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ABSTRACT

Modern language models can generate high-quality short texts. However, they
often meander or are incoherent when generating longer texts. These issues arise
from the next-token-only language modeling objective. To address these issues,
we introduce Time Control (TC), a language model that implicitly plans via a la-
tent stochastic process. TC does this by learning a representation which maps the
dynamics of how text changes in a document to the dynamics of a stochastic pro-
cess of interest. Using this representation, the language model can generate text by
first implicitly generating a document plan via a stochastic process, and then gen-
erating text that is consistent with this latent plan. Compared to domain-specific
methods and fine-tuning GPT2 across a variety of text domains, TC improves
performance on text infilling and discourse coherence. On long text generation
settings, TC preserves the text structure both in terms of ordering (up to +40%
better) and text length consistency (up to +17% better). Human evaluators also
prefer TC’s output 28.6% more than the baselines.1

1 INTRODUCTION

Large language models (LLM) such as GPT-2 have been extremely successful in text generation
(Radford et al., 2019; Brown et al., 2020). However, LLMs are known to generate incoherent long
texts. One reason is that they are unable to plan ahead or represent long-range text dynamics (Kiddon
et al., 2016; Fan et al., 2019; Hua & Wang, 2020; Duboue & McKeown, 2001; Stent et al., 2004;
Tamkin et al., 2020). As a result, they oftentimes produce wandering content with poor discourse
structure and low relevance (Hua & Wang, 2020; Zhao et al., 2017; Xu et al., 2020); the text reads
as if the model has no anchored goal when generating. These problems with coherence are further
exacerbated when forcing autoregressive models to generate longer texts as the model struggles to
extrapolate beyond its expected text end point. These problems suggest that LLMs currently fail to
properly capture how documents evolve from beginning to end. Doing so is critical for succeeding
in goal-oriented tasks such as story, dialog or recipe generation.

Prior work has explored the use of planning-based methods for generating globally coherent text
(Kiddon et al., 2016; Fan et al., 2019; Hua & Wang, 2020; Duboue & McKeown, 2001; Stent et al.,
2004). However, these methods rely on manually defining text dynamics for specific domains. Other
work has attempted to use sentence representations for modeling text, such as with variational auto-
encoders (Bowman et al., 2016) or contrastive learning (Gao et al., 2021; Devlin et al., 2019). Their
shortcoming in text generation settings is that the latent representations are static: they capture
semantic similarity between sentence neighbors, but don’t capture how sentence embeddings evolve
over a document. Methods including van den Oord et al. (2019) have tried to remedy this by learning
a model of local latent dynamics. However, it is difficult to use learned local dynamics for generating
accurate goal-conditioned trajectories, especially long-horizon ones. We explore an alternative that
explicitly assumes a simple, fixed dynamics model with goal-conditioned generation.

In this work, we propose Time Control as a way to learn a latent space with known, goal-conditioned
dynamics. We begin by assuming that meandering text generated without a goal can be represented
as Brownian motion in latent space; this motion enforces the embeddings of neighboring sentences
to be similar to each other, whereas those of distant sentences to be dissimilar. Goal-directed be-
havior can be incorporated into this model by conditioning on a fixed start and end point. In this

1The accompanying code can be found here: https://github.com/rosewang2008/language_
modeling_via_stochastic_processes.
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case, the Brownian motion becomes a Brownian bridge and the resulting latent trajectories abide by
simple, closed-form dynamics.

In Time Control, we derive a novel contrastive objective for learning a latent space with Brownian
bridge dynamics. We can then use this latent space to generate text that retains local coherence
and has improved global coherence. To perform text generation, Time Control first plans a latent
trajectory via the Brownian bridge process pinned at a start and end point. It then conditionally
generates sentences using this latent plan. In our work, we decode latent plans by fine-tuning GPT2
to generate text conditioned on Time Control’s latent trajectory. Trajectories from Time Control act
as abstract semantic positions in a document that guide generation of fine-tuned language models.

In summary, our work’s contributions are the following:

• We derive Time Control, a language model which explicitly models latent structure with
Brownian bridge dynamics learned using a novel contrastive objective.

• Across a range of text domains, we show that Time Control generates more or equally
coherent text on tasks including text infilling and forced long text generation, compared to
task-specific methods.

• We validate that our latent representations capture text dynamics competitively by evaluat-
ing discourse coherence with human experiments.

• We ablate our method to understand the importance of the contrastive objective, enforcing
Brownian bridge dynamics, and explicitly modeling latent dynamics.

2 RELATED WORKS

Generating long, coherent text is conceptually difficult for autoregressive models because they lack
the ability to model text structure and dynamics (Lin et al., 2021). This means that they struggle to
plan and look ahead which leads to generating globally incoherent text. Forcing autoregressive mod-
els to generate longer texts exacerbates this incoherence because the models struggle to extrapolate
beyond their expected text end point. Prior work has tried to address the problem of generating glob-
ally coherent text with planning-based approaches (Puduppully et al., 2019; Moryossef et al., 2019;
Fan et al., 2019; Kiddon et al., 2016). However, planning-based approaches rely on domain-specific
heuristics for capturing text structure and dynamics.

Our work uses a contrastive objective to learn latent dynamics in text without domain-specific heuris-
tics. Contrastive objectives have been applied to several domains, including language (Devlin et al.,
2019; Iter et al., 2020; Liu & Liu, 2021), vision (Chen et al., 2020), and general time series data
(Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019). In particular for language, contrastive ob-
jectives have been applied to the next-sentence prediction task for improving BERT embeddings
(Devlin et al., 2019) and to the discourse coherence setting (Nie et al., 2019; Chen et al., 2019b)
for evaluating how coherent pairs of sentences are. However, these methods have two shortcomings
which we address with our work. One is that the resulting sentence embeddings are often static:
they capture semantic similarity between sentence neighbors, but don’t capture how sentence em-
beddings evolve over a document. Two is that they are not used for generation and are limited to
classification tasks like discourse coherence. Prior work has also tried fitting latent variable models
(Bowman et al., 2016), however these generally result in poor language generation (He et al., 2018)
or are domain-specific (Weber et al., 2020; Arora et al., 2016).

Our work is closely related to Contrastive Predictive Coding (CPC) from van den Oord et al. (2019).
The key difference is CPC implicitly learns unconditioned latent dynamics, whereas we impose
known goal-conditioned dynamics on our latent space. Doing so, we can extrapolate successfully
further in time. Additionally, our method builds off of recent findings that contrastive objectives
can be used to approximate local transition kernels of stochastic processes (Liu et al., 2021). The
main difference between Liu et al. (2021) and our work is that they focus on provable conditions
for latent recovery; we focus on empirically effective methods that leverage similar insights for
recovering latent representations from language. Finally, our use of stochastic processes draws
similarities to diffusion models (Song et al., 2020; Sohl-Dickstein et al., 2015) which apply a chain
of diffusion steps onto the data and learn to reverse the diffusion process. However, our application
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x_0: [USER] Hello, I'd like to buy tickets for tomorrow.

x_T: [USER] Could you confirm my tickets just in case?
x_t: [ASSISTANT] What movie theater do you prefer? 

 x': [USER] Hi, I'm looking to purchase tickets for my family.

Figure 1: Latent space for a positive triplet of sentences (x0, xt, xT ) that are part of the same conversation.
Time Control maps positive triplets to a smooth Brownian bridge trajectory. It embeds zt close to the expected
embedding µt pinned by z0, zT . The green oval area illustrates the uncertainty over zt as a function of how
close t is to 0 and T . In contrast, a negative random sentence x′ from a different conversation is not coherent
with x0 and xT ; thus, it is embedded far from µt. This is captured by our contrastive loss, L.

is conceptually different: diffusion processes characterize properties of our latent space and are not
a fixed inference method in our work.

3 TIME CONTROL

The intuition behind Time Control is to learn a latent space with smooth temporal dynamics for
modeling and generating coherent text. We detail Time Control in three sections. The first section
discusses training the encoder via contrastive learning to map sentences to a Brownian bridge (Revuz
& Yor, 2013) latent space. The second section discusses training a decoder to reconstruct sentences
from this latent space. The third section discusses generating text from Time Control.

3.1 TRAINING AN ENCODER WITH BROWNIAN BRIDGE DYNAMICS

Our encoder is a nonlinear mapping from raw input space to latent space, fθ : X → Z . The
objective for the encoder is to map high-dimensional sequential data into low-dimensional latents
which follow a stochastic process of interest—in this paper, it is the Brownian bridge process. The
density of a Brownian bridge process between an arbitrary start point z0 at t = 0 and end point zT
at t = T is,

p(zt|z0, zT ) = N
((

1− t

T

)
z0 +

t

T
zT ,

t
(
T − t

)
T

)
. (1)

This density is intuitive to understand: It acts like a noisy linear interpolation between the start and
end point of the trajectory, where zt should be more like z0 at the start and more like zT at the end of
the trajectory. Uncertainty is highest in the middle region, and low near the end points (rf. Figure 1).

Consider a set of triplet observations, (x1, x2, x3). The goal of our work is to ensure that
fθ(x1), fθ(x2), fθ(x3) follow the Brownian bridge transition density in Equation 1. We ensure this
using a contrastive objective. Formally, given multiple sequences of data points, X = {x1, ..., xN},
we draw batches consisting of randomly sampled positive triplets x0, xt, xT where 0 < t < T :
B = {(x0, xt, xT )}.2 Our encoder is optimized by,

LN = EX

− log
exp(d(x0, xt, xT ; fθ))∑

(x0,xt′ ,xT )∈B
exp(d(x0, xt′ , xT ; fθ))

 ,where (2)

d(x0, xt, xT ; fθ) = − 1

2σ2

∥∥∥∥ fθ(xt)︸ ︷︷ ︸
zt

−
(
1− t

T

)
fθ(x0)−

t

T
fθ(xT )︸ ︷︷ ︸

mean in Equation 1

∥∥∥∥2
2

(3)

2We use indices 0, t, T to denote the start, middle and end point of a Brownian bridge, but these do not
correspond to strictly sampling the first, middle and last sentence of a document. x0, xt, xT can be any sentence
in a document as long as x0 comes before xt and xt before xT in the document.
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σ2 is the variance in Equation 1: t(T−t)
T . Note that Equation 2 sums over negative middle contrasts,

xt′ . This objective can be viewed as maximizing the extent to which true triplets from the data
follow the Brownian bridge process while minimizing the extent to which an alternative mid-point
sampled from another sequence does so. 3

Figure 1 illustrates how the objective translates into the language setting for training the encoder.
The objective samples triplet sentences from a document. Sentences drawn from the same document
make up a smooth latent trajectory; they should be close to each other and follow the conditional
density in latent space. Sentences drawn from different documents should not make up a smooth
trajectory and should less likely follow bridge dynamics.

Connection to mutual information estimation and triplet classification We draw connections
between our contrastive loss and the mutual information estimation setup from van den Oord et al.
(2019); Poole et al. (2019) (as |B| → ∞) and the classification setup from Liu et al. (2021) (|B| = 1).

Following van den Oord et al. (2019); Poole et al. (2019), this objective can be seen as a lower bound
on the mutual information between the two end points and the middle point: I(Xt, {X0, XT }) ≥
log(N) − LN . Hence, by minimizing the contrastive loss, we are maximizing the amount of infor-
mation between the trajectory and the linear interpolation of its end points.

Assuming |B| = 1, we can draw a connection to the classification setup studied in Liu et al.
(2021). They train a classifier to distinguish in- vs. out-of-order input pairs and show that
the Bayes optimal logits for pair-wise classification can be written as a function of the stochas-
tic process transition kernel. This is equivalent to the our loss on a single triplet i: li =

− log exp(d(x0,xt,xT ;fθ))
exp(d(x0,xt,xT ;fθ))+exp(d(x0,xt′ ,xT ;fθ))

. Liu et al. (2021) consider pairs whereas our work con-
siders triplets; we show in Appendix A the pairwise and triplet setups are equivalent.

3.2 TRAINING A DECODER WITH LATENT PLANS

Here we discuss how to train a language model to decode latent plans for generation. We first map
all the sentences in the training dataset to our learned latent space using the pretrained encoder fθ.
This gives us a Brownian bridge trajectory of sentence-level latent codes (z0, . . . , zt, . . . , zT ) for
a document in the dataset. Then, rather than learning a decoder from scratch, we fine-tune GPT2
(Radford et al., 2019) to generate text conditioned on past context and the latent plan.

We fine-tune in the following manner. Let x1 . . . xW be a document with W tokens and T sentences
used to train the decoder. Using the encoder fθ, we can obtain embeddings z1 . . . zT for each
sentence. The decoder is a standard auto-regressive language model that is modified in the following
way: at time t, the decoder must predict xt using all tokens in the past x<t, as well as the sentence
embedding zst , where the index st ∈ [T ] is a map which takes each token to its corresponding
sentence. This is a form of a reconstruction objective, as the identity of xt is encoded in zst .

3.3 GENERATING TEXT WITH LATENT PLANS AT INFERENCE TIME

Figure 2 illustrates how the trained decoder generates text at inference time. Given two end points
z0, zT , we sample a trajectory from a latent Brownian bridge, and then generate from the decoder
conditioned on this bridge. In many situations, we may not know the endpoints of the Brownian
bridge explicitly. In this case, we encode a set of sentences corresponding to start and end points
(eg. the first and last sentences of our training set), and fit a Gaussian to these points to form a density
estimate. Generating in this case involves first sampling from the Gaussian, and then generating as
before from the bridge. More details on training and generation can be found in Appendix B.

4 EXPERIMENTS

We now evaluate the ability of Time Control to capture text dynamics. Specifically, we aim to
answer the following research questions (RQ):

3Empirically, we found Brownian bridge dynamics easier to recover with triplets rather than pairs of con-
trasts. Appendix L.2 discusses some of the pair-wise contrast results.
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Figure 2: Time Control generates text conditioned on a latent plan. A latent plan is first generated by running
Brownian bridge dynamics pinned between a sampled start z0 and goal latent variable zT forward. A decoder
then conditionally generates from this latent plan on a sentence-level.

RQ1: Can Time Control model local text dynamics? Section 4.1 investigates this question using
a sentence ordering prediction task: given two sentences from the same document, we
evaluate whether different models can predict their original order.

RQ2: Can Time Control generate locally coherent text? Section 4.2 investigates this question using
the text-infilling task: given prefix and suffix, we evaluate how well different models can
fill in between.

RQ3: Can Time Control model global text dynamics? Section 4.3 investigates this question on text
generation for Wikipedia city articles by examining the length of generated sections.

RQ4: Can Time Control generate long coherent documents? Section 4.4 investigates this question
on forced long text generation: we evaluate how well models preserve global text statistics
(such as typical section orders and lengths) when forced to extrapolate during generation.

We run Time Control with different latent dimensions (d = 8, 16, 32). Our encoder architecture is
a frozen, pretrained GPT2 model from Huggingface (Radford et al., 2019; Wolf et al., 2020) and a
trainable MLP network. We extract GPT2’s last layer hidden state that corresponds to the end-of-
sentence (EOS) token and train the 4-layer MLP on top of the hidden state. The MLP network has
intermediate ReLU activations and is trained with stochastic gradient descent with a learning rate of
1e-4 and with momentum 0.9.

Ablations We perform three ablations on our encoder model. Recall that Time Control (A) explic-
itly models latent structure with (B) Brownian bridge dynamics using a (C) contrastive loss. (A)
replaces explicit dynamics with Implicit Dynamics (ID) where future latents are directly predicted
with an autoregressive model (van den Oord et al., 2019). (B) replaces Brownian bridge dynamics
with Brownian motion (BM): latents follow the transition density zt|zs ∼ N (zs, t−s) in Equation 3.
Note zt is centered at zs and is not conditioned on a goal end-point. (C) replaces the contrastive loss
with a Variational Auto-Encoder (VAE) and centers the priors over z0 to 0 and zT to 1, as done in
our setup. We use GPT2 as the decoder. Appendix D includes more detail on the ablations.

Datasets We use language datasets that elicit different kinds of structure, from section structure to
discourse structure to narrative structure. Time Control does not take in any information about the
structure, treating each domain the same under its encoding objective. More information and dataset
examples are provided in Appendix E. Wikisection (Arnold et al., 2019) includes Wikipedia articles
on cities split by sections. We adapt this dataset such that each article contains four ordered sections
(abstract, history, geography, demographics) marked with section id tokens: Each article is repre-
sented as, “[ABSTRACT] text [HISTORY] text [GEOGRAPHY] text [DEMOGRAPHICS] text”.
Wikihow (WH) (Koupaee & Wang, 2018) contains how-to articles organized by a title, method,
and steps. We mark each with its own section id tokens: Each article is represented as “[TITLE]
text [METHOD] text [STEP] 1 text [STEP] 2 text ...” Recipe NLG (Bień et al., 2020) contains
recipes, each with a title, ingredients and set of directions. A recipe is constructed as “[TITLE] text
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Wikisection TM-2 TicketTalk
Method k = 5 k = 10 k = 5 k = 10 k = 5 k = 10

GPT2 50.3± 5.8 50.2± 6.3 55.7± 5.3 63.6± 7.3 54.7± 6.1 65.0± 8.1
BERT 50.9± 4.9 47.8± 9.0 68.8± 3.5 80.7± 3.8 68.4± 5.1 80.4± 6.3
ALBERT 49.9± 12.1 49.6± 18.0 81.6± 4.0 86.1± 7.3 78.4± 6.7 89.4± 3.1
S-BERT 50.8± 6.0 48.0± 9.1 73.4± 3.5 83.3± 4.3 72.1± 5.3 84.2± 5.2
Sim-CSE 49.1± 6.4 48.1± 8.5 75.4± 3.8 86.2± 3.9 75.1± 5.9 85.2± 3.1

VAE (8) 49.5± 5.5 50.5± 5.1 50.5± 4.4 51.5± 6.0 49.9± 1.0 51.2± 1.0
VAE (16) 50.1± 5.8 51.3± 4.7 48.8± 4.8 50.8± 4.9 50.1± 1.0 49.5± 1.0
VAE (32) 50.5± 5.1 50.0± 6.0 48.0± 5.1 47.3± 5.9 50.0± 1.0 49.3± 1.0

ID (8) 49.8± 5.9 50.1± 5.0 60.3± 5.2 65.2± 6.8 59.2± 1.9 66.5± 1.1
ID (16) 53.3± 5.4 55.8± 6.2 60.5± 5.0 67.7± 6.8 60.3± 1.0 68.4± 6.4
ID (32) 50.0± 5.0 50.1± 5.0 60.4± 5.3 67.6± 7.1 61.0± 1.0 67.9± 6.5

BM (8) 49.8± 5.4 50.0± 5.4 49.8± 5.4 49.9± 5.2 49.7± 5.0 50.6± 5.8
BM (16) 50.3± 5.5 50.5± 5.2 49.9± 4.3 51.1± 6.0 50.3± 4.6 50.8± 5.5
BM (32) 49.3± 5.6 48.8± 5.8 49.5± 4.7 49.6± 5.2 49.5± 5.6 49.1± 6.1

TC (8) 49.23± 5.72 48.3± 6.8 77.6± 7.8 87.7± 6.9 71.6± 2.9 82.9± 4.1
TC (16) 57.25± 5.30 65.8± 5.4 78.2± 8.1 88.0± 7.1 71.3± 3.3 82.9± 4.1
TC (32) 50.1± 4.8 49.8± 5.8 77.9± 7.9 87.9± 7.4 72.0± 3.9 84.4± 3.9

Table 1: Discourse coherence accuracy measured by the test accuracy of the trained linear classifier, reporting
µ± standard error over 3 runs. Random accuracy is 50%. Values are bolded if they are within range of the
highest mean score and its corresponding standard error. The highest mean score are marked in gray cells.
When applicable, the methods are run with varying latent dimensions marked in parentheses (dim).

[INGREDIENTS] text [DIRECTIONS] text”. Taskmaster-2 (TM-2) (Byrne et al., 2019) contains
conversations on finding restaurants between an assistant and a user. The assistant’s turn is marked
with an “[ASSISTANT]” tag, and the user’s turn is marked with a “[USER]” tag. TicketTalk (Byrne
et al., 2021) contains conversations on booking movie tickets between an assistant and a user. The
assistant’s and user’s turns are similarly marked as in TM-2. ROC Stories (Mostafazadeh et al.,
2016) is a short 5-sentence stories dataset. No additional tokens are added in this dataset.

4.1 MODELING LOCAL TEXT DYNAMICS

We evaluate how well Time Control models local text dynamics (RQ1) on the discourse coherence
setting (Jurafsky, 2000). Discourse coherence is often measured by how well representations capture
discourse structure by testing for whether a linear classifier can detect in-order and vs. out-of-order
sentence pairs (Chen et al., 2019a). We compare Time Control’s encoder against GPT2’s last layer’s
hidden state corresponding to the EOS token (Radford et al., 2019), BERT (Devlin et al., 2019),
ALBERT (Lan et al., 2019), Sentence BERT (Reimers et al., 2019), and SimCSE (Gao et al., 2021).
The latter 4 methods are designed as sentence embedding models. We also compare to our ablations.

The setup is the following: The encoder takes in two sentences xt, xt+k to produce their latents
zt, zt+k ∈ Rd. At random, the latents are fed either in- or out-of-order. A linear classifier is trained
on 100 epochs with stochastic gradient descent with a learning rate of 1e-4 and with momentum 0.9.
We varied the sentence distance k ∈ {1, 5, 10} and found that on some domains and for k = 1, all
methods scored near random accuracy; we have omitted those results in the main paper. Otherwise,
the results are summarized in Table 1 where we report the mean and standard error accuracy on a
held-out discourse dataset of 3000 examples on 3 runs. Our method is able to outperform or compete
with sentence embedding specific methods, like ALBERT and SimCSE. Additionally, though GPT2
is used as a base encoder for Time Control, we observe that Time Control greatly improves upon
GPT2 with significant gains on TM-2, TicketTalk, and Wikisection (around 7− 25%).

Neither VAE nor BM perform better than random accuracy on any of domains. This suggests that the
variational lower bound does not recover the latent embeddings as well as contrastive objectives and
the choice of stochastic processes matter for learning informative structural embeddings. ID does
best on the conversation datasets, which indicates that implicitly learning text dynamics yields latent
representations that can be used for inferring discourse though not as effectively as Time Control.
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Method BLEU (↑)

LM 1.54± 0.02
ILM 3.03± 0.11

VAE (8) 0.75± 0.17
VAE (16) 0.62± 0.07
VAE (32) 0.03± 0.0

ID (8) 2.9± 0.3
ID (16) 0.9± 0.0
ID(̄32) 1.0± 0.1

TC (8) 3.80± 0.06
TC (16) 4.30± 0.02
TC (32) 5.4± 0.11

Table 2: BLEU on ground
truth infill and generated sen-
tence.

Method MM % (↓)

GPT2 17.5± 0.1
SD 10.0± 0.1
SS 10.6± 0.1

VAE (8) 10.8± 0.1
VAE (16) 9.6± 0.1
VAE (32) 8.7± 0.1

ID (8) 10.8± 0.1
ID (16) 154.8± 0.1
ID (32) 138.6± 0.1

BM (8) 9.2± 0.1
BM (16) 17.8± 0.1
BM (32) 10.8± 0.1

TC (8) 16.8± 0.2
TC (16) 7.9± 0.1
TC (32) 9.3± 0.1

Table 3: Percentage of length
mismatch (MM) during genera-
tion.

Method WH TM-2 TT

GPT2 10.7 86.8 22.0

VAE (8) 10.6 83.4 46.2
VAE (16) 11.6 73.5 35.1
VAE (32) 15.5 90.2 54.5

ID (8) 23.1 119.1 111.1
ID (16) 38.1 87.9 55.4
ID (32) 30.1 113.3 78.5

BM (8) 18.1 52.0 34.9
BM (16) 12.7 44.9 75.8
BM (32) 15.5 47.9 78.5

TC (8) 9.6 31.1 8.0
TC (16) 15.0 9.3 5.5
TC (32) 15.8 5.2 12.0

Table 4: Section lengths deviating from ex-
pected length in forced long text generation
reported in % (↓).

Noticeably, discourse is more easily inferred on task-oriented conversations like TM-2 and Tick-
etTalk. We hypothesize that the ordering of responses matters more in conversations than enumera-
tive, factual settings like Wikisection. Nonetheless, our model performs above chance on both types
of domains. This answers RQ1 in the positive: Time Control can model local text dynamics, like in
conversations and articles.

4.2 GENERATING LOCALLY COHERENT TEXT

We evaluate how well Time Control generates locally coherent text (RQ2) on the text-infilling set-
ting. Text-infilling requires a model to take an incomplete text, with missing sentences, and complete
it. An example input could be, “Patty was excited about having her friends over. [blank] Patty had
a great time with her friends.” The challenge in performing text infilling is to generate a sentence
that is locally coherent with the left and right neighboring sentences.

We follow the task setup in Donahue et al. (2020) where they use the ROCStories dataset. Each
story in the dataset contains 5 sentences, one of which is randomly masked. Time Control fills in the
masked sentence by running the bridge process pinned at the latent for the prefix, z0, and the latent
for the suffix, zT . We compare our method against ILM (Donahue et al., 2020), a state-of-the-art
method for text-infilling as well as Donahue et al. (2020)’s LM model, an autoregressive baseline
that only sees the prefix. The VAE ablation takes the average of the prefix and suffix embeddings
for generation. When using the average, BM is equivalent to Time Control we omit the BM results.
ID’s autoregressive model predicts the next latent given the prefix for generation.

We evaluate the text coherence with the BLEU score (Papineni et al., 2002), ROUGE (Lin, 2004),
BLEURT (Sellam et al., 2020) and BERTScore (Zhang et al., 2019) between the generated and
ground truth infill sentence. Due to space constraints, the last three metrics are in the Appendix,
Table 17. We also report human evaluations on how coherent the generated sentence is as a fill-in
sentence. Participants were asked to rank the generated fill-in sentence from ILM, LM, and Time
Control on a scale of 1-5 (not reasonable to very reasonable). Appendix H includes more details on
the human experiment setup.

The BLEU scores are summarized in Table 2. Time Control generates fill-in sentences that much
more closely overlap with the ground truth than ILM and LM. The ablated methods perform worse
to varying degrees. On average, VAE performs worse than LM and ID. This suggests that the
interpolating embeddings learned via the variational objective yields embeddings which hurt the
autoregressive model’s ability to generate locally coherent text.
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Method Wikisection Wikihow TicketTalk Recipe

GPT2 50.4± 1.0 61.5± 3.5 75.8± 1.6 36.8± 3.7

VAE (8) 57.1± 3.5 66.3± 1.7 66.1± 4.1 71.4± 0.6
VAE (16) 47.3± 3.3 60.5± 2.9 0.8± 0.0 45.6± 0.5
VAE (32) 58.3± 0.3 60.9± 5.6 38.9± 1.7 87.5± 0.2

ID (8) 34.6± 0.0 59.3± 2.9 30.8± 1.6 68.7± 2.3
ID (16) 35.7± 0.0 31.7± 0.9 63.9± 0.4 78.1± 3.1
ID (32) 47.9± 2.0 16.9± 0.6 45.6± 0.6 85.6± 2.3

BM (8) 54.7± 1.9 56.0± 3.5 77.0± 4.7 82.7± 0.4
BM (16) 61.4± 1.0 63.8± 4.7 43.3± 2.4 34.9± 1.5
BM (32) 44.3± 1.4 50.2± 1.2 14.8± 1.0 87.1± 0.1

TC (8) 52.3± 2.5 76.7± 7.5 81.8± 1.0 41.7± 1.0
TC (16) 57.9± 1.0 63.1± 6.2 88.0± 1.3 64.1± 1.0
TC (32) 36.5± 2.8 59.1± 5.5 83.6± 1.3 76.4± 1.0

Table 5: Ordering in forced long text generation. ROC Stories and TM-
2 omitted because they are not applicable.

Method Human

LM 2.4± 0.06
ILM 3.77± 0.07

TC (8) 3.64± 0.07

Table 6: Human evaluations on
text infilling. Scores were ranked
between 1 and 5. Higher is better.

Method Human

GPT2 2.8± 0.06

TC (8) 3.6± 0.07
TC (16) 3.4± 0.07
TC (32) 3.3± 0.07

Table 7: Human evaluations on
tail end quality in forced long text
generation. Scores were ranked
between 1 and 5. Higher is better.

Human evaluations in Table 6 indicate that Time Control performs competitively with ILM. 4 Upon
inspection of the model output, we find that the ablated models struggle to meaningfully decode from
the interpolated latent embeddings (Appendix G.1). Oftentimes, the model would start a sentence
coherently, but end the sentence by repeating a word over and over again; examples can be found in
Appendix G. This suggests the importance of learning a latent space that supports interpolation by
construction. All together, the results provide positive evidence for RQ2: Time Control can generate
locally coherent text due to its well-defined latent dynamics.

4.3 MODELING GLOBAL TEXT DYNAMICS

We evaluate how well Time Control models global text dynamics (RQ3) by assessing whether the
methods mimic document structure on Wikisection. We check whether the generated section lengths
match with the average lengths in the dataset. We focus on Wikisection because it is the only dataset
with long, well-defined sections (rf. Appendix E on dataset statistics). Each document contains an
abstract, history, geography, and demographics section on a city.

Time Control plans a latent trajectory by running the bridge process between the start and end latent,
z0 ∼ p(z0) and zT ∼ p(zT ). We compare Time Control to fine-tuned GPT2. We also include two
oracle methods that are fine-tuned GPT2 models with additional section-embedding supervision.
One is “sec-dense GPT2” (SD) where each token’s embedding contains the current section identity;
section i’s embedding is added onto the token’s positional token embedding. The other is “sec-
sparse GPT2” (SS) where the token embedding contains an indicator that is 1 if the token is the start
of a new section, and 0 otherwise. For VAE and ID, we calculate the density estimate p(z0) and
p(zT ) and run a linear interpolation between the start and end latents. For BM, we calculate the
density estimate p(z0) and run Brownian motion.

Table 3 reports in percentage how much the generated section lengths deviate from the average sec-
tion lengths. Time Control best matches the section lengths out of all the methods. One surprising
observation was that fine-tuned GPT2 mismatches the section lengths significantly by almost 20%.
Upon further investigation, we noticed GPT2 overshoots short sections and undershoots long sec-
tions; this causes the section length deviations. Adding domain-specific supervision like with SD
and SS slightly alleviates this issue. Surprisingly, we find that our method beats the oracle on certain
settings, eg. d = 16. ID performs extremely poorly in contrast to VAE and BM; this highlights the
challenge of interpolating on learned dynamics models which is exacerbated in the long text genera-

4Note that ILM is in effect an upper bound on model performance as it is trained specifically for text-
infilling; TC matching the performance of ILM is a strong result for using latent Brownian bridges for locally
coherent generation.
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Time Control : [ USER ] I’m looking for movie tickets please. [ ASSISTANT ] OK, where would you
like to see the movie? [ USER ] I’d like to see it at Creek’s End, Oregon please. [...] [ ASSISTANT ]
Is it OK to go ahead and purchase these tickets? [ USER ] Yeah, that would be great. [ ASSISTANT ]
OK. I understand that you are interested in tickets for Emma at AMC Mercado 24 tonight at 7:10pm. Is
that OK? [ USER ] Yes, please do that. [ ASSISTANT ] OK
GPT2: [ USER ] Hi! Tonight, I’d like to go to the movies. [ ASSISTANT ] Okay. What theater would
you like to go to? [ USER ] Center City. [...] [ ASSISTANT ] That will be all for now. Thank you for
all your help. N/A [ USER ] Bye Bye. [ ASSISTANT ] N/A [ ASSISTANT ] N/A N/A N/A N/A N/A
N/A N/A N/A [ USER ] N/A [ ASSISTANT ] N/A N/A N/A [ USER ] N/A [ ASSISTANT ] N/A N/A
N/A [ USER ] N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A [ USER ] N/A N/A N/A N/A [...]

Table 8: Example of forced long text generation on TicketTalk with Time Control vs. fine-tuned GPT2. Both
models are forced to extrapolate when generating long texts. They start coherently, but only Time Control
extrapolates coherently. For space reasons, some of the text has been removed, marked with [...].

tion settings. The results affirm the importance of Time Control for modeling global text dynamics,
such as in matching document structure, thus answering RQ3 positively.

4.4 GENERATING GLOBALLY COHERENT TEXT

We evaluate how well Time Control generates globally coherent text (RQ4) where the EOS token is
omitted. We refer to this as the forced long text generation setup because the model must extrapolate
beyond its natural end point in generation. Appendix C.2 details how the latent plan is generated.
For reference, 1000 tokens is about 50% longer than the average Wikisection document (the longest
text domain). This setting is intrinsically difficult for auto-regressive models which do not have the
ability to “look ahead” during generation (Lin et al., 2021).

We evaluate model extrapolation on three metrics. First is ordering: how well do the models main-
tain the structure of the document (eg. turn-ordering in TicketTalk)? Second is length consistency.
Length consistency captures common failure modes such as a model which stops modeling a conver-
sation between two agents, and instead outputs a long monologue from one agent. Third is human
evaluations, which measures the long-tail text quality. We examine the long-tail behavior as the
complete 1000-token generation is long.

The results are summarized in Table 4 for length consistency, Table 5 for ordering and Table 7 for
human evaluations. Overall, our method maintains text flow the best according to these metrics.
A common failure mode of GPT2 is that it produces nonsensical text where it would naturally end
generation; this is particularly noticeable on TM-2 and TicketTalk. Figure 8 shows an example of
our model’s behavior versus GPT2’s behavior on generating long texts in TicketTalk. The example
illustrates how Time Control continues the dialog whereas GPT2 utters nonsensical text. These re-
sults are additionally confirmed by our human evaluation experiments: human evaluators rank Time
Control’s extrapolation ability better on all latent dimension settings than that of GPT2 (Table 7).

ID performs poorly in forced long text generation, similar to the normal text generation setting: It
significantly misorders sections and overshoots section lengths. Although VAE and BM do poorly
on length consistency, they perform slightly better than ID on ordering; in Appendix J, we investigate
why the VAE baseline performs much better than TC on ordering. This suggests the importance of
good latent dynamics for long text generation. These results answer RQ4 positively: Time Control
generates globally coherent text thanks to its ability to plan ahead and correctly generate future latent
variables following its latent dynamics.

5 CONCLUSION

We propose Time Control, a language model that implicitly plans via a latent stochastic process.
Specifically, Time Control looks to Brownian bridge processes as a desirable latent space. Time Con-
trol learns to map coherent text to smooth Brownian bridge trajectories. Empirically, we demonstrate
this leads to several benefits such as generating more locally and globally coherent text. Although
our work focuses on benefits of learning stochastic process latents for language, it can be extended
to other domains with sequential data like videos or audio, or extended to handle arbitrary bridge
processes without known fixed start and end points.
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6 REPRODUCIBILITY STATEMENT

In the supplemental, we include a zip file containing our code and processed datasets. We’ve also in-
cluded in the appendix how we processed the datasets. Our results on showing equivalence between
the triplet classification setting and pairwise classification setting are also included in the appendix.
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Sector: A neural model for coherent topic segmentation and classification. Transactions of the
Association for Computational Linguistics, 7:169–184, 2019. doi: 10.1162/tacl\ a\ 00261.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to pmi-based word embeddings. Transactions of the Association for Computational
Linguistics, 4:385–399, 2016.
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Notation We denote latent space as Z; we typically do not observe this space directly. We denote
the observation space as X ; this is the space we observe directly.

We define the Brownian bridge for t ∈ [0, T ] as

Bt = B(t) = W (t)− t

T
W (T ), (4)

where W (t) is a standard Wiener process, N (0, t).

We state the assumptions:

• We assume latents {zt}t≥0 ∈ Rd are drawn from the Brownian bridge process defined by
the stochastic differential equation,

dzt =
zT − zt
1− t

T

dt+ dBt (5)

The intervals at which latents are sampled are every ∆t step: z′ = zt+∆t.
• We denote the transition probabilities as

p∗(zt|z0, zT ) := N
(
(1− t

T
)z0 +

t

T
zT ,

t(T − t)

t

)
. (6)

We denote the proposal distribution over possible intermediate triplets q(z′0, z
′
t, z

′
T ).

Liu et al. (2021) characterize properties of an optimal classifier h∗(z, z′) which observes pairs of
latents (z, z′) and it outputs in [0, 1], a probability indicating whether the pair comes in order (ie.
z′ = zt +∆t · dzt) or not in order (ie. a randomly sampled latent). They train h∗ using an L2 loss,
L(h, {(z, z′), y}).
Lemma 1 of their work states the following : The optimum of the contrastive learning objective
argminh E((z,z′),y)[L(h, {(z, z′), y})] satisfies

h∗(z, z′) =
p∆t(z, z′)

q(z′) + p∆t(z, z′)
. (7)

Manipulating this equality, we observe that the transition kernel has the following relation to the
classifier which takes in pairs of observations,

p∆t(z, z′) =
q(z′)h∗(z, z′)

1− h∗(z, z′)
(8)

log p∆t(z, z′) = log q(z′) + log h∗(z, z′)− log(1− h∗(z, z′)). (9)

Our setting however assumes that the algorithm receives triplets of data points, zt1 , zt2 , zt3 . We want
to show below that minimizing L with triplet contrasts in the classification setting still approximates
the transition kernel. In particular, we’re interested in transitions of a Brownian bridge pinned at
z0, zT : p∆t(z0, zt, zT ) = Pr(zt|z0, zT ).

Let’s say we have two positive triplet samples, (zit1 , z
i
t2 , z

i
t3) and (zjt1 , z

j
t2 , z

j
t3), where t1 < t2 < t3.

Following Liu et al. (2021), minimizing L yields the following on each triplet:
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t3)). (11)

Taking the difference in log probabilities between Equations 10-11 results in

log p∆t(zit1 , z
i
t2 , z

i
t3)− log p∆t(zjt1 , z

j
t2 , z

j
t3) =

[
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t3)− log(1− h∗(zit1 , z
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]
−
[
h∗(zjt1 , z

j
t2 , z

j
t3)− log(1− h∗(zjt1 , z

j
t2 , z

j
t3))

]
.

(12)

Similar to the pair-wise classification setting, we’ve shown that minimizing L in the triplet classifi-
cation setting results in approximating the transition kernel of the Brownian bridge process.
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B TRAINING DETAILS

Here we describe the training procedure for the encoder and the fine-tuning procedure for decoding.

Brownian bridge encoder The encoder architecture is a frozen, pretrained GPT2 model from
Huggingface (Radford et al., 2019; Wolf et al., 2020) and a trainable MLP network. We extract the
GPT2’s last layer hidden state that corresponds to the end-of-sentence (EOS) token and train the
4-layer MLP on top of the hidden state. The MLP network has intermediate ReLU activations and
is trained with stochastic gradient descent with a learning rate of 1e-4 and with momentum 0.9. We
train the encoder for 100 epochs on each of the datasets.

The text fed into GPT2 are fed in on a sentence level. This means that the input xt refers to the t’th
sentence of a document. The sentences are separated from each other in the main text as “ . ” which
is added to the tokenizer as a separate token for indexing convenience.

Fine-tuning GPT2 with latent embeddings After training the encoder, we run it on the training
dataset to collect an accompanying latent trajectory for each text. The encoder is run on the dataset
at a sentence level: we separate the text by sentences and pass the sentences through the encoder.

The sentence latent embeddings are aligned with the tokens of that sentence and offset by one token
before the start of that sentence token. Let’s illustrate by an example. We denote [SOS] as the start
of the document token, [s1] as sentence 1 tokens and [s2] as sentence 2 tokens. [ . ] is the period
token which we’ve added into the tokenizer. zi denote the latent variable corresponding to the i’th
sentence.

Let’s say that the sequence fed into GPT2 is “[SOS] [s1] [s1] [s1] [ . ] [s2] [s2] [s2]”. Then the
corresponding latent trajectory is “z1, z1, z1, z1, z2, z2, z2, z2”. The latent variables are added onto
the positional embeddings. We then fine-tune GPT2 as normal.

C GENERATION WITH EMBEDDINGS

C.1 NORMAL TEXT GENERATION

We first sample a start and end latent, z0 ∼ p(z0), zT ∼ p(zT ) where p(z0), p(zT ) are calculated
as the density estimates over the training dataset. We pin our trajectory to the start and end latent,
and run the Brownian bridge using Equation ??. For normal long text generation, we set T to be the
average number of sentences in each of the dataset. For forced long text generation, we set T to be
proportional to the number of sentences needed in order to generate 1000 tokens. By the end, we
have a trajectory z0, z1, ..., zT .

Generation starts with feeding the SOS token and the first latent z0. Once GPT2 emits a [ . ] token
and terminates sentence t, we transition to the next latent zt+1. This process continues until GPT2 is
finished with generation. If GPT2 generates more sentences than there are latents in the trajectory,
the last latent zT is used until the end of generation.

C.2 FORCED LONG TEXT GENERATION

Let Savg(D) denote the average number of sentences in a document and Tavg(D) denote the average
number of tokens in a document. Rather than planning a trajectory of length Savg(D) (the average
number of sentences in a document) which is what is done in Section 4.3 for normal text generation,
we scale the trajectory length to c · Savg(D). c is determined by how many more tokens we need in
order to fill up to GPT-2 maximum context length of 1024: c = 1024−Tavg(D)

Tavg(D)
.

D ABLATIONS

The following methods ablate the encoder model in Time Control; in other words, the ablations
dissect the assumptions we make in the first step of Time Control described in Section 3.1. Recall
that Time Control (A) explicitly models latent structure with (B) Brownian bridge dynamics using
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a (C) contrastive loss. (A) replaces explicit dynamics with Implicit Dynamics (ID) where future
latents are directly predicted with an autoregressive model (van den Oord et al., 2019). (B) replaces
Brownian bridge dynamics with Brownian motion (BM) which doesn’t rely on pinning trajectories.
Latents follow the transition density zt|zs ∼ N (zs, t− s). (C) replaces the contrastive loss with the
Variational Auto-Encoder (VAE). Below we detail how these ablations are implemented.

D.1 IMPLICIT DYNAMICS (ID)

The Implicit Dynamics ablation is where we compare our explicit dynamics objective to van den
Oord et al. (2019) which suggests an implicit latent dynamics objective. This ablation thus changes
the learned latent dynamics. In van den Oord et al. (2019), they train two models. One is a non-linear
encoder genc(xt) = zt which takes observation xt (eg. a sentence) and maps it to a latent represen-
tation zt. Two is an autoregressive context model gar(z≤t) = ct which summarizes a sequence of
latent variables z≤t into a context latent representation ct. Rather than directly predicting a future
observation xt+k (k steps from the current timestep t), they model the density ratio that preserves
the mutual information between xt+k and the context variable ct:

fk(xt+k) ∝
p(xt+k|ct)
p(xt+k)

(13)

They model this with a log-bilinear model fk(xt+k) = exp(zTt+kWkct) which applies a linear
transformation Wk for modelling latents k-steps away from timestep t. This way, they avoid directly
learning the generative model p(xt+k|ct).
They train both models jointly via a contrastive InfoNCE loss. Given a set X = {x1, . . . , xN} of
N random samples (eg. sentences from different documents) containing one positive sample from
p(xt+k|ct) and N − 1 negative samples from a proposal distribution p(xt+k), they optimize:

L = −EX

[
log

fk(xt+k, ct)∑
xj∈X fk(xj , ct)

]
. (14)

The encoder genc for Implicit Dynamics has the same architecture as Time Control. The context
encoder gar using a 2400-hidden-unit GRU, as done in van den Oord et al. (2019). We then train
both encoders using the InfoNCE loss, as done in prior work. Since genc and gar are trained to align
latents up to a linear rotation, we use genc for extracting the sentence embeddings.

D.2 BROWNIAN MOTION (BM)

The Brownian motion ablation is where we remove goal-conditioning in the dynamics. The main
change is in distance function in Equation 3. BM instead optimizes the following equation:

d(xt, xt′ ; fθ) = − 1

2σ2
∥ fθ(xt′)︸ ︷︷ ︸

zt′

− fθ(xt)︸ ︷︷ ︸
zt

∥22 (15)

where σ2 is the variance in of the Wiener process, σ2 = t′ − t.

D.3 VARIATIONAL AUTO-ENCODER (VAE)

The Variational Auto-Encoder ablation is where we compare our contrastive objective with a vari-
ational one. This ablation changes the encoder objective from Section 3.1 from Equation 2 to the
ELBO objective. Below we derive the ELBO objective. Similar to the contrastive objective, we’re
deriving the ELBO over the triplet dynamics in the Brownian bridge.
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log p(x) ≥ Eqϕ(z|x)[log
p(x, z)

q(z|x)
]

= Eqϕ(z|x)[log
p(x0, xt, xT , z0, zt, zT )

q(z0, zt, zT |x0, xt, xT )
]

= Eqϕ(z|x)[log
p(x0|z0)p(xt|zt)p(xT |zT )p(zt|z0, zT )p(z0)p(zT )

q(zt|z0, zT , xt)q(z0|x0)q(zT |xT )
]

= Eqϕ(z|x)[p(x0|z0)p(xt|zt)p(xT |zT )] + Eqϕ(z|x)[log
p(zt|z0, zT )

q(zt|z0, zT , xt)
]

+ Eqϕ(z|x)[log
p(z0)

q(z0|x0)
] + Eqϕ(z|x)[log

p(zT )

q(zT |xT )
]

= Eqϕ(z|x)[log p(x0|z0)p(xt|zt)p(xT |zT )]
−DKL(q(zt|z0, zT , xt)∥p(zt|z0, zT ))−DKL(q(z0|x0)∥p(z0))−DKL(q(zT |xT )∥p(zT ))

We assume the priors over z0 is 0-centered and zT is 1-centered, which is similar to our Brownian
Bridge setup. The encoder qϕ(z|x) is parameterized with the same architecture as our encoder. The
decoder p(x|z) is a fine-tuned GPT2 model.

E DATASET INFORMATION

For each dataset, text examples were filtered out if they did not fit within GPT2’s context length of
1024 tokens. We also added the token “ . ” for each setting to mark the end of a sentence. This was
done for indexing purposes, eg. when aligning the latent embeddings.

Wikisection (Arnold et al., 2019) includes Wikipedia articles on cities split by sections. We adapt
this dataset such that each article contains four ordered sections (abstract, history, geography, demo-
graphics) marked with section id tokens: Each article is represented as, “[ABSTRACT] text [HIS-
TORY] text [GEOGRAPHY] text [DEMOGRAPHICS] text”. These section id tokens are added to
the tokenizer.

The training dataset contains 1420 articles. The section lengths have the following breakdown mea-
sured in the number of BPE tokens (GPT2 tokenizer):

• Abstract: 75.8± 1.4

• History: 191.5± 3.7

• Geography: 83.9± 1.5

• Demographics: 342.6± 4.6

The test dataset contains 431 articles. The section lengths have a similar breakdown:

• Abstract: 73.5± 2.6

• History: 180.2± 6.2

• Geography: 85.2± 2.7

• Demographics: 332.5± 8.6

The ordering metric used in Table 5 is 1 if all four section ids occur exactly once and come in the
order as they are listed above.

The length mismatch in % used in Table 3 is calculated with respect to the training set lengths.

Wikihow (Koupaee & Wang, 2018) contains how-to articles organized by a title, method, and
steps. Each article includes multiple methods for completing a multi-step procedural task such as
“How to Register to Vote”. We scraped all the available English articles covering a wide range of
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topics following Koupaee & Wang (2018). We mark each with its own section id tokens: Each
article is represented as “[TITLE] text [METHOD] text [STEP] 1 text [STEP] 2 text ...”

The training dataset contains 1566 articles. The section lengths are,

• Title: 10.4± 2.2

• Method: 8.7± 2.2

• Steps (total step length): 480.2± 231.5

The test dataset contains 243 articles. The section lengths are,

• Title: 10.7± 2.2

• Method: 8.6± 2.1

• Steps (total step length): 480.1± 224.0

The ordering metric used in Table 5 is 1 if all the section ids appear in order, the TITLE and
METHOD section ids are not repeated, and the step numbers come in order. It’s 0 otherwise.

The deviation in section length measured in Table 4 is calculated with respect to the training set
lengths. We check for whether the models are able to maintain the section lengths when it has to
extrapolate. The most common failure mode is that the model generates incoherent text and allocates
this text to the last section of what it’s generated thus far, resulting in the deviation in section lengths.

Recipe NLG (Bień et al., 2020) contains recipes, each with a title, ingredients and set of instruc-
tions. A recipe is constructed as “[TITLE] text [INGREDIENTS] text [DIRECTIONS] text”.

The training dataset contains 4000 recipes. The section lengths are,

• Title: 9.7± 3.4

• Ingredients: 23.8± 4.5

• Directions (total step length): 62.0± 14.5

The test dataset contains 1000 recipes. The section lengths are,

• Title: 9.4± 3.0

• Ingredients: 24.1± 4.5

• Directions (total step length): 63.3± 13.7

The ordering metric used in Table 5 is 1 if all the section ids appear exactly once and in order. It’s 0
otherwise.

Taskmaster-2 (TM-2) (Byrne et al., 2019) which contains conversations on finding restaurants
between an assistant and a user. The assistant’s turn is marked with an “[ASSISTANT]” tag, and the
user’s turn is marked with a “[USER]” tag.

The training dataset contains 2000 conversations. The section lengths are,

• User: 11.8± 5.6

• Assistant: 18.0± 3.7

The test dataset contains 1276 conversations. The section lengths are,

• User: 11.7± 5.6

• Assistant: 19.5± 3.0

The ordering metric used in Table 5 does not apply here because the user and assistant don’t take
turns in the dialog.
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Method Wikisection Wikihow TM-2 TicketTalk Recipe

GPT2 5.9 15.3 4.5 4.4 7.5
sec-dense 5.9 − − − −
sec-sparse 5.9 − − − −
VAE (8) 5.5 15.3 4.5 4.1 7.3
VAE (16) 5.5 15.3 4.5 4.1 7.3
VAE (32) 5.5 15.3 4.5 4.1 7.3

ID (8) 5.5 14.9 4.5 4.0 7.3
ID (16) 5.4 14.9 4.3 3.9 7.0
ID (32) 5.3 14.9 4.2 3.9 6.7

BM (8) 5.5 15.2 4.5 4.1 7.3
BM (16) 5.5 15.3 4.5 4.1 7.3
BM (32) 5.5 15.2 4.5 4.1 7.3

TC (8) 5.5 15.2 4.3 4.0 6.9
TC (16) 5.5 15.3 4.3 4.0 6.9
TC (32) 5.5 15.2 4.3 4.0 7.0

Table 9: Perplexity after fine-tuning.

The deviation in section length measured in Table 4 is calculated with respect to the training set
lengths. We check for whether the models are able to maintain the utterance lengths between the
user and assistant when it has to extrapolate. The most common failure mode is that the model
generates incoherent text and allocates this text to the last section of what it’s generated thus far,
resulting in the deviation in section lengths.

TicketTalk (Byrne et al., 2021) which contains conversations on booking movie tickets between
an assistant and a user. The assistant’s and user’s turned are similarly marked as in TM-2.

The training dataset contains 2000 conversations. The section lengths are,

• User: 11.8± 5.6

• Assistant: 18.0± 3.7

The test dataset contains 1276 conversations. The section lengths are,

• User: 11.7± 5.6

• Assistant: 19.5± 3.0

The deviation in section length measured in Table 4 is calculated similarly to TM-2.

The ordering metric used in Table 5 applies because the user and assistant take turns in the dialog.
The ordering metric is 1 if the user and assistant take turns in the conversation. It’s 0 otherwise.

ROC Stories (Mostafazadeh et al., 2016) is a short stories dataset. Each story contains 5 sen-
tences. No additional tokens are added in this dataset. The training dataset contains 2000 stories,
and the test dataset contains 1000 stories.

F PERPLEXITY AFTER FINE-TUNING

Table 9 reports the final perplexity scores after fine-tuning GPT2 on the different domains with the
methods. We fine-tune for 10 epochs and checkpoint the models every 1000 steps; we keep the
model checkpoint that scores the lowest PPL on a held-out validation set.
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G GENERATION EXAMPLES

We provide example outputs from the different models on text infilling. We denote the prefix sen-
tences as “LEFT CONTEXT”, the suffix sentences as “RIGHT SENTENCES”, the generated output
from the models as “GENERATED” and the ground truth infill sentence as “GT”.

G.1 TEXT INFILLING

LM See Table 10.
Table 10: Example of text infilling with Donahue et al. (2020)’s LM model on ROCStories.

LEFT CONTEXT: John couldn’t wash his clothes because his washing machine was broken.
GENERATED: He had an idea.
GT: John didn’t know how to fix washing machines.
RIGHT CONTEXT: He bought a book to tell him how to repair it. He changed the fan belt. When he
plugged it back in, it worked.

LEFT CONTEXT: I found a stray cat yesterday. I gave it some milk. It came back again today. I was
going to give it some milk but didn’t.
GENERATED: I guess I need to get something.
GT: I had run out of milk.
RIGHT CONTEXT:

LEFT CONTEXT: Toni took a trip to the local fair with her family. She immediately laid eyes on a
pretty balloon. The balloon was red and star shaped. Unfortunately it slipped out of her hands.
GENERATED: Her swollen fingers had horrible rashes.
GT: She was sad to see it go.
RIGHT CONTEXT:

LEFT CONTEXT: Miles was a roofer. He loved his job and was very good at it.
GENERATED: He dreamed of finding a good title.
GT: However, one day he was not paying attention and fell off the roof.
RIGHT CONTEXT: Luckily, he only broke his leg. Miles decided that he needed to be more careful.

LEFT CONTEXT: Lindsey was feeling especially antsy at school.
GENERATED: The school wasn’t paying much attention to her.
GT: She did not want to go to Lacrosse practice after school.
RIGHT CONTEXT: She tried to fake a sickness, but nobody believed her. Lindsey ended up skipping
practice without an excuse. She hoped she wouldn’t get in trouble.

LEFT CONTEXT: Last night Jack went on a blind date. When he arrived at the restaurant a he heard
someone yell his name. He spotted a blonde waving from across the room.
GENERATED: She was a waiter.
GT: She was nothing like the photo she sent.
RIGHT CONTEXT: But he figured he would try to make the most of it.

LEFT CONTEXT: Rico was working really hard on his essay for English. After working on it all night,
he decided to take a short nap. He slept in and was late for for school. When he got to school he noticed
that his essay was gone.
GENERATED: teacher found the essay in his bag and he passed it.
GT: Rico’s teacher let him turn in the essay the next day.
RIGHT CONTEXT:

ILM See Table 11.

20



Published as a conference paper at ICLR 2022

Table 11: Example of text infilling with Donahue et al. (2020)’s ILM model on ROCStories.

LEFT CONTEXT:
GENERATED: My 98 year old friend and I played blackjack yesterday.
GT: Last week’s family game night was intense.
RIGHT CONTEXT: We were playing Monopoly and nobody made any headway for hours. Everyone
was trying their hardest to win and the game kept going. It wasn’t until we finally decided to check the
rules that we knew why. There were many different pieces missing.

LEFT CONTEXT: Tom was jealous of his brother. His brother was older and stronger. His brother
went wherever he wanted.
GENERATED: Tom decided to use steroids.
GT: One day his brother was grounded for staying out too late.
RIGHT CONTEXT: This made Tom really happy.

LEFT CONTEXT: His first time at the opera. He only went after his girlfriend begged. He sat for three
hours in sheer boredom. Finally it was over.
GENERATED: He turned on the tv and heard her thanking him.
GT: He learned he didn’t like the opera.
RIGHT CONTEXT:

LEFT CONTEXT: My best friend played a video game online. One day, she met a nice boy there. They
talked every day and fell in love. They finally met in person and hit it off.
GENERATED: Now, they are best friends.
GT: The two became a very loving couple.
RIGHT CONTEXT:

LEFT CONTEXT: The family decided to go to the park for Veteran’s Day.
GENERATED: They asked permission from the park manager.
GT: We had a barbecue outside.
RIGHT CONTEXT: In addition, everyone decided to take a swim in the water. Before we left, we had
a huge cake. We then swam for an hour at the lake.

LEFT CONTEXT: Jennifer always wanted to have the birthday of her dreams. Her parents surprised
her with a big birthday party at the park. All of her friends and family came to celebrate her special day.
She was so happy as she blew out the candles on her cake.
GENERATED: Her parents had made a big surprise to her by turning the cake into a carnival.
GT: It was the best day of birthday she could have imagined.
RIGHT CONTEXT:

LEFT CONTEXT: Terry’s daughter was in extreme pain in her mouth.
GENERATED: Terry and her husband decided to stop the baby from teething.
GT: After an evaluation, Terry realized that her daughter was teething.
RIGHT CONTEXT: Once Terry realized she was teething, Terry administered medication. After the
medication, Terry placed teething gel on the baby’s teeth. Terry got the baby to calm down.

Time Control See Table 12.
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Table 12: Example of text infilling with Time Control (d=8) on ROCStories.

LEFT CONTEXT:My day on Sunday this week went as expected. My family and I attended Church
from 8 to 11 in the morning.
GENERATED: We went to a local church in the afternoon .
GT: Afterwards, we went to eat dinner at a restaurant.
RIGHT CONTEXT: The rest of my day was spent doing homework assignments. I then went to sleep
feeling happy about my life.

LEFT CONTEXT: His first time at the opera. He only went after his girlfriend begged. He sat for three
hours in sheer boredom. Finally it was over.
GENERATED: He was so happy he didn’t want to leave.
GT: He learned he didn’t like the opera.
RIGHT CONTEXT:

LEFT CONTEXT: My best friend played a video game online. One day, she met a nice boy there. They
talked every day and fell in love. They finally met in person and hit it off.
GENERATED: Until that day, they were married.
GT: The two became a very loving couple.
RIGHT CONTEXT:

LEFT CONTEXT: The other day at the clinic I had to help put a dog down. He seemed really sad and
lonely. Like he knew what was going to happen.
GENERATED: He was going to die soon .
GT: As we laid it down and it took its final breaths it stared at me.
RIGHT CONTEXT: I stayed calm, but cried after we were finished.

LEFT CONTEXT: Tom was jealous of his brother. His brother was older and stronger. His brother
went wherever he wanted.
GENERATED: Tom was jealous of his brother.
GT: One day his brother was grounded for staying out too late.
RIGHT CONTEXT:

LEFT CONTEXT: Jays habit of buying expensive beer was catching up to him. He was spending more
money on beer than food. He needed to find another source of income to support this habit. A friend
recommended he try out Amazon MTurk.
GENERATED: He found the site and bought a few beers.
GT: Jay become slightly less poor from Amazon Mturk.
RIGHT CONTEXT:

LEFT CONTEXT: John couldn’t wash his clothes because his washing machine was broken.
GENERATED: John went to the store to buy a new one .
GT: John didn’t know how to fix washing machines.
RIGHT CONTEXT: He bought a book to tell him how to repair it. He changed the fan belt. When he
plugged it back in, it worked.
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Table 13: Example of text infilling with Time Control (d=16) on ROCStories.

LEFT CONTEXT: Tom was jealous of his brother. His brother was older and stronger. His
brother went wherever he wanted.
GENERATED: Tom’s brother was very jealous of his brother.
GT: One day his brother was grounded for staying out too late.
RIGHT CONTEXT: This made Tom really happy.

LEFT CONTEXT: Jackie was 11 and had to get braces. She was worried about what her
friends would think. She tried to hide them when she first got them.
GENERATED: But she was too embarrassed to tell them .
GT: Eventually her friends saw them and she was embarrassed.
RIGHT CONTEXT: Her friends noticed she was embarrassed and decided to comfort her.

LEFT CONTEXT: Sally was going to surprise the office with a cake. Sally felt that a cake
would be a good way to make them smile. She went to the supermarket to pick up the cake.
GENERATED: She bought the cake and was very happy with it.
GT: At the office she gathered the employees around the conference table.
RIGHT CONTEXT: She then brought out a cake and they all felt better.

LEFT CONTEXT: Lars was playing XBOX. His controller stopped working during a game.
Lars didn’t have a car so he had to walk all the way to the store. The store was being remod-
eled when he got there so he went to another.
GENERATED: Video games were all over the floor.
GT: Lars wasn’t able to find a controller.
RIGHT CONTEXT:

LEFT CONTEXT: Emma had been working as a dishwasher. Her hands cracked and bled
from the hot soapy water. Then her mom noticed and concocted a special salve for her. Emma
used the salve every night before bed.
GENERATED: Soon she was able to keep her hands clean and happy.
GT: Her hands got better.
RIGHT CONTEXT:

LEFT CONTEXT: Jerome dribbled the ball quickly. Sam tried to grab it from him, but wasn’t
fast enough. He chased Jerome down the court.
GENERATED: He scored a point with a long shot .
GT: Jerome pushed Sam backwards and threw the ball.
RIGHT CONTEXT: Jerome scored points for his team.

LEFT CONTEXT: Class started in 10 minutes and I had a math assignment due. My older
friend volunteered to do it for me. Unfortunately, my teacher found out about the copying.
GENERATED: She was very upset with me for doing the assignment.
GT: She crumbled my paper and threw it in the trash.
RIGHT CONTEXT: My teacher gave me an F for the assignment.
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Table 14: Example of text infilling with Time Control (d=32) on ROCStories.

LEFT CONTEXT: I went to the park to play frisbee with my dog.
GENERATED: We played all day .
GT: I tossed the frisbee to my dog and he would catch it in his mouth.
RIGHT CONTEXT: I accidentally threw the frisbee too far. The frisbee landed into the pond.
But my dog went and got it.

LEFT CONTEXT: I was tired of working at Walmart. The hours were bad. The store music
was awful.
GENERATED: I was very bored .
GT: I handed my two weeks in to the manager.
RIGHT CONTEXT: I then found another job and was happy.

LEFT CONTEXT: Sam bought a new SUV. It was all wheel drive. He figured he would take
it off road. He hit a few hard bumps and broke his suspension.
GENERATED: Unfortunately he had to pay a lot of money for it.
GT: Sheepishly, he brought it to the dealership for repair.
RIGHT CONTEXT:

LEFT CONTEXT: Missy got drunk and went to get a tattoo. She decided to get a tattoo on
her forehead. The next day, Missy was horrified at what she had done.
GENERATED: Her tattoo was on her forehead!
GT: Missy scraped up her money to pay for a tattoo removal procedure.
RIGHT CONTEXT: After much wasted money, the tattoo was gone.

LEFT CONTEXT: Jake was going on a road trip to see his family. He Got in the car and
drove.
GENERATED: Jake’s family was driving down the road .
GT: The car’s tires exploded due to too much air.
RIGHT CONTEXT: Jake hitchhiked for 30 miles. When Jake got to his family he was happy
his trip was over.

LEFT CONTEXT: Bob decided to start a business.
GENERATED: However, he did not know the market at all .
GT: He opened up a grocery store and was doing very well.
RIGHT CONTEXT: After a year, his profits dropped and he had to declare bankruptcy. Bob
was sad to see his business fail. Bob worked hard and reopened his business.

LEFT CONTEXT: I hadn’t seen my girlfriend in a while. She got a new job so it’s hard to
talk. The job takes up all of her time.
GENERATED: I had to ask her to go out with me .
GT: Finally she called me to hang out.
RIGHT CONTEXT: I was really happy to see her and we made plans.

Variational Auto-Encoder See Table 15.
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Table 15: Example of text infilling with Variational Auto-Encoder on ROCStories.

LEFT CONTEXT: I went to the park to play frisbee with my dog.
GENERATED: served served served [...]
GT: I tossed the frisbee to my dog and he would catch it in his mouth.
RIGHT CONTEXT: I accidentally threw the frisbee too far. The frisbee landed into the pond. But my
dog went and got it.

LEFT CONTEXT: Tim had a dentist appointment today. He was going to get his wisdom teeth pulled.
GENERATED: . .
GT: His dentist numbed his gums.
RIGHT CONTEXT: His wisdom teeth popped out instantly. It was less hassle than he thought it would
be.

LEFT CONTEXT: Tom was studying for the big test. He then fell asleep do to boredom.
GENERATED: The The The The The The The The The [...]
GT: He slept for five hours.
RIGHT CONTEXT: He woke up shocked. Tom hurried to study as much as possible before the test.

Implicit Dynamics See Table 16.

Table 16: Example of text infilling with Implicit Dynamics on ROCStories.

LEFT CONTEXT: Tom was jealous of his brother. His brother was older and stronger. His brother
went wherever he wanted.
GENERATED: he wasn’t like him. he wasn’t like him............................................................. isn’t...
doesn’t... doesn’t.. don’t. don’t. don’t. don’t. don’t. don’t. don’t. don’t. don’t. don’t. don’t. don’t.
don’t. don’t. don’t. don’t. don’t. don’t. don don’t. don don’t don’t. don don’t don’t don’t don’t don’t
don’t don’t don’t don don don don [...]
GT: One day his brother was grounded for staying out too late.
RIGHT CONTEXT: This made Tom really happy.

LEFT CONTEXT: The family decided to go to the park for Veteran’s Day.
GENERATED: I didn’t I knew why why why why [...]
GT: We had a barbecue outside.
RIGHT CONTEXT: In addition, everyone decided to take a swim in the water. Before we left, we had
a huge cake. We then swam for an hour at the lake.

G.2 FORCED LONG TEXT GENERATION

We include examples of GPT2 long text generation in Figures 3 and 4.

H HUMAN EXPERIMENTAL SETUP

We use Mechanical Turk to collect human evaluation for long text generation and text infilling
models. Examples from all the systems are selected randomly and each example is evaluated by 10
annotators.

H.1 LONG TEXT GENERATION EVALUATION

The annotators are provided with a dialogue between a movie assistant and a user generated by GPT
and Time Control, where the goal of the assistant is to help the user to book a movie ticket. We show
the last few generated interactions between the assistant and the user to the annotators, and ask them
to assess whether the provided snippet could be a reasonable ending for such a conversation. We use
a 5-point Likert scale where 1 corresponds to a “Very Unreasonable Ending” and 5 corresponds to a
“Very Reasonable Ending”.
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Figure 3: Example 1 of GPT2 forced long text generation.

H.2 TEXT INFILLING EVALUATION

Given the preceding and following context, we ask annotators to evaluate whether the generated
fill-in sentence is a reasonable completion. We evaluate generated fill-in sentence by ILM, LM and
Time Control on a scale of 1-5.

I EXAMPLE TRAJECTORIES OF THE LEARNED LATENT SPACE

See Figures 7-10 for example latent trajectories over coherent vs. incoherent (randomly scrambled)
held-out Wikisection documents. These trajectories show the recovered latent structure by Time
Control and the three ablations from our work. Figure 7 are latent trajectories from Time Con-
trol. Figure 8 are latent trajectories from Implicit Dynamics. Figure 9 are latent trajectories from
Brownian motion. Figure 10 are latent trajectories from Variational Auto-Encoder.

J WHY DOES VARIATIONAL AUTO-ENCODER PERFORM WELL ON THE
RECIPE DOMAIN?

In Table 5, VAE does much better than TC. Here we investigate potential reasons why.
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Figure 4: Example 2 of GPT2 forced long text generation.

We looked into comparing the latent structure recovered by the VAE baseline and TC; see Figure 11.
What we found is the Time Control is best at extracting time over the course of the document (ie.
its latents recover a Bridge process correlated with time), whereas the VAE doesn’t elicit strong
temporal structure. We hypothesize that temporal structure is not all you need to succeed in the
Recipe domain.

K ADDITIONAL EXPERIMENTS

On discourse coherence, we ran ALBERT on k = 1 since ALBERT is trained on this setting. We
found that it got slightly above random chance, unlike the most of the baselines we compare against.
The discourse accuracy is 50.1 ± 9.0 on Wikisection, 55.8 ± 4.0 on TicketTalk and 60.8 ± 2.8 on
TM-2.
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Figure 5: Example 1 of Time Control forced long text generation.

L PREVIOUS EXPLORATORY THREADS

L.1 SUCCESS AND FAILURE MODES IN FINE-TUNING GPT2

We found that fine-tuned GPT2 was able to replicate certain aspects of a document corpus, such
as section header ordering ( 92% accurate). However, when going from document-level to section-
level statistics, we noticed that GPT-2 seemed to be either undershooting or overshooting the section
lengths. These results are reported in Table 3.
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Figure 6: Example 2 of Time Control forced long text generation.

L.2 INVESTIGATING THE IMPORTANCE OF DISTANCES BETWEEN SAMPLED SENTENCES

In earlier iterations of the work, we did explore learning with pairwise contrasts with fixed t-
distances, e.g. distances of length 1, 5, and 10 sentences. We observed that the resulting latent
trajectories elicited different fits to Brownian bridge dynamics, and the quality in fit varied in t
across domains; we’ve include some examples in Figure 12 on Wikisection.
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(a) Coherent, Time Control d=8.
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(b) Incoherent, Time Control d=8.

0 20 40 60 80 100 120 140 160

0.2

0.4

0.6

0.8

coherent abs(z)

(c) Coherent, Time Control d=16.
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(d) Incoherent, Time Control d=16.
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(e) Coherent, Time Control d=32.
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(f) Incoherent, Time Control d=32.

Figure 7: Time Control’s latent trajectories over coherent vs. incoherent (randomly scrambled)
held-out Wikisection documents. The encoder learns Brownian bridge-like latent trajectories over
the coherent documents. The incoherent documents map to noisy trajectories that don’t evolve over
time.
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(a) Coherent, Implicit Dynamics d=8.
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(b) Incoherent, Implicit Dynamics d=8.
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(c) Coherent, Implicit Dynamics d=16.
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(d) Incoherent, Implicit Dynamics d=16.
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(e) Coherent, Implicit Dynamics d=32.
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(f) Incoherent, Implicit Dynamics d=32.

Figure 8: Implicit Dynamics’s latent trajectories over coherent vs. incoherent (randomly scrambled)
held-out Wikisection documents.
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(a) Coherent, Brownian motion d=8.
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(b) Incoherent, Brownian motion d=8.
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(c) Coherent, Brownian motion d=16.
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(d) Incoherent, Brownian motion d=16.
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(e) Coherent, Brownian motion d=32.
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(f) Incoherent, Brownian motion d=32.

Figure 9: Brownian motion’s latent trajectories over coherent vs. incoherent (randomly scrambled)
held-out Wikisection documents.
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(a) Coherent, Variational Auto-Encoder d=8.
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(b) Incoherent, Variational Auto-Encoder d=8.
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(c) Coherent, Variational Auto-Encoder d=16.
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(d) Incoherent, Variational Auto-Encoder d=16.
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(e) Coherent, Variational Auto-Encoder d=32.
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(f) Incoherent, Variational Auto-Encoder d=32.

Figure 10: Variational Auto-Encoder’s latent trajectories over coherent vs. incoherent (randomly
scrambled) held-out Wikisection documents.
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(a) Latent trajectories across dimensions for TC
(d=8).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.2

0.4

0.6

0.8

1.0

coherent abs(z)

(b) µ ± σ in latent trajectories across dimensions
for TC (d=8).
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(c) Latent trajectories across dimensions for VAE
(d=8).
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(d) µ ± σ in latent trajectories across dimensions
for VAE (d=8).

Figure 11: Comparing the latent structure recovered by the VAEbaseline and TC on held-out Recipe
documents. Noticeably, TC learns temporally relevant activations whereas VAE latent does not
correlate with time.
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(a) k=1 (b) k=5

(c) k=10

Figure 12: Recovered latent trajectories on held-out Wikisection documents where we used pair-
wise contrasts with varying time distances; this was on TC, d = 8. Notice how the recovered latent
structure varies depending on k, the distance between sampled sentences.
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BERTScore ROUGE BLEURT
Method Latent dim d Precision Recall F1 1-F1 2-F1 L-F1

LM - 0.45 0.50 0.47 22.6 1.8 14.0 0.31
ILM - 0.50 0.51 0.50 21.6 1.8 20.7 0.33

VAE 8 0.21 0.26 0.21 1.1 0.9 1.1 0.27
VAE 16 0.17 0.25 0.18 1.4 0.1 1.5 0.26
VAE 32 0.10 0.10 0.12 0.2 0.6 0.2 0.26

InfoNCE 8 0.22 0.29 0.23 7.7 1.3 7.4 0.18
InfoNCE 16 0.18 0.28 0.20 1.9 0.0 1.9 0.18
InfoNCE 32 0.20 0.28 0.21 3.0 1.0 5.8 0.18

TC (Ours) 8 0.51 0.51 0.51 17.5 1.6 16.1 0.30
TC (Ours) 16 0.47 0.49 0.49 15.9 1.5 14.3 0.34
TC (Ours) 32 0.50 0.50 0.50 18.4 1.4 17.1 0.32

Table 17: BERTScore (Zhang et al., 2019), ROUGE, and BLEURT (Sellam et al., 2020) on ground
truth infilled sentence and the generated sentence.
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