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Abstract001

Evaluating machine translation (MT) quality002
for under-resourced African languages remains003
a significant challenge, as existing metrics often004
suffer from limited language coverage and poor005
performance in low-resource settings. While006
recent efforts, such as AfriCOMET, have ad-007
dressed some of the issues, they are still con-008
strained by small evaluation sets, a lack of pub-009
licly available training data tailored to African010
languages, and inconsistent performance in ex-011
tremely low-resource scenarios. In this work,012
we introduce SSA-MTE, a large-scale human-013
annotated MT evaluation (MTE) dataset cover-014
ing 13 African language pairs from the News015
domain, with over 63,000 sentence-level anno-016
tations from a diverse set of MT systems. Based017
on this data, we develop SSA-COMET and018
SSA-COMET-QE, improved reference-based019
and reference-free evaluation metrics. We also020
benchmark prompting-based approaches using021
state-of-the-art LLMs like GPT-4o, Claude-3.7022
and Gemini 2.5 Pro . Our experimental results023
show that SSA-COMET models significantly024
outperform AfriCOMET and are competitive025
with the strongest LLM (Gemini 2.5 Pro) eval-026
uated in our study, particularly on low-resource027
languages such as Twi, Luo, and Yorùbá. All028
resources are released under open licenses to029
support future research.030

1 Introduction031

Recent advancements in machine translation evalu-032

ation (MTE) have largely benefited high-resource033

languages. Neural metrics such as COMET and034

MetricX (Rei et al., 2020; Juraska et al., 2023)035

have demonstrated strong performance by captur-036

ing deeper semantic relationships in translations.037

However, their effectiveness diminishes for under-038

represented languages, such as many African lan-039

guages, due to the scarcity of high-quality training040

and evaluation data, as well as the limitations in the041

multilingual large language models used as their042

Figure 1: Language distribution across the 13 Sub-
Saharan African languages in SSA-MTE.

pretrained backbones (Freitag et al., 2024; Sai B 043

et al., 2023; Wang et al., 2024b). 044

To narrow this gap, Wang et al. (2024a) intro- 045

duced AfriMTE, a high-quality evaluation dataset 046

covering 13 typologically diverse African lan- 047

guages, annotated using a simplified version of the 048

MQM framework (Lommel et al., 2014), specifi- 049

cally designed for non-expert annotators. Building 050

on AfriMTE, they developed AfriCOMET, an en- 051

hanced version of COMET (Rei et al., 2020), by in- 052

corporating an African-centric encoder, AfroXLM- 053

R (Alabi et al., 2022). More recently, Wang 054

et al. (2024b) enhanced these models by adopt- 055

ing AfroXLMR-76, which covered more African 056

languages (Adelani et al., 2024). 057

However, despite the advances of Wang et al. 058

(2024a,b), several limitations remain. First, the 059

lack of training data in AfriMTE restricts opportu- 060

nities for the broader research community to im- 061

prove upon existing models. Second, the evalua- 062

tion setup of AfriMTE includes only a single MT 063

system per language pair, limiting the diversity of 064

translation outputs and making it challenging to 065

assess the metric’s generalizability across systems 066
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of varying quality and style. Third, the evaluation067

datasets in AfriMTE are relatively small—typically068

around 100–200 annotated examples per language069

pair—which may not adequately capture the full070

range of linguistic variation. Finally, AfriCOMET071

models exhibit unreliable performance for certain072

extreme low-resource African languages, such as073

Twi and Luo, producing inconsistent or low-quality074

estimates (Adelani et al., 2025).075

In this work, we address these challenges076

through three key contributions: (1) We expand the077

landscape of high-quality MT training and evalua-078

tion data by introducing SSA-MTE, a new human-079

annotated dataset covering 13 Sub-Saharan African080

language pairs, 7 of these pairs are newly intro-081

duced compared to AfriMTE. Our annotations are082

sourced from the News domain—selected for its083

topical diversity, timeliness, and widespread use in084

the MT community. The machine translated out-085

puts in SSA-MTE are generated using a diverse086

set of MT systems such as Google Translate and087

NLLB (NLLB-Team et al., 2022), and frontier large088

language models (LLMs) such as GPT-4o and Gem-089

ini. (2) We enhance the AfriCOMET models by090

extending them on our newly collected data, re-091

sulting in SSA-COMET and SSA-COMET-QE,092

improved MTE and reference-free quality estima-093

tion (QE) metrics specifically tailored to African094

languages. (3) We fully explore the capabilities095

of cutting-edge LLMs, including Gemini 2.5 Pro,096

GPT-4o, and Claude 3.7, for MTE and QE in a097

few-shot setting on the testing data of SSA-MTE.098

Our experimental results demonstrate substan-099

tial overall performance improvements of the SSA-100

COMET models over AFRICOMET-v1.1 (Wang101

et al., 2024b), with particularly strong gains on102

low-resource languages such as Twi, Luo, and103

Yorùbá. In MT evaluation, SSA-COMET demon-104

strates competitive performance with Gemini 2.5105

Pro and outperforms other prompting-based LLM106

metrics, achieving higher average Spearman corre-107

lation than GPT-4o and Claude-3.7, despite being108

an order of magnitude smaller in model size. To109

support future research in African NLP and foster110

reproducibility, we release our dataset, models, and111

training pipeline under open licenses.112

2 Related Works113

Traditional MTE metrics like BLEU (Papineni114

et al., 2002), METEOR (Banerjee and Lavie, 2005),115

and ChrF (Popović, 2015) rely on n-gram overlap116

and correlate poorly with human judgments. Neu- 117

ral metrics such as BERTScore (Zhang et al., 2020) 118

better capture semantic similarity. COMET (Rei 119

et al., 2020) improves on this by framing MTE as 120

a regression task using XLM-R (Conneau et al., 121

2019) and training data of quality scores. Its exten- 122

sion, COMETKiwi (Rei et al., 2022), removes the 123

need for reference translations, increasing flexibil- 124

ity. More recently, MetricX (Juraska et al., 2023), 125

which is built on mT5 (Xue et al., 2020), adopts 126

a regression-based framework similar to COMET. 127

In parallel, with the rise of LLMs, there is grow- 128

ing interest in prompting LLMs directly to assess 129

translation quality (Kocmi and Federmann, 2023; 130

Freitag et al., 2024). 131

Recent studies (Wang et al., 2024a,b; Fre- 132

itag et al., 2024) show that both neural metrics 133

and prompting-based methods perform poorly on 134

under-represented African languages, when com- 135

pared to high-resource settings. To address this, 136

AfriCOMET (Wang et al., 2024a) uses an Africa- 137

centric encoder, AfroXLMR (Alabi et al., 2022), 138

and Non-African MTE training data to build a 139

COMET-style metric, showing robust performance 140

on African MTE tasks. However, recent analy- 141

sis (Adelani et al., 2025) finds that AfriCOMET 142

still shows inconsistencies with human judgments 143

in extreme low-resource languages like Twi. 144

In this paper, we expand the landscape of high- 145

quality MT training and evaluation data for African 146

languages by introducing a newly annotated MTE 147

dataset, and evaluate performance on newly trained 148

COMET-based models and LLMs. 149

3 SSA-MTE: The Dataset 150

This section describes the source data and MT sys- 151

tems used to construct SSA-MTE, presents the 152

annotation guidelines and procedure, outlines the 153

quality assurance measures, and provides a quanti- 154

tative analysis of the resulting dataset. 155

3.1 Source Data Collection 156

The News Domain Given the rich structure 157

and high quality of content in the News domain, 158

this work focuses on the News domain, unlike 159

AfriMTE (Wang et al., 2024a), which centers on 160

Wikipedia data. We sourced the input sentences 161

from the news platform Global Voices1, which pub- 162

lishes articles in parallel across multiple languages. 163

Each article is tagged with topical categories such 164

1https://globalvoices.org/
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as Economics & Business and Education to indi-165

cate its thematic focus. Translations on Global166

Voices are produced manually by a global network167

of volunteer contributors as part of its Lingua pro-168

gram, and all content is published under a Creative169

Commons Attribution 3.0 (CC BY 3.0) license.170

The Source Data Considering that the two dom-171

inant official languages in Africa are English172

and French, we selected all articles available173

in both languages, totaling 20, 419. From this174

pool, we filtered for articles tagged with African175

regions—such as “Guinea-Bissau” and “Gam-176

bia”—to ensure the content was relevant to Africa.177

To avoid potentially sensitive topics, we heuristi-178

cally excluded articles tagged with categories such179

as “war-conflict”, resulting in a subset of 3, 681 ar-180

ticles. Finally, we used Gemini to automatically de-181

tect and remove any remaining content that might182

be harmful, yielding a final collection of 1, 901 ar-183

ticles. From this refined set, we manually selected184

200 articles by reviewing their titles and tags to185

ensure diverse topical coverage. At the document186

level, articles were segmented into sentences using187

the NLTK sentence tokenizer2. We then applied188

fasttext language identification (Joulin et al., 2016)189

and sentence alignment using LASER (Artetxe and190

Schwenk, 2019). Sentences were retained if the191

language confidence score exceeded 99%, and sen-192

tence pairs were aligned if their similarity score193

was above 92.5%. After final deduplication, we194

obtained 1, 500 distinct parallel English–French195

sentence pairs for our source sentences.196

Choice of the Language Pairs (LP) Given the197

English–French language pair, we decided to ex-198

pand the coverage to 12 typologically diverse Sub-199

Saharan African languages—9 using English, and200

3 using French as the source language, to reflect201

both the Anglophone and Francophone linguis-202

tic diversity in the region. We excluded North203

African languages, as the most widely spoken lan-204

guages in the region are Arabic dialects, which205

tend to yield reliable evaluation results with exist-206

ing metrics such as COMET (Wang et al., 2024a).207

The English–sourced pairs include Amharic208

(eng-amh), Hausa (eng-hau), Igbo (eng-ibo),209

Kikuyu (eng-kik), Kinyarwanda (eng-kin), Luo210

(eng-luo), Twi (egn-twi), Yorùbá (eng-yor),211

and Zulu (eng-zul); while the French–sourced212

pairs include Ewe (fra-ewe), Lingala (fra-lin),213

2https://www.nltk.org/api/nltk.tokenize.html

and Wolof (fra-wol). Additionally, we include 214

one extreme low-resource Mozambique language, 215

Emakhuwa (vmw), sourced from Portuguese (por) 216

as detailed in Appendix C. 217

3.2 MT Systems 218

To ensure a diverse representation of translation 219

quality and styles, we used six MT systems to gen- 220

erate translation outputs: four closed-source mod- 221

els including GPT-4o, Gemini-1.5, Claude-3.5 3, 222

and Google Translate, and two open-source models 223

including NLLB-200-distilled-600M (NLLB-Team 224

et al., 2022) and M2M-100-418M (Fan et al., 2021). 225

Since M2M-100 does not support certain languages 226

such as Ewe and Kikuyu, we fine-tuned a separate 227

model for each of these languages using 500, 000 228

randomly selected samples from the NLLB dataset4 229

to ensure consistent translation quality. During this 230

procedure, Kikuyu was not supported by Google 231

Translate; therefore, translations for this language 232

were generated using only five systems. Similarly, 233

for Ewe and Wolof, we excluded GPT-4o outputs, 234

as the model declined to produce translations in 235

more than half of the cases. The MT outputs for 236

por-vmw are detailed in Appendix D. 237

3.3 Annotation Guidelines, Tool, and Protocol 238

Building on the success of the simplified MQM 239

annotation guidelines proposed by Wang et al. 240

(2024a), we adopt the same framework for both 241

error-span and scoring annotations in this work. 242

Specifically, we evaluate the adequacy of each ma- 243

chine translation output. Evaluators review both 244

the source and translated texts, highlighting error 245

spans, categorized as “Addition”, “Omission”, 246

“Mistranslation”, and “Untranslated”. They 247

then assign an overall translation quality score us- 248

ing a continuous direct assessment (DA) scale rang- 249

ing from 0 to 100, strictly following the annotation 250

protocol established in Wang et al. (2024a). 251

We used the same annotation tool introduced 252

in Wang et al. (2024a),5 which provides an inter- 253

face supporting both error span highlighting and 254

DA scoring, and allows each evaluator to work 255

independently. For each LP, we recruited two bilin- 256

gual native speakers with at least a Bachelor’s de- 257

gree to serve as evaluators. Annotation work was 258

3A template for prompting LLMs for translations is pro-
vided in Figure 5.

4https://huggingface.co/datasets/allenai/nllb
5https://github.com/marek357/

annotation-tool-frontend
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evenly divided, with 300 overlapping samples in-259

cluded to assess inter-evaluator agreement for qual-260

ity assurance. Reference translations per LP were261

produced by two professional translators, who man-262

ually translated the sources from scratch, without263

using any machine translation tools. We annotated264

6,600 samples per language pair, including 300265

overlapping samples for inter-evaluator agreement,266

and this results in 6,300 distinct samples per LP,267

evenly distributed across MT systems.6 For each268

LP, all 1,500 source sentences were translated into269

the target African language.270

3.4 Annotation Quality Assurance271

We employed several measures to assure the quality272

of the annotated data.273

Evaluator Selection To select qualified evalua-274

tors from a candidates pool, we followed the train-275

ing procedure outlined in Wang et al. (2024a). Each276

candidate was required to complete an annotation277

test designed to both familiarize them with the an-278

notation tool and evaluate their understanding of279

the annotation guidelines. The test included 22280

samples: 20 unique samples drawn from the dataset281

and 2 repeated samples to assess self-consistency.282

We assessed the submitted annotations using a283

heuristic quality check. Specifically, we flagged284

cases where the assigned score and the highlighted285

error spans were inconsistent—for example, when286

a score below 80 was assigned without any error287

spans, or when a score of 100 was given despite the288

presence of errors. Moreover, Inter-evaluator agree-289

ment was measured by checking whether score dif-290

ferences were below 20 among evaluators. For the291

repeated samples, we evaluated each candidate’s292

self-consistency, defined as producing similar er-293

ror spans and assigning scores that differed by less294

than 5. Finally, a manual review was conducted295

to ensure overall annotation quality. For each LP,296

we select the top two evaluators who satisfied four297

criteria: (1) more than 80% agreement with each298

other, (2) minimal heuristic quality issues, (3) high299

self-consistency, and (4) a satisfactory outcome in300

manual quality review.301

Agreement on the Overlaps After selecting the302

evaluators, we implemented a quality assurance303

procedure using annotations on the 300 overlap-304

ping samples. These samples were independently305

annotated by both evaluators and served to assess306

6For languages not supported by certain MT systems, an-
notations were distributed across five systems instead of six.

LP Pearson Spearman ICC(3,2)

eng-amh 0.597 0.653 0.747
eng-hau 0.406 0.476 0.573
eng-ibo 0.314 0.253 0.358
eng-kik 0.735 0.776 0.847
eng-kin 0.486 0.513 0.632
eng-luo 0.735 0.724 0.842
eng-twi 0.757 0.772 0.862
eng-yor 0.567 0.520 0.723
eng-zul 0.249 0.107 0.392
fra-ewe 0.560 0.612 0.694
fra-lin 0.399 0.339 0.570
fra-wol 0.592 0.648 0.741
por-vma 0.620 0.580 0.764

Table 1: Inter-annotator agreement metrics (Pearson,
Spearman-rank, ICC(3,2) on 300 overlapping samples.

inter-evaluator agreement. To evaluate annotation 307

quality and consistency, we computed Spearman- 308

rank and Pearson correlation coefficients, as well 309

as the Intraclass Correlation Coefficient (ICC) be- 310

tween their assigned scores. Since the evaluators 311

were fixed for each language pair (i.e., the only 312

raters of interest), we used the two-way mixed- 313

effects model ICC(3„k), with k = 2 in our setup. 314

To reduce evaluator bias, we first normalized 315

the DA scores at the evaluator level, converting 316

them to z-scores. We then computed the agreement 317

statistics described above on the 300 overlapping 318

samples. The results are presented in Table 1. LPs 319

that exhibited at least a moderate level of agree- 320

ment, defined as having both Spearman rank and 321

Pearson correlation coefficients above 0.4 and an 322

ICC value above 0.5—were included in the train- 323

ing, development, and test sets. As a result, 9 LPs 324

were selected for inclusion in all three data splits: 325

eng-amh, eng-hau, eng-kik, eng-kin, eng-luo, 326

eng-twi, eng-yor, fra-ewe, and fra-wol7. Al- 327

though the remaining LPs did not meet the criteria, 328

we retained them for training to introduce addi- 329

tional language diversity, which may help improve 330

the robustness and generalization for modeling. 331

Among the three remaining LPs (eng-ibo, 332

eng-zul, and fra-lin), fra-lin showed a Pear- 333

son correlation close to 0.4 and an ICC above 0.5, 334

indicating moderate positive correlation and agree- 335

ment, though its Spearman rank correlation was 336

slightly lower at 0.339. Given its relatively accept- 337

able agreement levels, we included fra-lin in the 338

training data without additional filtering. In con- 339

trast, for eng-ibo and eng-zul, which exhibited 340

weaker agreement across all metrics, we applied 341

further filtering to remove low-quality annotations 342

7For por-vmw, we only annotated the test data.
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Figure 2: Average DA scores across MT systems and LPs. Low-resource pairs such as eng-kik and fra-wol
remain particularly challenging for current translation systems.

LP Train Dev Test

eng-amh 4563 326 1166
eng-hau 4693 338 1192
eng-ibo 1501 – –
eng-kik 4752 318 1172
eng-kin 4768 349 1210
eng-luo 4691 341 1199
eng-twi 4820 325 1200
eng-yor 4717 333 1206
eng-zul 1905 – –
fra-ewe 4423 296 1077
fra-lin 4626 – –
fra-wol 4874 341 1175
por-vma – – 930

Total 50333 2967 11527

Table 2: Number of training, development, and test
examples in SSA-MTE for each LP.

before including them in training. The detailed343

filtering process is described in Appendix F.344

3.5 Additional Test Set in Emakhuwa345

To introduce further diversity in evaluation, we in-346

clude a previously under-studied LP—Portuguese347

to Emakhuwa (vmw), from Mozambique, in our348

test set. The data follows the same design as the349

other 12 LPs: focusing on the news domain, multi-350

ple MT systems are included, and the same annota-351

tion and quality assurance procedures are applied.352

Details of the data collection and MT generation353

processes are provided in Appendix C, D, and E.354

3.6 Final Data Statistics355

For the final version of the dataset, we applied356

several filtering steps to ensure high-quality anno-357

tations. First, we excluded all cases with a score358

below 80 that lacked annotated error spans. We359

also removed cases falling in the top 20% of DA360

scores but within the bottom 20% of ChrF scores361

relative to the reference translations. Similarly, we362

filtered out cases in the bottom 20% of DA scores363

that had the highest 20% of ChrF scores.364

To avoid potential information leakage, DEV365

and TEST sets were selected based on source doc- 366

uments: we excluded the 300 overlapping examples 367

used for inter-evaluator agreement and randomly 368

sampled 40 source documents for the TEST set 369

and 10 documents for the DEV set. For all lan- 370

guages, only translations whose source sentences 371

came from these selected documents were included 372

in the DEV and TEST sets. This document-level 373

selection helps prevent models from learning trans- 374

lation patterns from highly similar source texts. 375

The remaining data was assigned to the TRAIN 376

set. Final dataset statistics are reported in Table 2. 377

To view the translation quality of each MT sys- 378

tem for each LP, we present the average DA scores 379

across LPs and MT systems in Figure 2. High- 380

resource LPs, such as English–Zulu, generally 381

achieve higher scores, whereas low-resource pairs 382

like English–Kikuyu and French–Wolof exhibit 383

substantially lower translation quality. 384

4 SSA-COMET Models 385

In this section, we describe the modeling ap- 386

proaches of SSA-COMET and SSA-COMET-QE. 387

4.1 Modeling Methods 388

MTE Modeling We follow the modeling setup 389

the same as COMET for developing MTE systems 390

for African languages. Our models are trained to 391

predict DA adequacy scores, using the COMET 392

architecture, which is based on a regression-based 393

estimator framework. We implement both single- 394

task learning (STL) and multi-task learning (MTL). 395

Single-Task Learning (STL) In the STL setting, 396

each of the source (src), machine translation (mt), 397

and reference (ref) segments is independently en- 398

coded using a multilingual encoder. The resulting 399

sentence embeddings are pooled, concatenated, and 400

passed through a feed-forward regressor trained to 401

minimize mean squared error against the human- 402

annotated adequacy scores. 403
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Multi-Task Learning (MTL) In the MTL set-404

ting, we adopt the unified multi-view formulation405

from Wan et al., 2022, where the model is trained406

jointly on three input configurations: 〈src, mt〉,407

〈mt, ref〉, and 〈src, mt, ref〉. Each config-408

uration is passed through the model to produce a409

separate prediction, and the final score is computed410

by averaging the three outputs. This formulation411

leverages multiple input perspectives to provide412

richer supervision and improve generalization.413

QE Modeling Additionally, we develop414

SSA-COMET-QE, a variant that mirrors the415

AfriCOMET-QE architecture. This model operates416

solely on the 〈src, mt〉 pair and is optimized for417

the QE setting. It is trained independently using the418

same DA scores, enabling direct quality estimation419

without relying on reference translations.420

5 Experiment Setup421

For the TEST evaluation, to ensure comparability422

across language pairs and annotators, all human-423

annotated DA scores in the test set were first stan-424

dardized using z-score normalization.425

SSA-COMET training We combine the train-426

ing data used for AfriCOMET (the WMT Non-427

African DA data) with the training split of the428

newly annotated SSA-MTE. Score pre-processing429

is conducted in two steps: we first apply z-430

normalization at the evaluator level, followed by431

min-max scaling to improve consistency and in-432

terpretability. To establish a stable global range,433

we collect the 800 highest and 800 lowest z-scores434

across all languages and use their corresponding435

averages to define the minimum and maximum436

values. The resulting scores are then scaled and437

clipped to fall within the [0, 1] range. The DEV438

sets from both AfriMTE and our new dataset are439

used as validation data during training.440

LLM-based evaluation We sample the few-shot441

examples from the training split of the SSA-MTE442

dataset. For the por-vmw language pair, which443

does not have a training split, demonstrations were444

instead sampled from the processed and filtered445

300 overlapping annotated examples used to assess446

inter-annotator agreement.447

5.1 Model Configurations448

We follow the setup of AfriCOMETv1.1 and use449

the multilingual encoder AfroXLMR-76L, pre-450

trained on 76 languages widely spoken in Africa.451

All models are trained using the open-source452

COMET codebase. Training for the STL and QE 453

models is conducted on a single NVIDIA L40S 454

GPU, while the MTL model is trained on a sin- 455

gle NVIDIA A100-SXM4-80GB GPU. We use a 456

batch size of 16 with gradient accumulation over 2 457

steps. All other hyperparameters follow the default 458

configuration used in AfriCOMETv1.1. 459

5.2 Baselines 460

To benchmark the performance of SSA-COMET, 461

we compare it against a wide range of baselines 462

across both MTE and QE settings. These include: 463

Traditional metrics for MTE BLEU and 464

ChrF++ are lexical overlap metrics based on n- 465

gram precision and character-level F-scores, re- 466

spectively. 467

Neural regression-based metrics for MTE 468

For evaluation under the MTE setting, we in- 469

clude COMET22, MetricX-24, AfriCOMETv1.0- 470

MTL (Wang et al., 2024a) (based on AfroX- 471

LMR that supports 20 African languages), 472

AfriCOMETv1.1-STL (Wang et al., 2024b) (based 473

on AfroXLMR-76L supporting 76 languages), 474

and AfriCOMETv1.1-MTL. The latter is a self- 475

replication model, trained on the same data as 476

AfriCOMET v1.1-STL but using a multi-task learn- 477

ing formulation. 478

Neural regression-based metrics for QE For 479

the QE setting, we evaluate MetricX-24 and 480

AfriCOMET v1.1-MTL in QE mode by disabling 481

the reference input at inference time. 482

LLM baselines We evaluate four open-weight 483

LLMs such as Gemma-3 27B-it, LLaMA-4 100B, 484

LLaMA-4 400B, and DeepSeek V3. Additionally, 485

we conducted an evaluation using some frontier 486

proprietary models such as GPT-4o (08/24), and 487

Gemini-2.0 Flash, Claude-3.7-Sonnet and Gemini- 488

2.5 Pro under both MTE and QE settings as strong 489

prompting-based baselines. 490

We adopt a 5-shot prompt setup, guided by the 491

same annotation instructions provided to human 492

annotators. To ensure broad coverage of transla- 493

tion quality levels, we extract the minimum and 494

maximum adequacy scores from the training set 495

and divide the range into five equal intervals. One 496

example is sampled from each interval to construct 497

the 5-shot prompt. The same set of demonstrations 498

is used across all test cases for each language pair 499

to ensure consistency and fairness in evaluation. 500

We experiment with two prompting templates: one 501
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LP Bleu ChrF++ COMET22 AfriCOMET
v1.1 STL

AfriCOMET
v1.0 MTL

AfriCOMET
v1.1 MTL MetricX 24 Claude-3.7 Gemini-pro

2.5
SSA-COMET

STL
SSA-COMET

MTL

eng-amh 0.352 0.441 0.548 0.588 0.612 0.604 0.659 0.566 0.605 0.597 0.629
eng-hau 0.312 0.402 0.405 0.465 0.479 0.476 0.495 0.425 0.471 0.459 0.502
eng-kik 0.505 0.599 0.263 0.492 0.556 0.693 0.622 0.696 0.735 0.715 0.765
eng-kin 0.392 0.459 0.335 0.507 0.551 0.532 0.620 0.536 0.528 0.584 0.602
eng-luo 0.465 0.612 0.361 0.616 0.496 0.693 0.543 0.678 0.782 0.689 0.773
eng-twi 0.364 0.502 0.328 0.527 0.537 0.596 0.637 0.652 0.710 0.649 0.700
eng-yor 0.382 0.436 0.349 0.442 0.482 0.476 0.455 0.501 0.524 0.489 0.558
fra-ewe 0.311 0.426 0.330 0.443 0.494 0.550 0.581 0.614 0.658 0.599 0.670
fra-wol 0.476 0.572 0.304 0.493 0.478 0.518 0.560 0.699 0.750 0.664 0.732
por-vmw 0.181 0.414 0.198 0.238 0.277 0.237 0.378 0.463 0.487 0.280 0.327

Average 0.374 0.486 0.342 0.481 0.496 0.538 0.555 0.583 0.625 0.573 0.626

Table 3: Spearman correlation of MTE metrics with human judgments across LPs. The best scores are bolded.

LP AfriCOMETv1.1-MTL MetricX-24 Claude-3.7-Sonnet Gemini-2.5 Pro SSA-COMET-QE SSA-COMET-MTL

Spear. Pear. Spear. Pear. Spear. Pear. Spear. Pear. Spear. Pear. Spear. Pear.

eng-amh 0.568 0.619 0.618 0.639 0.541 0.587 0.558 0.593 0.552 0.596 0.591 0.625
eng-hau 0.388 0.405 0.436 0.416 0.357 0.382 0.401 0.412 0.390 0.393 0.428 0.442
eng-kik 0.655 0.648 0.464 0.452 0.677 0.609 0.703 0.650 0.685 0.657 0.734 0.730
eng-kin 0.473 0.619 0.592 0.738 0.530 0.694 0.534 0.714 0.511 0.735 0.561 0.788
eng-luo 0.644 0.638 0.329 0.332 0.672 0.646 0.757 0.721 0.653 0.649 0.728 0.728
eng-twi 0.561 0.678 0.563 0.686 0.640 0.747 0.697 0.771 0.614 0.698 0.659 0.753
eng-yor 0.424 0.501 0.405 0.524 0.492 0.595 0.531 0.607 0.447 0.547 0.529 0.617
fra-ewe 0.483 0.437 0.476 0.430 0.592 0.518 0.623 0.524 0.572 0.533 0.632 0.608
fra-wol 0.407 0.358 0.291 0.258 0.687 0.623 0.743 0.676 0.638 0.583 0.689 0.649
por-vmw 0.134 0.168 0.292 0.369 0.498 0.551 0.481 0.528 0.199 0.281 0.237 0.295

Average 0.474 0.507 0.447 0.484 0.569 0.595 0.603 0.620 0.526 0.567 0.579 0.623

Table 4: QE results (Spearman and Pearson correlations) for each LP. The best scores are bolded.

that includes error span detection before adequacy502

scoring, and one that directly predicts the score503

without error identification. Full templates for both504

setups are provided in Figure 6 and Figure 7.505

5.3 Main Findings506

Superior performance of SSA-COMET in MTE507

As shown in Table 3, SSA-COMET-MTL achieves508

the highest average Spearman correlation with hu-509

man judgments in the MTE setting, outperforming510

all prior AfriCOMET variants as well as strong511

prompting-based baselines such as Gemini-2.5 Pro.512

Robust QE performance A similar trend is ob-513

served in Table 4. Under QE setting, SSA-COMET-514

MTL ranks first in terms of Pearson correlation and515

second in Spearman correlation. When excluding516

the por-vmw language pair, SSA-COMET-MTL517

achieves the highest average performance across518

the remaining language pairs.519

Gains in Previously Challenging Low-Resource520

Languages Notably, SSA-COMET shows re-521

markable improvements on low-resource language522

pairs where all previous AfriCOMET variants have523

consistently struggled—particularly on Twi and524

Wolof. As shown in both Table 3 and Table 4,525

our model achieves substantial gains in correlation526

with human judgments for these languages. These527

results highlight the critical role of in-language, 528

high-quality training data, which allows the model 529

to better capture language-specific characteristics 530

and produce more accurate and reliable quality es- 531

timates in low-resource scenarios. 532

Limitations in Portuguese to Emakhuwa LP 533

Despite strong overall results, SSA-COMET per- 534

forms relatively poorly on the Emakhuwa (por- 535

vmw) language pair under both MTE and QE set- 536

tings. Nevertheless, it still outperforms all previ- 537

ous AfriCOMET variants. This underperformance 538

is likely due to the absence of Emakhuwa in the 539

AfroXLMR-76L pretraining corpus, which limits 540

the model’s ability to generalize to previously un- 541

seen languages. However, LLMs based prompting 542

are not affected by this. 543

LLM-based prompting is more Robust to the ab- 544

sence of Reference LLMs demonstrate greater 545

robustness to the absence of reference translations. 546

Regression-based metrics achieved worse perfor- 547

mance when changing from MTE to QE settings. 548

As shown in Table 3 and Table 4, the drop in Spear- 549

man correlation from MTE to QE is relatively small 550

for Claude-3.7 (0.014 on average) and Gemini-2.5 551

Pro (0.022 on average), in contrast to the obvious 552

declines observed in regression-based models. This 553

indicates that regression models are more depen- 554
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Metric w/ Error Gemma 3 Llama 4 Llama 4 Deepseek V3 GPT-4o Gemini-2.0 Claude-3.7 Gemini-2.5
Span 27B 100B 400B 671B (Aug-2024) Flash Sonnet Pro

Spearman × 0.453 0.446 0.513 0.498 0.506 0.544 0.583 0.625
✓ 0.342 0.266 0.484 0.332 0.335 0.508 0.577 0.590

Pearson × 0.498 0.485 0.551 0.530 0.544 0.575 0.609 0.645
✓ 0.373 0.269 0.505 0.340 0.361 0.521 0.606 0.619

Table 5: Average correlation performance of LLMs (Spearman and Pearson) across all LPs, with and without
error span annotation prompts. The best scores are bolded.

LP SSA-COMET-STL SSA-COMET-MTL

w/o WMT w/ WMT w/o WMT w/ WMT

eng-amh 0.558 0.597 0.587 0.629
eng-hau 0.442 0.459 0.425 0.502
eng-kik 0.716 0.715 0.757 0.765
eng-kin 0.592 0.584 0.554 0.602
eng-luo 0.697 0.689 0.736 0.773
eng-twi 0.645 0.649 0.662 0.700
eng-yor 0.494 0.489 0.530 0.558
fra-ewe 0.658 0.599 0.638 0.670
fra-wol 0.682 0.664 0.705 0.732
por-vmw 0.288 0.280 0.262 0.327

Average 0.577 0.573 0.586 0.626

Table 6: Spearman correlations for SSA-COMET in
STL and MTL setting–trained with and without WMT
data. The best scores are bolded.

dent on the presence of reference translations com-555

pared to LLMs. Despite the impressive LLM per-556

formance, their performance is significantly worse557

results if we do not provide in-context examples558

(5-shots) as shown in Appendix H.559

Impact of Error Span Prediction on LLMs Ta-560

ble 5 presents a comparison of LLM performance561

with and without error span prediction. We observe562

a consistent decline in both Spearman and Pearson563

correlations when models are prompted to identify564

error spans prior to generating adequacy scores.565

For example, Gemini-2.5 Pro’s Spearman corre-566

lation drops from 0.625 to 0.590, and its Pearson567

correlation decreases from 0.645 to 0.619. Overall,568

prompting for error spans before generating the569

final score does not appear to improve the quality570

of final predictions. We provide some qualita-571

tive analysis for Yorùbá showing that the predicted572

spans are often reliable in Appendix J. Further in-573

vestigation is still needed to show how useful the574

predictions are to users of various MT systems.575

5.4 Ablation: Impact of WMT Data576

Table 6 presents a performance comparison of mod-577

els trained with and without WMT Non-African578

data augmentation. As shown, incorporating WMT579

data yields notable gains in the MTL setting, 580

whereas its impact in the STL setting is compara- 581

tively limited. Notably, our annotated SSA-MTE 582

dataset proves highly effective: the model trained 583

solely on SSA-MTE achieves an average Spearman 584

correlation of 0.586 under the MTL setup, already 585

outperforming all AfriCOMET baselines (as shown 586

in Table 3). This highlights the quality and utility 587

of our in-domain annotations, demonstrating that 588

strong performance can be attained even without 589

external training data. 590

6 Conclusion 591

In this work, we present SSA-MTE, a high-quality 592

dataset for MT evaluation in Sub-Saharan African 593

languages, covering 13 language pairs and over 594

63,000 human annotations. Built on this dataset, 595

we introduce SSA-COMET and SSA-COMET- 596

QE for MTE and QE tasks tailored to the low- 597

resource African languages. In our evaluation, 598

SSA-COMET-MTL achieves the highest average 599

correlation with human judgments in MTE, surpass- 600

ing all prior regression-based metrics and perform- 601

ing competitively with the strong LLM baseline, 602

Gemini-2.5 Pro. 603

To our best knowledge, we are among the first 604

to show that LLM prompting with just five demon- 605

strations can yield strong evaluation performance 606

for under-resourced languages, offering a simple 607

and effective solution. However, it is not efficient. 608

SSA-COMET offers a compelling solution for 609

both MTE and QE senarios, achieving significantly 610

higher efficiency by several orders of magnitude 611

in inference cost (e.g., time and computational re- 612

sources), while maintaining strong effectiveness 613

when the African language is supported by the pre- 614

trained encoder. All data, models, and code are 615

released under open licenses (CC BY 4.0) to facili- 616

tate future research and encourage the development 617

of inclusive, regionally adapted, and reliable evalu- 618

ation tools for African languages. 619
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Limitations620

While our work has made significant progress in621

MT evaluation for African languages, several limi-622

tations remain.623

The effectiveness of SSA-COMET models re-624

mains influenced by the language coverage of the625

underlying multilingual encoder. For languages626

such as Emakhuwa, which are not included in627

the pretraining corpus of AfroXLMR-76L, perfor-628

mance is still limited.629

Moreover, our current evaluation primarily fo-630

cuses on the adequacy dimension of translation631

quality. Future work could extend this frame-632

work to include complementary aspects such as633

fluency, grammaticality, terminology consistency,634

and discourse-level coherence, as these factors are635

especially important in high-stakes or professional636

translation scenarios.637

It is worth noting that, in contrast to the findings638

of Wang et al. (2024a), this work reveal a relatively639

small performance gap between reference-based640

MTE models and reference-free QE models (see641

Tables 3 and 4). This observation prompts a re-642

search question: as pretrained language models643

continue to improve in multilingual capabilities,644

to what extent is the presence of a reference still645

necessary for reliable translation evaluation? We646

leave this investigation for future work.647

Ethical Considerations648

We employed paid annotators for this project, and649

paid them appropriate renumeration for their work.650

We pay each annotator who contributed 3,300 an-651

notations around $590, while a single translator652

earned $700 for the translation of 1,500 sentences.653

When two translators are available, they earn half654

of the amount. We do not have other ethical issues655

with the source of the texts used for translation656

and annotation, and do not foresee any privacy is-657

sues since the source texts are from the general658

domain—news domain.659

For the paper writing, ChatGPT is used only for660

grammar and typo errors check.661
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LP Bleu ChrF++ COMET22 AfriCOMET
v1.1 STL

AfriCOMET
v1.0 MTL

AfriCOMET
v1.1 MTL Metric-X 24 Claude-3.7 Gemini-2.5 Pro SSA-COMET

STL
SSA-COMET

MTL

eng-amh 0.311 0.446 0.550 0.622 0.645 0.651 0.671 0.602 0.636 0.627 0.660
eng-hau 0.322 0.421 0.407 0.474 0.482 0.481 0.506 0.445 0.474 0.467 0.514
eng-kik 0.454 0.586 0.259 0.495 0.529 0.688 0.597 0.638 0.685 0.693 0.764
eng-kin 0.347 0.500 0.360 0.585 0.701 0.662 0.752 0.698 0.707 0.766 0.798
eng-luo 0.408 0.590 0.368 0.604 0.501 0.535 0.535 0.648 0.758 0.680 0.770
eng-twi 0.283 0.496 0.444 0.628 0.634 0.698 0.723 0.748 0.779 0.728 0.776
eng-yor 0.331 0.455 0.378 0.497 0.583 0.540 0.572 0.591 0.600 0.573 0.640
fra-ewe 0.201 0.346 0.307 0.418 0.479 0.514 0.511 0.544 0.569 0.542 0.644
fra-wol 0.399 0.568 0.331 0.456 0.475 0.474 0.541 0.649 0.707 0.612 0.709
por-vmw 0.160 0.437 0.253 0.305 0.350 0.273 0.478 0.526 0.535 0.369 0.410

Average 0.322 0.485 0.366 0.508 0.538 0.567 0.589 0.609 0.645 0.606 0.668

Table 7: Pearson correlation of MTE metrics across language pairs. The best scores are bolded.

LP SSA-COMET-STL SSA-COMET-MTL

w/o WMT w/ WMT w/o WMT w/ WMT

eng-amh 0.590 0.627 0.615 0.660
eng-hau 0.455 0.467 0.426 0.514
eng-kik 0.708 0.693 0.750 0.764
eng-kin 0.743 0.766 0.777 0.798
eng-luo 0.690 0.680 0.733 0.770
eng-twi 0.714 0.728 0.748 0.776
eng-yor 0.579 0.573 0.603 0.640
fra-ewe 0.621 0.542 0.600 0.644
fra-wol 0.637 0.612 0.673 0.709
por-vmw 0.358 0.369 0.317 0.410

Average 0.609 0.606 0.624 0.668

Table 8: Pearson correlations for SSA-COMET-STL
and SSA-COMET-MTL trained with and without WMT
data. The best scores are bolded.

A Correlations between number of errors841

and the final scores842

Table 9 presents the correlation between Z-843

normalized DA scores and the frequency of dif-844

ferent error types. Among all error categories, mis-845

translation shows the strongest negative correlation846

with overall adequacy (Spearman: ˘0.521), fol-847

lowed by addition and omission errors. The aggre-848

gated total error count exhibits the highest overall849

correlation (Spearman: –0.574), confirming that as850

the number of annotated errors increases, the ade-851

quacy score consistently decreases. These findings852

validate the reliability of error span annotations as853

strong indicators of perceived translation quality.854

Criterion Z-score

Spearman Kendall

Mistranslation -0.521 -0.377
Omission -0.265 -0.210
Addition -0.276 -0.218
Untranslated -0.048 -0.038

Total Error -0.574 -0.406

Table 9: Correlation of each error criterion with Z-
scores.

Figure 3: Translation performance of MT systems used
for por-vmw.

B Results on AfriMTE 855

To evaluate the generalization capability of our 856

SSA-COMET models beyond the newly collected 857

SSA-MTE dataset, we conduct experiments on the 858

AfriMTE benchmark (Wang et al., 2024a). As 859

shown in Table 10 and Table 11, SSA-COMET- 860

MTL outperforms all previous AfriCOMET vari- 861

ants, including the strongest one, AFRICOMET- 862

V1.1-MTL. These results demonstrate that SSA- 863

COMET models remain robust and effective under 864

domain shift. 865

C Data Collection Process for the 866

Portuguese Texts 867

The Portuguese sentences were sourced from the 868

Multilingual Open Text dataset (Palen-Michel et al., 869

2022), which features news articles published by 870

Voice of America (VOA8). These sentences were 871

translated into Emakhuwa, resulting in a parallel 872

corpus that was released under a CC BY 4.0 license 873

and made publicly available in Ali et al. (2024). 874

8https://www.voanews.com/
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LP AfriCOMET
v1.1 STL

AfriCOMET
v1.1 MTL

SSA-COMET
STL

SSA-COMET
MTL

ary-fra 0.526 0.561 0.499 0.554
eng-arz 0.510 0.579 0.479 0.582
eng-fra 0.492 0.507 0.494 0.526
eng-hau 0.561 0.614 0.575 0.617
eng-ibo 0.522 0.582 0.537 0.564
eng-kik 0.430 0.520 0.415 0.535
eng-luo 0.325 0.515 0.364 0.506
eng-som 0.502 0.525 0.497 0.523
eng-swh 0.704 0.756 0.719 0.789
eng-twi 0.222 0.209 0.192 0.194
eng-xho 0.203 0.157 0.233 0.163
eng-yor 0.338 0.473 0.325 0.507
yor-eng 0.508 0.566 0.473 0.538

Average 0.449 0.505 0.446 0.507

Table 10: Spearman correlation of AfriCOMET and
SSA-COMET on AfriMTE. The best scores are bolded.

LP AfriCOMET
v1.1 STL

AfriCOMET
v1.1 MTL

SSA-COMET
STL

SSA-COMET
MTL

ary-fra 0.553 0.641 0.529 0.627
eng-arz 0.515 0.603 0.496 0.593
eng-fra 0.544 0.484 0.545 0.500
eng-hau 0.647 0.613 0.612 0.637
eng-ibo 0.496 0.664 0.520 0.619
eng-kik 0.686 0.545 0.685 0.696
eng-luo 0.480 0.526 0.528 0.624
eng-som 0.460 0.374 0.466 0.393
eng-swh 0.737 0.762 0.745 0.810
eng-twi 0.474 0.296 0.429 0.457
eng-xho 0.384 0.345 0.376 0.488
eng-yor 0.595 0.634 0.592 0.686
yor-eng 0.521 0.571 0.490 0.531

Average 0.545 0.543 0.539 0.589

Table 11: Pearson correlation of AfriCOMET-V1.1 and
SSA-COMET on AfriMTE. The best scores are bolded.

The dataset has three splits, TRAIN, DEV, and 875

TEST, and covers seven topics: politics, economy, 876

culture, sports, health, society, and world news. 877

We only focus on the annotations for the Test split 878

in this study due to constraints of annotation re- 879

sources. 880

D Machine Translations for Emakhuwa 881

We sampled 1,128 parallel sentences from the Test 882

split of the Portuguese–Emakhuwa dataset. The 883

source sentences were used to generate translations 884

from Portuguese into Emakhuwa using the machine 885

translation systems in Figure 3. 886

E Emakhuwa Data annotation process 887

For the more challenging Portuguese-source lan- 888

guage pairs, por-vmw, we annotated 1,600 samples 889

evenly distributed between 2 evaluators, with 300 890

overlapping samples split between two evaluators 891

for quality control. 892

F Further selection of Training Data for 893

Zulu and Igbo 894

We hypothesize that the low agreement may be due 895

to one evaluator consistently outperforming the 896

other in annotation quality. To address this, we re- 897

tained only the annotations from the more reliable 898

evaluator for inclusion in the training set. Building 899

on the success of AfriCOMET (Wang et al., 2024a), 900

we employed an AfriCOMET model trained us- 901

ing a multi-task learning framework (Wang et al., 902

2024a; Wan et al., 2022) on eight language pairs 903

that achieved both Spearman and ICC scores above 904

0.5 in Table 1. We then used this model to gen- 905

erate predicted scores for eng-ibo, eng-swa, and 906

eng-zul, which served as a silver reference for 907

evaluating annotator reliability. Next, we compared 908

the model-generated scores with those from each 909

evaluator individually and computed both Spear- 910

man rank and Pearson correlation coefficients. The 911

results, presented in Table 13, reveal clear gaps 912

in correlation: evaluator 1 for Zulu and Igbo, and 913

evaluator 2 for Swahili, consistently show higher 914

agreement with the silver reference. Therefore, we 915

include their annotations for eng-ibo and eng-zul 916

in the training set of SSA-MTE. 917

G Handling for unexpected outputs from 918

LLMs 919

For a small number of cases, the LLMs fail to 920

generate a valid answer and instead return an un- 921
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Metric Gemini-2.0 Flash
0-shot

Gemini-2.0 Flash
5-shot

LLaMA4 400B
0-shot

LLaMA4 400B
5-shot

Claude-3.7
0-shot

Claude-3.7
5-shot

Spearman 0.468 0.544 0.325 0.513 0.470 0.583
Pearson 0.506 0.575 0.368 0.551 0.499 0.609

Table 12: Performance differences of LLMs in Zero-shot vs. 5-shot prompting on SSA-MTE.

LP Evaluator 1 Evaluator 2

Spear. Pear. Spear. Pear.

eng-ibo 0.392 0.447 0.277 0.357
eng-zul 0.321 0.363 0.273 0.341

Table 13: Per-annotator Spearman-rank and Pear-
son correlations with silver references produced by
AfriCOMET trained with 8 LPs.

interpretable response. Since our evaluation op-922

erates within a normalized range of [0,1], we as-923

sign a default score of 0.5—representing a neutral924

judgment—for these cases. This approach ensures925

that failing cases do not disproportionately affect926

overall results, while preserving the integrity of927

the evaluation. Discarding such cases could in-928

troduce selection bias, obscure model weaknesses,929

and compromise comparability across systems.930

H More Details on the Prompting931

For all prompting experiments, we used the de-932

fault decoding settings provided by the API of each933

LLM. We did not enforce greedy decoding or ad-934

just temperature, top-p, or other sampling parame-935

ters. This ensures the results reflect realistic usage936

scenarios, where users rely on default behavior937

without fine-tuning generation strategies.938

For the 0-shot prompting setup, we removed939

all demonstration-related content from the prompt,940

leaving only the annotation guideline and the final941

instruction for predicting the adequacy score.942

Table 12 compares zero-shot and few-shot re-943

sults, the results shows that without demonstration944

examples, the performance of the LLMs are un-945

reliable, and far below the performance of SSA-946

COMET models.947

I Comparison: Gemini-2.5 Pro vs.948

SSA-COMET-MTL949

Under the MTE setting, Gemini-2.5 Pro and950

SSA-COMET-MTL achieve similar overall Spear-951

man correlation. However, when excluding the952

por-vmw language pair, which is not covered953

in the pretraining data of the encoder used in954

SSA-COMET—SSA-COMET-MTL demonstrates 955

a clear advantage, with an average Spearman score 956

that is 0.019 higher. This margin of improvement 957

is comparable to the performance gap between 958

Gemini-2.5 Pro with and without reference input. 959

Moreover, even when including por-vmw, SSA- 960

COMET-MTL clearly outperforms Gemini-2.5 Pro 961

in terms of Pearson correlation, with a margin of 962

0.023. This indicates that SSA-COMET-MTL pro- 963

duces adequacy scores that are more accurately 964

aligned with human ratings in absolute terms, not 965

just in relative ranking. 966

Under the QE setting, excluding the por-vmw 967

language pair from the average, SSA-COMET- 968

MTL achieves a slightly higher Spearman corre- 969

lation and a notably stronger Pearson correlation, 970

with an advantage of 0.0302. 971

These results suggest that for languages covered 972

by the encoder, SSA-COMET-MTL is not only 973

more accurate but also significantly more efficient 974

than Gemini-2.5 Pro. On the SSA-MTE test set, 975

SSA-COMET evaluates each LP in under two min- 976

utes, whereas prompting LLMs requires substan- 977

tially more time per sample. This makes SSA- 978

COMET a more scalable and practical solution for 979

low-resource MT evaluation. 980

J Qualitative evaluation of LLM 981

Error-Span Predictions 982

Table 18 shows three examples of the predictions 983

of Gemini-2.5 Pro and Llama 4 400 B. We find that 984

the former aligns more with the human judgements 985

than the latter, which aligns with our prompting 986

results in Table 5. Furthermore, we find the error 987

span predictions to be helpful in many cases. We 988

leave a more detailed investigation for future work. 989
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LP Gemma3-27B-it Llama4 100B Llama4 400B Deepseek V3 GPT4o Gemini-2.0 Flash Claude-3.7 Gemini-2.5 Pro

eng-amh 0.503 0.391 0.505 0.496 0.429 0.513 0.566 0.605
eng-hau 0.337 0.323 0.333 0.373 0.411 0.299 0.425 0.471
eng-kik 0.573 0.566 0.666 0.639 0.635 0.687 0.696 0.735
eng-kin 0.467 0.426 0.455 0.461 0.498 0.492 0.536 0.528
eng-luo 0.489 0.524 0.610 0.549 0.639 0.699 0.678 0.782
eng-twi 0.504 0.532 0.578 0.578 0.571 0.613 0.652 0.710
eng-yor 0.399 0.422 0.435 0.434 0.421 0.375 0.501 0.524
fra-ewe 0.430 0.434 0.539 0.461 0.461 0.621 0.614 0.658
fra-wol 0.509 0.519 0.645 0.647 0.663 0.712 0.699 0.750
por-vmw 0.315 0.322 0.363 0.275 0.330 0.431 0.463 0.487

Average 0.453 0.446 0.513 0.498 0.506 0.544 0.583 0.625

Table 14: Spearman correlation of different LLM-based metrics across LPs without generating error spans.

LP Gemma3-27B-it Llama4 100B Llama4 400B Deepseek V3 GPT4o Gemini-2.0 Flash Claude-3.7 Gemini-2.5 Pro

eng-amh 0.556 0.456 0.551 0.551 0.488 0.576 0.602 0.636
eng-hau 0.348 0.350 0.398 0.390 0.421 0.338 0.445 0.474
eng-kik 0.518 0.491 0.608 0.530 0.551 0.607 0.638 0.685
eng-kin 0.648 0.594 0.662 0.649 0.675 0.679 0.698 0.707
eng-luo 0.473 0.498 0.584 0.517 0.595 0.650 0.648 0.758
eng-twi 0.638 0.664 0.685 0.688 0.702 0.733 0.748 0.779
eng-yor 0.553 0.552 0.571 0.576 0.569 0.509 0.591 0.600
fra-ewe 0.382 0.386 0.473 0.462 0.421 0.523 0.544 0.569
fra-wol 0.438 0.432 0.555 0.542 0.591 0.624 0.649 0.707
por-vmw 0.424 0.424 0.423 0.398 0.429 0.512 0.526 0.535

Average 0.498 0.485 0.551 0.530 0.544 0.575 0.609 0.645

Table 15: Pearson correlation of different LLM-based metrics across LPs without generating error spans.

LP Gemma3-27B-it Llama4 100B Llama4 400B Deepseek V3 GPT-4o Gemini-2.0 Flash Claude-3.7 Gemini-2.5 Pro

eng-amh 0.359 0.261 0.486 – 0.335 0.472 0.527 0.598
eng-hau 0.267 0.152 0.310 0.167 0.271 0.289 0.407 0.450
eng-kik 0.422 0.425 0.645 0.539 0.455 0.691 0.702 0.707
eng-kin 0.497 0.281 0.514 0.339 0.465 0.540 0.500 0.529
eng-luo 0.240 0.233 0.538 0.260 0.357 0.615 0.739 0.712
eng-twi 0.384 0.353 0.542 0.415 0.415 – 0.662 0.649
eng-yor 0.373 0.237 0.452 0.396 0.343 0.450 0.470 0.522
fra-ewe 0.334 0.210 0.489 0.307 0.221 0.590 0.581 0.631
fra-wol 0.341 0.347 0.578 0.463 0.422 0.671 0.704 0.724
por-vmw 0.205 0.158 0.284 0.101 0.066 0.256 0.474 0.383

Average 0.342 0.266 0.484 0.332 0.335 0.508 0.577 0.590

Table 16: Spearman correlation of LLM-based metrics across language pairs, using error span prediction. “-”
indicates that the model’s output failed or collapsed for that LP.

LP Gemma3-27B-it Llama4 100B Llama4 400B Deepseek V3 GPT-4o Gemini-2.0 Flash Claude-3.7 Gemini-2.5 Pro

eng-amh 0.382 0.296 0.503 – 0.333 0.514 0.568 0.611
eng-hau 0.262 0.145 0.353 0.157 0.280 0.322 0.434 0.456
eng-kik 0.400 0.404 0.599 0.472 0.427 0.629 0.651 0.706
eng-kin 0.584 0.283 0.607 0.356 0.529 0.628 0.642 0.692
eng-luo 0.258 0.243 0.531 0.278 0.363 0.591 0.721 0.713
eng-twi 0.459 0.357 0.609 0.448 0.473 – 0.741 0.695
eng-yor 0.493 0.293 0.523 0.488 0.420 0.545 0.594 0.588
fra-ewe 0.303 0.160 0.459 0.271 0.233 0.545 0.537 0.592
fra-wol 0.335 0.346 0.527 0.438 0.407 0.625 0.652 0.702
por-vmw 0.252 0.161 0.336 0.155 0.141 0.292 0.527 0.441

Average 0.373 0.269 0.505 0.340 0.361 0.521 0.606 0.619

Table 17: Pearson correlation of LLM-based metrics across language pairs, using error span prediction. “-” indicates
that the model’s output failed or collapsed for that LP.
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Figure 4: The annotation tool we used for the annotation process.

Figure 5: The prompt template used for prompting LLMs for translations.
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Meta-Prompt for Prompting LLMs with Error Span for MTE 

You are asked to compare the meaning of a source segment and its translation. You will be presented with one pair of segments at a time, where a segment may 
contain one or more sentences. For each pair, you are asked to read the text closely and do the following:

1. Highlight the text spans that convey different meaning in the compared segments. After highlighting a span in the text, you will be asked to select the category 
that best describes the meaning difference using the following categories:

Source Text:
Omission: The highlighted span in the source text corresponds to information that does not exist in the translated text.
Mistranslation: The highlighted span in the source does not have the exact same meaning as the highlighted span in the translated text. 

Translation Text: 
Addition: The highlighted span in the translation corresponds to information that does not exist in the source text.
Mistranslation: The highlighted span in the translation does not have the exact same meaning as the highlighted span in the source segment.
Untranslated: The highlighted span in the translation is a copy of the corresponding source segment but should be translated in the target language.

You can highlight as many spans as needed.
 

2. Assess the translation adequacy on a continuous scale [0 ~ 100] using the quality levels described below:

[0] Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
[34] Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts.
[67]Most meaning preserved: The translation retains most of the meaning of the source.
[100] Perfect meaning:  The meaning of the translation is completely consistent with the source.

Instruction: Using the provided source and reference sentences, assess the quality of the machine translation from <Source language> to <Target language> on a continuous scale from 0 
to 1, where a higher score indicates better translation quality. Please detect the word-level translation errors before giving the score.
Given examples:

Example 1:  
Source: <Example 1 Source Text>                   Translation: <Example 1 Machine Translation>                    Reference: <Example 1 Reference Translation>
Output: 
The following errors are detected:
<Example 1 Error Spans>
Based on the n error detected, the score of translation is: <Example 1 Score>

…….

Example 5:  
Source: <Example 5 Source Text>                   Translation: <Example 5 Machine Translation>                    Reference: <Example 5 Reference Translation>
Output: 
The following errors are detected:
<Example 5 Error Spans>
Based on the n error detected, the score of translation is: <Example 5 Score>
      
Based on the examples given, generate the output in exactly the same format, give the error spans and the score, do not give any commentary response.
Source: < Source Text >
Translation: < Machine Translation >
Reference: < Reference Translation>
Output:         

Figure 6: The prompt template used for prompting LLMs with error span detection for MTE.
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Meta-Prompt for Prompting LLMs without Error Span Detection for MTE

Assess the translation adequacy on a continuous scale [0 ~ 100] using the quality levels described below:

[0] Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
[34] Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts.
[67]Most meaning preserved: The translation retains most of the meaning of the source.
[100] Perfect meaning:  The meaning of the translation is completely consistent with the source.

Instruction: Please assess the given machine translation based on the source sentence. Note that you should only output the final score
Given examples:

Example 1:  
Source: < Example 1 Source Text >     Translation: < Example 1 Machine Translation >     Reference: <  Example 1 Reference Translation>   Score: < Example 1 Score>

…….

Example 5:  
Source: < Example 5 Source Text >     Translation: < Example 5 Machine Translation >     Reference: <  Example 5 Reference Translation>    Score: < Example 5 Score>

      
Based on the examples given, generate the output in exactly the same format, give the score and do not give any commentary response.

Source: < Source Text >      Translation: < Machine Translation>     Reference: < Reference Translation>     Score: 

Figure 7: The prompt template used for prompting LLMs without error span detection for MTE.

Meta-Prompt for Prompting LLMs without Error Span Detection for QE

Assess the translation adequacy on a continuous scale [0 ~ 100] using the quality levels described below:

[0] Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
[34] Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts.
[67]Most meaning preserved: The translation retains most of the meaning of the source.
[100] Perfect meaning:  The meaning of the translation is completely consistent with the source.

Instruction: Please assess the given machine translation based on the source sentence. Note that you should only output the final score
Given examples:

Example 1:  
Source: < Example 1 Source Text >     Translation: < Example 1 Machine Translation >     Score: < Example 1 Score>

…….

Example 5:  
Source: < Example 5 Source Text >     Translation: < Example 5 Machine Translation >     Score: < Example 5 Score>

      
Based on the examples given, generate the output in exactly the same format, give the score and do not give any commentary response.

Source: < Source Text >      Translation: < Machine Translation>     Score: 

Figure 8: The prompt template used for prompting LLMs without error span detection for QE.
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Annotation Guidelines

You are asked to compare the meaning of a source segment and its translation. You will be presented with one pair of segments at a 
time, where a segment may 
contain one or more sentences. For each pair, you are asked to read the text closely and do the following:

1. Highlight the text spans that convey different meaning in the compared segments. After highlighting a span in the text, you will be 
asked to select the category 
that best describes the meaning difference using the following categories:

Source Text:
Omission: The highlighted span in the source text corresponds to information that does not exist in the translated text.
Mistranslation: The highlighted span in the source does not have the exact same meaning as the highlighted span in the translated 
text. 

Translation Text: 
Addition: The highlighted span in the translation corresponds to information that does not exist in the source text.
Mistranslation: The highlighted span in the translation does not have the exact same meaning as the highlighted span in the source 
segment.
Untranslated: The highlighted span in the translation is a copy of the corresponding source segment but should be translated in the 
target language.

You can highlight as many spans as needed.
 

2. Assess the translation adequacy on a continuous scale [0 ~ 100] using the quality levels described below:

[0] Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
[34] Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts.
[67]Most meaning preserved: The translation retains most of the meaning of the source.
[100] Perfect meaning:  The meaning of the translation is completely consistent with the source.

Figure 9: The annotation guideline we used for the annotation process.

Figure 10: The workflow of the COMET architecture
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Sentence / LLM output Human rating

Source: Angola, as everyone knows, is a beautiful country.
Translation: Ge.ge.bi gbogbo eniyan ti mo. , Angola je. orile. -ede ti o dara julo. . 0.77
Translation (in English) As everyone knows, Angola is the most beautiful country.
Reference: Angola, bí gbogbo ènìyàn s.e mò. , jé. orílè. -èdè tí ó re.wà.

Gemini 2.5 Pro Output
Output: The following error is detected:
Mistranslation: The span "beautiful" in the source text was wrongly translated into "dara julo. " in the translation.
Source: Angola, as everyone knows, is a <s>beautiful</s> country.
Target: Ge.ge.bi gbogbo eniyan ti mo. , Angola je. orile. -ede ti o <s>dara julo. </s>.
Based on the 1 error detected, the score of translation is: 0.67

LLama 4 400B Output
The following error is detected:
Mistranslation: The span "beautiful country" in the source text was wrongly translated into "orile. -ede ti o dara julo. " in
the translation.
Source: Angola, as everyone knows, is a <s>beautiful country. </s>
Target: Ge.ge.bi gbogbo eniyan ti mo. , Angola je. <s> orile.-ede ti o dara julo.</s>.
Based on the 1 error detected, the score of translation is: 0.58

Source: Nobody knew Alffa outside a small part of Wales
Translation: Kò sí e.ni tó mo. Alffa ní àgbègbè kékeré kan ní Wales 0.76
Translation (in English) Nobody knew Alffa in this small area of Wales
Reference: Kò sí e.ni tó mo. Alffa yàtò. sí àwo. n ibi kéréje ní Wales

Gemini 2.5 Pro Output
Output: The following error is detected:
Mistranslation: The span ""outside"" in the source text was wrongly translated into ""ní"" in the translation.
Source: Nobody knew Alffa <s>outside</s> a small part of Wales
Target: Kò sí e.ni tó mo. Alffa <s>ní</s> àgbègbè kékeré kan ní Wales
Based on the 1 error detected, the score of translation is: 0.67

LLama 4 400B Output
The following error is detected:
Mistranslation: The span ""outside a small part of Wales"" in the source text was wrongly translated into ""ní àgbègbè
kékeré kan ní Wales"" in the translation.
Source: Nobody knew Alffa <s>outside a small part of Wales</s>
Target: Kò sí e.ni tó mo. Alffa <s>ní àgbègbè kékeré kan ní Wales </s>
Based on the 1 error detected, the score of translation is: 0.38

Source: However, professional freelance photojournalists are still quite rare.
Translation: Sibe.sibe. , awo.n onise iroyin ti o ni imo. -e.ro. ti o ni imo. -e.ro. ti o ni imo. -imo. -imo. -imo. -imo. -imo. -iimo. -imo. -
imo. -imo. -imo. -imo. -...

0.11

Translation (in English) However, the news staffs that have technical knowledge that have technical knowledge
knowledge knowledge knowledge knowledge knowledge knowledge ...
Reference: S. ùgbo. ń, àwo.n akó. s.e.mo. s.é. afàwòránròyìn adádúró kò sì wó. pò. náà.

Gemini 2.5 Pro Output
Output: The following error is detected:
Mistranslation: the span "professional freelance photojournalists are still quite rare" in the source text was wrongly
translated into "wo.n onise iroyin ti o ni imo. -e.ro. ti o ni imo. -e.ro. ti o ni imo. -imo. -imo. -imo. -imo. -imo. -iimo. -imo. -imo. -imo. -
imo. -imo. -..." in the translation.
Source: However, <s>professional freelance photojournalists are still quite rare</s>
Target: Sibe.sibe. <s>awo. n onise iroyin ti o ni imo. -e.ro. ti o ni imo. -e.ro. ti o ni imo. -imo. -imo. -imo. -imo. -imo. -iimo. -imo. -imo. -
imo. -imo. -imo. -...</s>
Based on the 1 error detected, the score of translation is: 0.16

LLama 4 400B Output
The following error is detected:
Mistranslation: The span "professional freelance photojournalists" in the source text was wrongly translated into "wo. n
onise iroyin ti o ni imo. -e.ro. ti o ni imo. -e.ro. ti o ni imo. -imo. -imo. -imo. -imo. -imo. -iimo. -imo. -imo. -imo. -imo. -imo. -..." in the
translation.
Source: However, <s>professional freelance photojournalists</s> are still quite rare.
Target: Sibe.sibe. <s>awo. n onise iroyin ti o ni imo. -e.ro. ti o ni imo. -e.ro. ti o ni imo. -imo. -imo. -imo. -imo. -imo. -iimo. -imo. -imo. -
imo. -imo. -imo. -...</s>
Based on the 1 error detected, the score of translation is: 0.0

Table 18: Examples of Error-Span Predictions by different LLMs, ratings are from 0 to 1. The mistakes of the
translation model is in red.
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