

∞∑
k=1

Ak

k!
.

The series in the above equation converges for all matrices A.

In general, the matrix logarithm is expected to be the inverse function of the matrix exponential,
meaning the logarithm of A is the solution B to the matrix equation expm(B) = A. Since the
complex logarithm is a multi-valued function, there may be an infinite number of matrices B that
satisfy expm(B) = A. If A has no eigenvalues on R−

0 := {x ∈ R | x ≤ 0}, then there exists a
unique logarithm called the principal logarithm, denoted as logm(A). All eigenvalues λ of logm(A)
satisfy −π < Imλ < π. Assuming convergence of the series, the matrix logarithm logm(·) can be
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defined by Taylor series expansion as follows:

logm(A) :=

∞∑
k=1

(−1)k+1 (A− I)k

k
.

The series in the above equation converges whenever ∥A − I∥F < 1, where ∥A∥F :=
√

⟨A,A⟩F
represents the Frobenius norm induced by the Frobenius inner product.

Define the V := {A ∈ Rn×n | Imλk(A) ∈ (−π, π), ∀k} as the set of all matrices A ∈ Rn×n for
which all eigenvalues λk satisfies −π < Imλk < π. Let W := {A ∈ Rn×n | λk(A) /∈ R−

0 , ∀k}
denote the set of all matrices A ∈ Rn×n without non-positive real eigenvalues. Then, we can verify
that (prove in Appendix G.1):

• logm(expm(A)) = A, ∀A ∈ V;
• expm(logm(A)) = A, ∀A ∈ W .

This indicates that the matrix logarithm is a locally inverse function of the matrix exponential.

C Boundary issues in representation of permutation matrix

In this section, we provide an in-depth analysis of the potential adverse effects on optimization
stemming from the direct application of mapping ϕ(·) w.r.t. Equation (6) . Subsequently, we show
that left-multiplying the result of Equation (6) by an orthogonal matrix, as described in Step I,
effectively alleviates this problem.

Since a permutation matrix must be an orthogonal matrix, its eigenvalues λk lie on the unit circle in
the complex plane, i.e., |λk| = 1. Additionally, any permutation can be expressed as the product of
cycles with disjoint supports. For a cycle of length m, its corresponding m×m submatrix satisfies
Pm = I , which implies that the eigenvalues of P admit the following form:

λk = e2πi
k
m , k = 0, 1, . . . ,m− 1. (19)
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Figure 4: Eigenvalues corresponding to cycles of
different lengths, where eigenvalues from the same
cycle are connected to illustrate repeated values at
−1.

In Figure 4, we visualize the eigenvalues corre-
sponding to cycles of lengths 2, 3, 4, and 5. It
is clear that cycles of even length consistently
possess an eigenvalue of −1. Notably, the eigen-
values of a permutation matrix are composed of
those from the submatrices corresponding to its
contained cycles. Therefore, many permutation
matrices have −1 as one of their eigenvalues.

As elucidated Lezcano-Casado and Martınez-
Rubio [40], the representation in U := {A ∈
R

n(n−1)
2 | Imλk(A − A⊤) ∈ (−π, π), ∀k} of

permutation matrices with an eigenvalue of −1
precisely lies on the boundary of U . For prob-
lems where these permutation matrices serve
as the optimal solution, it may cause the opti-
mization path to deviate from U . A straight-
forward method is to left-multiply the result of
Equation (6) by a random orthogonal matrix
B ∈ SO(n), thereby shifting the boundary of
U to other eigenvalues. Theoretically, this left
translation LB(O) := BO (∀O ∈ SO(n)) cre-
ates a diffeomorphism on SO(n) that transforms
the representation of the permutation matrix P
in U from logm(P ) to logm(B⊤P ).

To validate the efficacy of the aforementioned approach, we conducted a simple empirical study.
Given a random orthogonal matrixB with a determinant of 1, we randomly generate 1000 permutation
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matrices P , where odd permutations are projected to SO(n) as done in Appendix D. We then estimate
the probability of the eigenvalue −1 occurring in P and B⊤P , respectively. We examine permutation
matrices ranging in dimension n from 3 to 50. Each experiment is replicated five times and the results
are presented in Table 3. The findings show that the left translation LB effectively relocates the
majority of permutation matrices’ representations into the interior of U .

Table 3: Probability (%) of eigenvalue −1 occurring in matrices.
dimension n 3 5 10 20 50

P 16.34 ±0.89 32.14 ±1.02 51.08 ±1.36 64.78 ±1.16 77.48 ±0.80

B⊤P 15.92 ±1.29 16.42 ±1.18 8.36 ±0.67 5.94 ±0.29 8.66 ±1.12

Remark C.1. A high-level idea involves dynamically adjusting B to ensure that the permutation
matrix near the current iteration point consistently remains within the interior of U . This is a special
case of dynamic trivialization proposed in Lezcano Casado [39].

D Theoretical details of the odd permutation

In this section, we provide the details of handling odd permutations and focus on elucidating the
underlying theory.

To deal with the case where the permutation matrix P corresponds to an odd permutation, our core
idea is to find an agent, P̂ , of P within SO(n). In this way, we may move the orthogonal matrix
O ∈ SO(n) to the vicinity of P̂ , and then restore the result to the neighborhood of P . This idea is
formalized by the following method:

1. We seek an agent of P within SO(n), which is determined by solving the optimization
problem:

argmin
P̂∈SO(n)

∥P̂ − P∥2F. (20)

The analytical solution to Equation (20) is given by P̂ = PD, where D =
diag({1, . . . , 1,−1}) is the identity matrix with the last column multiplied by −1.

2. Given that P̂ ∈ SO(n), we can, by substituting P with P̂ in Equation (10), move the
orthogonal matrix O ∈ SO(n) to the vicinity of P̂ , yielding Ô.

3. By right-multiplying by D⊤, we map Ô to the neighborhood of P , resulting in Õ = ÔD⊤.

We now derive the analytical solution to Equation (20). By the definition of the Frobenius norm, we
can express:

∥P̂ − P∥2F = trace((P̂ − P )⊤(P̂ − P ))

= trace(P̂⊤P̂ ) + trace(P⊤P )− 2 trace(P̂⊤P )

= 2n− 2 trace(P̂⊤P )

The last equation uses the fact that both P̂ and P are orthogonal matrices, i.e., trace(P̂⊤P̂ ) =
trace(P⊤P ) = n. Considering the singular value decomposition (SVD) [33], we have P = UΣV ⊤,
where U and V are orthogonal matrices, and Σ is a diagonal matrix with non-negative real singular
values on the diagonal. Since the orthogonal matrix singular value is 1, there exists Σ = I . By
leveraging the cyclic property of the trace, we have:

trace(P̂⊤P ) = trace(P̂⊤UΣV ⊤)

= trace(V ⊤P̂⊤U) = trace(Z),
(21)

where Z := V ⊤P̂⊤U is an orthogonal matrix with detZ = −1. Hence, all elements zi,j of
Z satisfy |zi,j | ≤ 1 and Z must have an odd number of −1 eigenvalues. Notice that the trace
of a matrix is the sum of its elements on the main diagonal, Equation (21) is maximized when
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Z = diag({1, 1, . . . , 1,−1}). Thus, the analytical solution to Equation (20) is P̂ = (DP⊤)⊤ = PD,
where D = diag({1, . . . , 1,−1}) is the identity matrix with the last column multiplied by −1.

Since D is an orthogonal matrix, right-multiplying by D becomes a right translation RD(O) :=
OD (∀O ∈ O(n)). Notably, O(n) is equipped with a bi-invariant metric ⟨·, ·⟩F, which implies
that RD is an isometry, linking the the neighborhoods of P and its agent P̂ . Thus, we have
⟨AD,BD⟩F = ⟨A,B⟩F for any A,B ∈ O(n). In other words, when Ô is moved close enough to P̂ ,
Õ will also be sufficiently close to P .

E More discussion on Step II

Visualization. In Figure 5, we visualize the results of Equation (11) as the temperature parameter
τ varies. The first row corresponds to the even permutation, while the second row corresponds to
the odd permutation. The leftmost image (τ = 1.0) represents the original orthogonal matrices O
from Step I, and the rightmost image (τ = 0.0) is the permutation matrix P that is closest to O.
The temperature parameter τ controls how closely the resulting orthogonal matrices Õ, obtained in
Step II, approach P . As τ → 0, the resulting orthogonal matrices Õ increasingly converge to P .
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Figure 5: Visualization of the results of Equation (11) as the parameter τ varies. At τ = 1.0, the
matrices are original orthogonal matrices; at τ = 0.0, they are the permutation matrices closest to
original orthogonal matrices.

Rounding to permutation matrix. Generally, the Hungarian algorithm requires a cost matrix with-
out negative values, which is unsuitable for orthogonal matrices that may contain negative elements.
To implement the rounding w.r.t. Equation (7) from the orthogonal matrix O, we first eliminate
negative elements by subtracting the minimum element found within O, i.e., O − min(O). This
approach is justified by the fact that argmaxP ⟨P,O⟩F = argmaxP ⟨P,O−min(O)⟩F. Subsequent
to this adjustment, we employ the Hungarian algorithm, available in existing libraries, to round
O −min(O) to the closest permutation matrix.

Computational costs. The primary computational costs of the proposed OT4P arise from solving
the linear assignment problem and performing eigendecomposition, both of which typically scale
with O(n3). Numerous efforts have been made to accelerate these computations through parallel
implementations on GPUs. We have employed existing implementations, specifically torch-linear-
assignment [28, 29] and torch.linalg.eig [52].
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F Experimental details

F.1 Reproducibility and compute resources

To enhance the reproducibility, we provide a comprehensive overview of the experiments in Appen-
dices F.2 to F.4, including but not limited to data generation, hyperparameters, evaluation procedures.
For all experiments, we repeat the results using five different random seeds: 2021, 2022, 2023, 2024,
and 2025. The core code has been released at https://github.com/YamingGuo98/OT4P.

We conducted the experiments (Appendices F.2 and F.3) using a single NVIDIA A800, where the
runtime environment was Python=3.10, CUDA=11.7, and PyTorch=2.01. The experiments in
Section 4.1 took approximately 15 hours, while those in Section 4.2 consumed another 15 hours. This
estimate does not include the time spent on hyperparameter search or other experiments conducted
during the research process.

F.2 Finding mode connectivity

Steup. We investigate various network architectures for Equation (17), including 5-layer MLP [54],
VGG11 [60], and ResNet18 [22] For MLP5, both input and output are set to 1, with each of the four
hidden layers having a dimension of 10, and the hyperbolic tangent serves as the activation function.
The model weights of MLP5 are initialized randomly, while VGG11 and ResNet18 are derived from
the official pre-trained models in PyTorch [52]. We minimize the loss corresponding to Equation (17)
using AdamW [45] with an initial learning rate of 0.1 and a maximum of 500 iterations. Following
Peña et al. [54], we adopt an early stopping strategy upon finding the optimal permutation matrices.

Baseline. We take Weight Matching [2] and Sinkhorn [54] as baselines. Weight Matching
is a method specifically designed for addressing Equation (17), which goes through each layer and
greedily selects its best permutation matrix Pi. We limit the maximum number of traversal rounds
to 10. Sinkhorn relaxes permutation matrices to the vicinity of the Birkhoff polytope utilizing the
Sinkhorn operator [61, 49], solving Equation (17) in a differentiable fashion. The Sinkhorn operator
undergoes 20 iterations, with the temperature parameter set to 0.5.

Evaluation. During the evaluation phase, we round the matrices obtained from Sinkhorn and
OT4P to permutation matrices using Equation (7). We employ the ℓ1-Distance, ∥θA − π(θB)∥1, to
measure the difference in weights with the target network. In addition, we flatten the permutation
matrices and evaluate their alignment with the ground truth using Precision, Recall, and Hamming
Distance.

Table 4: Recall (%) and Hamming Distance of algorithms for finding mode connectivity across
different network architectures.

Algorithm
MLP5 VGG11 ResNet18

Recall (↑) Hamming (↓) Recall (↑) Hamming (↓) Recall (↑) Hamming (↓)
Weight Matching 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 99.97 ±0.06 1.600 ±3.58

Sinkhorn 100.0 ±0.00 0.000 ±0.00 63.08 ±3.14 2032 ±173 95.56 ±0.88 255.6 ±50.8

OT4P (τ = 0.3) 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00

OT4P (τ = 0.5) 100.0 ±0.00 0.000 ±0.00 99.99 ±0.03 0.800 ±1.79 100.0 ±0.00 0.000 ±0.00

OT4P (τ = 0.7) 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00

F.3 Inferring neuron identities

Setup. Following the methodology in Linderman et al. [43], we generate parameters A, W , and P
with n = 250. Specifically, we randomly generate a binary upper triangular matrix A ∈ {0, 1}n×n

and its symmetric version A = A + A⊤ as the adjacency matrix. Parameter W is sampled from
a Gaussian distribution N (0, 1) according to the sparse sparsity defined by A. The permutation
matrix P is randomly sampled from a uniform distribution. We generate 1000 samples according to
Yt = P (A⊙W )P⊤Yt−1 + ϵ, where the noise ϵ follows a Gaussian distribution N (0, 0.01).
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We formulate tasks of varying difficulty depending on the different proportions of known neurons [43].
Conceiving a constraint matrix C ∈ Rn×n where all elements are initialized to 1. If we ascertain that
the reference neuron i corresponds to the observed neuron j, then set all elements to 0 in the i-th row
and j-th except for Ci,j . Equation (22) provides a simple example, where we know that the observed
neuron 1 (or 3) corresponds to the reference neuron 2 (or 5).

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 know (1,2)
=====⇒


0 1 0 0 0
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1

 know (3,5)
=====⇒


0 1 0 0 0
1 0 1 1 0
0 0 0 0 1
1 0 1 1 0
1 0 1 1 0

. (22)

This modeling decision significantly reduces the number of latent permutations that need to be
inferred. The constraint matrix C is enforced by zeroing corresponding entries, where for Naive it is
before row normalization, for Gumbel-Sinkhorn it is before the Sinkhorn operator, and for OT4P it
is before solving Equation (7).

Baseline. We compare Naive [43] and Gumbel-Sinkhorn [49]. Naive does not enforce P to be a
permutation matrix but instead normalizes each row using the softmax function. Gumbel-Sinkhorn,
an extension of the Gumbel-Softmax [26, 46] method for permutations, introduces Gumbel noise for
re-parameterization before the Sinkhorn operator. Both Naive and our OT4P use the stand Gaussian
noise for re-parameterization. All methods estimate the gradient of the marginal log-likelihood
EP∼q(P ;θ) log p(Y |P ) with 5 repeats.

Evaluation. We retain the best model throughout training, ranked first by Hamming Distance and
then by the marginal log-likelihood (estimated with 5 repeats). We report the marginal log-likelihood
of the best model. As done in Section 4.1, Precision, Recall, and Hamming Distance are utilized to
evaluate the permutation matrices obtained from the best model without adding noise.

Table 5: Recall (%) and Hamming Distance of algorithms for inferring neuron identities across
different proportions of known neurons.

Algorithm
Known 5% Known 10% Known 20%

Recall (↑) Hamming (↓) Recall (↑) Hamming (↓) Recall (↑) Hamming (↓)
Naive 8.960 ±7.85 455.2 ±39.3 29.68 ±17.2 351.6 ±86.0 78.40 ±12.6 108.0 ±63.1

Sinkhorn 62.08 ±16.0 189.6 ±79.8 98.16 ±1.95 9.200 ±9.76 99.84 ±0.358 0.800 ±1.79

OT4P (τ = 0.3) 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00

OT4P (τ = 0.5) 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00

OT4P (τ = 0.7) 74.16 ±35.9 129.2 ±180 100.0 ±0.00 0.000 ±0.00 100.0 ±0.00 0.000 ±0.00

F.4 Solving permutation synchronization

Setup. We use the WILLOW-ObjectClass dataset [9] to generate problem instances. The WILLOW-
ObjectClass dataset comprises images of five object classes, each containing 10 equal key points of at
least 40 images. For each image, we extract interpolated features from the relu4_2 and relu5_1 layers
through a pre-trained VGG16 [60] model on ImageNet [10]. The initial pairwise correspondences
are established by applying the Hungarian algorithm [36] to the distance matrices of features. We
increase the number of objectives, k, from 20 to the its largest value (multiples of 5) for each object
class.

Permutationness. We also take the ℓ1-Distance to assess the ‘permutationness’ of the final matrix.
Specifically, we round the matrix P̃ , returned by the algorithms, to its closest permutation matrix
P , and then calculate the ℓ1-Distance between P̃ and P . Table 6 lists the results for the problem
instances corresponding to the largest size (multiples of 5) in each object class. We observe that
the relaxation extent of Sinkhorn is unstable. Unlike them, OT4P consistently maintains smaller
distances in almost all cases and exhibits a positive correlation with changes in the hyperparameter τ .
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Table 6: ℓ1-Distance between the matrix returned by the algorithms and its closest permutation matrix.
In each object class, we select the largest problem instance size that is a multiple of five.

Dataset Reg OrthReg RiemanBirk Sinkhorn OT4P (τ = 0.3) OT4P (τ = 0.5) OT4P (τ = 0.7)

Car 13.13±0.55 3.20±0.90 10.91±0.84 6.10±0.06 2.30±0.04 3.67±0.16 4.68±0.09

Duck 12.64±0.83 3.26±0.84 10.85±0.33 5.65±0.05 2.05±0.02 3.15±0.17 4.29±0.08

Face 10.89±0.44 3.01±0.43 8.00±0.46 0.09±0.02 0.61±0.01 0.98±0.02 1.34±0.01

Motorbike 15.17±0.27 3.37±0.89 13.30±0.11 10.86±0.02 3.10±0.21 4.76±0.29 5.90±0.15

Winebottle 11.44±0.41 3.17±0.31 9.12±1.13 2.62±0.07 1.53±0.02 2.36±0.12 2.91±0.12

Impact of Optimizers. We compare the results of different optimizers in Table 7, selecting the
largest instances (multiples of 5) for each object class. Methods based on the Birkhoff polytope
show notable performance improvements on most datasets when using (Riemannian) SGD. For our
proposed OT4P, the choice of optimizer appears to be less critical, as it consistently outperforms other
methods regardless.

Table 7: F-scores (%) for different algorithms with various optimizers on the WILLOW-ObjectClass
dataset. In each object class, we select the largest problem instance size that is a multiple of five.

Dataset Reg OrthReg RiemanBirk Sinkhorn OT4P (τ = 0.3) OT4P (τ = 0.5) OT4P (τ = 0.7)

Car SGD 80.98±1.68 78.52±1.23 79.27±3.07 81.43±0.80 100.0±0.00 100.0±0.00 100.0±0.00

Adam 77.48±3.15 92.76±5.16 72.13±3.45 82.94±0.29 100.0±0.00 98.61±1.35 99.8±0.40

Duck SGD 90.84±0.38 91.56±2.46 87.14±4.49 91.49±0.06 100.0±0.00 98.93±0.58 99.63±0.49

Adam 75.52±0.93 90.01±5.21 69.89±3.54 79.32±0.23 100.0±0.00 99.37±1.26 98.71±0.40

Face SGD Failed 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00

Adam 99.93±0.12 91.10±2.77 95.12±2.55 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00

Motorbike SGD 50.00±1.61 62.96±1.23 49.76±2.96 55.78±1.31 98.51±1.47 98.01±2.25 98.99±1.06

Adam 45.57±2.05 92.52±4.68 43.72±1.76 57.08±0.75 97.22±1.58 97.20±2.04 99.61±0.78

Winebottle SGD 91.66±0.31 91.51±0.14 91.48±0.00 91.44±1.00 98.53±1.48 98.65±0.72 99.97±0.03

Adam 90.84±0.38 91.56±2.46 87.14±4.49 91.49±0.06 100.0±0.00 98.93±0.58 99.63±0.49

Case study. This case study aims to explore the runtime and memory efficiency of our proposed
OT4P on large-scale problems. We use the CMU House [5] image sequence to generate problem
instances, comprising 111 frames of a video of a toy house. A total of 111× 111 pairwise matching,
with each image having 30 hand labeled landmark points, are provided in Bernard et al. [5]. We
increase the number of objectives, k, from 20 to 110 and utilize the proposed OT4P to approximately
solve Equation (18) on the NVIDIA GeForce RTX 3090. For all instances, we conduct 100 iterations
using AdamW [45] with an initial learning rate of 0.1.
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Figure 6: F-score, runtime, and memory usage of OT4P on the CMU House, where the size of
permutation synchronization problem instances varies along the horizontal axis.

We flatten the permutation matrices and evaluate their alignment with the ground truth using F-score,
while also assessing the runtime and the maximum GPU memory consumption during training. Each
experiment is conducted five times, and the results are depicted in Figure 6, where the size of problem
instances varies along the horizontal axis. The findings indicate that OT4P can find satisfactory
solutions (with F-scores exceeding 97%) in less than 4 seconds, and the memory usage is manageable.
Additionally, in Figure 7, we present the matching between the first and last images for k = 110,
where the obtained matchings are connected (correct: , incorrect: ). Overall, the
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(a) Input (b) OT4P (τ = 0.3)

(c) OT4P (τ = 0.5) (d) OT4P (τ = 0.7)

Figure 7: Matching between the first and last images of the CMU House for k = 110, where the
obtained matchings are connected (green: correct, red: incorrect).

proposed OT4P demonstrates high efficiency in both runtime and memory usage when dealing with
large-scale tasks amenable to parallel processing.

F.5 Licenses

We will publicly release our code under the MIT license, in accordance with community standards.
The licenses for the code, data, and models used in this study are provided below. Please refer to
individual links for more details.

• PyTorch: BSD-style

• Torchvision: BSD 3-Clause

• torch-linear-assignment: Apache

• sinkhorn-rebasin: MIT

• SparseStiefelOpt: GNU Affero General Public

• geoopt: Apache

G Proof

In this section, we first elucidate some key properties of the matrix exponential and the matrix
logarithm. Based on these, we prove Theorems 1 and 2 in Appendix G.2. Finally, we list some
essential lemmas used in the proofs.

G.1 Properties of matrix exponential and logarithm

Theorem G.1. The matrix exponential map expm (·) is injective over V := {A ∈ Rn×n |
Imλk(A) ∈ (−π, π), ∀k}.

Proof. For all A,B ∈ V , our goal is to prove that A = B if expm (A) = expm (B).

According to Lemma G.1, if expm (A) = expm (B), then A and B commute, i.e., AB = BA. In
fact, this commutativity implies that the equation expm (A+B) = expm (A) expm (B) holds [23].
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Thus, we can express

expm (A) = expm (B)

expm (A) expm (−B) = expm (B) expm (−B) = I

expm (A−B) = I

The above equation shows that all eigenvalues of expm (A−B) are one. Since the eigenvalues of
the exponential of a matrix are the exponential of its eigenvalues, the eigenvalues of A−B satisfy
2mπi for integers m ∈ Z. However, given that A,B ∈ V , the range of Imλk(A−B) is restricted to
(−2π, 2π) for all k, yielding m = 0. Thus, all eigenvalues of A−B are zero, which means A−B is
a nilpotent matrix.

Recalling Lemma G.2, we know that under the exponential map, the only nilpotent matrix mapped
to the identity matrix I is the null matrix. Therefore, we conclude that A−B = 0, which implies
A = B.

This confirms that the matrix exponential map is injective within the set V , thereby completing the
proof.

Theorem G.2. The matrix logarithm map logm (·) is injective over W := {A ∈ Rn×n | λk(A) /∈
R−

0 , ∀k}, and logm(W) ⊆ V .

Proof. We first prove that if A ∈ W , then B = logm (A) ∈ V .

Assume A ∈ W with eigenvalues λk = ρke
iθk , where ρk > 0 and θk are real number. As shown in

Gallier [18], the complex eigenvalues of B = logm (A) appear only for real Jordan blocks:(
log(ρk) −θ
θ log(ρk)

)
,

where the eigenvalues are given by log(ρk)± iθk. Since A has no eigenvalues on R−
0 , it follows that

θk ∈ (−π, π) for all k. Thus, for any A ∈ W , we have logm(A) ∈ V , that is, logm(W) ⊆ V .

Recall that the matrix logarithm is defined as a solution to the equation expm (B) = A. Coupled
with Theorem G.1 and noting that logm(A) ∈ V , then such a logarithm is unique. This proves that
the matrix logarithm map is injective over V and completes the proof.

Corollary G.3. The image expm (V) of V by the matrix exponential expm (·) is the set W and the
mapping expm : V → W is a diffeomorphism.

Proof. By Theorem G.2, it is clear that W ⊆ expm (V). We now prove expm (V) ⊆ W .

For any matrix A ∈ V , the eigenvalues have the form a + ib, where a and b are real number and
−π < b < π. Then, the eigenvalues of expm (A) take the form ea+ib = eaeib. Since eib never lies
on R−

0 , expm (A) has no non-positive real eigenvalues, i.e., expm (A) ∈ W . The arbitrariness of A
leads to the conclusion of expm (V) ⊆ W .

The diffeomorphism results directly from Theorems G.1 and G.2.

G.2 Proof of Theorems 1 and 2

Theorem 1*. The mapping ϕ(·) is differentiable, surjective, and it is injective on the domain
U := {A ∈ R

n(n−1)
2 | Imλk(A−A⊤) ∈ (−π, π), ∀k} with λk(·) the eigenvalues. Additionally, the

set SO(n) \ ϕ(U) has a zero Lebesgue measure in SO(n).

Proof. It is trivial that ϕ(·) is differentiable.

We start by establishing that ϕ(·) is surjective. It is worth mentioning that the conclusion of
Lemma G.3 is applicable to SO(n) due to it being connected and compact. However, we pro-
vide a straightforward proof based on Theorem G.1. Indeed, any orthogonal matrix O ∈ SO(n)
can be diagonalized into a block-diagonal matrix with diagonal blocks consisting of 2× 2 rotation
matrices: (

cos θ sin θ
− sin θ cos θ

)
,
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where θ ∈ (−π, π] represents the rotation angle. For SO(2n+ 1), an extra block containing a single
1 exists. Correspondingly, we have a skew-symmetric matrix B ∈ so(n) satisfying expm (B) = O,
which is also a block-diagonal matrix with diagonal blocks of the form:(

0 θ
−θ 0

)
.

There is an additional block with a single 0 on so(2n+ 1). As a result, for all orthogonal matrices
O ∈ SO(n), we can surely find a skew-symmetric matrix B ∈ so(n) such that expm (B) = O.
Given that so(n) is isomorphism to the vector space R

n(n−1)
2 , this confirms that ϕ(·) is surjective.

Regarding ϕ(·) is injective on the domain U , it can be derived from Theorem G.1 because U ⊆ V .

The above reasoning also indicates that ϕ(U) ⊆ SO(n) ⊆ ϕ(Ū) holds and that the boundary of U has
zero Lebesgue measure. Since the matrix exponential map expm (·) is injective within the interior of
U and the complex exponential function is single-valued, the set SO(n) \ ϕ(U) has a zero Lebesgue
measure in SO(n).

Theorem 2*. The mapping ψτ (·) is differentiable, surjective, and injective on each submanifold SP .
Additionally, the set of meaningless points for ψτ (·) has a zero Lebesgue measure in SO(n).

Proof. Since the right translation RD establishes an isometry between the neighborhoods of P and
its agent P̂ , we can, without loss of generality, restrict proof to the case where P = ρ(O) is an
even permutation. In this case, we rewrite ψτ as ϕτ (O) = P expm (τ logm (P⊤O)). According to
Corollary G.3, if P⊤O is within W , then we can assert that ψτ (·) is surjective and injective on each
submanifold SP .

Assuming the eigenvalues of P⊤O are λ1, . . . , λn, the eigenvalues of P⊤O−I are λ1−1, . . . , λn−1.
Since the inverse mapping of the left translation, LP⊤(O) := P⊤O (∀O ∈ SO(n)), maps O to a
neighborhood around I , we may assume ∥P⊤O − I∥F < 1. A well-known result is r(A) ≤ ∥A∥F
for any A ∈ Rn×n, where r(A) := max{|λk(A)| | ∀k} is the spectral radius. As a result, we have:

r(P⊤O − I) = max{|λk − 1| | ∀k} ≤ ∥P⊤O − I∥F < 1. (23)

Equation (23) shows that the eigenvalues of P⊤O are within a unit circle centered at 1 in the complex
plane. Therefore, P⊤O has no eigenvalues on R−

0 , meaning P⊤O ∈ W .

Since ρ(·) w.r.t. Equation (7) is a piecewise constant function, it follows that the set of points where
ψτ (·) is meaningless has a zero Lebesgue measure. This completes the proof.

G.3 Lemmas used

Lemma G.1 (Theorem 4. in Hille [25]). Let A,B ∈ Cn×n. If there are no two eigenvalues in A
such that their difference is of the form 2kπi for k > 0 and, if expm (A) = expm (B), we have that
AB = BA.

Let Nil(k) denote the set of (real or complex) nilpotent matrices, A, of any dimension n ≥ 1 such
that Ar = 0 and Uni(k) denote the set of unipotent matrices, B = I +A , where A ∈ Nil(k).
Lemma G.2 (Proposition 3.2. in Gallier [18]). The map expm : Nil(k) → Uni(k) is a homeomor-
phism whose inverse is the matrix logarithm.

Lemma G.3 (Corollary 11.10. in Hall [21]). If G is a connected, compact matrix Lie group, the
exponential map for G is surjective.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims accurately reflect the contribution and scope of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Appendix A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: In the Appendix G, we provide complete proofs for all theoretical results and
list some essential lemmas used in the proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix F.1, we provide all the experimental details, the random seeds
used and the runtime environment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The core code has been released at https://github.com/YamingGuo98/
OT4P.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a comprehensive overview of the experiments in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the experimental results using five different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix F.1 provides information on compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential social impacts of this work in Appendix A.3
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Appendix F.5 have included the licenses for the assets used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This does not apply on our research work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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