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ABSTRACT

Egocentric video-language pretraining is a crucial step in advancing the under-
standing of hand-object interactions in first-person scenarios. Despite successes on
existing testbeds, we find that current EgoVLMs can be easily misled by simple
modifications, such as changing the verbs or nouns in interaction descriptions, with
models struggling to distinguish between these changes. This raises the question:
“Do EgoVLMs truly understand hand-object interactions?” To address this ques-
tion, we introduce a benchmark called EgoHOIBench, revealing the performance
limitation of current egocentric models when confronted with such challenges.
We attribute this performance gap to insufficient fine-grained supervision and
the greater difficulty EgoVLMs experience in recognizing verbs compared to
nouns. To tackle these issues, we propose a novel asymmetric contrastive objective
named EgoNCE++. For the video-to-text objective, we enhance text supervi-
sion by generating negative captions using large language models or leveraging
pretrained vocabulary for HOI-related word substitutions. For the text-to-video
objective, we focus on preserving an object-centric feature space that clusters video
representations based on shared nouns. Extensive experiments demonstrate that
EgoNCE++ significantly enhances EgoHOI understanding, leading to improved
performance across various EgoVLMs in a range of tasks such as multi-instance
retrieval, action recognition, and temporal understanding. Our code is available at
https://anonymous.4open.science/r/EgoNCEpp.

1 INTRODUCTION

Humans have long envisioned embodied agents that can perform various societal roles. A promising
approach to realizing this vision involves leveraging knowledge from egocentric demonstrations to
train agents in imitating human actions during daily activities. Egocentric videos, captured from a
first-person view using wearable devices, effectively showcase how individuals interact with nearby
objects using their hands. This has sparked significant interest in understanding egocentric video,
particularly hand-object interactions, due to its potential applications in VR/AR (Grauman et al.,
2024a; Plizzari et al., 2024) and embodied agents (Zeng et al., 2023; Zheng et al., 2023).

Recent works (Lin et al., 2022) have utilized the large-scale dataset Ego4D (Grauman et al., 2022)
to pretrain egocentric video-language models (EgoVLMs), enhancing performance in tasks, such
as egocentric video-text retrieval (Lin et al., 2022; Sigurdsson et al., 2018b) and action recogni-
tion (Sigurdsson et al., 2018a). However, despite the impressive capabilities of these models and
their benefit from large-scale pretraining on hand-object interaction (HOI) data, we have identified a
critical issue in video-text matching: when tasked with selecting the correct sentence for a video from
the sentences where the verb or noun varies significantly in meaning, EgoVLMs often fail to make
accurate distinctions, as shown in Figure 1. This raises an important question: Do existing EgoVLMs
truly understand egocentric hand-object interactions?

To delve deeper into this question, we introduce EgoHOIBench, a novel multi-choice testbed
derived from Ego4D. This benchmark is specifically designed to assess the ability of EgoVLMs
to comprehend HOI combinations with verbs or nouns varies through video-text matching. After
evaluating state-of-the-art EgoVLMs on EgoHOIBench, we were surprised to observe a substantial
decline in performance. Despite trained on extensive EgoHOI data, these models still exhibit difficulty
in accurately recognizing HOIs when confronted with even the most basic word substitutions.
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Figure 1: Although EgoVLMs have been pretrained on millions of worldwide egocentric videos and
applied to challenging downstream tasks like video-text retrieval, we observe that they often fail to
select the matched sentence from the simplest word substituted candidates for videos.

We attribute this suboptimal performance of these models primarily to a lack of fine-grained negative
supervision during pretraining process. In egocentric video-language pretraining, which employs
video-to-text and text-to-video contrastive losses (i.e., EgoNCE (Lin et al., 2022) and InfoNCE (Zhao
et al., 2023)), training batches often contain many easy negative samples (e.g. “cut grass” vs. “pick
apple”). While these negatives facilitate model generalization across HOI sentences with simultaneous
verb-noun changes, they fail to provide effective supervision for understanding the nuances of HOI
combinations, such as distinguishing between “shakes the frying pan” and “hangs the frying pan”.
Consequently, the models exhibit fragile robustness when evaluated on EgoHOIBench. One potential
solution is to enhance fine-grained supervision through hard negative mining (Yuksekgonul et al.,
2023). We therefore propose generating hard negatives that differ by a single word, HOI-related noun
or verb. However, this approach carries risks: it may disrupt the understanding of other unchanged
words, potentially reducing performance and limiting model generalization to other tasks (Momeni
et al., 2023). Thus, a carefully designed training strategy is essential to address these challenges.

Furthermore, EgoVLMs demonstrate a stronger robustness towards recognizing nouns through
our analysis of EgoHOIBench performance on HOI-verbs and HOI-nouns. By visualizing video
representations in a low-dimensional space, we reveal that these EgoVLMs develop object-centric
feature spaces, where representations with the same nouns are more robustly encoded and clustered
than those with the same verbs. This phenomenon, leading to improved performance on HOI-nouns,
can be viewed as advantageous, as previous studies have shown the effectiveness of establishing
object-centric features through additional structures trained on object images (Escorcia et al., 2022)
or supervision from HOI detection tasks (Zhang et al., 2023; Li et al., 2021b).

In this work, we aim to preserve the object-centric nature of the feature space, without requiring
additional visual data or architectural changes, while simultaneously enhancing HOIw comprehension,
from a contrastive learning perspective. To this end, we introduce EgoNCE++, a novel contrastive
learning objective that incorporates asymmetric video-to-text and text-to-video losses. Specifically,
the video-to-text loss enables the model to capture both word- and sentence-level semantics for each
video through hard negative supervision, enhanced by generating HOI-related negative captions using
large language models (LLMs) or leveraging vocabulary prior knowledge from the pretraining dataset.
Conversely, the text-to-video loss perserves the established object-centric feature space by clustering
video representations with similar nouns in their captions. We conduct extensive experiments across
various EgoHOI downstream benchmarks, demonstrating that EgoNCE++ significantly improves the
generalization of EgoVLMs to other tasks in a zero-shot manner.
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Our contributions in this work are threefold: (1) We develop EgoHOIBench, a novel benchmark
specifically designed to evaluate EgoVLMs’ capabilities in understanding variations of HOI com-
bination. (2) We propose EgoNCE++, an innovative HOI-aware asymmetric contrastive learning
objective for egocentric video-language pretraining. (3) Our experimental results demonstrate the
versatility and efficacy of EgoNCE++, notably enhancing performance across three EgoVLMs and
improving generalization on seven downstream EgoHOI tasks.

2 EGOHOIBENCH: DO EGOVLMS TRULY UNDERSTAND HOIS?

Existing benchmarks in egocentric vision have primarily focused on EgoHOI. For instance, Damen
et al. (2021) emphasize on action recognition in kitchen scenarios, which limits its ability to evaluate
the broader knowledge embedded in VLMs. Wang et al. (2023b) propose assessing a model’s temporal
understanding by requiring it to distinguish between actions with similar semantics. Lin et al. (2022)
suggest querying the correct video from multiple options across various scenarios based on provided
text descriptions. In contrast to these testbeds, EgoHOIBench introduces a straightforward multi-
choice test for video-to-text matching, featuring comprehensive real-world scenarios and a rich,
diverse vocabulary centered on hand-object interactions (HOIs). This benchmark is designed to more
effectively evaluate the ability of EgoVLMs to select the correct sentence from multiple HOI-related
options using video-text matching.

2.1 NEW BENCHMARK FOR NUANCED EGOHOI DISTINCTION

Figure 2: EgoHOI Performance of EgoVLMs
on EgoHOIBench.

To clarify the task definition, we design each EgoHOI
multi-choice trial as follows: given a video segment
x, the model is required to distinguish the correct
caption S∗ from N verb-focused hard negative cap-
tions {Si}Ni=1, where Si and S∗ differ only in the
verb (HOI-verb task). Similarly, the model must iden-
tify S∗ from N noun-focused hard negative captions
{Sj}Nj=1 where Sj is generated by replacing the noun
in S∗ with alternative nouns (HOI-noun task). A trial
is considered successful only when the model accu-
rately identifies the correct caption S∗ for both the
HOI-verb and HOI-noun tasks.

We contend that an ideal EgoVLM should excel at
solving these relatively straightforward tasks, pro-
vided that the choice options are not deliberately
made excessively difficult. Therefore, leveraging
LLMs to generate such less challenging options is a
practical approach, given their robust world knowl-
edge and instruction-following capabilities. This
method provides a more efficient and scalable alternative to relying on human labor. The LLM
is prompted to perform word substitutions, randomly replacing HOI-related verbs or nouns with
alternatives of different meanings. This process transforms the multi-choice candidates into al-
ternative sentences, significantly altering their semantics. Ultimately, EgoHOIBench provides a
comprehensive evaluation of models’ understanding of EgoHOIs across 29K test trials. More details
on data construction process are available in Appendix B.

We evaluate three state-of-the-art EgoVLMs: EgoVLP (Lin et al., 2022), EgoVLPv2 (Pramanick et al.,
2023), and LaViLa (Zhao et al., 2023). Surprisingly, all models perform poorly on EgoHOIBench, as
illustrated in Fig. 2. To better understand the underlying reasons for this suboptimal performance, we
focus on addressing two key questions:

• Why EgoVLMs struggle with the seemingly simple multi-choice test? (Section 2.2)

• Why performance on HOI-noun is better than that on HOI-verb? (Section 2.3)
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2.2 LIMITATIONS OF EXISTING EGOVLP OBJECTIVE

Egocentric video-language pretraining (VLP) follows the standard VLP paradigm, which utilizes a
dual-encoder architecture to perform contrastive learning between video and text modalities. Current
EgoVLPs consider two symmetric contrastive learning objectives: InfoNCE (Zhao et al., 2023) and
EgoNCE (Lin et al., 2022; Pramanick et al., 2023; Zhang et al., 2023; Phan et al., 2024).

InfoNCE (Radford et al., 2021). InfoNCE is a widely used contrastive learning objective that
encourages positive video-text pairs closer while pushing negative pairs further apart through an
online cross-entropy loss. The symmetric InfoNCE loss, applied to a batch of (video, caption)
samples, can be formulated as:

Linfo = − 1

B
(

∑
vi∈B(v)

log
exp(vi · ti/τ)

Σtj∈B(t) exp(vi · tj/τ)
+

∑
ti∈B(t)

log
exp(ti · vi/τ)

Σvj∈B(v) exp(ti · vj/τ)
) (1)

where (vi, ti) denotes the L2 normalized feature vectors of the i-th (video, caption) sample within
a batch. B(v) = {vi}Bi=1 and B(t) = {ti}Bi=1 refer to the videos and captions of the batch B =
{(vi, ti)}Bi=1, respectively.

EgoNCE (Lin et al., 2022). It is specifically tailored for egocentric scenarios. As shown in the
following video-to-text loss, EgoNCE enhances the learning of subtle differences in scenes by
enlarging the batch to include additional video clips with visually similar backgrounds. It also
expands positive video-text pairs by including texts that depict similar HOIs occurring in different
contexts. The video-to-text loss is defined as:

Lego
v2t = − 1

2B

∑
vi∈B̃(v)∪B(v)

log
Σtk∈P(ti) exp(vi · tk)

Σtj∈B(t) exp(vi · tj) + Σtj′∈B̃(t) exp(vi · tj′)
(2)

where B̃ = {(vi′ , ti′)}Bi′=1, B̃(v) = {vi′}Bi′=1 and B̃(t) = {ti′}Bi′=1 represent the enlarged batch
samples. Each (vi′ , ti′) corresponds to the (video, caption) pair sourced from the same recording
environments as the i-th video clip in the original batch. Furthermore, P(ti) ⊆ B̃(t) ∪ B(t) defines
the set of captions, each containing at least one verb or noun that matches those in ti. To save space,
we omit displaying the text-to-video loss as it is symmetrically formulated.

Lack of Fine-Grained Text Supervision for HOI-action. While EgoVLMs pretrained with
InfoNCE and EgoNCE have gained substantial knowledge about EgoHOI, they lack fine-grained
text supervision. Specifically, InfoNCE often samples easy negative pairs (e.g., ‘opens a drawer” vs.
“picks an egg”) without employing effective hard negative mining for text. Additionally, EgoNCE’s
positive sampling expansion strategy treats pairs like “opens a drawer” and “closes a drawer”, or
“opens a drawer” and “opens a bottle”, as positive pairs, which weakens the model’s understanding of
fine-grained HOIs. As a result, these objectives often distinguish EgoHOIs based on simultaneous
verb-noun variation, ignoring the need to learn the true semantics of HOI combinations. While these
pretraining objectives are proven to be effective, we believe that a more generalizable EgoVLM
should be capable of recognizing word-level variations in sentences.

2.3 OBSERVATION OF OBJECT-CENTRIC FEATURE SPACE IN EGOVLMS

EgoVLMs Establish an Object-Centric Feature Space for HOI-noun. While performance on
the HOI-noun task shows room for improvement, results are even lower on the HOI-verb task.
Recognizing complex actions and temporal dynamics is generally more challenging than identifying
static objects (Damen et al., 2021). We hypothesize that this pattern extends to video-text matching,
where matching a video to the correct verb is more difficult than matching it to the appropriate noun.

To test this hypothesis, we visualize egocentric video and text embeddings in a low-dimensional space
to examine their distribution. Specifically, for visualizing verb-anchored text and video embeddings,
we select several HOI-related verbs as anchors (e.g., "pick"). For each anchor verb, we gather 150
text captions that share the same verb but feature different nouns (e.g., "... pick apples ..." "... pick
clothes ..." "... pick books ..."). We then visualize the embeddings of these verb-anchored texts and
the embeddings of their paired videos. Similarly, we create visualizations for noun-anchored text and
video embeddings. Using t-SNE (van der Maaten & Hinton, 2008) for dimensionality reduction, we
generate visualizations, as shown in Figure 3, focusing on LaViLa’s feature space. After egocentric
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verb-anchored noun-anchoredverb-anchored noun-anchored
Text Video

Figure 3: Visualization of LaViLa’s feature space. Both video and text feature space exhibits the
object-centric property. Apparently, the videos/texts are more separable by nouns, indicating a video
is more easily matched with the correct noun on HOI-noun tests rather than verbs.

pretraining, the feature space reveals that noun-anchored embeddings form tighter clusters, while
verb-anchored embeddings are more dispersed. This suggests that video-noun matching is easier
than video-verb matching, which explains the poorer performance on HOI-verb tasks compared to
HOI-noun tasks. A similar pattern is observed in EgoVLP’s feature space, as detailed in Figure 11.

Current Objectives Are Not Tailored for Learning Object-Centric Features. Upon revisiting the
InfoNCE and EgoNCE, we observe that the video and text embeddings generated during training
tend to cluster around nouns. However, these objectives are not explicitly designed to learn an
object-centric feature space. On the other hand, prior research (Zhang et al., 2023; Escorcia et al.,
2022; Zhou et al., 2023) has demonstrated the benefits of enhancing object-centric features. Building
on this insight, we aim to further strengthen these features through a contrastive learning perspective
on the text-to-video side, thereby retaining the advantage for the HOI-noun task.

3 EGONCE++: HOI-AWARE ASYMMETRIC PRETRAINING OBJECTIVE

Building upon the analyses above, our primary goal is to enhance the model’s sensitivity to word
variations that benefits HOI-action recognition, while also reinforcing the object-centric feature
space in EgoVLMs to maintain their advantage in HOI-noun tasks. To achieve this, we introduce a
new contrastive learning objective called EgoNCE++, which incorporates asymmetric video-to-text
(Section 3.1) and text-to-video losses (Section 3.2). The video-to-text loss enables the model to better
understand HOI combinations by generating negatives through HOI-related word changes, while
the text-to-video loss preserves object-centric feature properties by clustering video representations
based on similar nouns. Figure 4 illustrates an overview of our method.

3.1 V2T: HOI-AWARE NEGATIVE GENERATION BY LLM OR VOCABULARY

To build a more robust EgoVLM that is sensitive to variations in HOI combinations, we focus on
enhancing the negative text supervision by generating fine-grained hard negatives N (t) through
targeted word changes to specific verbs or nouns. This approach ensures that each video v is paired
with a fixed set of nuanced hard negatives, while retaining easier negatives in B(t). The generated
false HOI combinations N (t) provide more stable and high-quality supervision for understanding
true HOI combinations compared to easy negatives in B(t).
We propose two methods for generating these hard negatives: (1) utilizing the vocabulary from the
pretraining dataset, or (2) leveraging an LLM when the vocabulary is unavailable. The simplest
approach involves substituting HOI-related words from the pretraining vocabulary, encouraging
EgoVLM to better capture HOIs within the pretraining data. Specifically, we use spaCy (Honnibal
et al., 2020) to extract all verbs and nouns in the pretraining dataset. Then, we replace HOI-nouns
or HOI-verbs by extracted words randomly. When the pretraining vocabulary is insufficient or
unavailable, an LLM can be employed to generate negatives. We prompt an LLM to use the json
format for response and an in-context learning example to generate sentences that differ semantically
from the original text. LLM-generated negatives are not only more fluent, diverse but also more
aligned with real-world contexts, owing to the LLM’s extensive world knowledge. Comparing these
two strategy, negatives generated by the vocabulary helps develop a better understanding within the
pretraining dataset, while the LLM-generated negatives may generalize to unseen HOI combinations.
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EgoNCE++
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HOI Negative Generation
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(b) Video-to-Text

(c) Text-to-Video

video

(a) Architecture

Figure 4: Illustration of our pretraining framework. (a) EgoVLMs are trained with EgoNCE++,
where the visual encoder is trained using LoRA (Hu et al., 2022) to enhance video representation,
while the text encoder remains frozen. Specifically, EgoNCE++ consists of (b) V2T: generating
HOI-related negative captions for fine-grained supervision, and (c) T2V: strengthening the strong
ability of EgoVLMs to recognize nouns by aggregating video features associated with similar nouns.

After generating negative captions with plausible semantics for videos, we apply the following
supervision loss to improve HOI understanding from the video-to-text perspective:

Lv2t =
1

B

∑
vi∈B(v)

log
exp(vi · ti)

Σtj∈B(t) exp(vi · tj) + Σtk∈Nnoun(ti)∪Nverb(ti) exp(vi · tk)
(3)

where Nverb(ti) and Nnoun(ti) denote the verb negatives and noun negatives, respectively. Our
video-to-text loss guides videos to correct HOI meanings with supervision from both the coarse-
grained easy negatives and fine-grained word substituted negatives.

3.2 T2V: OBJECT-CENTRIC POSITIVE VIDEO SAMPLING

Since our V2T negative mining on HOI-verbs might damage the strong recognition towards noun, we
aim to maintain the noun clustering nature by T2V positive sampling on nouns. The text-to-video
loss is designed to preserve the object-centric video features that enhances video-text matching.
As discussed in Section 2.3, it is natural to reach the solution that we can continue to group video
representations with the same nouns for given narrations.

To this end, we devise an object-centric text-to-video loss, where Pnoun(vi) denotes the videos that
feature similar nouns in their captions:

Lt2v =
1

B

∑
ti∈B(t)

log
Σk∈Pnoun(vi) exp(ti · vk)
Σvj∈B(v) exp(ti · vj)

(4)

Different from EgoNCE that considers videos with either similar verbs or nouns as positives, we
argue that only groups videos with the same nouns is more suitable for learning the object-centric
nature of EgoVLMs’ feature spaces.

3.3 TRAINING STRATEGY

To refine the video representation of EgoVLMs for better generalization, we freeze the text encoder,
except for the word embedding to adapt for novel negative sentence distribution, while fine-tuning the
visual encoder using LoRA (Hu et al., 2022). The dual encoders are trained with both video-to-text
loss by fine-grained negative text supervision and text-to-video loss with object-centric positive video
sampling. Our final objective comprises the sum of text-to-video and video-to-text losses:

LEgoNCE++ = Lt2v + Lv2t (5)
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(a) Across Benchmarks (b) Across EgoVLMs
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ActionBench
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Figure 5: Overview of experimental results. (a) LaViLa++ that is pretrained on LaViLa using
EgoNCE++ achieves remarkable improvements across benchmarks under zero-shot settings, mean-
while (b) EgoNCE++ universally enhances HOI comprehension on EgoHOIBench across EgoVLMs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

To ensure the robustness of our approach, we evaluate a range of well-known EgoVLMs including
EgoVLP (Lin et al., 2022), EgoVLPv2 (Pramanick et al., 2023) and LaViLa (Zhao et al., 2023).
Details of these models can be found in our Appendix C.1. In this paper, we continue to pretrain
these models instead of training them from scratch due to computational resource constraints.

Pretraining Dataset and Details. Our pretraining video clips are sourced from EgoClip-3.8M (Lin
et al., 2022), ensuring no overlap with the clips used in EgoHOIBench. The dataset focuses on
EgoHOIs, excluding videos that primarily captures activities of other persons, resulting in a dataset of
2.5 million entries. The videos are typically about 1 second long, accompanied by captions describing
verbs and nouns relevant to hand-object interactions. During pretraining, we sample 4 frames from
each video. We employ LoRA tuning with both rank and alpha set to 16. The models are continually
pretrained for 10 epochs over a period of 12 hours using 8× A800 GPUs, with a total batch size of
576. We utilize LLaMA3-8B (AI, 2024) to generate negative captions for the videos.

Downstream Benchmark and Evaluation Setups. We evaluate our model on three types of
tasks across seven benchmarks in a zero-shot setting: (1) Open-vocabulary recognition: tasks that
test video-text matching for video-and-language models. We evaluate on EgoHOIBench, EK-100-
OV (Chatterjee et al., 2024) and ActionBench (Wang et al., 2023b). EgoHOIBench assesses model’s
sensitivity to HOI word changes, EK-100-OV evaluates recognition of unseen object categories in
kitchen scenarios, and ActionBench focus on temporal understanding in open-world scenarios. (2)
Multi-instance retrieval: conducted on Epic-Kitchens-100 (Damen et al., 2021), a kitchen-oriented
retrieval benchmark where multiple video clips can correspond to the same narration. (3) Action
recognition: tested on CharadesEgo (Sigurdsson et al., 2018a), EK-100-CLS (Damen et al., 2021),
and EGTEA (Li et al., 2018). CharadesEgo presents an out-of-domain challenge (Lin et al., 2022;
Zhao et al., 2023) for models trained on Ego4D. with 157 indoor activity classes. EGTEA requires
classifying 106 cooking activities, while EK-100-CLS evaluates 97 verbs and 300 nouns in kitchens.

4.2 MAIN RESULTS

EgoNCE++ Enhances EgoVLMs’ Sensitivity on HOI-related Word Changes. On EgoHOIBench,
models are required to comprehend HOI combinations and distinguish specific word changes in
sentence candidates. As shown in Figure 5 (b), all EgoVLMs pretrained with EgoNCE++ exhibit
significant improvements, showcasing the versatility of our method across various architectures,
training strategies, and loss functions. The notable enhancements primarily arise from improved verb
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Table 1: Comparison with state-of-the-art methods HelpingHands (Zhang et al., 2023) and
HENASY (Phan et al., 2024) on zero-shot EK100-MIR and EGTEA. All these models are built upon
LaViLa-Base model. The numbers of the method with * are sourced from Phan et al. (2024).

Epic-Kitchens-100-MIR EGTEA

METHOD Extra Param mAP (%) nDCG (%) mean-acc top1-accV→ T T→ V Avg. V→ T T→ V Avg.

LaViLa - 35.1 26.6 30.8 33.7 30.4 32.0 30.9 35.1
HelpingHands* 37M 35.6 26.8 31.2 34.7 31.7 33.2 29.4 35.3
HENASY* 112M 35.5 27.1 31.3 34.6 31.7 33.2 29.6 35.9
LaViLa++ 27M 35.8 27.9 32.0 34.8 31.4 33.1 34.0 35.4

Table 2: Comparison of temporal understanding action recognition on ActionBench, where * denotes
the fine-tuned model by Wang et al. (2023b).

MODEL InternVideo* Clip-Vip* Singularity* Human LaViLa LaViLa++

ACTION ACCURACY 90.1 89.3 83.8 92.0 79.89 91.18

understanding, e.g. a +34.02% increase in verb accuracy leading to a +26.32% improvement in
action accuracy for LaViLa++. Detailed numbers are provided in the Appendix C.3.

EgoNCE++ Consistently Benefits EgoVLMs Across Multiple Benchmarks. Taking a state-
of-the-art EgoVLM LaViLa as an example as shown in Figure 5 (a), EgoNCE++ demonstrates
consistent improvements across all benchmarks. From the perspective of video-text alignment
during pretraining, EgoVLMs clearly benefit from EgoNCE++, leading to significant gains in HOI
comprehension, especially reflected on Ego4D benchmarks including EgoHOIBench (+26.32%),
ActionBench (+11.3%). Moreover, EgoNCE++ exhibits strong generalizations across other datasets,
showing improvements on EK100-CLS (+4.53%), EK100-OV (+0.9%), and EGTEA (+3.1%)

LaViLa++ Competes with SoTA Models in Zero-Shot Multi-Instance Retrieval and Action
Recognition. As shown in Table 1, LaViLa++ remains competitive with state-of-the-art models built
upon LaViLa across all metrics for retrieval and action recognition tasks. Specifically, it achieves a
notable +1.2% increase in average mAP over LaViLa, surpassing models that incorporate additional
HOI detection supervision (Zhang et al., 2023) or hierarchical architecture (Phan et al., 2024). It also
improves nDCG by +1.1% over LaViLa, achieving competitive results compared to other models.
Furthermore, LaViLa++ demonstrates a significant +4.4% boost than other methods in mean accuracy
on EGTEA, indicating that EgoNCE++ serves as a promising pretraining objective for EgoVLMs.

EgoNCE++ Boosts Model Temporal Understanding Capability. ActionBench (Chatterjee et al.,
2024) focuses on temporal understanding tasks, such as distinguishing between “pick up” and “put
down”. In Table 2, we evaluate both LaViLa and LaViLa++ in a zero-shot setting. Although we
do not specifically create negatives for temporal understanding, the results indicate that LaViLa++
can accurately classify verbs by distinguishing them from their antonyms. Our model surpasses the
previous best models reported in Wang et al. (2023b) and even approaches human-level performance.

4.3 ABLATION STUDY

All ablation studies are conducted by pretraining the EgoVLP model (Lin et al., 2022). More detailed
ablation studies can be found in Appendix C.4.

Our Asymmetric V2T and T2V Losses Bring Collaborative Enhancement in Performance.
As shown in Table 3, our video-to-text supervision (“ours”) significantly enhances the EgoVLM’s
ability to capture fine-grained details, achieving a +9.8% improvement in HOI-action and a +0.3%
increase in mAP for generalization to EK-100-MIR, outperforming both InfoNCE and EgoNCE.
Comparing the 3rd and 4th rows, we observe that combining our asymmetric video-to-text loss with
text-to-video loss further strengthens the model’s HOI comprehension, resulting in an additional
+1.32% improvement in HOI-action on EgoHOIBench and enhanced generalization on EK100-MIR,
with an additional +0.3% increase in mAP.
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Table 3: Ablation of V2T and T2V losses.

V2T T2V EgoHOIBench EK-100-MIR
verb noun action avg.mAP avg.nDCG

EgoNCE EgoNCE 40.27 68.60 30.16 22.2 26.7
InfoNCE InfoNCE 40.70 68.86 30.51 22.1 26.5
InfoNCE EgoNCE++ 40.60 69.15 30.62 22.3 26.7

EgoNCE++ InfoNCE 54.56 68.96 40.31 22.4 26.9
EgoNCE++ EgoNCE++ 56.11 69.05 41.63 22.7 27.1

Table 4: Ablation of the negative generator.

GENERATOR EgoHOIBench EK-100-MIR
verb noun action avg.mAP avg.nDCG

none 40.27 68.60 30.16 22.2 26.7
rule-based 43.52 68.94 32.63 22.1 26.7

vocab-based 54.46 68.56 40.07 22.5 27.1
LLM-based 56.11 69.05 41.63 22.7 27.1

EgoVLP EgoVLP++LaViLa LaViLa++

Figure 6: Histogram of video-text similarities for EgoVLP and LaViLa on EgoHOIBench. After
applying EgoNCE++, the video-verb negatives are especially suppressed and thus the video-positives
are more distinguished. LaViLa that is pretrained with InfoNCE benefits more from EgoNCE++ than
EgoVLP that is pretrained with EgoNCE.

Figure 7: Scaling effect of negative num-
ber on EK-100-MIR (mAP).

Our Hard Negative Generation Performs Better than
Rule-Based Generation. We compare our LLM-based
and vocab-based hard negative generation methods with
rule-based method: (1) LLM-based, where an LLM per-
forms word substitutions through in-context learning; (2)
vocab-based, where HOI verbs are replaced with arbitrary
verbs from the predefined Ego4D vocabulary containing
thousands of words. (3) rule-based, where hard nega-
tives are selected by choosing captions with the highest
BLEU (Papineni et al., 2002) scores from the sentences;
As shown in Table 4, both the LLM-based and vocab-based
methods result in significant improvements, surpassing the
rule-based method by at least +7.44% on HOI-action and
+0.4% on EK100-MIR in mAP. The rule-based method
provides negatives that have already been encountered
during pretraining, making it less effective. While the
vocab-based method occasionally generates meaningless
HOI combinations, the LLM-based method produces more effective hard negatives, resulting in
slightly better performance.

Performance Improves as the Negative Number Increases. Figure 7 illustrates the trend in mAP
for EK-100-MIR as the number of negative samples increases. A clear correlation is observed:
with more negatives leading to improved performance across various EgoVLM, such as EgoVLP
and LaViLa. More negatives during pretraining significantly enhances the distinguishability of true
video-HOI matches from other false HOIs, contributing to better performance.

4.4 FURTHER ANALYSIS

Histogram of Video-Text Similarity on EgoHOIBench. To examine how video-text similarities are
changed by EgoNCE++, we visualize histograms of video-text similarities on EgoVLP and LaViLa
in Figure 6. Video-positives roughly remains a high range of similarity, while the video-negatives
are suppressed lower after applying EgoNCE++. We note that the LaViLa pretrained on InfoNCE
benefits more from EgoNCE++ than EgoVLP pretrained on EgoNCE.

Qualitative results. For detailed qualitative results, please refer to Appendix D.
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5 RELATED WORK

Egocentric Hand-Object Interaction. Captured by head-mounted cameras, egocentric hand-
object interaction (EgoHOI) (Grauman et al., 2022; Chatterjee et al., 2024; Xue & Grauman, 2024;
Plizzari et al., 2023; Zhang et al., 2022; Mangalam et al., 2024) provides insight into how humans
interact with objects from a first-person view. To address this task, Huang et al. (2018) and Kazakos
et al. (2021) focus on recognizing close-set EgoHOIs using additional multimodal cues (e.g., gaze,
sound), while Wang et al. (2023a) adopt a self-supervised approach (He et al., 2022) to exploit visual
information. Considering the abundant resources of third-person data, some works (Li et al., 2021b;
Xu et al., 2023) aim to transfer view-agnostic knowledge from third-person videos to egocentric
viewpoints. However, the unpredictable nature of open-world environments poses new challenges,
requiring models to handle a variety of unseen concepts. Recent studies (Chatterjee et al., 2024;
Wang et al., 2023b) seek to improve the understanding of open-vocabulary EgoHOI, but these efforts
are either limited to specific domains like kitchens (Damen et al., 2021) or laboratories (Sener et al.,
2022), or involving easy EgoHOI recognition that is well-solved by current egocentric models. A
promising strategy to address these limitations involves egocentric video-language pretraining (Lin
et al., 2022; Pramanick et al., 2023; Zhao et al., 2023; Zhang et al., 2023), which learns generalizable
representations by leveraging the Ego4D (Grauman et al., 2022) dataset with over 3,000 hours of
footage of daily human interactions. As a pioneering work, EgoVLP (Lin et al., 2022) uses the
EgoNCE loss to treat video-text samples with similar HOIs as positives and visually similar videos
as negatives during pretraining. Another method, LaViLa, enhances text supervision by generating
diverse positive captions for videos to foster robust contrastive learning through a visual-conditioned
GPT-2 (Radford et al., 2019) and a T5 (Raffel et al., 2020) rephraser. In this work, we expose the
limitation of these EgoVLMs on recognizing HOI-related word variations, and address the issue by
improving the contrastive loss, which also benefits other downstream tasks.

Hard Negative Mining. Hard negative mining is a pivotal technique (Robinson et al., 2021;
Zolfaghari et al., 2021) for refining representations within the visual-language metric space during
contrastive learning. Traditionally, this process pairs positive samples with hard negatives that exhibit
high feature similarity within pretraining datasets (Pramanick et al., 2023; Bao et al., 2022; Li et al.,
2021a; Xu et al., 2021), or selecting hard negative from clips recorded in similar environment (Lin
et al., 2022). Recent innovations have introduced the generative negative sampling strategy using
LLMs, aiming to enhance improve compositional understanding (Yuksekgonul et al., 2023) in image-
VLMs (Radford et al., 2021; Li et al., 2022; Singh et al., 2022; Zeng et al., 2022), and action
comprehension (Momeni et al., 2023; Bansal et al., 2024) in video-VLMs (Luo et al., 2022). For
instance, ViA (Momeni et al., 2023) proposes a verb-focused pretraining framework that creates
negative captions of sentences and verb phrases using an LLM. However, most of these approaches
are tailored to third-person scenarios (Wang et al., 2019; Xu et al., 2016) like Kinetics-400 (Carreira
& Zisserman, 2017), or to close-set recognition tasks (Bansal et al., 2024; Bagad et al., 2023) such
as SSv2 (Materzynska et al., 2020; Goyal et al., 2017). It remains unclear whether LLM generated
negative captions are effective for egocentric videos which contain complex, noisy visual content and
rich hand-object interactions. In our paper, our proposed learning objective EgoNCE++ incorporates
generative negative mining into the pretraining process by using either the powerful LLM or the more
efficient vocabulary from pretraining set, facilitating more robust EgoVLMs.

6 CONCLUSION

In this work, we introduce EgoHOIBench, a straightforward test designed to assess EgoVLMs’
comprehension of HOI combinations, highlighting the current limitations of these models in under-
standing hand-object activities. We identify the underlying issues, including a lack of fine-grained
negative text supervision and the object-centric feature space that favors HOI-noun recognition but
adversely impacts HOI-verb recognition. Building upon these analyses, we propose an asymmetric
learning objective called EgoNCE++, which enhances the video-to-text loss by incorporating gen-
erated dense hard negatives, and a text-to-video loss that focuses on grouping videos with similar
nouns. Through extensive experimental analyses across diverse benchmarks, we demonstrate that our
proposed VLP training framework can effectively equip different EgoVLMs with greater robustness
to HOI combinations and benefit various downstream EgoHOI tasks.
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A DISCUSSIONS

Limitations. While EgoNCE++ delivers significant improvements across various fine-grained
HOI benchmarks for multiple EgoVLMs, it does have some limitations. First, although hand-object
interactions constitute a significant portion of egocentric activities, egocentric scenarios encompass
a broader range of actions, such as simple observation of the environments or VR/AR activities
like dancing or playing sports (Grauman et al., 2024b). A promising solution to this challenge is to
incorporate third-person videos into the pretraining corpus (Dou et al., 2024) or leverage pretrained
models based on third-person video data (Pei et al., 2024). Second, we find it challenging to enhance
the EgoVLM’s object recognition capabilties solely through text supervision. This difficulty likely
stems from the broader diversity of object categories compared to action types in the real world,
making effective capture challenging with a limited number of negative samples. Introducing visual
supervision signals such as bounding boxes may be beneficial (Zhang et al., 2023; Phan et al., 2024).
We plan to address these challenges in future works.

Social Impact. The knowledge of EgoHOIs acquired by EgoVLMs holds great potential for real-
world applications, including embodied agents and VR/AR systems. However, the use of egocentric
videos raises privacy concerns, as they often capture personal and sensitive information. If not
carefully managed, these privacy issues could lead to negative consequences. Furthermore, EgoVLMs
are particularly relevant in contexts like kitchen environments, where recognizing dangerous activities
is critical. Misinterpreting EgoHOIs could result in harmful outcomes, such as failing to recognize
unsafe actions during tasks involving sharp objects. Our research addresses some of these challenges
by demonstrating a more robust understanding of HOI actions, providing improved generalization
and potentially mitigating these risks.

B MORE DETAILS OF THE EGOHOIBENCH

B.1 CONSTRUCTION PROCESS

We develop EgoHOIBench based on EgoMCQ (Lin et al., 2022), which sources a diverse collection
of 39,000 video clips from the validation set of the Ego4D dataset. In our curation process, we
only keep those EgoHOI clips performed by the camera wearer, excluding clips that record other
people’s activities, such as multi-person interactions (Ryan et al., 2023). We achieve this by keeping
the captions that begin with ‘#C‘ (denoting the wearer) and are followed by HOI-related verbs and
nouns, while filtering out any notations related to other individuals, such as ‘#O‘. To construct the
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verb/noun in answer verb/noun in negative

verb in answer: 366 (44.15%)

verb in negative: 463 (55.85%)

noun in answer: 1935 (42.47%)

noun in negative: 2621 (57.53%)

Figure 8: Illustration of the vocabulary statistics of EgoHOIBench.

HOI recognition trials as defined in our task definition above, given a video and its ground truth
caption, we prompt an LLM to create candidate captions that contain semantically different HOIs
from the ground truth. Specifically, we employ the LLaMA-3-8B (AI, 2024) model to generate HOI
candidates through in-context learning. We provide the specific prompts and two exemplary tasks
used in this process, along with examples of the final cases in Figure 13, which target at generating
words with different meanings to make the choices easier. To avoid semantic redundancies and ensure
the uniqueness of the hard negative candidates, we use the Ego4D dictionary to eliminate possible
synonyms from the generated captions. Ultimately, EgoHOIBench comprises 29,651 video clips,
each accompanied by one ground truth caption, 10 negative captions with verb changes, and 10
negative captions with noun changes. Setting the number of negatives to 10 (i.e. 10 noun negatives,
10 verb negatives) forms 100 HOI negatives, which aligns with the typical action recognition setting.

B.2 VOCABULARY STATISTICS

The statistics of the vocabulary information are presented in Figure 8. This dataset features a rich and
diverse vocabulary, including approximately 800 verbs and 4,000 nouns. The options generated by
LLMs effectively double the vocabulary size compared to the original correct answers, resulting in
extensive combinations of verbs and nouns.

C MORE EXPERIMENTAL ANALYSIS

For fair comparisons, we have re-implemented all experiments in the same environment and under
identical settings, without any adjustments to the hyperparameters.

C.1 IMPLEMENTATION DETAILS

As introduced in the main paper, we validate our approach on three EgoVLMs including EgoVLP, its
advanced version EgoVLPv2, and LaViLa. EgoVLP is pretrained on the EgoCLIP-3.8M dataset and
employs the EgoNCE loss for optimization. EgoVLPv2 enhances the original model by incorporating
a cross-attention mechanism between dual encoders and by pretraining on additional proxy tasks.
LaViLa, on the other hand, is trained on a vast dataset of 4 million videos, with 56 million captions
generated by a visual-conditioned GPT-2 (Radford et al., 2019) and further refined using a sentence
rephraser T5 (Raffel et al., 2020). This extensive training regimen enables LaViLa to improve the
generalization of EgoVLMs. We present a summary of well-known EgoVLP methods in Table 5.
Our proposed EgoNCE++ further enhances the EgoHOI understanding capabilities of pretrained
EgoVLM models, utilizing only few trainable parameters and a novel pretraining objective.

For all models, we adopt the AdamW optimizer with parameters β1 = 0.9 and β2 = 0.999. The
learning rate follows a cosine annealing schedule, starting at 3e-5 and gradually reducing to 3e-7.
During training, we apply standard RandomResizedCrop for data augmentation and employ LoRA
tuning to continuously pretrain our EgoVLM. The text encoder for EgoVLP is DistilBERT (Sanh
et al., 2019), while LaViLa uses CLIP (Radford et al., 2021). In the case of EgoVLPv2, we implement
a dual encoder architecture without cross-attention fusion, training it exclusively with EgoNCE++.
The text encoder for EgoVLPv2 is RoBERTa (Liu et al., 2019). It is important to note that in the
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Table 5: Summary of existing egocentric video-language pretraining methods compared with ours.

METHOD Pretrain Data Objective Negative Mining Visual Encoder Text Encoder Train Param

EgoVLP 3.8M EgoNCE video sim ImageNet DistillBert 172M
EgoVLPv2 3.8M EgoNCE+MLM+VTM feature sim ImageNet Roberta 364M

LaViLa 4M InfoNCE none CLIP CLIP 180M

Ours 2.5M EgoNCE++ text sim EgoVLM EgoVLM +3M-43M

text encoder, for LaViLa, we fine-tune the word embeddings, while for the other two EgoVLMs, the
entire text encoder remains frozen. Our experiments show that fine-tuning the word embeddings in
EgoVLP and EgoVLPv2 results in reduced generalization performance across public benchmarks
such as EK-100-MIR. The difference may result from the tokenizers, where only LaViLa uses the
BPE tokenizer (Sennrich et al., 2016).

We implement all models using their original codebases, with one exception: videos are loaded using
the Decord library, as recommended by LaViLa, instead of using pre-extracted frames via ffmpeg.
This may lead to slight numerical differences in the results for pretrained EgoVLP and EgoVLPv2
compared to the figures reported in their original papers.

C.2 BENCHMARK DETAILS

Multi-Instance Retrieval in EK-100-MIR. For the zero-shot setting, we conduct video-text match-
ing for retrieval tasks, using 16 frames for evaluation. For the fine-tune setting, we finetune the
EgoVLMs using the AdamW optimizer. The learning rate is dynamically adjusted from 3e-3 to 1e-5
using a cosine annealing scheduler that incorporates a linear warmup, starting at 1e-6 for the first
epoch. We deploy a total batch size of 128 across 8 GPUs. During both training and inference, 16
frames are sampled from each video.

Action Recognition in EGTEA. For the zero-shot setup, we evaluate mean results across all
evaluation splits, as suggested by Li et al. (2018), by conducting a video-text retrieval task between
video clips and their corresponding action text labels. We prepend the text labels with the prompt
“#C C ...” to standardize the input format. For the fine-tuning setup, we leverage the visual encoder
and attach an additional linear projection head for the classification purpose, following Kazakos et al.
(2021). The models are trained and evaluated on the first split of the validation set. We employ the
same optimizer, scheduler, batch size, and frame sampling rate as used in EK-100-MIR. At inference
time, we perform three spatial crops of size 224× 224 from each 256× 256 frame of the video clip,
averaging their predictions to form the final prediction.

Action Recognition in CharadesEgo. We treat action recognition as a video-text retrieval task,
where video clips are matched with their corresponding action text labels in a zero-shot evaluation
setting. During inference, we sample 16 frames from each video. Notably, previous works evaluate
their models on CharadesEgo using the initial checkpoint due to the domain gap problem, where
continued training often leads to performance drops (Lin et al., 2022). In contrast, these studies use
their best checkpoint for evaluation on other datasets, such as EK100. In our experiments, EgoNCE++
continues pretraining from the best checkpoints instead of starting from the initial checkpoint of
EgoVLMs, to ensure a fair comparison and consistent pretraining setting between EgoVLM and
EgoVLM++. Consequently, it is common to observe lower numbers in our paper than those reported
in their original papers. Given the consistent improvements offered by EgoNCE++, we believe that if
we were to pretrain from their initial checkpoints, EgoVLMs would still benefit from EgoNCE++.

Action Recognition in EK100-CLS. For the zero-shot setting, we organize the task similarly to
EgoHOIBench. For verb classification, we append the ground truth noun, while for noun classification,
we prepend the ground truth verb. In the linear probing setting, we freeze the visual encoder and add
a linear layer to map the feature embeddings to the predefined classes.
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Table 6: Comparison of open-vocabulary action recognition on the EK-100-OV dataset.

METHOD HOI
DETECTOR TYPE OPEN-SET CLOSE-SET

top-1 action (%) top-5 action (%) top-1 action (%) top-5 action (%)

S3D ✓ fine-tune 0 - 37.6 -
2×S3D ✓ fine-tune 0.1 - 36.7 -

OAP+AOP ✓ fine-tune 11.2 - 35.9 -

LaViLa ✗ zero-shot 7.57 22.78 16.59 34.88
LaViLa++ ✗ zero-shot 8.48 21.36 17.34 36.96

Table 7: Comparison on downstream benchmarks under the zero-shot setup, where “MODEL++”
denotes using EgoNCE++ to continue to pretrain the original MODEL.

EgoHOIBench Epic-Kitchens-100-MIR CharadesEgo

METHOD verb (%) noun (%) action (%) mAP (%) nDCG (%) mAPV→ T T→ V Avg. V→ T T→ V Avg.

EgoVLP 40.27 68.60 30.16 25.2 19.2 22.2 28.1 25.4 26.7 19.3
EgoVLP++ 56.11 69.05 41.63 25.6 19.7 22.7 28.6 25.7 27.1 19.7
EgoVLPv2 36.10 63.40 26.40 26.9 19.9 23.4 28.8 26.8 27.8 17.2
EgoVLPv2++ 44.41 64.10 32.40 28.0 19.9 23.9 29.8 26.8 28.3 17.5
LaViLa 46.61 74.33 36.85 35.1 26.6 30.8 33.7 30.4 32.0 20.6
LaViLa++ 80.63 75.30 63.17 35.8 27.5 31.7 33.9 30.7 32.3 20.9

C.3 MAIN RESULTS

C.3.1 ZERO-SHOT SETUP EVALUATION

EgoNCE++ Consistently Improves Generalization Across All EgoVLMs. As shown in Table 7,
all EgoVLMs benefit from pretraining with EgoNCE++, resulting in consistent improvements across
EgoHOIBench, EK100-MIR and CharadesEgo.

Table 8: Comparison of action recognition tasks
on Epic-Kitchens-100, where zero-shot setting is
organized the same way as EgoHOIBench.

SETTING METHOD verb noun action

Zero-Shot LaViLa 11.65 39.78 10.14
LaViLa++ 16.10 43.35 14.67

Linear Probing LaViLa 59.06 41.53 26.29
LaViLa++ 59.43 42.41 26.86

Open-Set EgoHOI Recognition on EK-100-
OV. The EK-100-OV (Chatterjee et al., 2024)
aims to recognize unseen categories, especially
novel objects, at inference time. We evaluate
both LaViLa and LaViLa++ on this benchmark
in the zero-shot setup, with results presented
in Table 6. Although our model does not outper-
form those specifically designed models which
extract object region features using an HOI de-
tector (Shan et al., 2020) at inference time, it
demonstrates strong generalization capabilities
and competitive results on top-5 actions, consid-
ering 2,639 candidate HOI combinations at inference time. Compared to LaViLa, our enhanced
model LaViLa++ shows clear improvement across most key metrics (e.g., +0.91% in open-set top-1
action accuracy), highlighting its effectiveness in adapting to open-set conditions.

LaViLa++ Exhibits Better Linear Probing Property. We conduct zero-shot classification and
linear probing on EK100-CLS, as shown in Table 8, which highlights the improvement in the video
feature space and generalization capabilities of LaViLa++. We achieve a steady improvement of
+4.53% on action accuracy under zero-shot settings and +0.57% under linear probing settings.

Larger Model Sizes Still Benefit from EgoNCE++. EgoNCE++ can also be applied to the
LaViLa-Large model, as shown in Table 9. First, LaViLa++ enhances the model’s robustness to HOI-
related word variations, demonstrated by a significant improvement of +27.01% on EgoHOIBench.
Additionally, our model achieves notable gains of +1.0% in mAP and +1.1% in nDCG on other
datasets. While our model surpasses the HelpingHands model (without multitask from the HOI
detection) by an average of +0.8% in mAP, its overall performance still falls short. The HelpingHands
model freezes LaViLa-Large and adds a transformer decoder to learn an object-aware feature space
through multitask learning, combining enhanced video-language pretraining with video-noun match-
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Table 9: Comparison of models built upon LaViLa-Large on zero-shot EK-100-MIR and EGTEA.

EgoHOI-B Epic-Kitchens-100-MIR EGTEA

METHOD accuracy mAP (%) nDCG (%) mean-acc top1-accV→ T T→ V Avg. V→ T T→ V Avg.

LaViLa 38.69 40.0 32.2 36.1 36.1 33.2 34.6 34.1 40.1
LaViLa++ 65.70 41.3 32.8 37.1 37.8 33.6 35.7 37.5 38.6

HelpingHands - 42.3 32.7 37.5 39.3 36.2 37.8 39.1 46.6
HelpingHands w/o obj - 40.7 31.1 35.9 38.3 35.0 36.6 44.9 40.1

Table 10: Comparison with state-of-the-arts on EK-100-MIR and EGTEA under the fine-tune setup.

METHOD Epic-Kitchens-100-MIR EGTEA
mAP (%) nDCG (%) top-1 acc mean acc

MME Wray et al. (2019) 38.5 48.5 - -
JPoSE Wray et al. (2019) 44.0 53.5 - -
LSTA Sudhakaran et al. (2019) - - 61.86 53.00
IPL Wang et al. (2021) - - - 60.15
MTCN Kazakos et al. (2021) - - 73.59 65.87

LaViLa Zhao et al. (2023) 50.4 64.8 78.04 70.56
LaViLa++ 50.1 65.1 78.33 71.20

ing, video-sentence matching via EgoNCE, and HOI detection using pseudo-labels. Although the
HelpingHands model is generally stronger, the frozen features from LaViLa would still struggle on
EgoHOIBench. We believe our method is orthogonal and compatible with models like HelpingHands.
By replacing EgoNCE with EgoNCE++, we propose that these objectives could collaboratively
strengthen EgoVLMs by providing both better visual supervision and text supervision.

C.3.2 FINE-TUNING SETUP EVALUATION

In this setup, we further finetune the model on the training and validation splits of downstream tasks.

Multi-Instance Retrieval on EK-100-MIR. As illustrated in Table 10, LaViLa++ outperforms its
original version in terms of nDCG but shows a decrease in mAP. These results suggest that while our
approach enhances the ranking of candidates, it does not retrieve data with similar HOIs as effectively,
highlighting a trade-off between fine-grained HOI recognition and the diversity of retrieved outcomes.
Despite this, LaViLa++ still serve as a strong zero-shot learner for EgoHOI actions.

Action Recognition on EGTEA. This benchmark specifically focuses on cooking activities. Notably,
LaViLa++ achieves state-of-the-art performance on EGTEA, showcasing its ability to leverage the
robust generalization capabilities of LaViLa. The improvement observed on EGTEA demonstrates
that our proposed approach remains effective even when evaluated on out-of-domain benchmarks.

C.4 MORE ABLATION STUDIES

Ablation studies are conducted by pretraining the EgoVLP model (Lin et al., 2022) using EgoNCE++.

Table 13: Ablation of different training strategies.

EgoHOIBench EK-100-MIR

VIS TEXT PARAM action mAP nDCG

frozen frozen 0M 30.16 22.2 26.7
LoRA frozen 3.1M 41.63 22.7 27.1
full frozen 109M 44.39 22.4 27.0

frozen full 63.5M 60.18 9.6 16.8
LoRA full 66.7M 60.01 9.8 16.9
full full 172.5M 59.82 12.5 19.2

Type of Negatives in V2T. The impact of verb
(“VERB”) or noun (“NOUN”) negatives gener-
ated by the LLM is detailed in Table 11. Neg-
ative verb samples effectively enhance model
training, improving verb accuracy by +14.89%.
In contrast, noun negatives yield a modest im-
pact with an accuracy improvement of +0.17%.
This discrepancy could be attributed to the noun
vocabulary size of approximately 7k words,
which is considerably larger than the verb vo-
cabulary of about 2k words, making it more
challenging to acquire visual knowledge from
text supervision with limited data.
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Figure 9: Scaling effect of negative number
on EK-100-MIR (avg. nDCG).

Figure 10: Impact of varying data vol-
ume used in pretraining.

Table 11: Ablation of types of negatives.

VERB NOUN verb (%) noun (%) action (%)

✗ ✗ 40.70 68.86 30.51
✗ ✓ 41.47 69.06 31.29
✓ ✗ 55.16 69.03 40.81
✓ ✓ 55.29 69.03 40.88

Table 12: Ablation of types of positives.

VERB NOUN verb (%) noun (%) action (%)

✗ ✗ 55.29 69.03 40.88
✓ ✓ 55.34 68.89 41.00
✓ ✗ 55.93 68.80 41.26
✗ ✓ 56.11 69.05 41.63

Type of Positives in T2V. Table 12 shows different positive sampling strategies in T2V loss. These
strategies aggregate video representations based on verbs (VERB) or nouns (NOUN) in their captions.
Due to the strong bias towards nouns, the results show that aggregating nouns alone yields the largest
improvements, whereas pulling videos with similar verbs slightly damages the noun recognition.

Training Strategy for Dual Encoder. We further investigate the impact of various training strategies
for dual encoders, as shown in Table 13. Comparing row 2 and row 3, we observe that full tuning
outperforms LoRA tuning by +2.76% on EgoHOIBench but underperforms by an average of -0.3%
on EK-100-MIR. These results indicate that while using additional parameters during full tuning can
improve performance, it may also lead to decreased generalization on out-of-domain benchmarks.
Given the importance of generalization in the real world, we opt for LoRA tuning for the visual
encoder while keeping the text encoder frozen. When the text encoder is trainable, as shown in rows
4-6, there is a boost in performance on EgoHOIBench, even approaching the results achieved by
LaViLa++. However, the lack of generalization to EK-100-MIR suggests significant overfitting to the
pretraining dataset. Therefore, we choose to freeze the text encoder to ensure generalization.

Volume of Used Pretraining Data. Results on the pretraining data size are presented in Figure 10.
The findings highlight a significant increase when only 10% of the data (250K) is used, with action
accuracy rising from 30.3% to 39.2%. In contrast, using the remaining data only results in an
improvement of +2.43%.

Table 14: Ablation of LoRA rank.

LoRA PARAMS verb (%) noun (%) action (%)

1 0.24M 54.76 68.86 40.52
4 0.82M 55.11 68.89 40.95

16 3.14M 55.29 69.03 40.89
32 6.24M 55.01 68.80 40.64

LoRA Rank. We conduct another study to inves-
tigate the impact of rank configurations for LoRA.
As detailed in Table 14, our findings reveal that a
LoRA rank of 16 enhances generalization capabil-
ities, while even a minimal rank of 1 can signifi-
cantly improve EgoHOI recognition performance.
This trend suggests that relatively small training
adjustments can significantly enhance the visual
feature space, leading to improved performance
with minimal computational cost.

Scaling Effect of Negative Numbers on nDCG. Figure 9 illustrates the trend in nDCG for EK-100-
MIR as the number of negative samples increases. Similar to mAP, there is a clear correlation where
using more negatives leads to better performance. While mAP focuses on identifying the single
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Table 15: Comparison of results on EgoHOIBench generated from different LLMs, where
“MODEL++” denotes using EgoNCE++ to continue to pretrain the original MODEL.

LLaMA-EgoHOIBench GPT4o-EgoHOIBench DeepSeek-EgoHOIBench

METHOD verb (%) noun (%) action (%) verb (%) noun (%) action (%) verb (%) noun (%) action (%)

EgoVLP 40.27 68.60 30.16 41.44 66.55 33.96 40.75 56.42 30.56
EgoVLP++ 56.11 69.05 41.63 50.89 70.19 41.78 50.59 60.84 38.04

LaViLa 46.61 74.33 36.85 45.18 72.82 38.20 44.16 62.28 34.09
LaViLa++ 80.63 75.30 63.17 53.95 73.65 44.63 52.73 63.48 39.15

Text Video
verb-anchored noun-anchoredverb-anchored noun-anchored

Figure 11: Visualization of EgoVLP’s feature space. Both video and text feature space keep exhibiting
an object-centric feature space.

correct answer, nDCG emphasizes the overall quality of the ranking. The improved nDCG indicates
that increasing the number of negatives helps refine the ranking, elevating more relevant HOIs and
relegating irrelevant ones, thereby enhancing HOI understanding.

C.5 MORE ANALYSES

Bias of LLMs in EgoHOIBench. To reveal bias on the negative generation in LLMs, we create Ego-
HOIBench similarly using other LLMs: DeepSeek-200B (DeepSeek-AI, 2024) and GPT-4o (OpenAI,
2024). Results are shown in Table 15. The vocabulary bias affects the results to some extent, but our
EgoNCE++ steadily improves the performance on all benchmarks.

D QUALITATIVE RESULTS

EgoVLP’s Also Exhibits Object-Centric Feature Space. Since EgoVLPv2 used in our paper (i.e.,
dual encoder without fusion in the backbone) shares similar structure with EgoVLP, we visualize
the EgoVLP’s feature space in the same way as LaViLa, which also exhibits an object-centric
characteristic. We suspect that most of the egocentric video-language models pretrained with
contrastive learning will be object-centric, regardless of their detailed architecture. To illustrate why
representations tend to cluster by nouns when verbs vary, we consider both the pretraining data and
the video encoding architecture. From a data perspective, for example, a video of someone "cutting
grass" is more visually similar to one of "watering grass" in the same environment Grauman et al.
(2022), whereas "cutting onion" in a kitchen would appear quite different from "cutting grass" due
to the change in both verb semantics and visual content. From an architectural perspective, current
vision models primarily encode videos based on single-frame visual information Lei et al. (2023),
focusing on objects rather than actions. As a result, the model tends to group representations by
nouns (visual similarity) rather than verbs (temporal information). To create a more verb-friendly
feature space, a potential solution could be incorporating multi-modality data that captures motion
and temporal dynamics, such as optical flow or event cameras.

Negatives Sampled from Different Generators. We provide several examples of negative samples
produced by different generators in Figure 14. Notably, LLM-based captions tend to be more
semantically plausible than those generated by vocab-based or rule-based methods, which may
include words not found in the Ego4D dictionary.

Comparison before/after Using EgoNCE++. As previously discussed, EgoVLP++ significantly
outperforms EgoVLP after pretraining with EgoNCE++. To illustrate this, we provide examples
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verb-anchored noun-anchoredverb-anchored noun-anchored
Text Video

verb-anchored noun-anchoredverb-anchored noun-anchored

LaViLa

LaViLa++

Text Video

Figure 12: Comparison of LaViLa and LaViLa++’s feature space. Although they keep exhibiting
object-centric feature spaces, the video-text matching is greatly improved by EgoNCE++.

of both improved cases and bad cases in Figure 15 and in Figure 16, respectively. Figure 15
shows that EgoNCE++ enhances the model’s ability to learn more robust video-text alignments,
enabling our refined model to identify fine-grained EgoHOIs. In contrast, Figure 16 highlights
some extreme cases where our model struggles. In these cases, the background tends to be more
complex, and the differences among actions are subtle, making then difficult to differentiate. We also
visualize the feature space of LaViLa and LaViLa++ in Figure 12. These visualizations reveal that
the feature space preserves its object-centric nature. However, the inherent structure of the video or
text representation space does not necessarily impact the video-text matching results Instead, our
approach enhances video-text matching by making the correct video-text pair more distinguishable
from negative video-text ones.
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For the given text, please change only one 
word, which is a verb, to make the action in 
the text great different, and keep the other 
words unchanged.

Please tell me 10 output texts with a different 
meaning by repeating what I said before.

You should use JSON format for both input 
and output.
Input:
{
  "Text": “d#C C puts the laundry bag on the 
ground"
}

SYSTEM PROMPT: Respond to the user's input as a helpful AI assistant and generate human-like text.

Output:
{
  "Answer0": "#C C grabs the laundry bag from 
the ground",
  "Answer1": "#C C picks the laundry bag from 
the ground",
  "Answer2": "#C C throws the laundry bag on 
the ground",
  "Answer3": "#C C pushs the laundry bag on 
the ground",
  "Answer4": "#C C pulls the laundry bag on 
the ground",
  "Answer5": "#C C looks the laundry bag on 
the ground",
  "Answer6": "#C C kicks the laundry bag to 
the ground",
  "Answer7": "#C C destroys the laundry bag 
on the ground",
  "Answer8": "#C C folds the laundry bag on 
the ground",
  "Answer9": "#C C lifts the laundry bag from 
the ground"
}Input:

{
  "Text": "#C C sits in a chair"
}

Output:
{
  "Answer0": "#C C stands on a chair",
  "Answer1": "#C C jumps on a chair",
  "Answer2": "#C C repairs a chair",
  "Answer3": "#C C lies on a chair",
  "Answer4": "#C C raises a chair",
  "Answer5": "#C C holds a chair",
  "Answer6": "#C C throws a chair",
  "Answer7": "#C C removes a chair",
  "Answer8": "#C C steps on a chair",
  "Answer9": "#C C draws a chair"
}Input:

{
  "Text": "#C C drops the grass "
}

Output:
{       
 "Answer0": "#C C plants the grass", 
 "Answer1": "#C C waters the grass", 
 "Answer2": "#C C trims the grass", 
 "Answer3": "#C C digs up the grass", 
 "Answer4": "#C C mows the grass", 
 "Answer5": "#C C rakes the grass", 
 "Answer6": "#C C burns the grass", 
 "Answer7": "#C C prunes the grass ", 
 "Answer8": "#C C fertilizes the grass", 
 "Answer9": "#C C aerates the grass"
}

Figure 13: Examples of options on EgoHOIBench generated by LLM’s in-context learning.
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#C C puts the laundry bag on the ground

#C C rolls the laundry bag on the floor

#C C drags the laundry bag on the floor

#C C creeps the laundry bag on the floor

#C C places the laundry bag beside the =floor

#C C pushes the laundry bag off the floor

LLM-based

#C C holds the shopping bag on the ground

#C C looks at the bag on the ground

#C C picks the bag on the ground

#C C touches the bag on the ground

#C C moves the laundry bag on the floor

Rule-based

#C C avoids the laundry bag on the floor

#C C demolishes the laundry bag on the floor

#C C fries the laundry bag on the floor

#C C paves the laundry bag on the floor

#C C hoes the laundry bag on the floor

Vocab-based

#C C puts the bowl on the electronic scale

#C C balances the bowl on the electronic scale

#C C pushes the bowl off the electronic scale 

#C C weighs the bowl on the electronic scale 

#C C measures the bowl against the electronic scale 

#C C spins around the bowl on the electronic scale

LLM-based

#C C adjusts the bowl on the slap 

#C C adjusts the bowl on the bowl

#C C turns the bowl on her laps

#C C adjusts the bowl on the kitchen zinc

#C C adjusts the bowl on her laps

Rule-based

#C C mingles the bowl on the electronic scale

#C C speeds the bowl on the electronic scale

#C C displaces the bowl on the electronic scale 

#C C dogs the bowl on the electronic scale 

#C C inherits the bowl on the electronic scale

Vocab-based

#C C picks a grass cutting scissor

#C C mends a grass cutting scissor

#C C sharpens a grass cutting scissor

#C C paints a grass cutting scissor

#C C cleans a grass cutting scissor

#C C unwinds a grass cutting scissor

LLM-based

#C C puts down a scissor

#C C grips a scissor

#C C carries a scissor

#C C touches a scissor

#C C wipes a scissor

Rule-based

#C C picks a grass building scissor

#C C sits a grass cutting scissor

#C C downs a grass cutting scissor

#C C returns a grass cutting scissor

#C C screws a grass cutting scissor

Vocab-based

Figure 14: Examples of options generated by LLM in the pretraining set. We provide five candidates
for simplicity. The green words denote the word to be replaced while the red ones denote words
generated by different strategies.
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1. #C C balances a plate on top of something in the sink

2. #C C puts a plate in the sink

3. #C C hangs a plate over the sink

4. #C C glues a plate together in the sink

5. #C C takes a plate out of the sink

1. #C C puts a plate in the sink

2. #C C takes a plate out of the sink

3. #C C balances a plate on top of something in the sink

4. #C C hangs a plate over the sink

5. #C C glues a plate together in the sink

EgoVLP

EgoVLP++ (Ours)

1. #C C puts a bowl in a sink

2. #C C puts a plate in the sink

3. #C C puts a lid on a sink

4. #C C puts a sponge in the sink

5. #C C puts a cup in the sink

1. #C C puts a plate in the sink

2. #C C puts a bowl in a sink

3. #C C puts a lid on a sink

4. #C C puts a sponge in the sink

5. #C C puts a cup in the sink

1. #C C cleans a bowl stored in the cabinet with right hand

2. #C C picks up a bowl from the cabinet with right hand

3. #C C inspects a bowl stored in the cabinet with right hand

4. #C C moves a bowl around in the cabinet with right hand

5. #C C pushes a bowl out of the cabinet with right hand

1. #C C picks up a bowl from the cabinet with right hand

2. #C C cleans a bowl stored in the cabinet with right hand

3. #C C moves a bowl around in the cabinet with right hand

4. #C C inspects a bowl stored in the cabinet with right hand

5. #C C pushes a bowl out of the cabinet with right hand

EgoVLP

EgoVLP++ (Ours)

1. #C C picks up a pot from a stair with right hand

2. #C C picks up a bowl from the cabinet with right hand

3. #C C picks a bowl from the dishwasher with right hand

4. #C C picks up a sponge with right hand

5. #C C picks up a spoon from the spoon rack with right hand

1. #C C picks up a bowl from the cabinet with right hand

2. #C C picks up a pot from a stair with right hand

3. #C C picks a bowl from the dishwasher with right hand

4. #C C picks up a sponge with right hand

5. #C C picks up a spoon from the spoon rack with right hand

1. #C C wraps the cloth across the sewing machine

2. #C C tangles the cloth around the sewing machine

3. #C C rolls the cloth over the sewing machine

4. #C C drapes the cloth above the sewing machine

5. #C C puts the cloth on the sewing machine

EgoVLP
1. #C C puts the material on the sewing machine

2. #C C puts the cloth on the sewing machine

3. #C C puts the yarn on the sewing machine

4. #C C puts the thread on the sewing machine

5. #C C puts the yarn holder on the sewing machine

1. #C C puts the cloth on the sewing machine

2. #C C tangles the cloth around the sewing machine

3. #C C rolls the cloth over the sewing machine

4. #C C wraps the cloth across the sewing machine

5. #C C drapes the cloth above the sewing machine

1. #C C puts the cloth on the sewing machine

2. #C C puts the material on the sewing machine

3. #C C puts the yarn on the sewing machine

4. #C C puts the yarn holder on the sewing machine

5. #C C puts the thread on the sewing machine

verb noun

verb noun

verb noun

EgoVLP++ (Ours)

Figure 15: Improved cases on EgoHOIBench after using EgoNCE++. Five candidates are provided for
simplicity. The green sentences denote groundtruth caption that is correctly classified by EgoVLP++
while the red ones are false positive predicted by EgoVLP.
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1. #C C takes out the knife from the dish rack

2. #C C wraps around the knife in the dish rack

3. #C C buries the knife in the dish rack

4. #C C cleans the knife in the dish rack

5. #C C places the knife in the dish rack

1. #C C places the knife on the sink table

2. #C C places the knife in the dish rack

3. #C C puts the chopstick in the dish rack

4. #C C places the knife on the orange

5. #C C places the spoon in the dish

1. #C C hammers a cutter

2. #C C cuts a cutter

3. #C C paints a cutter

4. #C C picks a cutter

5. #C C glues a cutter

1. #C C picks a tube

2. #C C picks a box

3. #C C picks a cutter

4. #C C picks a rake

5. #C C picks a jacket

1. #C C leaves the cutting board on the floor

2. #C C moves the cutting board across the floor

3. #C C drags the cutting board along the floor

4. #C C glues the cutting board on the floor

5. #C C picks the cutting board from the floor

1. #C C picks the cloth from the floor

2. #C C picks the shoe from the cutting board

3. #C C picks the clip from the cutting board

4. #C C picks the sausage from the cutting board

5. #C C picks the cutting board from the floor

1. #C C shakes the acrylic paint tube lid

2. #C C squeezes the acrylic paint tube lid

3. #C C punctures the acrylic paint tube lid

4. #C C crushes the acrylic paint tube lid

5. #C C opens the acrylic paint tube lid

1. #C C opens the paint tin

2. #C C opens the acrylic paint tube lid

3. #C C opens the can lid

4. #C C opens the Japanese vinegar lid

5. #C C opens the test tube

1. #C C unfolds the cloth

2. #C C creases the cloth

3. #C C scrunches the cloth

4. #C C straightens the cloth

5. #C C turns the cloth

1. #C C turns the lid

2. #C C turns the cloth

3. #C C turns the pillow

4. #C C turns the carrot

5. #C C turns the dress

verb

verb

verb

verb

verb

noun

noun

noun

noun

noun

Figure 16: Bad cases on EgoHOIBench where EgoVLP++ struggles. The green sentences are
groundtruth and the red ones are mistakenly predicted by EgoVLP++. Others are the remaining
candidates. Five candidates are provided for simplicity.
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