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Abstract 

High-throughput imaging is highly desirable in intelligent analysis of computer vision 
tasks. In conventional design, throughput is limited by the separation between physical 
image capture and digital post processing. Computational imaging increases through-
put by mixing analog and digital processing through the image capture pipeline. Yet, 
recent advances of computational imaging focus on the “compressive sampling”, this 
precludes the wide applications in practical tasks. This paper presents a systematic 
analysis of the next step for computational imaging built on snapshot compressive 
imaging (SCI) and semantic computer vision (SCV) tasks, which have independently 
emerged over the past decade as basic computational imaging platforms.

 SCI is a physical layer process that maximizes information capacity per sample while 
minimizing system size, power and cost. SCV is an abstraction layer process that ana-
lyzes image data as objects and features, rather than simple pixel maps. In current prac-
tice, SCI and SCV are independent and sequential. This concatenated pipeline results 
in the following problems: i) a large amount of resources are spent on task-irrelevant 
computation and transmission, ii) the sampling and design efficiency of SCI is attenu-
ated, and iii) the final performance of SCV is limited by the reconstruction errors of SCI. 
Bearing these concerns in mind, this paper takes one step further aiming to bridge the 
gap between SCI and SCV to take full advantage of both approaches.

 After reviewing the current status of SCI, we propose a novel joint framework by con-
ducting SCV on raw measurements captured by SCI to select the region of interest, and 
then perform reconstruction on these regions to speed up processing time. We use our 
recently built SCI prototype to verify the framework. Preliminary results are presented 
and the prospects for a joint SCI and SCV regime are discussed. By conducting com-
puter vision tasks in the compressed domain, we envision that a new era of snapshot 
compressive imaging with limited end-to-end bandwidth is coming.

Keywords: Snapshot compressive imaging, Semantic computer vision, Computational 
imaging, Deep learning
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Introduction
Imaging is the founding pillar of computer vision (CV), which is now a core technique 
in today’s digital world, especially in multimedia, with a wide range of applications in 
consumer and military electronics as well as the emerging topics such as the metaverse. 
Starting from the invention of charge-coupled devices (CCD) in 1970 [1], digital imaging 
techniques have revolutionized CV. As life keeps moving forward, so does imaging tech-
nology. Particularly, computational imaging (CI) [2, 3] has come to a new stage due to 
recent advances in artificial intelligence, especially machine learning and deep learning. 
We are fortunate to witness a new era driven by CI and CV. This paper moves one step 
further, and aims to bridge the gap between CI and CV, in particular, between snapshot 
compressive imaging (SCI) [4] and semantic CV (SCV) tasks.

CI, an emerging multidisciplinary topic covering optics, sensors, image processing, 
signal processing and machine learning, aims to incorporate computational design into 
the image capturing process to improve image quality [5–8], optimize imaging systems 
and procedures [9–11], acquire high-dimensional visual information [12–14] or boost 
the performance of subsequent high-level tasks [15–17]. On the other hand, CV mainly 
focuses on high-level image processing and understanding tasks such as image classifi-
cation [18, 19], semantic segmentation [20, 21], object detection and tracking [22–24], 
video captioning [25, 26] and so on, with little attention on the preceding image acquisi-
tion process. CI and CV are two close fields related to imaging acquisition, processing 
and understanding. Sharing the similar goal of intelligent imaging and driven by com-
mon engines such as machine learning, CI and CV have come to the same big stage 
to shed light on each other. Therefore, now it is the right time to consider CI and CV 
jointly. In this manner, novel frameworks that design the whole process of visual infor-
mation acquisition, processing and understanding will emerge.

As two burgeoning topics in CI and CV, SCI and SCV have attracted more and more 
attention in their respective fields. On the one hand, with the increasing demand for 
ultra-high-definition video acquisition like 4K and 8K recording, the bandwidth of cur-
rent imaging systems has become a bottleneck for further development. The end of 
Moore’s Law makes it hard to break down the barrier simply by improving the hardware 
performance. Instead, compressive sensing (CS) based SCI may provide a feasible solu-
tion to this dilemma by conducting data compression during acquisition [4]. By investi-
gating the intrinsic redundancy prior of natural images or videos, SCI is able to acquire 
high-dimensional signal such as videos and hyper-spectral images with a conventional 
2D camera through well-designed coded measuring strategies. In this manner, the band-
width can be greatly reduced with little sacrifice of useful information. Furthermore, 
recent advances in SCI systems and reconstruction algorithms have paved the way for 
SCI’s applications in our daily lives.

On the other hand, in the era of big data, we are facing more and more multimedia 
data from social media, surveillance, self-driving, Internet-of-things, remote sens-
ing, etc., which heavily rely on automatic information analysis. In this case, extracting 
high-level semantic information from massive multimedia data has become one of the 
most important tasks in computer vision. Equipped with the rapid development of deep 
learning, we have made significant progress in the field of SCV. For instance, we are con-
stantly pushing forward the intelligent level of our automatic information processing 
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systems from image classification [19], semantic segmentation [27], object detection and 
tracking [23] to action recognition [28], facial expression recognition [29], scene under-
standing [30] and video captioning [31].

Although SCI and SCV are both playing increasingly important roles in CI and CV 
respectively, they have not been jointly considered, which hinders their mutual develop-
ment. Thus, bridging the gap between SCI and SCV has become an urgent direction and 
prospect to draw on each other’s strengths and achieve a win-win future. In this paper, 
we propose a novel framework that incorporates SCI and SCV to efficiently imple-
ment the whole process of compressive video acquisition and semantic information 
retrieval. To validate the feasibility of linking SCI and SCV, and meanwhile to expose the 
challenges to push forward the joint framework, we build an SCI prototype system which 
can capture coded high-speed videos with a conventional low-speed sensor. Besides, a 
semantic information retrieval pipeline involving object tracking, depth estimation, and 
scene understanding is designed to enable qualitative and quantitative description of the 
target video. We conduct an outdoor experiment and demonstrate preliminary results in 
this paper. As the first attempt to combine SCI and SCV for practical applications in the 
natural scene, as depicted in Fig. 1, we believe our work can provide new insights into 
the collaboration of CI and CV, and shed light on the future applications of correspond-
ing techniques in our daily lives.

A brief review of recent advances of SCI
In this section, we first review the recent development of SCI, and then focus on the cur-
rent status of joint SCI and SCV development.

Development of SCI

As an emerging and representative sub-field of computational imaging, SCI has become 
more and more popular in recent years. The intrinsic merits of low bandwidth and high 
data throughput of SCI provide great potential in various fields such as autonomous-
driving, video surveillance and so on. With the maturity of SCI systems, reconstruction 
algorithms and related high-level tasks, it is convinced that SCI will march forward for 

Fig. 1 Our perspective from “compressive sampling” to “compressive tasking”
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practical applications in the near future. In this paper, we focus on video SCI, which 
compresses multiple video frames into a single shot measurement and then reconstructs 
the desired high-speed frames by algorithms.

SCI systems

The main function of SCI systems is to capture high-dimensional visual signal with low-
dimensional sensors according to designed multiplexing schemes, and solve the inverse 
problem afterwards to recover the desired data. With the development of optics, materi-
als and manufacturing techniques, various SCI systems have been proposed in recent 
years [5, 9, 32–42]. As illustrated in Fig. 2, a typical SCI system introduces an encoding 
module to a conventional imaging system. The encoding module is employed to gener-
ate uncorrelated encoding masks and modulate corresponding incoming images before 
integrating them into a single frame (coded measurement) on the sensor.

A straightforward implementation of the encoding module is to simply place a spa-
tial light modulator such as digital mirror device (DMD) [32, 37] in the image plane. 
Micro-electromechanical system (MEMS) based DMDs can rapidly change the modula-
tion patterns and realize dynamic encoding by switching their micro-mirrors’ directions 
with articulated hinges. Liquid crystal on silicon (LCoS) collocated with a polarizing 
beamsplitter can achieve the same function, as the polarizing beamsplitter can trans-
form the polarization modulation of LCoS into amplitude modulation [33, 38]. Using a 
shifting lithography mask translated by a piezo [34] is a simple substitute to aforemen-
tioned DMDs or LCoSs, but the mechanical translation may cause system instability and 
degrade the image quality.

There are other methods that use specially designed sensors to implement the encod-
ing process. For example, sensors with pixel-wise exposure ability can perform the frame 
encoding directly on the sensor plane before integration, while no extra optical elements 
are needed compared to conventional imaging systems [40]. Most recently, a novel pro-
grammable sensor called Coded-2-Bucket camera was designed with two light-collecting 
buckets per pixel [43]. By switching between the two buckets during exposure, pixel-
wise shutter control is realized and a pair of complementary patterns encoded measure-
ments can be acquired during a single exposure. In addition to the above methods using 
programmable sensors, video frame encoding can also be achieved in indirect ways by 
exploiting the temporal shifting feature of streak cameras or rolling shutter cameras [5, 
9, 44]. Furthermore, some sophisticated encoding strategies are also proposed to further 
boost the system performance or efficiency [32, 35, 42].

Fig. 2 Schematic of the video snapshot compressive imaging system. The video frames are encoded by 
uncorrelated masks in the image plane and then relayed to the sensor plane and integrated to form a coded 
snapshot
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SCI reconstruction algorithms

Based on the underlying principle of SCI, the mathematical model of SCI can be formu-
lated as

where X ∈ R
nx×ny×B and M ∈ R

nx×ny×B denote B high-speed video frames and corre-
sponding encoding masks with spatial-resolution of nx × ny , respectively; ⊙ denotes the 
Hadamard (element-wise) product. Y ∈ R

nx×ny represents the coded measurement, and 
G ∈ R

nx×ny is the measurement noise. We can further rewrite Eq.  (1) to the following 
form which is coincident with the standard compressive sensing (CS) problem

where y = Vec(Y ) ∈ R
n and g = Vec(G) ∈ R

n with n = nxny . The original high-speed 
video signal x ∈ R

nB is given by x = [x⊤1 , . . . , x
⊤
B ]

⊤ , where xk = Vec(Xk) ∈ R
n . It is 

worth noting that the coding matrix H ∈ R
n×nB in video SCI has a special structure 

which can be expressed as

where Dk = diag(Vec(Mk)) ∈ R
n×n . This special structure makes it possible to reduce 

the computational complexity in some optimization-based SCI reconstruction algo-
rithms [45–47].

As illustrated in Eq. (2), recovering high-speed frames from the coded measurement 
is a highly ill-posed inverse problem. However, theoretical analysis has proved that the 
reconstruction error of SCI is bounded even when the compressive ratio B > 1 [48, 49]. 
To solve the inverse problem, a variety of SCI reconstruction algorithms [4, 33, 37, 45, 
46, 50–56] based on different priors and frameworks have been proposed, which are 
summarized in Table 1.

Early methods were mainly developed under optimization frameworks and hand-
crafted image/video priors. For example, the classical optimization-based method GAP-
TV [46] introduces the total variation (TV) prior constrain into the forward model of 
SCI and iteratively solves the optimization problem with the generalized alternating pro-
jection (GAP) framework [60]. The state-of-the-art optimization-based method DeSCI 
[45] alternatively leverages the non-local self-similarity prior and alternating direction 
method of multiplier (ADMM) framework [61] to achieve higher reconstruction quality 

(1)Y =

B

k=1

Mk ⊙ Xk + G,

(2)y = Hx + g ,

(3)H = [D1, . . . ,DB],

Table 1 Summary of different frameworks and algorithms for SCI reconstruction

Category Algorithm Pros & Cons Reference

optimization TwIST, GAP-TV, DeSCI, GMM, KSVD flexible, diverse quality, slow [33, 45, 46, 50, 57]

deep learning Tensor ADMM-Net,E2E-CNN, 
BIRNAT, MetaSCI, 3D-CNN, RevSCI

fast inference, high quality, inflexible, 
large GPU memory consumption, long 
training time, extensive training data

[35, 37, 51–55, 58]

plug-and-play PnP-FFDNet, PnP-TV-FastDVDNet flexible, moderate speed, moderate 
quality

[42, 47, 59]
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but suffers from low speed at the same time. Generally, optimization-based algorithms 
are robust but have high computational complexity. There are also some “shallow-learn-
ing” based methods such as Gaussian mixture model (GMM) [56, 57] and dictionary 
learning [33] proposed for SCI reconstruction, but their performance improvement over 
aforementioned optimization based methods is limited.

Recent advances in deep learning have boosted the performance of classical low-
level computer vision tasks such as super-resolution, denoising and deblurring to a 
large extent, which meanwhile inspires the emergence and rapid development of many 
learning-based SCI reconstruction algorithms [37, 51–55, 58]. The first deep learning 
architecture for SCI reconstruction was proposed in [52], which is based on a simple 
fully-connected neural network learning to map directly coded measurements to video 
frames . An unfolding network called Tensor ADMM-Net was designed by generalizing 
the standard tensor ADMM algorithm to a learnable deep neural network [53]. After 
that, an end-to-end convolutional neural network (CNN) with encoder-decoder struc-
ture and residual learning strategy was proposed [37]. As early attempts to solve SCI 
reconstruction problem with deep neural networks, these learning based methods have 
intrinsic advantage in reconstruction speed compared with iteration based methods, 
and achieve continuously improving reconstruction quality. However, it was not until 
the advent of BIRNAT [51] that learning-based methods surpassed the state-of-the-
art optimization based algorithm DeSCI in terms of reconstruction quality. BIRNAT 
uses CNN to reconstruct the first frame, and subsequent frames are reconstructed by a 
bidirectional recurrent neural network (RNN) in a sequential manner. Then, RNN was 
further improved with optical flow and applied to dual-view video compressive sens-
ing  [35]. Most recently, a novel learning based method combining 3D CNN and deep 
unfolding was designed, which achieved significant improvements over previous state-
of-the art methods [55].

Apart from reconstruction quality and speed, flexibility is also an important factor that 
needs to be considered in practical applications. Although BIRNAT leads state-of-the-
art reconstruction quality and has near real-time inference speed, its flexibility is greatly 
limited by the time-consuming training process and requirement of large GPU memory. 
This problem becomes even severe in real scenarios, where encoding masks will inevita-
bly change over time requiring retraining of the network consequently. To mitigate this 
problem, MetaSCI leverages meta-learning to achieve fast mask adaption to new encod-
ing masks in SCI reconstruction, which significantly reduces retraining or adaptation 
time. Another way to balance the trade-off among quality, speed and flexibility is using 
Plug-and-Play (PnP) based methods like PnP-FFDNet  [47] and PnP-FastDVDNet [59], 
which plug a pre-trained network as prior into the optimization frameworks to speed up 
the convergence, avoid tedious training process and improve the reconstruction quality.

Joint development of SCI and SCV

Different from SCI that focuses on the capture side, the processing framework of seman-
tic computer vision in dynamic scenes usually includes the following stages: scene 
understanding, object detection and tracking, behavior classification and description, 
human or vehicles identification, and quantitative and qualitative data fusion.
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As two sequential modules in the visual information acquisition and processing pipe-
line, hardware-oriented CI and task-driven CV are naturally complementary. Thus, to 
improve the overall performance has become a new trend to combine SCI and SCV [15, 
16, 62–64].

Kwan et al. came up with a novel object tracking and classification scheme using com-
pressive measurements captured by pixel-wise coded exposure cameras, and demon-
strated the efficacy of the proposed approach with extensive experiments using visible 
light, short-wave infrared (SWIR), mid-wave infrared (MWIR) and long-wave infrared 
(LWIR) videos, respectively [63, 65, 66]. They retrained YOLO with synthetic compres-
sive measurements to extract target locations and linked them to create trajectories. 
Then, the classification was separately conducted using a ResNet classifier trained on 
the compressive measurements. It’s worth noting that this work directly regarded the 
coded measurement as a single image and performed subsequent computer vision tasks, 
but neglected the video property of the measurements, which attenuated the advantages 
of SCI in high-throughput highspeed imaging. Hu et al. further extended this work by 
proposing VODS, i.e., video object detection from one single coded image through opto-
electronic neural network [15]. In this work, they modelled the optical encoding process 
with an optical neural network with the pixel values of the encoding masks as traina-
ble parameters. Then a CNN decoder and an object detection network were cascaded 
sequentially  to perform the following object detection and classification tasks. During 
training, all trainable parameters in the optical encoder, CNN decoder and object detec-
tion network were jointly updated to achieve overall-optimized performance. By taking 
advantage of SCI’s high-speed imaging feature and deep learning’s superiority in object 
detection, VODS made it possible for high-speed object detection with low-speed sen-
sors. Similarly, Okawara et al. implemented reconstruction-free action recognition from 
a single coded image through combining SCI and deep neural networks [16]. Apart from 
the co-optimization strategy, they also designed a shiftvariant convolution to adapt for 
spatial unsmoothness caused by spatial-temporal encoding of SCI. Finally, they achieved 
a relatively high recognition accuracy with a single coded image, which was on par with 
traditional 3D convolutional networks with original high-speed videos.

Our perspective: A novel joint framework of SCI and SCV
To bridge the gap between emerging SCI techniques and SCV tasks, we propose a novel 
joint framework (Fig. 3) to take advantage of both parties and efficiently implement the 
entire process of coded high-speed video acquisition, qualitative description genera-
tion and quantitative description generation. We believe that the proposed framework 
can provide a possible route to blur the boundary between high-throughput video cap-
ture and corresponding high-level semantic information retrieval. In this section, we 
will describe the detailed design of the proposed framework from the following three 
aspects, i.e., SCI for coded high-speed video acquisition, measurement domain SCV for 
efficient semantic information retrieval and video domain SCV for the trade-off among 
accuracy, speed and field of view (FOV). The flowchart of the proposed framework is 
shown in Fig. 3.
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SCI system

At the beginning of the flowchart in Fig. 3, an SCI system is employed to achieve low-
bandwidth high-throughput video capture from natural scenes with a conventional low-
speed sensor. To improve flexibility and robustness in outdoor environment, the SCI 
system is designed to use a spatial light modulator as an encoding module, which can 
project arbitrary patterns without any mechanical translation [33, 38, 42]. The output of 
the SCI module is a series of coded measurements that store the raw visual information 
in a compressive manner through designed multiplexing scheme.

The inherent high-throughput and low-bandwidth feature of SCI can facilitate subse-
quent SCV tasks significantly. On the one hand, SCI has the ability to record high-speed 
dynamic scenes with a low-speed sensor and avoid information aliasing (i.e., “blurring” 
in video domain) through mask encoding. Thus, it can provide more detailed features 
for subsequent SCV tasks and boost their performance. On the other hand, compared 
with conventional video capture, the data format of coded measurements can reduce the 
data size by dozens of times and relieve the pressure on CPU/GPU memory during SCV 
processing.

Measurement domain SCV

Regarding the SCV part, there are two branches based on measurement domain pro-
cessing and video domain processing, respectively. For large-scale SCI imaging, the 
reconstruction process is time-consuming, and the reconstructed video will occupy a 
large amount of memory, making the subsequent semantic information retrieval steps 
challenging. Considering that the coded measurements from SCI contain nearly all the 
useful information of the original scene, performing semantic information retrieval 
directly on coded measurements is theoretically feasible and has become a new trend 
[15, 16, 62–64].

Meanwhile, it is worth noting that the features of measurement domain and video 
domain are quite different. Therefore, novel task-driven feature decoders are required to 
extract descriptive features and discriminative features from the coded measurements 
and then feed them into corresponding modules of SCV tasks. Afterwards, with the 
extracted descriptive features, we can further retrieve the qualitative semantic informa-
tion through scene understanding [30] or video captioning [31] methods. In addition, 
the discriminative features can be used to retrieve quantitative semantic information 
by object objection/tracking [23] and distance/velocity estimation approaches [67, 68]. 
Note that, the deep neural networks for these SCV tasks should be retrained on the 
extracted features to adapt to the measurement domain. Further adaption of network 
structures or training strategies could be employed to improve the final performance, 
too.

Video domain SCV

Although measurement domain processing provides a promising way to efficiently con-
nect SCI and SCV, its drawback currently lies in inferior performance compared to video 
domain processing [15, 16, 64]. This conclusion is intuitive, as coded measurements have 
much less redundancy and suffer from “broken” natural image prior, which hinders the 
subsequent SCV tasks empowered by data-driven deep neural networks. Optimized 
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measurement feature decoders or powerful neural network structures with stronger rep-
resentation ability may mitigate this problem in the future. But for now, we can circum-
vent it by employing video domain SCV for regions of interest (ROI).

To be specific, in normal circumstances, the measurement domain SCV is employed 
to get rough results directly from the output of SCI efficiently. When we want to focus 
on some regions containing objects of interest, an ROI selection signal can be gener-
ated from the object detection module of measurement domain SCV and passed to the 
reconstruction module of video domain SCV. Then, the video domain SCV will be awak-
ened and retrieve detailed semantic information based on the reconstructed videos of 
selected measurement ROIs. As video domain SCV is coincident with conventional CV 
approaches, we can directly use existing pretrained neural network models or finetune 
them to finish the semantic information retrieval tasks. In a nutshell, the ROI selection 
signal acts as a bridge connecting the measurement domain SCV and video domain SCV. 
In this manner, we can achieve a good balance between FOV and semantic information 
retrieval accuracy, which helps the framework to flexibly adapt to different scenarios.

Closing the loop

Digging deeper into the collaboration of SCI and SCV, we can further introduce the 
feedback from SCV to SCI to adjust SCI system’s compressive ratio [69] or optimize its 
encoding masks according to the semantic information retrieval results. In this manner, 
the framework’s self-adaptability, robustness, and overall performance can be further 
improved [16].

To sum up, the proposed framework has the capacity to efficiently extract visual fea-
tures from natural scenes and convert them into semantic descriptions, which facilitates 
many terminal applications such as navigation, interaction, and surveillance. To validate 
the feasibility of the framework and accumulate experience for further development, we 
conduct an outdoor experiment and demonstrate preliminary results in the next section.

Preliminary results and analysis
Hardware implementation and calibration

The optical diagram and real image of our prototype setup are illustrated in Fig.  4. 
Our system consists of a commercial primary lens (KOWA LM50HC, f=50 mm), two 
high-quality relay lenses (Chiopt, LS1610A), a polarizing beamsplitter (PBS) (Thorlabs, 
CCM1-PBS251/M), an LCoS (ForthDD, QXGA-3DM, 2048× 1536 pixels, 4.5k refresh 
rate), and a CMOS sensor (JAI, GO-5000M-USB, 2560× 2048 pixels). The primary lens 
first captures the scene and focuses it onto the virtual image plane. Then, the image of 
the scene is relayed to the LCoS plane which is conjugate to the first image plane. The 
LCoS then encodes the image with fast-changing random binary masks. Finally, multiple 
encoded images are integrated into a single coded snapshot measurement by the sensor.

Due to inevitable system aberrations and instabilities, the actual encoding masks in 
the sensor plane will slightly differ from the corresponding patterns projected by LCoS 
and will experience jitter over time. Therefore, a calibration step is required before each 
acquisition to guarantee the accuracy of the masks used for subsequent reconstruction. 
To be specific, we will place a Lambertian whiteboard on the objective plane. Then, each 
encoding mask M will be recorded sequentially with LCoS projecting corresponding 
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patterns. Besides, to eliminate the influence of background light and nonuniform illumi-
nation caused by ambient light or system vignetting, a background image R and an illu-
mination image I will also be captured with LCoS projecting black and white patterns, 
respectively. Finally, the actual encoding mask M′ can be calculated with Eq. (4). Note 
that, in order to improve the signal to noise ratio (SNR), all the images mentioned above 
will be recorded 50 times and averaged to a single image for calibration.

where ⊘ denotes the element-wise division.
During acquisition, the camera and LCoS are synchronized by a signal generator. We 

set the capture frame rate of the camera to 20 frames per second (FPS), and 8 consecu-
tive frames are encoded and collapsed to a single coded measurement. In this way, we 
can achieve a final frame rate of 160 FPS in the reconstructed video.

SCI reconstruction

Existing algorithms for SCI can be roughly divided into two categories, i.e., learning-
based algorithms and optimization-based algorithms, each of which has pros and cons. 
For learning-based algorithms, although having higher inference speed and better 
reconstructed results, they lack the flexibility to masks and can hardly scale to differ-
ent spatial sizes, especially large scale. On the contrary, optimization-based algorithms 
enjoy flexibility to different masks and scales, but suffer from low speed due to required 
numerous iterations.

In practical applications  [70] with a large field-of-view, a model for large-scale 
reconstruction and high inference speed is urgently needed. To this end, we employ a 
physics-driven two-stage model  [71] for the reconstruction. It combines the merits of 

(4)M′
= (M − R)⊘ (I − R),

Fig. 4 The real image (a) and optical diagram (b) of our SCI system. Incident light from the scene is first 
collected by the primary lens and focused on the image plane. Then the image is relayed to the LCoS after 
passing through the polarizing beamsplitter (PBS). LCoS encodes the image with a random binary mask and 
reflects it back through the PBS. Finally, the encoded image is relayed to the sensor and integrated into a 
snapshot measurement
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learning-based and optimization-based algorithms by utilizing an unfolding/unroll-
ing framework. Models for large-scale data reconstruction can be trained by data with 
smaller spatial sizes, even with different masks. This makes network training no longer 
limited by GPU memory as before, thus breaking the bottleneck of existing algorithms.

The architecture of our model is shown in Fig. 5. It unfolds the iterations used in con-
ventional optimization algorithms into 2 stages, and each stage is composed of a gener-
alized alternating projection step [60] and a prior learning step. Note that we employ an 
invertible network  [72] as the backbone in prior learning step to save memory during 
training.

SCV description

In the proposed framework, we classify the semantic information into two categories, 
i.e., qualitative information and quantitative information. To be specific, qualitative 
information refers to the objects, events and background contained in a scene, which is a 
sketch of the surrounding environment. Quantitative information represents the meas-
ured values including distance, speed and so on, which give us an accurate description 
about the objects of interest. In this preliminary experiment, we incorporate existing 
SCV approaches into the proposed framework and facilitate the retrieval of qualitative 
and quantitative information in both measurement domain and video domain.

To generate the qualitative description, we first use a commonly-used scene recogni-
tion network called Places365-CNN [73] to obtain the category of the scene. Places365-
CNN is trained on the Places dataset that consists of 10 million images with over 400 
unique scene categories, so it is able to distinguish common scenes in our daily life.

Then, a state-of-the-art object tracking network called CenterTrack [74] is employed 
to extract information about the objects. CenterTrack abandons the widely used track-
ing-by-detection strategy and performs object detection and tracking simultaneously to 
achieve real-time inference with a high accuracy. As an online algorithm, CenterTrack 
takes only the current frame, previous frame, and prior detection result as inputs, and 
links detection results in these two frames with a simple greedy matching algorithm 
based on predicted 2D displacement. Apart from 2D tracking, CenterTrack can also 
be applied to 3D cases by training on 3D object tracking datasets like nuScenes [75], 
a multi-model dataset containing visual information from 6 cameras, 5 radars and 1 
lidar. In this experiment, we use the pretrained model of CenterTrack on nuScenes data-
set to track objects. The tracking result contains abundant qualitative and quantitative 

Fig. 5 The architecture of the physics-driven two-stage unrolling model for SCI reconstruction. Each stage in 
the model consists of a projection step and a prior learning step. By taking advantage of the unrolling design, 
this model can be trained with small patches and then finetuned to large-scale data efficiently
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information including the category, identity, 3D location, and 3D size of the objects. In 
this way, we can easily generate quantitative semantic description containing distance 
and velocity information of each object through simple calculation.

Results and discussion

Equipped with the aforementioned tools, we conducted an outdoor experiment and 
demonstrate the preliminary results in Fig.  6. To the best of our knowledge, this is 
the first time that SCI has been used in the outdoor environment for real natural sce-
nario capture. The end-to-end framework combining SCI and SCV for high-efficiency 
semantic information retrieval is also a novel attempt.

As shown in Fig. 6, sub-figure (a) illustrates processing results in the measurement 
domain. Benefiting from Place365-CNN and CenterTrack’s excellent generalization 
ability, we can directly use the pretrained model to process coded measurements and 
obtain coarse semantic information. Note that, due to the large domain gap, exist-
ing pretrained models suffer from poor performance in some measurements and 
may misjudge the scene category or lose the occluded tracking targets (such as the 
car in measurement M5, M7, and M9). Consequently, the accuracy of distance and 
speed estimation will also be decreased accordingly. The performance of measure-
ment domain SCV can be improved by incorporating an efficient task-driven feature 
decoder and optimizing subsequent information retrieval networks, as shown in the 
proposed framework. But the specific design is beyond the scope of this paper, and 
we leave it for future work.

As mentioned in the previous section, to obtain a fine result, we can switch to video 
domain for semantic information retrieval of selected ROIs. Here, we select the region 
with a person in measurement M1 as the ROI, and show the video domain processing 
results in sub-figure (b). SCI reconstruction is first conducted to restore the original 
video frames of the ROI, and video frame V2, V4, V6 and V8 from the reconstructed 8 
frames are shown in sub-figure (b). As can be seen from the figure, the details of the per-
son and background stairs have been clearly restored by the physics driven two-stage SCI 
reconstruction network. Thanks to the higher temporal resolution of the reconstructed 
video and the advantage of video domain SCV, we can get a fine semantic description 
result shown in sub-figure (b) with the pretrained models of Place365-CNN and Center-
Track. Note that, in terms of the ROI reconstruction, different SCI reconstruction algo-
rithms can be employed to balance the requirement trade-off among speed, quality, and 
flexibility.

Benefiting from the proposed joint framework of SCI and SCV, the overall bandwidth 
of the video acquisition and understanding pipeline has been greatly reduced. Specifi-
cally, on the front-end of the pipeline, conventional cameras will generate about 1 GB 
data per second to capture a high-speed video under the frame rate of 160 FPS. On 
the contrary, only 1/8 bandwidth is required for our system to achieve the same frame 
rate by compressively collapsing 8 frames into a coded measurement during acquisi-
tion. Besides, this promotion can be further extended by leveraging a higher compres-
sive ratio. On the back-end of the framework, traditional SCV algorithms that perform 
on video domain requires the reconstruction of the compressive measurements, thus 
imposing great pressure on the machine memory due to the large data volume of the 
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reconstructed videos. Instead, the proposed framework can efficiently save the compu-
tation bandwidth by compressive domain processing.

During the experiment, we also found that the accuracy of scene classification and 
the estimation of the objects distance and speed rely heavily on SCI acquisition settings. 
For instance, using a higher compressive ratio improves the frame rate of the recon-
structed video, but also increases the information capacity of the measurement (making 
it appear blurrier) and introduces more artifacts during reconstruction. For measure-
ment domain processing, measurements multiplexing of massive visual information 
will increase the difficulty of feature extraction and subsequent semantic information 
retrieval process. And in terms of video domain processing, the degradation in recon-
structed video will result in declined semantic retrieval performance as well. Therefore, 
a good balance between different modules of the framework is the guarantee of the final 
high performance.

Outlook and discussion
We have briefed an overview of incubation of SCI and SCV, ready to extend it to more 
general CI and CV. An end-to-end framework has been demonstrated with a prototype 
and some preliminary results. This has led to in-depth thinking and analysis of the joint 
framework from various perspectives, some of which are listed below.

SCI system and reconstruction algorithms

Field of view (FOV)

FOV is a key characteristic of an imaging system. A broad FOV can facilitate scene 
understanding and other high-level computer vision tasks. For conventional cameras, 
FOV is largely defined by the lens and sensor. Differently, an SCI system consists of a 
cascade of optical components, each of which might reduce the FOV to some extent. 
In other words, the final FOV is determined by the minimum angle of view across the 
light path. In our preliminary prototype, we employed a pair of doublets as relay optics, 
which suffers from severe aberrations such as spherical aberration and vignetting effect 
especially in peripheral areas, thus limiting the FOV. Therefore, we employed a high-
quality relay lens to reduce aberrations. Currently, The FOV of our SCI system is about 
30 degrees. However, in some extreme cases such as wide-angle lens or even fisheye lens, 
current designs might be inapplicable to such large FOV. Besides, while in conventional 
photography it is easy to swap between lenses of different focal lengths, in SCI we need 
to adjust imaging setup to take full advantage of the FOV of the primary lens. One pos-
sible solution is using relay lenses with a sufficiently large FOV, which would result in a 
bulky design and limit its portability. Designing assembly targeted at different FOVs via 
integrating the primary lens and other optics for compressive sensing is another option. 
Overall, an SCI with flexible FOVs is highly desirable but leaves a series of unexplored 
engineering problems for future research.

Light efficiency

The SCI imaging setup multiplexes a set of sequential frames into a snapshot and theo-
retically has a higher signal-to-noise ratio. However, in our prototype, this advantage is 
largely attenuated by implementation details and fabrication errors. Firstly, when LCoS 
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is adopted as the spatial light modulator, a PBS is required to generate polarized light, 
which absorbs around half of photons. During acquisition, the 50% duty ratio of random 
binary encoding masks blocks around half of the remaining incident photons as well. 
Secondly, the reflectance of the liquid crystal and transmissivity/reflectance of other 
components (e.g., lenses and PBS) are imperfect, so resulting in loss of photons to some 
extent. For our prototype, we need to use an additionally strong illumination light source 
for indoor photography due to the dim lighting condition.

To enhance light efficiency of our system, we envision that a compact and miniatur-
ized optical design with fewer levels of relay lens can be elaborated to decrease photon 
loss. Besides, we can substitute the LCoS with other modulation devices such as DMD, 
or directly employ a pixel-wise programmable sensor like Coded-2-Bucket camera [43] 
for simultaneous modulation and capture.

System calibration

Theoretically, the forward imaging process of SCI can be precisely described by the pat-
terns displayed on the LCoS. However, due to inevitable system aberrations and mis-
alignment, the actual encoding masks on the sensor plane will be slightly different from 
the displayed ones, and will experience drift over time. Therefore, a calibration step is 
required to attain the accurate encoding masks before each acquisition. Although the 
calibration can be performed automatically with a control script using the software 
development toolkit (SDK) of the LCoS and sensor, this tedious calibration procedure 
and the requirements for a large Lambertian whiteboard and a relatively even illumina-
tion is still troublesome, especially for practical applications in outdoor environment. 
Moreover, varying calibrated masks will also impose great pressure on subsequent learn-
ing-based reconstruction or SCV algorithms, which may require a long time to adapt to 
new masks.

To pave the way of SCI in practical applications, the current prototype system is 
expected to be improved in aspects of stability against external disturbance and robust-
ness in different environment conditions such as temperature, humidity, etc. We believe 
that, with aid of recent advances in optical and industrial engineering, these problems 
can be properly addressed in commercial production in the future. On the other hand, 
these problems can also be mitigated from software side. Possible solutions include but 
are not limited to designing fault-tolerant/self-calibrated algorithms, or introducing 
feedback control from the task side to optimize the system in real time as illustrated in 
our proposed framework.

Reconstruction algorithms

Quality, speed, and flexibility are three major aspects in the design of SCI reconstruc-
tion algorithms, especially in the joint framework of SCI and SCV. The reconstruction 
quality of coded measurements has a direct impact on the performance of subsequent 
SCV tasks, as mentioned in the preliminary experiments. However, it is worth noting 
that in the proposed framework, the ultimate goal is to retrieve semantic information 
from coded measurements, rather than restore a high-quality video. Therefore, a task-
oriented SCI reconstruction algorithm employing a joint optimization strategy may 
have a greater potential to boost the overall performance of the framework. Besides, 
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scene-guided coding pattern design is also a promising direction to improve the encod-
ing efficiency and reconstruction quality.

The speed and flexibility of the reconstruction algorithms play a significant role in 
practical applications. Generally, real-time inference is an indispensable feature in many 
practical applications, especially in auto-driving, human-machine interaction, and so on. 
Compared to measurement domain processing, video domain processing spends extra 
time on the reconstruction step, making it more difficult to achieve real-time inference. 
But by using a light-weight network design or some model pruning strategies, there is 
still plenty of room for improving the reconstruction efficiency.

Moreover, we are supposed to take the flexibility of SCI reconstruction algorithms 
into consideration in real scenarios as well. Most existing learning-based reconstruc-
tion algorithms are designed for a certain set of encoding masks, and time-consuming 
retraining or fine-tune is needed when the masks change. Recently, some algorithms 
based on meta-learning or PnP framework have been proposed and mitigate this prob-
lem to some extent [47, 54]. In the future, a promising approach is to dig deeper into the 
analysis of mask uncertainty, and design algorithms that can tolerate calibration error 
and mask drift in real scenarios.

SCV tasks and approaches

Video retrieval and captioning

The task of content-based retrieval of visual information is to retrieve video clips from 
video databases according to video contents, based on image and video understanding. 
At present, research in video retrieval focuses on low-level perceptive representations of 
raw data (such as color, texture, shape, etc.) and simple motion information [76]. These 
retrieval techniques cannot accurately and effectively search the videos for sequences 
related to specified behaviors. Semantic-based video retrieval (SBVR) aims to bridge the 
gap between low-level features and high-level semantic meanings. Based on automatic 
interpretation of video content, SBVR may classify and further access the correspond-
ing video clips related to specific behaviors, providing a more advanced, more intuitive, 
and more humanistic retrieval mode. However, semantic-based video retrieval brings 
the following challenges: automatic extraction of semantic features, combination of low-
level visual features, and behavior description and hierarchical organization of video 
features. Inspired by the SCI framework with measurement domain and reconstructed 
video domain jointly understanding, low-level features and high-level semantic mean-
ings will be tightly integrated to improve the accuracy of video retrieval and captioning 
tasks.

Understanding algorithms

One of the objectives of semantic computer vision is to analyze and interpret individual 
behaviors and interactions between objects to recognize. For example, whether people 
are carrying, depositing or exchanging objects, whether a person is getting on or off a 
vehicle, or whether a vehicle is overtaking another one, etc. Equipped with the ability of 
behavior understanding, our proposed framework can provide more accurate semantic 
descriptions for subsequent applications. Recently, related research still focuses on some 
basic problems like gesture and simple behavior recognition. Some progress has been 
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made in building statistical models of human behaviors using machine learning algo-
rithms. Behavior recognition is complicated, as the same behavior may have several dif-
ferent meanings, depending on the scene and task context in which it is performed. This 
ambiguity is exacerbated when there are multiple objects in a scene [77]. The following 
problems within behavior understanding are challenging: statistical learning for mod-
eling behaviors, context-sensitive learning from example images, real-time performance 
required by behavior interpretation, classification and labeling of motion trajectories of 
tracked objects, automatic learning of prior knowledge [78] implied in object behaviors, 
visually mediated interaction, and attention mechanisms.

Action description and prediction

In order to recognize, describe, and even predict the actions of objects in the video, not 
only interpretation of individual actions but also interactions between different objects 
should be analyzed. Then the sequence of actions in the temporal domain is challenging 
to be considered optimally. For example, sitting and falling down are difficult to distin-
guish for learning models without motion velocity, joint variables of human beings and 
the situation. Current tasks focus on some certain action recognition such as gesture 
recognition, which limits the general use of these methods.

Enhanced by SCI with qualitative and quantitative information merging modules, 
novel approaches can be designed to deal with these semantic description difficulties. 
Since SCI is an imaging system with effective acquisition of low-level visual information 
in both compressive domain and reconstruction domain, it is key to analyze the actions 
of moving objects with different levels. We can use the correspondence between low-
level descriptive features and semantic discriminative features to explore this problem.

Organizing recognized concepts and further predicting the possible object actions has 
been a hot topic, especially in the visual self-driving program over long periods of time. 
In addition, the synchronous description, where descriptions are given before an action 
is complete (while the action is still in progress), is also a challenge [76]. In this case, the 
combination of SCI and SCV takes advantage of hierarchical features due to the rep-
resentative features in the measurement domain, which concludes scores of frames in 
one measurement clip. Thus, it is easier to conduct real-time understanding and predic-
tion algorithms such as graph neural networks by linking corresponding objects in one 
measurement.

Conclusion

SCI and SCV, two closely related fields related to image acquisition, processing, and 
understanding, have a great potential to develop together towards a win-win future.

While the previous research of SCI focuses on compressive sampling, we extend 
SCI to compressive tasking, aiming to bring SCI closer to practical applications. Spe-
cifically, to bridge the gap between SCI and SCV, we review the current status of both 
fields and propose a novel joint framework that implements an end-to-end pipeline of 
visual information capture and semantic information extraction. The framework takes 
advantage of SCI in low-bandwidth high-throughput imaging to achieve high-speed 
video acquisition using a conventional camera, and comes up with an adaptive meas-
urement/video domain information processing strategy to improve the efficiency of 
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semantic information retrieval. To validate the effectiveness of the framework and 
discover potential problems in practical applications, we have performed outdoor 
experiments and presented preliminary results with detailed analysis. Finally, we give 
a prospective outlook and provide possible directions for the future development of 
the framework. We believe that, with the rapid booming of SCI and SCV, the pro-
posed framework will soon become available in practical applications and blaze a new 
trail for massive visual information acquisition and corresponding intelligent analysis.
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