
Artificial Generational Intelligence: Cultural
Accumulation in Reinforcement Learning

Jonathan Cook ∗

FLAIR, University of Oxford
jonathan.cook2@hertford.ox.ac.uk

Chris Lu ∗

FLAIR, University of Oxford
christopher.lu@eng.ox.ac.uk

Edward Hughes
Google DeepMind

edwardhughes@google.com

Joel Z. Leibo
Google DeepMind
jzl@google.com

Jakob Foerster
FLAIR, University of Oxford

jakob@eng.ox.ac.uk

Abstract

Cultural accumulation drives the open-ended and diverse progress in capabilities
spanning human history. It builds an expanding body of knowledge and skills by
combining individual exploration with inter-generational information transmission.
Despite its widespread success among humans, the capacity for artificial learning
agents to accumulate culture remains under-explored. In particular, approaches
to reinforcement learning typically strive for improvements over only a single
lifetime. Generational algorithms that do exist fail to capture the open-ended,
emergent nature of cultural accumulation, which allows individuals to trade-off
innovation and imitation. Building on the previously demonstrated ability for rein-
forcement learning agents to perform social learning, we find that training setups
which balance this with independent learning give rise to cultural accumulation.
These accumulating agents outperform those trained for a single lifetime with the
same cumulative experience. We explore this accumulation by constructing two
models under two distinct notions of a generation: episodic generations, in which
accumulation occurs via in-context learning and train-time generations, in which
accumulation occurs via in-weights learning. In-context and in-weights cultural
accumulation can be interpreted as analogous to knowledge and skill accumulation,
respectively. To the best of our knowledge, this work is the first to present general
models that achieve emergent cultural accumulation in reinforcement learning,
opening up new avenues towards more open-ended learning systems, as well as
presenting new opportunities for modelling human culture.

1 Introduction

The capacity to learn skills and accumulate knowledge over timescales that far outstrip a single
lifetime (i.e., across generations) is commonly referred to as cultural accumulation [Hofstede et al.,
1994, Tennie et al., 2009]. Cultural accumulation has been considered the key to human success
[Henrich, 2019], continuously aggregating new skills, knowledge and technology. It also sustains
generational improvements in the behaviour of other species, such as in the homing efficiency of
birds [Sasaki and Biro, 2017]. The two core mechanisms underpinning cultural accumulation are
social learning [Bandura and Walters, 1977, Hoppitt and Laland, 2013] and independent discovery
[Mesoudi, 2011]. Its effectiveness can be attributed to the flexibility with which participants engage
in these two mechanisms [Enquist et al., 2008, Rendell et al., 2010, Mesoudi and Thornton, 2018].

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Initialise new generation
gm with N agents

Train each agent using
RL or In-Context

Learning

Set final parameters as
gm

m = m + 1

Agents observe gm-1
throughout training with
initial probability pobs = 1

This observation
implicitly enables social

learning

Agents use independent
learning to improve

performance

pobs is annealed from
1 → 0, removing the
dependency on gm-1

Figure 1: Left: A flow chart describing our RL model of cultural accumulation. Right: An annotated,
illustrative plot demonstrating in-context accumulation as observed in our results.

Cumulative culture thus executes an evolutionary search in the space of behaviours, with higher rates
of independent discovery corresponding to a higher mutation rate. Ultimately, how individuals should
balance social vs. independent learning depends on the validity and fidelity of social learning signals,
i.e., how successful other agents in the environment are at the same task.

Given the profound success of cultural accumulation in nature, it is natural to explore its applica-
bility to artificial learning systems, which remains an under-explored research direction. In deep
reinforcement learning (RL), the learning problem is usually framed as taking place over a single
“lifetime”. Generational methods that do exist, such as iterated policy distillation [Schmitt et al., 2018,
Stooke et al., 2022] and expert iteration [Anthony et al., 2017], explicitly optimise new generations
with hand-crafted and explicit imitation learning techniques, as opposed to learning accumulation
implicitly, which should ultimately enable greater flexibility. Prior work has successfully demon-
strated emergent social learning in RL [Borsa et al., 2017, Ndousse et al., 2021, Bhoopchand et al.,
2023], showing that it helps agents solve hard exploration problems and adapt online to new tasks.
However, these works have only considered one iteration of information transmission from an expert
to a student. In this work, we therefore investigate how social learning and exploration can be
balanced to achieve cultural accumulation in RL. This would lay the foundations for an open-ended,
population-based self-improvement loop among artificial learning agents. It would also establish new
tools for modelling cultural accumulation.

In humans, cultural accumulation takes place over a number of timescales due to the different rates
at which knowledge, skills and technology are acquired [Perreault, 2012, Cochrane et al., 2023].
We therefore present two corresponding formulations of cultural accumulation in RL: in-context
accumulation, which operates over fast adaptation to new environments, and in-weights accumulation,
which operates over the slower process of updating weights (i.e., training). The in-context setting
can be interpreted as analogous to short-term knowledge accumulation and the in-weights setting as
analogous to long-term, skills-based accumulation.

We demonstrate the effectiveness of both the in-context and in-weights models by showing sustained
generational performance gains on several tasks requiring exploration under partial observability2.
On each task, we find that accumulating agents outperform those that learn for a single lifetime of
the same total experience budget. This cultural accumulation emerges purely from individual agents
maximising their independent rewards, without any additional losses.

2 Background

2.1 Partially-Observable Stochastic Games

A Partially-Observable Stochastic Game (POSG) [Kuhn, 1953] is defined by the tuple M =
⟨I, S,A, T,R,O, γ⟩. I = {1, . . . , N} defines the set of agents, S defines the set of states, and
A defines the direct product of action spaces for each agent, i.e., A = A1× · · · ×AN where Ai is the
action space for agent i ∈ I . T defines the stochastic transition function, T : S×A×S → [0, 1], R de-

2Code can be found at https://github.com/FLAIROx/cultural-accumulation.

2

https://github.com/FLAIROx/cultural-accumulation

fines the reward function, R : S×A→ R, and O defines the observation function, O : O×S → [0, 1]
where O is the observation space. γ ∈ (0, 1] refers to the discount factor of returns.

At each timestep t, each agent i samples an action from its policy ait ∼ πθi(oit), where θit corresponds
to the policy parameters for agent i. These actions are aggregated to form the joint action at =
(a1t , . . . , a

N
t). The environment then calculates the next state st+1 ∼ T (st, at). The agents then

receive the next observation ot+1 ∼ O(st+1) and reward rt ∼ R(st+1) from the environment.
The objective for each agent i in a POSG is to maximise its expected discounted sum of returns
J(πθi) = Es0∼S̃,a0:∞∼π(si1:∞)∼T [

∑∞
t=0 γ

tR(st, at)].

2.2 Partially-Observable Markov Decision Processes

A Partially-Observable Markov Decision Processes (POMDP) [Kaelbling et al., 1998] is a special
case of the POSG with only one agent. For a given agent i in a POSG, if the policy parameters of all
other agents θ−i are fixed, the POSG can be reduced to a POMDP for agent i. Informally, this can be
done by assuming the other agents are part of the environment. In other words, sampling from other
agent policies would be part of the transition function.

To solve POMDPs, we make use of memory-based policy architectures that represent the prior
episode interactions at timestep t using ϕt. Memory is needed to solve POMDPs because of the state
aliasing introduced by partial-observability. For recurrent neural networks (RNNs) ϕt refers to the
hidden state at timestep t. We now condition the policy on this state ait ∼ πθi(oi|ϕi

t) and also update
the hidden state with recurrence function hθi , such that ϕt+1 = hθi(oi|ϕi

t).

2.3 Meta-RL

In this paper, we consider meta-RL settings where an agent is tasked with optimising its return over
a distribution of POMDPsM. At each episode3, a POMDP is sampled M ∼ M and the agent is
given K trials to optimise its cumulative return. This setting has also been called in-context RL
[Laskin et al., 2022]. We adopt the setting of Ni et al. [2021], where meta-RL is formulated as another
POMDPM, in which the selection of M is now a part of the state s. The agent’s last action at−1,
reward rt−1 and trial termination are appended to the observation ot.

One common approach to meta-RL uses gradient-based optimisation to train a meta-policy with
respect toM using recurrent network architectures [Duan et al., 2016, Wang et al., 2016]. Within
each episode, updates to the agent’s internal state ϕ enable static agent parameters to implement an
in-context RL procedure, allowing the agent to adapt to a specific M . During adaptation to a new
POMDP, this procedure aggregates and stores information from sequential observations. Over long
enough episodes, agents can therefore face an in-context exploration-exploitation tradeoff, where
within-episode exploration of the environment could yield higher returns.

2.4 Generational Training

Generational training refers to training populations of agents in sequence, thus chaining together
multiple learning processes [Stooke et al., 2022]. We define a generation gm = {g1m, . . . , g

Npop
m } as

a population of Npop agents. Each gnm can therefore be model weights, or an internal state in the
case of in-context RL. We distinguish Npop from the N used in Section 2.1, because each member of
a generation of size Npop may be within its own POSG of N agents. We use n to index a specific
member of a generation. A new generation is generated by a process that conditions on the old
generation gm+1 = f(gm). By modelling cultural accumulation over both in-context RL and RL
training, f could capture generational accumulation in both knowledge and skills.

3 Problem Statement

In this work, we investigate how to achieve cultural accumulation in RL agents. We formalise
a measure of success in Equation 1, where we compare the returns achieved in a held-out set of
environments when learning is spread across G total generations to learning in a single lifetime with

3Our use of “episode” and “trial” aligns with Bauer et al. [2023], which is the reverse of Duan et al. [2016].

3

the same total experience budget. This comparison evaluates whether our models capture the benefits
of cultural accumulation over singe lifetime learning.

RT (πG,M|f(πG−1| . . . , π1)) > RG·T (π1,M) (1)

Policies are parameterised according to πθ(·|ϕ) where θ are parameters of the trained network and
ϕ is the agent’s internal state. We define in-context accumulation as cultural accumulation during
online adaptation to new environments. In this setting, θ are frozen and T is the length of an episode.
We assume that a meta-RL training process has produced θ and that the internal state ϕ is used to
distinguish between generations, which we elaborate on in Section 4.1.2. We define in-weights
accumulation as cultural accumulation over training runs. Here, T is the number of environment
steps used for training each generation and each successive generation is trained from randomly
initialised parameters θ, meaning that θ instead are the substrate for accumulation.

3.1 Environments

Memory Sequence: To study processes of cultural accumulation among humans, Cornish et al.
[2017] use a random sequence memorisation task in which sequences recalled by one participant
become training data for the next in an iterated learning process. In doing so, they show a cumulative
increase in recalled string length, thus simulating cultural accumulation. We thus present Memory
Sequence as a simple environment for investigating basic cultural accumulation in RL agents. In
Memory Sequence, there is an arbitrary sequence made up of digits that agents must infer over the
course of in-context learning or training. Each action corresponds to predicting a digit. Episodes are
fixed length and agents receive +1 reward for predicting the correct next digit and −1 reward for
predicting an incorrect next digit. The sequence is randomly sampled and fixed during in-context
adaptation for in-context accumulation, whilst it is fixed across training for in-weights accumulation.

Gen. 0 Gen. 4 Gen. 7

Total Length: 20.6 Total Length: 17.4 Total Length: 13.1

Figure 2: Left: A visualization of the Goal Sequence Environment. Right: Routes travelled get
shorter across generations in the TSP environment. Visualisation implementation is based on Jumanji
[Bonnet et al., 2024].

Goal Sequence: Previous work on social learning in RL uses a gridworld Goal Cycle environment
[Ndousse et al., 2021]. In this environment, there are n identical goals and agents must figure
out the correct cyclic ordering in which to navigate through them. Agents receive an egocentric
partial observation of the environment state on each timestep. Other prior work uses a 3-dimensional
Goal Cycle environment [Bhoopchand et al., 2023]. Goal Cycle is limited in its ability to evaluate
generational improvement across learned agent behaviours, because once an agent has identified
the correct cyclic order, it should simply repeat the same action sequence of cycling through the
goals for the duration of an episode. We therefore introduce Goal Sequence (Figure 2) as a simple
adaptation of Goal Cycle, but with more open-ended properties. Specifically, we replace the cycle
with a non-repeating sequence of goals that agents must discover by navigating based on egocentric,
partial observations. We use a 7× 7 grid with 3 goal types and agents observe a 3× 3 grid of cells
directly in front of them. For in-context accumulation, the goal sequence and positions are randomly
generated and fixed across in-context adaptation. For in-weights accumulation, the goal sequence is
fixed across training, but goal positions are still randomised between episodes.

Travelling Salesperson: Finally, we use the Travelling Salesperson Problem (TSP). Given that
cultural accumulation involves the transmission of information not otherwise immediately accessible

4

to new generations, we specifically focus on the partially-observable variant of TSP [Buck and Keller,
2008, Noormohammadi-Asl and Taghirad, 2019] in which some or all of the cities’ coordinates are
not observed. The agent’s objective is to visit every city, minimising the total length of the route
travelled. The positions of cities are randomly generated and fixed across in-context adaptation for
in-context accumulation. City positions are fixed across all of training for in-weights accumulation.

4 Cultural Accumulation in RL

We model cultural accumulation as taking place within POSGs. Each member of a given generation
gm+1 learns in parallel on an independent instance of the environment, which also contains static
members of the previous generation, gm. Therefore, from the perspective of a given agent n in gm+1

this is a POMDP, since the prior, static generation can be considered part of the environment. In
this work, we focus on generational improvement and have thus introduced a separation between the
development phase of an agent, where they are learning from and improving upon prior generations,
and the transmission phase, where they are simply acting and being observed by the next generation.
Under this formulation, we propose and investigate two distinct mechanisms for cultural accumulation
in RL agents based on our in-context and in-weights dichotomy introduced in Section 3.

4.1 In-Context Accumulation

We first consider in-context accumulation, where we aim to achieve cultural accumulation via fast
in-context adaptation following a separate phase of meta-RL training. Meta-RL training can be
viewed as imbuing agents with multiple memory systems [Squire et al., 1993]. By updating ϕ,
in-context RL executes a processes of knowledge acquisition, or declarative memory [Squire, 2004]
updating. In-context accumulation extends this knowledge acquisition to operate across multiple
generations. The corresponding results are in Section 5.1.

4.1.1 Training

Algorithm 1 Training Loop for In-Context Accumulation (changes to RL2 in red)

1: ϕ̂ := init. agent state
2: θ̂ := init. agent parameters
3: θO := oracle parameters
4: ϵ := oracle noise factor
5: θn ← θ̂ // Initialise the agent parameters
6: for train step t ∈ [0, T − 1] do
7: s ∼ Ŝ
8: ϕn ← ϕ̂
9: B := trajectory buffer

10: for each trial k ∈ [0,K − 1] do
11: pobs = 1− k/(K − 1)
12: while trial not done do
13: on ∼ O(s)
14: if IsVisible ∼ Bernoulli(pobs) then
15: Set oracle visible in on

16: end if
17: aO ∼ πθO,ϵ(s), an ∼ πθn(on|ϕn)
18: ϕn ← fθn(on|ϕn)
19: s, r ∼ T (s, a)
20: B ← (on, an, rn) // Append transition to buffer
21: end while
22: end for
23: θn ← update(θn, B)
24: end for

To train agents capable of in-context accumulation, we require three attributes: (1) agents must learn
to learn from the behaviour of other agents (i.e., social learning) within the context of a single episode,

5

(2) agents must be able to act independently by their last trial, so that their behaviour can provide
useful demonstrations for the next generation, (3) agents must use sufficient independent exploration
to improve on the the previous generation, or each new generation will only be as good as the last.

To facilitate (1) during training, but not at test time, we assume access to an oracle O with fixed
parameters θ̂O. O is able to condition on the full state s, which we refer to as privileged information.
Agent n can observe the behaviours of O as they jointly act in an environment. To achieve (2), we
include this representation of O in on with probability pobs at each timestep and linearly anneal pobs
across the K trials from 1→ 0. This ensures that the agent learns to act independently by the final
trial. Perez et al. [2023] show that increasing opportunities to learn socially leads to less diversity in
homogeneous populations, which could be seen as limiting independent discovery in our context,
further motivating this constraint. For (3), we add some random noise to the oracle policy according
to a tunable parameter ϵ4. This encourages the agent to learn that the behaviour of other agents O in
the environment may be sub-optimal, in which case agent n should engage in selective social learning
[Poulin-Dubois and Brosseau-Liard, 2016]. This approach could be seen as imposing an information
rate limit [Prystawski et al., 2023] between the oracle and learning agent. We present this process
altogether as Algorithm 1, with changes to standard RL2 in red.

4.1.2 Evaluation

Algorithm 2 In-Context Accumulation During Evaluation

1: ϕ̂ := init. agent state
2: θ := parameters from training
3: s0 ∼ Ŝ // Sample initial state
4: ϕ̃n∗

0 ← ϕ̂ // Define an initial reset state
5: for each generation m ∈ [1,M] do
6: for each population member n ∈ [1, Npop] do
7: ϕn

m ← ϕ̂
8: sn ← s0
9: for each trial k ∈ [0,K − 1] do

10: if k = K − 1 then
11: ϕ̃n

m ← ϕn
m // Store agent state at beginning of last trial as reset state

12: end if
13: pobs = 1− k/(K − 1)

14: ϕn
m−1 ← ϕ̃n∗

m−1 // Set previous generation state to best reset state from that generation
15: while trial not done do
16: onm−1, o

n
m ∼ O(s)

17: if IsVisible ∼ Bernoulli(pobs) then
18: Set previous generation visible in onm
19: end if
20: anm−1 ∼ πθ(o

n
m−1|ϕn

m−1), a
n
m ∼ πθ(o

n
m|ϕn

m)
21: ϕn

m−1 ← fθ(o
n
m−1|ϕn

m−1), ϕ
n
m ← fθ(o

n
m|ϕn

m)
22: sn, rn ∼ T (sn, an)
23: end while
24: end for
25: n∗ = argmaxn∈[1,Npop]

∑
t I[k = K − 1]rnm // Select best population member based on final

trial performance
26: end for
27: end for

Having trained agents via Algorithm 1, we evaluate their in-context accumulation. During this
evaluation phase, O is replaced by the best5 of the previous generation n∗, as we do not assume

4For the oracle to capture sub-optimal, but goal-directed behaviour, we inject correlated noise by corrupting
the privileged information in oO.

5This is an external selection mechanism. We investigate the emergence of selective social learning in
Appendix C.

6

Figure 3: Left: In-context accumulation during evaluation on Memory Sequence. Right: Evaluation
results following training with different oracle accuracies.

access to privileged information at test time. This previous best agent, now in transmission phase,
has its internal state reset between trials. A member of the new generation, in development phase,
continuously updates its internal state across trials. The same meta-parameters θ from training are
used across generations and only the internal states ϕ are used to update each generation. Generations
are made up of N agents that interact with N independent environments.

For each generation gm, we store the internal state of each agent on the first step of its final trial and
call this the “reset state” ϕ̃n

m. After the final trial, we then keep the previously stored reset state of the
best performing agent ϕ̃n∗

m in terms of rewards received in its last trial. When introducing the next
generation gm+1, generation gm transitions into transmission phase and we represent the adapted
behaviour of the best performing agent by resetting the internal states ϕ1:N

m ← ϕ̃n∗

m at the beginning
of each trial. Thus, the next generation gm+1 can in essence observe the best of gm repeating its final
trial. In practice, we mask gm+1 from the observations of gm in order to reflect the fact that agents do
not expect to see other agents in their final trial, as guaranteed by training attribute (2) above. Since
the observations of gm+1 can include information about the learned behaviours of gm, we implicitly
have gm+1 = f(gm), establishing a purely in-context equivalent to generational training (Section
2.4). This process is presented in Algorithm 2.

4.2 In-Weights Accumulation

Finally, we present an algorithm for cultural accumulation to take place over the course of training
successive generations of policies (i.e., in-weights) rather than through solely updating the internal
state (i.e., in-context). This is akin to generational training (Section 2.4), but without modifying the
policy-gradient loss, by simply including the previous generation within environments on which the
new generation is training, so that their actions can be observed and learned from. This alternative
model of cultural accumulation assumes an agent’s lifetime to be an entire training run, rather than a
single episode. Here, we anneal the probability of observing the previous generation pobs on a given
environment timestep linearly over training. The corresponding approach is detailed in Algorithm 3,
presented in Appendix A. In-weights RL (i.e., RL training) can be interpreted as updating procedural
memory [Johnson, 2003] via skill acquisition. We thus interpret in-weights accumulation as gradual,
skills-based accumulation. Note that there is no separation between "training" and "evaluation" in this
case, because the in-weights algorithm views cultural accumulation as part of the training. This is in
contrast to in-context accumulation, which is an evaluation-time algorithm executed by appropriately
trained meta-policies. The results that correspond to this setting are in Section 5.2.

5 Results

For each of our experiments, we use a Simplified Structured State Space Model (S5) [Smith et al.,
2022] modified for RL [Lu et al., 2024] to encode memory, building on the PureJaxRL codebase
[Lu et al., 2022a]. This model architecture runs asymptotically faster than Transformers in sequence
length and outperforms RNNs in memory tasks [Morad et al., 2024]. PPO [Schulman et al., 2017] is

7

Figure 4: Left: In-context accumulation during evaluation on Goal Sequence. Right: In-context
accumulation during evaluation on TSP.

used as the RL training algorithm. For Goal Sequence experiments, observations are processed by a
CNN, whilst for Memory Sequence and TSP, they are processed by feed forward layers. Architectural
details are provided in Appendix E and algorithmic hyperparameters in Appendix F. For all in-context
experiments, a one-hot encoding of the reward received on each timestep and a one-hot encoding
of the current trial number are included each agent’s observation. We provide further details on the
configuration of each environment in Appendix D. All results are averaged across 10 seeds and the
shaded regions of plots show standard error.

5.1 In-Context Results

As single-lifetime baselines, we use RL2 trained on: (a) episodes of equivalent length to one
generation and (b) episodes of equivalent length to all cumulative generations. All in-context
evaluations are performed on held-out environment instances for the same number of trials.

Memory Sequence: In Figure 3, we show that in-context learners trained according to Algorithm 1
are capable of accumulating beyond single-lifetime RL2 baselines and even beyond the performance
of the noisy oracles with which they were trained when evaluated on a new sequence. Interestingly,
when evaluating the accumulation performance of agents trained with oracles of different noise levels,
we see that it degrades when oracles are too accurate. This is directly inverse to results in imitation
learning [Sasaki and Yamashina, 2021], where the quality of expert trajectories positively impacts the
performance achieved when training on these trajectories. We attribute this result to an over-reliance
on social learning when oracles are too accurate, which therefore impedes the progress of independent
in-context learning during training. Conversely, if oracles are too random, agents do not acquire the
necessary social learning skills to effectively make use of prior generations.

Figure 5: Left: In-weights accumulation on Memory Sequence. Right: In-weights accumulation
compounds with resetting. Error bars represent 95% confidence intervals.

8

Goal Sequence: Figure 4 (left) shows that in-context accumulation also significantly outperforms
single-lifetime RL2 when evaluated on a new goal sequence. On this more challenging, partially-
observable navigation task, we found that higher, but still imperfect oracle accuracies during training
produced the most effective accumulating agents. This is likely due to the fact that learning to learn
socially in this environment is a much harder problem that involves finding and actively following
another agent. We additionally observe that the performance of each generation typically drops
slightly on the last trial or two, where agents are entirely or mostly independent. This indicates that
although agents are able to independently recall and navigate most of the sequence they have learned,
improving on the previous generation, they are still somewhat over-reliant on demonstrations.

TSP: We present these results in Figure 4 (right). Again, we see that cultural accumulation enables
sustained improvements considerably beyond RL2 over a single continuous context (i.e., lifetime).
We only show the RL2 baseline trained on shorter episodes, as the baseline trained on longer episodes
failed to make meaningful learning progress. In Figure 2, we show routes traversed by different
generations for an example set of city locations. Notably, these routes become more optimised across
generations, with later generations exploiting a decreasing subset of edges.

5.2 In-Weights Results

Figure 6: In-weights accumulation on Goal Se-
quence.

Memory Sequence: Figure 5 (left) shows that
agents can accumulate over the course of train-
ing via Algorithm 3. For in-weights accumu-
lation, the sequence is kept fixed over train-
ing, meaning that agents are trained to learn
as much of a single sequence as possible. After
one generation of accumulation, these agents
outperform single-lifetime training for a dura-
tion equivalent to 5 complete generations. This
demonstrates that single-lifetime learners suc-
cumb to primacy bias [Nikishin et al., 2022] and
converge prematurely. In light of this, we inves-
tigate whether in-weights accumulation can be
paired with other methods to overcome primacy
bias. In particular, we use the simple approach
of resetting some policy network layers [Nikishin et al., 2022], opting for resetting the final two
feed-forward layers, and present these results in Figure 5 (right). We observe that resetting alone
helps mitigate premature convergence, but that when we apply resetting to accumulating agents6, the
improvements are compounded and agents reach higher returns than via either method independently.

Goal Sequence: Figure 6 shows that in-weights accumulation exceeds the performance of training a
single agent for a continuous run equivalent to the total duration of 4 accumulation steps.

TSP: We show results for in-weights accumulation in TSP in Figure 7, within Appendix B.

6 Related Work

Social Learning: Considerable focus has been placed on using social learning to overcome hard
exploration problems, imitate human behaviour, and generalise to unseen environments [Ndousse
et al., 2021, Bhoopchand et al., 2023, Ha and Jeong, 2023]. Ndousse et al. [2021] trains agents that
achieve reasonable performance without a demonstrator by increasing the proportion of episodes
with no demonstrator in handpicked increments over training. We employ a similar approach
for training agents to eventually act independently by annealing the probability of observing the
previous generation across training. To obtain independently capable agents in-context, we anneal
the probability of observing the previous generation between trials, which is similar to the expert
dropout used in Bhoopchand et al. [2023].

Machine Learning Models of Cumulative Culture: A growing body of work uses advances in
machine learning to model cultural accumulation in-silico [Prystawski et al., 2023, Perez et al., 2023,

6We initialise the second generation entirely from scratch so that it can learn to learn socially and use resetting
with accumulation thereafter.

9

Explicit Imitation Learning Implicit Third-Person Social Learning

Non-Generational

Behavioral Cloning
[Pomerleau, 1988]
Inverse RL
[Russell, 1998]

Observational Learning by RL
[Borsa et al., 2017]
Emergent Social Learning
[Ndousse et al., 2021]
Learning Few-Shot Imitation
[Bhoopchand et al., 2023]

Generational Training

Kickstarting
[Schmitt et al., 2018]
X-Land
[Stooke et al., 2022]

Our Work

Table 1: Comparisons to prior work. Generational Training helps overcome local optima to tackle
open-ended tasks [Stooke et al., 2022]. Implicit third-person social learning is more general than
hand-crafted imitation learning algorithms. Our work combines both to achieve cultural accumulation.

2024]. Perez et al. [2024] use Bayesian RL with constrained inter-generational communication
to reproduce social learning processes documented in human populations. This communication is
represented in a domain specific language. Rather than requiring an explicit communication channel
between agents, we use social learning to facilitate accumulation in a more domain agnostic manner,
demonstrating performance gains in multiple distinct settings. Prystawski et al. [2023] demonstrate
cultural evolution in populations of Large Language Models, where language-based communication
is used as the mechanism for knowledge transfer between generations.

Generational RL: The generational process of cultural accumulation can be seen as iterations of
implicit policy distillation and improvement. Iterative policy distillation [Schmitt et al., 2018, Stooke
et al., 2022] is therefore related to our work. Unlike these methods, we do not assume that the
new learner has access to the policies of experts or past generations, but only observations of their
behaviour as they interact with a shared environment. We also do not explicitly modify the learning
objective, leaving the agent free to learn how much or how little to imitate past generations.

7 Conclusion

We take inspiration from the widespread success of cumulative culture in nature and investigate
cultural accumulation in reinforcement learning. We construct an in-context model of accumulation,
which operates on episodic timescales, and an in-weights model, which operates over entire training
runs. We define successful cultural accumulation as a generational process that exceeds the perfor-
mance of independent learning with the same total experience budget. We then present in-context
and in-weights algorithms that give rise to successful cultural accumulation on several tasks requiring
exploration under partial observability. We find that in-context accumulation can be impeded by
training agents with oracles that are either too reliable or too unreliable, highlighting the need to
balance social learning and independent discovery. We also show that in-weights accumulation
effectively mitigates primacy bias and is further improved by network resets.

Limitations and Future Work: An interesting future direction would be to use learned auto-
curricula [Dennis et al., 2020, Jiang et al., 2021] for deciding when agents should learn socially or
independently, instead of linearly annealing the observation probability. Another extension would be
to investigate cumulative culture in settings with different incentive structures, such as heterogeneous
or cooperative rewards [Rutherford et al., 2023]. Future work could also study ways we can evolve
the process of cultural accumulation itself [Lu et al., 2023a] or learn to influence the learning process
of other agents [Lu et al., 2022b, 2023b] for cultural transmission. Finally, we note that whilst
understanding cumulative culture has benefits for both machine learning and modelling human
society, the consequences of self-improving systems should warrant consideration.

Acknowledgments

Jonathan Cook is supported by the ESPRC Centre for Doctoral Training in Autonomous Intelli-
gence Machines and Systems EP/S024050/1. Jakob Foerster is partially funded by the UKI grant
EP/Y028481/1 (originally selected for funding by the ERC). Jakob Foerster is also supported by the
JPMC Research Award and the Amazon Research Award.

10

References
Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree

search, 2017.

Albert Bandura and Richard H Walters. Social learning theory, volume 1. Englewood cliffs Prentice
Hall, 1977.

Jerome H Barkow, Akinsola A Akiwowo, Tushar K Barua, MRA Chance, Eliot D Chapple,
Gouranga P Chattopadhyay, Daniel G Freedman, WR Geddes, BB Goswami, PAC Isichei, et al.
Prestige and culture: a biosocial interpretation [and comments and replies]. Current Anthropology,
16(4):553–572, 1975.

J. Bauer, K. Baumli, S. Baveja, et al. Human-timescale adaptation in an open-ended task space. In
International Conference on Machine Learning, 2023.

A. Bhoopchand, B. Brownfield, A. Collister, et al. Learning few-shot imitation as cultural transmission.
In Nature Communications 14, page 7536, 2023.

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence I. Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub,
Matthew Macfarlane, Andries P. Smit, Nathan Grinsztajn, Raphael Boige, Cemlyn N. Waters, Mo-
hamed A. Mimouni, Ulrich A. Mbou Sob, Ruan de Kock, Siddarth Singh, Daniel Furelos-Blanco,
Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a diverse suite of scalable reinforcement
learning environments in jax, 2024. URL https://arxiv.org/abs/2306.09884.

Diana Borsa, Bilal Piot, Rémi Munos, and Olivier Pietquin. Observational learning by reinforcement
learning. arXiv preprint arXiv:1706.06617, 2017.

A. R. Buck and J. M. Keller. A myopic monte carlo strategy for the partially observable travelling
salesman problem. 2008.

Aaron Cochrane, Chris R Sims, Vikranth R Bejjanki, C Shawn Green, and Daphne Bavelier. Multiple
timescales of learning indicated by changes in evidence-accumulation processes during perceptual
decision-making. npj Science of Learning, 8(1):19, 2023.

H. Cornish, R. Dale, S. Kirby, and M. H. Christiansen. Sequence memory constraints give rise to
language-like structure through iterated learning. In PLoS ONE, 2017.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. RL2: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint, arXiv:1611.02779, 2016.

M. Enquist, S. Ghirlanda, and A. Jarrick. Why does human culture increase exponentially? 2008.

Seungwoong Ha and Hawoong Jeong. Social learning spontaneously emerges by searching optimal
heuristics with deep reinforcement learning. In International Conference on Machine Learning,
pages 12319–12338. PMLR, 2023.

J. Henrich. The secret of our success: How culture is driving human evolution, domesticating our
species, and making us smarter. Princeton University Press, 2019.

G. Hofstede, G. J. Hofstede, and M. Minkov. Cultures and organizations: Software of the mind.
McGraw-Hill Professional, 1994.

William Hoppitt and Kevin N Laland. Social learning: an introduction to mechanisms, methods, and
models. Princeton University Press, 2013.

Victoria Horner, Darby Proctor, Kristin E Bonnie, Andrew Whiten, and Frans BM de Waal. Prestige
affects cultural learning in chimpanzees. PloS one, 5(5):e10625, 2010.

11

https://arxiv.org/abs/2306.09884

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021.

Addie Johnson. Procedural memory and skill acquisition. Handbook of psychology, pages 499–523,
2003.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. 101:99–134, 1998.

H. W. Kuhn. Extensive games and the problem of information. 28:193–216, 1953.

M. Laskin, L. Wang, J. Oh, et al. In-context reinforcement learning with algorithm distillation. In
Advances in Neural Information Processing Systems, 2022.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022a.

Chris Lu, Sebastian Towers, and Jakob Foerster. Arbitrary order meta-learning with simple population-
based evolution. In ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life
Conference. MIT Press, 2023a.

Chris Lu, Timon Willi, Alistair Letcher, and Jakob Nicolaus Foerster. Adversarial cheap talk. In
International Conference on Machine Learning, pages 22917–22941. PMLR, 2023b.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

Christopher Lu, Timon Willi, Christian A Schroeder De Witt, and Jakob Foerster. Model-free
opponent shaping. In International Conference on Machine Learning, pages 14398–14411. PMLR,
2022b.

Alex Mesoudi. Variable cultural acquisition costs constrain cumulative cultural evolution. PloS one,
6(3):e18239, 2011.

Alex Mesoudi and Alex Thornton. What is cumulative cultural evolution? Proceedings of the Royal
Society B, 285(1880):20180712, 2018.

Steven Morad, Chris Lu, Ryan Kortvelesy, Stephan Liwicki, Jakob Foerster, and Amanda Prorok. Re-
visiting recurrent reinforcement learning with memory monoids. arXiv preprint arXiv:2402.09900,
2024.

K. Ndousse, D. Eck, S. Levine, and N. Jaques. Emergent social learning via multi-agent reinforcement
learning. In International Conference on Machine Learning, 2021.

T. Ni, B. Eysenbach, and R. Salakhutdinov. Recurrent model-free rl can be a strong baseline for
many pomdps. 2021.

E. Nikishin, M. Schwarzer, P. D’Oro, P-L. Bacon, and A. Courville. The primacy bias in deep
reinforcement learning. In International Conference on Machine Learning, 2022.

A. Noormohammadi-Asl and H. D. Taghirad. Multi-goal motion planning using traveling salesman
problem in belief space. 2019.

J. Perez, M. Sánchez-Fibla, and C. Moulin-Frier. Cultural evolution in populations with heterogenous
and variable preferences. 2023. URL https://inria.hal.science/hal-04408019.

J. Perez, C. Léger, M. Ovando-Tellez, C. Foulon, J. Dussauld, P. Oudayer, and C. Moulin-Frier.
Cultural evolution in populations of large language models. 2024.

Charles Perreault. The pace of cultural evolution. 2012.

12

https://inria.hal.science/hal-04408019

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

D. Poulin-Dubois and P. Brosseau-Liard. The developmental origins of selective social learning.
Current Directions in Psychological Science, 25(1):60–64, 2016.

B. Prystawski, D. Arumugam, and N. D. Goodman. Cultural reinforcement learning: a framework
for modeling cumulative culture on a limited channel. 2023.

Luke Rendell, Robert Boyd, Daniel Cownden, Marquist Enquist, Kimmo Eriksson, Marc W Feldman,
Laurel Fogarty, Stefano Ghirlanda, Timothy Lillicrap, and Kevin N Laland. Why copy others?
insights from the social learning strategies tournament. Science, 328(5975):208–213, 2010.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, pages 101–103, 1998.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023.

F. Sasaki and R. Yamashina. Behavioural cloning from noisy demonstrations. In International
Conference on Learning Representations, 2021.

T. Sasaki and D. Biro. Cumulative culture can emerge from collective intelligence in animal groups.
2017.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, and S. M. Ali
Eslami. Kickstarting deep reinforcement learning. arXiv preprint, arXiv:1803.03835, 2018.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint, arXiv:1707.06347, 2017.

J. T. H. Smith, A. Warrington, and S. W. Linderman. Simplified state space layers for sequence
modelling. arXiv preprint, arXiv:2208.04933, 2022.

Larry R Squire. Memory systems of the brain: a brief history and current perspective. Neurobiology
of learning and memory, 82(3):171–177, 2004.

Larry R Squire, Barbara Knowlton, and Gail Musen. The structure and organization of memory.
Annual review of psychology, 44(1):453–495, 1993.

A. Stooke, A. Mahajan, C. Barros, et al. Open-ended learning leads to generally capable agents.
arXiv preprint, arXiv:2107.12808, 2022.

C. Tennie, J. Call, and M. Tomasello. Ratcheting up the ratchet: On the evolution of cumulative
culture. In Philosophical Transactions of the Royal Society B: Biological Sciences, 2009.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

13

A In-Weights Accumulation

Algorithm 3 In-Weights Accumulation

1: θ̂ := init. agent parameters
2: θ̃n

∗

0 ← θ̂ // Initialise the “random” first generation parameters
3: for each generation m ∈ [1, G] do
4: for each population member n ∈ [1, Npop] do
5: B := trajectory buffer
6: θnm ∼ θ̂
7: for train step t ∈ [0, T − 1] do
8: pobs = 1− t/(T − 1)

9: s ∼ Ŝ
10: while not done do
11: onm−1, o

n
m ∼ O(s)

12: if p ∼ Bernoulli(pobs) then
13: Set previous generation visible in onm
14: end if
15: anm−1 ∼ πθ̃n∗

m−1
(onm−1)

16: an ∼ πθn
m
(onm)

17: s, r ∼ T (s, a)
18: B ← (onm, anm, rnm) // Append transition to buffer
19: end while
20: θnm ← update(θnm, B)
21: end for
22: n∗ = argmaxn∈[1,Npop]

∑
t=T−1 r

n
m // Select best population member based on final episode

performance
23: end for
24: end for

14

B In-Weights Accumulation in TSP

In this setting, after two generations, performance exceeds agents trained for a single lifetime
equivalent to 5 generations. However, we do not observe as much improvement on subsequent
generations.

0 100 200 300 400 500 600
Update

2

4

6

8

10

12

14

16

18

Re
tu

rn

In-Weight Accumulation: TSP

Generation 0
Generation 4
Single Lifetime

Figure 7: In-weights accumulation on TSP.

15

C Selective Social Learning

In the Goal Sequence experiments, we select the best performing agent of the last generation for the
current generation of agents to observe during training, automating the selection process. In human
and animal cultural accumulation, this selection is instead learned through prestige cues Barkow et al.
[1975], Horner et al. [2010]. Thus, in the Memory Sequence experiments, we do not automatically
select the best of the past generation for the agents to observe. Instead, the agents can observe the
entire last generation. For In-Context Accumulation, we sort the observed oracles and agents by
their performance during pre-training and evaluation. Thus, the agents ideally learn to weight the
last generation by their relative performance. For In-Weights Accumulation, sorting does not make a
difference, as random network initialization is agnostic to the observation ordering. Thus, the agent
learns implicitly through observation, which of the past generation is the best to imitate.

16

D Further Environment Details

D.1 Memory Sequence

For in-context accumulation in Memory Sequence, we use sequences comprised of three digits, with
a maximum length of 24, and give the agents four trials per episode. Each generation has a population
size of three. We perform initial meta-training for 8e6 timesteps. Agents get a reward of 1.0 for a
correct response and a reward for −1.0 for an incorect one. The trial ends when an incorrect response
is given or the maximum length is reached.

For in-weight accumulation in Memory Sequence we use sequences comprising of ten digits, with
a maximum length of 24. Agents train for 1e5 timesteps. Each generation has a population size of
five. Agents get a reward of 1.0 for a correct response and a reward for −1.0 for an incorect one. The
episode ends when the maximum length is achieved.

D.2 Goal Sequence

We use 7× 7 grids with 3 goal types. Agents observe a 3× 3 grid of cells directly in front of them.
Observations are symbolic with 4 channels (one for each goal type and one for agents). On each
timestep, an agent can take one of three actions: move forward, turn left, turn right. Agents
receive +1 reward for hitting the correct next goal and −1 reward for hitting the incorrect next goal.
For in-context experiments, trials are 30 steps long and there are 4 trials in an episode. For in-weights
experiments, episodes are 50 steps long.

D.3 TSP

For in-context accumulation in TSP, we use six cities and provide eight trials per episode. The city
positions are uniformly sampled in the unit square. Each generation has a population size of three.
We perform initial meta-training for 8e6 timesteps. Agents get a reward of (

√
2−dist(cur city,next city))√

2
if the selected next city is valid. Agents get a reward of −1.0 and the trial ends if they select an
already-visited city.

For in-weight accumulation in TSP, we use twenty-four cities. Each generation has a population size
of eight. Agents train for 3e5 timesteps. The reward setup is equivalent to above.

17

E Architecture Details

E.1 Memory Sequence and TSP

The policy and value networks share two fully layers and a GRU layer. Values and policies are
computed with two fully connected layers. All layers use leaky ReLU activations. Here, we take
the example of a 4-dimensional input for the 4-dimensional embedding of an action observation and
assume the in-weights setting, so no trials. The final output is 10-dimensional in the case of a random
sequence made up of 10 distinct digits.

• Shared input layers:
– FC (4, 128)
– FC (128, 256)
– FC (256, 256)
– GRU (256, 256)

• Value MLP:
– FC (256, 128)
– FC (128, 128)
– FC (128, 1)

• Policy MLP:
– FC (256, 128)
– FC (128, 128)
– FC (128, 10)

E.2 Goal Sequence

The policy and value networks share three convolutional layers, a fully connected layer, and an S5
layer. Values and policies are computed with two fully connected layers. Convolutions use leaky
ReLU activation functions and all other layers use tanh activation functions. Inputs are 5-dimensional
for one-hot encodings of 3 goal types, walls and agents. A 3-dimensional vector for one-hot encodings
of reward is concatenated to the output of the last convolutional layer. A one-hot encoding of the trial
would also be included in the in-context setting.

• Shared input layers:
– Conv (5, 32), 1× 1 filters, stride 1, padding 0
– Conv (32, 64), 1× 1 filters, stride 1, padding 0
– Conv (64, 64), 1× 1 filters, stride 1, padding 0
– FC (576 + 3, 256)
– S5 (256, 256)

• Value MLP:
– FC (256, 64)
– FC (64, 64)
– FC (64, 1)

• Policy MLP:
– FC (256, 64)
– FC (64, 64)
– FC (64, 3)

18

F Hyperparameters

F.1 Memory Sequence and TSP

population size 5
learning rate 2.5× 10−5

batch size 4
rollout length 128
update epochs 4
minibatches 4

γ 0.99
λGAE 0.95
ϵ clip 0.2

entropy coefficient 0.01
value coefficient 0.5

max gradient norm 0.5
anneal learning rate False

F.2 Goal Sequence

population size 4
learning rate 1× 10−5

batch size 128
rollout length 32
update epochs 8
minibatches 8

γ 0.99
λGAE 0.95
ϵ clip 0.2

entropy coefficient 0.01
value coefficient 0.5

max gradient norm 0.5
anneal learning rate False

19

G Compute Resources

Memory Sequence and TSP experiments were run on a single NVIDIA RTX A40 GPU (40GB
memory) in under 20 minutes. Training of in-context learners in Goal Sequence was run in under 8
minutes on 4 A40s (oracle training runs in the same time). In-weights accumulation in Goal Sequence
was run in 30 minutes on 4 A40s.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction motivate the study of cultural accumulation in
artificial learning agents and claim that, under our models, cultural accumulation can be
achieved over RL training and in-context RL in the settings we consider, both of which are
backed up by our results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In our conclusion we outline the limitations of this work and highlight direc-
tions for future research.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

21

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details required to understand and interpret the results are
included in the main text and all further details required to reproduce the results are included
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

22

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide an anonymous open-sourced repository containing all code used
to run experiments and instructions needed to reproduce results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Key training and test details needed to interpret results are in the main text any
further details are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All plots include shaded regions indicating standard error or error bars repre-
senting 95% confidence intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources used for each experiment are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research was conducted with strict adherence to the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the paper’s conclusion, we discuss the potential positive and negative
societal impacts of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

24

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not include the risk of any data or models that have risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No existing assets were used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

25

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The open-sourcing of our code includes the release of the environments used
with supporting documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing, nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing, nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

26

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Background
	Partially-Observable Stochastic Games
	Partially-Observable Markov Decision Processes
	Meta-RL
	Generational Training

	Problem Statement
	Environments

	Cultural Accumulation in RL
	In-Context Accumulation
	Training
	Evaluation

	In-Weights Accumulation

	Results
	In-Context Results
	In-Weights Results

	Related Work
	Conclusion
	In-Weights Accumulation
	In-Weights Accumulation in TSP
	Selective Social Learning
	Further Environment Details
	Memory Sequence
	Goal Sequence
	TSP

	Architecture Details
	Memory Sequence and TSP
	Goal Sequence

	Hyperparameters
	Memory Sequence and TSP
	Goal Sequence

	Compute Resources

