Under review as a conference paper at ICLR 2026

STAR: SPECULATIVE DECODING WITH SEARCHABLE
DRAFTING AND TARGET-AWARE REFINEMENT FOR
MULTIMODAL GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding (SD) has proven to be an effective technique for accelerat-
ing autoregressive generation in large language models (LLMs), however its ap-
plication to vision-language models (VLMs) remains relatively unexplored. We
propose STAR, a novel SD framework designed specifically for fast and efficient
decoding in VLMs. STAR leverages a neural architecture search (NAS) frame-
work with target-aware supernet training to automatically identify both the opti-
mal interaction strategy between the draft and target models, and the most suitable
draft model architecture for the underlying hardware implementation platform.
STAR additionally incorporates adaptive intermediate feature distillation, guided
by attention entropy, to enable efficient draft training. Experiments on a range of
well-established VLMs, including LLaVA series, Pixtral, and SmolVLM, demon-
strate that STAR achieves up to a 3.8x speedup compared to standard decoding
approaches and significantly outperforms existing SD baselines in both inference
throughput and speculative acceptance length across a wide spectrum of VLMs.

1 INTRODUCTION

Vision-Language Models (VLMs) play a pivotal role in advancing artificial intelligence by inte-
grating visual perception with natural language understanding. These models empower machines
to process and generate both visual and textual data, enabling a broad array of applications such
as image captioning (Zhou et al.l [2020; |[Hu et al. [2022; |Chen et al.| 2022; |Dzabraev et al.| [2024),
visual question answering (Chappuis et al., 2022; Bazi et al., 2023; Wang et al., 2024), and content-
based search (Li et al., 2024bj Sun et al., 2025). Despite their impressive capabilities, VLMs are
computationally demanding, primarily due to the complexity of integrating high-dimensional visual
and textual inputs. Speculative decoding (SD) (Stern et al., 2018} [Leviathan et al., 2023) acceler-
ates the autoregressive generation process of large language model (LLM) by dividing it into two
stages: a low-cost drafting phase and a parallel verification phase. This allows multiple candidate
tokens to be generated and then verified simultaneously in a single forward pass through the target
LLM. The approach boosts decoding efficiency while maintaining output quality through a selective
acceptance-rejection mechanism.

As highlighted in prior work (Chen et al.| 2023} [Li et al., 2024cid; [Cai et al., | 2024} |/Ankner et al.
2024; | Xia et al., [2023a}; [Zhang et al., 2023; [Miao et al.,|2023; |Chen et al., [2024b; Hu et al., |2025)),
achieving superior performance in the SD framework requires the draft model to meet two key
criteria. First, it should achieve a high acceptance ratio, meaning that most of its proposed tokens
are validated by the target model. Second, it should deliver low execution latency to minimize overall
decoding time. Balancing these factors is essential for navigating the accuracy—latency trade-off, a
challenge well-suited to neural architecture search (NAS), which has been widely demonstrated to
yield highly effective trade-offs in similar settings.

Although speculative decoding techniques have been widely developed to accelerate inference in
LLMs, their integration into multimodal language models (Li et al., [2024aj |Raj et al., 2024), es-
pecially VLMs, has received relatively little attention. In this paper, we introduce Speculative De-
coding with Searchable Drafting and Target-Aware Refinement for Multimodal Generation (STAR).
Specifically, STAR employs a neural architecture search (NAS) mechanism with target-guided dis-

Under review as a conference paper at ICLR 2026

il ith token produced
by draft model

th token produced
by target model

“‘What are

shown in

the images”
Text

-
v

~
o< M Txt

o™ Img+Txt

Buippequig
-
o

TFLOPs

()] o
e e}
m® =g

Token Llava Llava Pixtral SmolGemma
Image 78 138 12B VLM 312B
(b) (c)
Figure 1: (a) Speculative decoding process, LM denotes large model. (b) Architecture of Vision-

language model (c) Computational cost in Tera FLOPs of VLMs processing text only (Txt) and
multi-modal (Img+Txt) inputs over different VLMs.

|opow
abenbue]
w

«S1ED oM,

o

tillation to train a supernet encompassing diverse draft configurations, then identify the optimal draft
model configuration, input pruning ratio, and interaction strategy with the target model, all tailored
to the underlying hardware platform. Another key innovation of STAR is its selective utilization of
intermediate-layer representations, which capture the most informative features from both modali-
ties. These representations serve as effective supervision signals, enabling the draft model to achieve
high accuracy. While neural architecture search and model pruning are well-established optimiza-
tion techniques, their systematic application to draft model design in VLM speculative decoding
remains unexplored. The key challenge lies not in developing new algorithms, but in formulating
this multimodal acceleration problem within a principled search framework and designing VLM-
specific optimization dimensions.

We evaluate STAR on a diverse set of widely used vision-language models, including LLaVA-v1.6-
Vicuna-7B/13B (Liu et al.,[2023a)), SmolVLM-2B (Marafioti et al.,|2025), and Pixtral-12B (Agrawal
et al., |2024), across a range of multimodal tasks. Extensive experiments show that STAR signifi-
cantly outperforms established speculative decoding baselines, while maintaining high acceptance
rates across various applications. Our main contributions are as follows:

* STAR integrates a NAS framework to identify the optimal draft model configuration for
optimal speedup. The search process further determines the optimal input and model prun-
ing ratio and the most efficient connection strategy between the draft and target models for
the optimal speedup performance.

* During training, STAR dynamically selects intermediate features from the target model’s
middle layers based on proposed criteria, using them to supervise the draft model, which
improves its predictive accuracy and extends token acceptance lengths. Additionally, STAR
employs a cross-attention mechanism to leverage these intermediate outputs, enabling more
effective knowledge transfer from the target model and resulting in significant performance
improvements.

* Evaluation results demonstrate that STAR is able to achieve up to a 3.8 speedup com-
pared to conventional decoding methods across various VLMs and tasks, surpassing exist-
ing speculative decoding approaches. The code used for implementation is available in
the supplementary materials.

2 RELATED WORK

Speculative decoding. is an effective approach to alleviating the sequential bottleneck in lan-
guage model inference (Stern et al., 2018). It divides the decoding process into two stages: a
lightweight draft model quickly generates a sequence of candidate tokens, which are then verified in
parallel by a more accurate target model, as illustrated in Figure [I[a).

Let the draft model My, generate y draft tokens (¢1, .. .,t,) in each draft step. During the verifica-
tion phase, the target model M, evaluates these tokens in parallel, but accepts them sequentially. If
all tokens in the batch are accepted, the draft model proceeds to generate the next set of candidate
tokens. (upper branch of Figure[I(a)). Otherwise, the target model supplies the correct token and
assists the draft model in generating subsequent tokens (lower branch of Figure[I[a)). Specifically,
it checks whether each draft token ¢; matches the output of its own sampling. If a mismatch occurs

Under review as a conference paper at ICLR 2026

at position ¢, all tokens from ¢; onward are discarded, and the target model’s sampled token at po-
sition 4, denoted t., is used instead. The accepted token sequence is therefore (¢1,...,t;—1,t;). SD
allows for parallel token generation, moving beyond the conventional step-by-step decoding, while
the verification phase ensures output quality by accepting or rejecting the draft tokens.

Vision-Language Models. VLMs are designed to jointly process visual and textual inputs, en-
abling machines to interpret and generate content that integrates both modalities. As shown in
Figure[I|b), a typical VLM consists of a visual encoder and a language model. The image is first
processed by the visual encoder to extract visual tokens, which are then concatenated with textual
tokens and passed into the language model to produce the final output. More recent models like
LLaVA (Liu et al., 2023b), InstructBLIP (Dai et al., 2023)), and Pixtral (Agrawal et al., |2024) fo-
cus on improving zero shot generalization by aligning model responses with human intent through
instruction tuning. While large VLMs achieve strong performance, their high computational cost
and memory usage pose challenges for deployment on devices with limited resources. To address
this issue, lightweight VLMs such as TinyGPT-V (Yuan et al., 2023) and TinyLLaVA (Zhou et al.,
2024])) aim to build more efficient architectures. SmolVLM (Marafioti et al., 2025) expands this di-
rection by introducing a family of compact models with parameter sizes ranging from 256 million
to 2 billion, achieving competitive results with significantly reduced model size.

To quantify the computational cost introduced by visual input processing, we measure the FLOPs
required by several models, including LLaVA-v1.6-Vicuna-7B, Pixtral-12B, and SmolVLM-2B, and
Gemma3-12B (Gemma Team et al., [2025)), using the ScienceQA dataset. We select a representative
example that includes a 480 x 300 image, a prompt of 166 tokens, and a generated output of 500
tokens. FLOPs are computed using the PyTorch Profiler. As shown in Figure[T|c), processing both
image and text inputs results in an average increase of 2.1 X in computation compared to text-only
inputs, highlighting the importance of developing more efficient visual processing methods. This
additional cost does not only come from the one-time visual encoder prefill, but mainly from the au-
toregressive decoding stage: all visual tokens are stored in the KV cache and participate in attention
at every decoding step, so each generated token must attend to both text and image tokens. Over a
full sequence, this repeated interaction with a large number of visual tokens dominates the end-to-
end FLOPs increase that we observe. In the rest of the paper, STAR is designed to target exactly this
bottleneck by compressing visual tokens and pruning attention in the draft model, thereby reducing
decoding cost while preserving a high token acceptance rate.

Neural Architecture Search. By algorithmically exploring the vast architecture space, NAS alle-
viates the time-consuming process of training models with different configurations to find the most
efficient and effective designs for specific tasks. Traditional NAS methods can be categories into
two classes. The first class of methods searches directly for the optimal architecture by making
the search process differentiable. These approaches (Liu et al., 2018} |Wan et al.} |2020; (Chen et al.,
2019) formulate architecture search as a differentiable optimization problem. They apply continuous
relaxation to express each operation as a weighted combination of candidate operations, allowing
architecture parameters to be optimized jointly with network weights using gradient-based methods.
The second class of methods jointly trains a collection of nested neural networks and then employs a
dedicated search network to select the optimal architecture from the trained candidates. Once For All
(OFA) (Cai et al.L 2019;|Chen et al., 2020} (Cai et al., |2018; [Zhang et al.l |2022) first trains a SuperNet
containing diverse architectural configurations across four dimensions (depth, width, kernel size,
and resolution), then applies progressive shrinking to train from large to small sub-networks. It uses
a trained neural network and hardware-specific lookup tables to predict optimal sub-networks given
target hardware and constraints such as latency budgets. Unlike conventional NAS approaches that
train supernets in isolation, STAR employs target-aware supernet training, where the draft model
supernet is trained using intermediate features and distillation signals from the target model. This
allows the search process to optimize not only for computational efficiency but also for alignment
with the target model’s internal feature representations, leading to a better speedup ratio.

3 METHODOLOGY

The training and inference workflows of STAR are illustrated in Figure 2] During training, the
draft model processes input tokens containing both visual and textual modalities, and is optimized

Under review as a conference paper at ICLR 2026

Phase 1: (LKL) Output draft A
warm-up training A A A A A A architecture toet vz
Draft model otz tem dy dp - dees N 5 e
way L »a I (Head)
(deed) s .. s (oed .. oM

167 €5 +er ep Target decoding Decoder Layers

Decoder Layers

-
¥rain jointly
Phase 2:
multi-resolution
training

Neural Architecture Search

e} e «-- enl
Target decoding iz L

layers Decoder Layers

Target Model Mta

=p|\ |9POIN }EIa

SPINl I9PON Helia

(Lddl) Butures) anissaiboid aseyd-omp

Draft model] E 5
=% O LU e B o et

(2 T
S g o/

5 N3 NS K
T Token

Target feature Fe °

i k i Head runing
%) mserton feac - pruning

Text Image

L
Train separately

Text Image

(a) (b) (c) (d)

Figure 2: STAR framework overview. (a) Two-Phase Training: supernet training followed by sub-
network sampling. (b) Training with three losses: L1, L feqt, and Lgisein- (¢) NAS exploring head
pruning, token compression, and feature injection. (d) Inference operation of STAR.

using the proposed mwo-phase progressive training (TPPT) strategy outlined in Section [3.1] TPPT
includes two stages: warm-up training and multi-resolution training. During inference, as shown in
Figure 2(d), the draft model with the highest speedup on the target hardware platform is selected to
optimize performance. Furthermore, the draft model’s configuration can be dynamically adjusted
in response to varying hardware conditions. STAR leverages intermediate features from the target
model through two distinct mechanisms. First, during inference, a cross-attention layer in the draft
model dynamically incorporates features from a target layer selected through neural architecture
search, providing real-time guidance for token generation. Second, during training, we introduce
an adaptive intermediate layer distillation (AIFD) approach (Section[3.2)), where a separate adaptive
distillation loss uses features from an optimally chosen target layer to supervise draft model learning.

3.1 TwO-PHASE PROGRESSIVE TRAINING FOR DRAFTING

For the simplicity of interpretation, let M,, and M, denote the target and draft models, containing
L and M transformer blocks, respectively. Let ¢,, and d,, be the n-th tokens generated by M;, and
M, For the target model M,;,, the input consists of ¢ text prompt tokens and v visual tokens. We
define s{fl and e{fl as the intermediate hidden state of the n-th token at layer j in M;, and My,,
respectively, with a total of H;_, attention heads. Figure Eka) illustrates the Two-Phase Progressive
Training (TPPT) procedure, which consists of two main stages. In the first, warm-up training phase,
the entire draft model is trained. This includes the entire set of weights within M.

The training process is illustrated in detail in
Figure 2[b). At the initial decoding stage, the
target model receives both textual and visual Table 1: Impact of head pruning and input com-
prompt tokens ti,...,t,, where n = ¢ 4+ pression on speculative decoding performance.
v, and begins predicting the subsequent to-

ken t,41. The draft model My, then pre- Configuration MMT-Bench

dicts the (n + 2)-th token, denoted as d,, ;2. S T
To enhance the quality of draft token gener- Vanilla 245 6.50
ation, we integrate intermediate features from Head pruning (0.75) 257 6.31

both models using a cross-attention mecha-
nism. Specifically, we extract features from a
selected layer [of the target model M,,, repre-
sented as S! = (st,sh,...,sl), and from the j-th layer of the draft model My,, represented as

Input compression (0.7) | 2.56 6.40

Ei = (e],eb,...,el,), where n’ = ¢+ r,and 0 < r < v is the number of visual tokens fed to the

draft model. In this cross-attention setup, 7 serves as the query, while S! provides the keys and
values.

The second phase, multi-resolution training, utilizes the OFA framework to train draft subnetworks.
Our NAS framework operates across three dimensions grounded in established transformer opti-
mization principles, and we validate the necessity of searching each dimension through preliminary

Under review as a conference paper at ICLR 2026

experiments on LLaVA-v1.6-Vicuna-7B. First, attention head pruning leverages observations that
transformer attention heads exhibit varying importance for model performance (Michel et al., 2019
Voita et al.l|2019; |Xia et al.,2023b). To test this, we apply magnitude-based pruning to remove 25%
of the heads and observe a 6% improvement in speedup, as shown in Table[l] Second, visual token
compression exploits the fact that visual tokens contribute unequally to final predictions in vision-
language models (Chen et al., [2024a; [Shang et al., [2024} |Xing et al.| 2024). In line with this, a
magnitude-based pruning of 30% of visual tokens yields a similar 6% speedup gain. Third, adaptive
target feature injection explores the impact of feature extraction positions within the target model.
While prior speculative decoding methods such as EAGLE (Li et al.| [2024cid) extract features from
fixed layers; our approach systematically searches for optimal extraction strategies tailored to each
configuration.

In addition, we explore the choice of layer in the target model My, from which features are extracted
for the cross-attention mechanism in the draft model M, as illustrated in the Adaptive Target Fea-
ture Injection module in Figure 2[b). The OFA search process is illustrated in Figure 2c), where
during each training iteration of STAR, a draft subnetwork with a specific visual token budget 7,
attention head configuration H = {H. j}, 1 < 5 < M, and selected connection layer [is randomly
sampled. This draft model, denoted as My, (r,H,1), is then trained following the procedure de-
scribed in Figure [Jb). Next, we detail the search dimensions involved in this process.

Attention Head-Wise Pruning. STAR dynamically computes head importance without storing
persistent rankings. Let H J’ (where 1 < H j’ < Hj;) represent the number of attention heads retained
at the j-th layer. During training, for each subnetwork configuration, we select and retain a specific
top H]’ attention heads with the highest importance scores. To evaluate the importance I; of each
attention head h, we aggregate the product of gradients and their corresponding weight magnitudes
across all projection matrices associated with that head (Michel et al., | 2019; Molchanov et al., [2016):

L= > Y |VWElwyl Wi,y)

Pe{Q,K,V} z,y

Here, WP J denotes a projection matrices (query (Q), key (K), or value (V)) associated with head h

atlayer j, and VIV, b3 represents its corresponding gradient. The notation [z, y] refers to the element
located at the x-th row and y-th column of the matrix. In each training iteration, attention heads are
ranked using Equation E], and a subset is selected according to the specified budget H ;.

Visual Token Compression. STAR adopts a target-aware token selection mechanism that lever-
ages the attention patterns of My, to guide this visual token selection. STAR evaluates the visual
token importance using attention scores from the target model’s final layer during the prefilling
phase: Given target model attention weights A(F) € REXH*@*K from the final layer, the impor-
tance score for visual token j is:

L= H H-Q Z Z ;Lz'{j @
h=11i=1
In each forward pass, a token budget r is randomly sampled from the budget pool R. Based on this
budget, only r visual tokens are retained from the input according to their importance scores, while
the remaining tokens remain unchanged. The draft model is trained to produce the same output as
the target model, even with fewer visual tokens. This selective compression strategy preserves the
most informative visual features while lowering computational cost.

Adaptive Target Feature Injection. STAR explore the performance impact of selecting different
target layers. We consistently use final-layer target features for supervision during warmup training,
then systematically explore different target layer choices during multi-resolution training to optimize
draft performance within our NAS framework (Figure [Z(b)). In each training iteration, a target
feature is randomly sampled from one of the candidate layers in the target model and injected into
the draft model. To incorporate this feature, the draft model includes a cross-attention layer inserted
at a predefined layer index. Specifically, we integrate the target features from a selected layer I’

v

of My, denoted as ¥ = (st 512/, sk) with the intermediate features of the j-th layer of the

? ’I’L
draft model M,,, denoted as E7 = (el, 62, e,), via a cross-attention mechanism. In this

’ = n/

formulation, E7 serves as the query, while SU acts as the keys and values.

Under review as a conference paper at ICLR 2026

3.2 ADAPTIVE INTERMEDIATE FEATURE DISTILLATION

Beyond the NAS framework detailed in Section 3.1} STAR adaptively selects intermediate features
from the target model M, for distillation into the draft model’s early layers using a dedicated loss
function. To effectively guide the training of the draft model My, the selected target features must
meet two essential criteria. They should capture semantically meaningful content and exhibit low
variability across layers to ensure stable learning. Prior studies (Sun et al., [2020; |Skean et al., 2025;
Jain et al.| [2024) show that intermediate features with low attention entropy and high consistency
provide stable supervision signals. STAR adopts a simple yet effective strategy to identify such
features from each layer of the target model, as illustrated in Figure [2(b), to support the efficient
training of the draft model. However, low entropy alone is insufficient since a layer may exhibit low
entropy while fluctuating strongly between adjacent layers, causing unstable supervision. STAR
therefore jointly considers both the entropy value (AE(¢)) and its inter-layer variation AAE(Y),
selecting layers that are information rich and consistent across depth for robust knowledge transfer.

Specifically, for the [-th decoder block of My, its input tokens and output tokens are denoted as
St = (s57h 85 sh7Y) and S = (s, s,..., 8!, respectively. Let the attention matrix

r n

-
Ay associated with [-th layer as A, = softmax(Qﬂ?), where Qp = S*"1Wg and K, = S* "1 Wy,
and z denotes the hidden dimension of the M,, The average attention entropy (AE) is calcu-
lated as AE(() = —+ 3", Z?zl Ay jlog Ar;j where Ay, ; denotes the (i, j)-th element of
Ay, In practice with multiple heads, AE(¥) is also averaged across the selected attention heads
of the subnetwork. To capture variation across layers, we further define the one-step difference
AAE(() = |AE(¢) — AE(¢ — 1)|. By jointly considering both AE(¢) and its inter-layer variation
AAE((), we identify the optimal distillation layer £;; = argmin,; [AAE(¢) + AE(()], ensuring
transferred features from M;, to M, are semantically rich and locally stable.

3.3 TPPT Loss DESIGN

This section presents the design of the TPPT loss function with a summary of the training algo-
rithm. We employ a multi-component weighted loss function to align the draft model with the
target model across multiple levels of representation, where A terms control the relative impor-
tance of each component. The loss function comprises three terms: (1) a KL divergence loss
Lk1, = KL(softmax(D), softmax(T")) that ensures output token distributions match between the
draft and target models, where D = (dy,...,d,) and T = (t1,...,t,) represent the predicted to-
ken logits from the draft model M, and target model M;,, respectively; (2) an intermediate feature
distillation loss L 4;s¢i; = smoothL1(E™, Se*) that aligns early-layer features from the draft model
(E™ with m = 1) with adaptively selected intermediate features from the target model (S23); and (3)
a feature alignment loss £ fcq; = smoothL1(E M gL) that matches the final-layer features between
the draft model’s output EM = (e ... e/M) and the target model’s output S* = (s¥, ... sL) to

YN
improve token acceptance rates. The overall loss £ f;y,4; for the TPPT is:

Lfinal =)\feat Efeat + /\intermed Eintermed +)\KL EKL (3)

4 RESULTS

Experimental Setup. We assess STAR across four VLMs spanning different parameter scales:
LLaVA-v1.6-Vicuna (7B, 13B) (Liu et al) 2024b), Pixtral (12B) (Agrawal et al.| [2024) and
SmolVLM (2B) (Marafioti et al., [2025)). Evaluation is conducted on six multimodal benchmarks:
MMT-Bench (Ying et all [2024), SEED-Bench-2 (Li et all |2023)), ScienceQA (Lu et al.|, [2022),
OCRBench (Liu et al.} 2024c), ChartQA (Masry et al., 2022), and MathVista (Lu et al.| [2024). We
measure two primary metrics: (1) Speedup ratio calculated as t AR /tmethod> Where tor represents
the average wall-clock time per token for standard autoregressive decoding and ¢,,eth0q denotes the
time for each evaluated approach. Higher speedup values indicate reduced end-to-end latency. (2)
Average token acceptance length 7, quantifying consecutive draft tokens accepted during verifica-
tion. Larger 7 values indicate fewer verification rounds and improved throughput. We implement
six state-of-the-art SD methods adapted for VLMs: SPD (Gagrani et al [2024), Kangaroo (Liu
et al., 2024a), Medusa (Cai et al., 2024), Hydra (Ankner et al., 2024), and EAGLE 1 and 2 (L1

Under review as a conference paper at ICLR 2026

Table 2: Evaluation of STAR on speedup ratio (S) and average accepted token length (7).
MMT SEED ScienceQA OCRBench ChartQA MathVista‘ Average

Models Methods S T S T S T S T S T S T S T
SPD (Gagrani et al.|[2024) 1.10 1.88 0.81 1.17 1.08 1.87 0.89 1.25 091 1.24 1.06 1.760.97 1.53
Kangaroo (Liu et al.}2024a) 1.32 2.11 1.33 2.12 1.31 2.09 1.17 1.89 1.18 1.98 1.15 1.86|1.24 2.01
Medusa (Cai et al.|[2024) 1.58 2.88 1.59 3.01 1.44 2777 1.22 233 1.25 2.41 1.22 2.34|1.38 2.62
LLaVA-v1.6 Hydra (Ankner et al.|[2024) 1.78 3.86 1.72 3.88 1.68 3.79 1.41 3.21 135 3.11 142 3.25|1.56 3.52
Vicuna-7B EAGLE (Li et al.||2024c) 2.10 5.04 2.09 5.01 1.98 4.88 1.72 4.13 1.56 3.98 1.78 4.25|1.87 4.55
EAGLE-2 (Liet al.}[2024d) 2.31 5.48 2.31 5.61 2.15 5.22 192 488 1.77 4.22 1.87 4.67|2.05 5.01
EAGLE-3 (Liet al.}[2025) 2.38 5.72 2.36 5.82 2.22 5.52 2.02 524 1.83 4.46 197 5.02|2.13 5.30
STAR 2.67 6.27 2.61 6.18 2.45 5.71 2.11 4.89 2.04 4.39 2.20 5.30|2.35 5.46
SPD 1.07 1.78 1.06 1.79 1.09 1.88 0.86 1.12 0.89 1.25 0.87 1.22|1.00 1.58
Kangaroo 143 1.77 1.51 1.87 1.22 1.55 1.21 1.54 1.27 1.61 1.53 2.01|1.36 1.72
Medusa 1.99 2.67 1.96 2.76 193 2.77 1.40 2.92 1.51 2.82 1.51 2.62|1.72 2.76
LLaVA-v1.6 Hydra 2.12 2.87 2.08 2.99 221 3.12 149 3.07 1.65 3.03 1.66 2.87|1.87 2.99
Vicuna-13B EAGLE 245 3.56 2.19 3.24 2.63 398 1.65 3.31 1.85 3.27 1.8 3.09|2.10 3.41
EAGLE-2 2.89 4.05 3.18 4.33 3.09 497 220 4.12 241 4.15 2.39 3.76|2.69 4.23
EAGLE-3 3.45 490 3.34 4.65 3.19 520 250 4.79 2.46 4.37 2.42 3.85|2.89 4.63
STAR 3.85 5.56 3.61 532 3.41 5.19 2.77 4.61 2.67 4.17 2.62 4.11|3.16 4.82
SPD 1.08 1.51 1.03 1.47 1.05 149 1.05 149 1.04 1.43 1.04 1.46|1.05 1.47
Kangaroo 1.26 1.54 1.09 1.39 1.14 1.51 1.16 1.52 1.12 1.47 1.13 1.49|1.15 1.49
Medusa 1.37 1.81 1.37 1.81 1.35 1.87 1.24 1.69 1.22 1.68 1.16 1.47|1.28 1.72
Pixtral-12B Hydra 1.58 2.24 1.47 2.04 1.53 2.06 1.38 1.81 1.34 1.79 1.36 1.78|1.44 1.95
EAGLE 2.38 3.47 197 2.53 2.31 3.64 1.69 2.73 1.78 2.84 1.64 2.47|1.96 2.95
EAGLE-2 2.81 3.95 2.31 3.07 2.64 4.03 2.12 3.25 2.14 3.17 1.81 2.73|2.31 3.37
EAGLE-3 2.83 4.12 246 340 2.79 441 222 348 226 3.51 2.13 3.38|245 3.72
STAR 3.01 4.41 2.73 3.56 3.09 3.93 2.46 3.44 2.40 3.42 2.42 3.34|2.69 3.68
SPD 1.02 1.33 1.04 1.41 1.06 143 1.06 142 1.07 1.46 1.02 1.34|1.04 1.40
Kangaroo 1.28 1.48 1.08 1.18 1.03 1.17 1.06 1.22 1.04 1.14 1.08 1.23|1.10 1.24
Medusa 2.12 271 1.51 2.00 1.72 2.22 1.20 1.61 1.15 1.55 1.35 1.75|1.51 1.97
SmolVLM-2B Hydra 2.33 3.07 1.62 2.08 1.98 2.66 132 1.74 1.22 1.58 1.51 1.98|1.66 2.19
EAGLE 2.57 3.42 1.85 2.56 2.16 2.76 1.42 1.88 1.34 1.77 1.65 2.22|1.83 2.44
EAGLE-2 296 3.89 2.12 293 239 321 1.65 2.11 1.51 2.13 1.81 2.63|2.07 2.82
EAGLE-3 3.00 3.94 2.17 3.04 2.65 3.57 1.78 2.33 1.60 2.30 1.97 2.84|2.20 3.00
STAR 3.12 3.94 2.28 3.16 291 3.57 1.88 2.51 1.64 2.28 2.06 2.82|2.32 3.05
Temperature = 1
SPD 0.83 1.19 0.81 1.15 0.85 1.18 0.75 1.06 0.72 1.08 0.92 1.48|0.81 1.19
LLaVA-v1.6 Kangaroo 1.20 1.97 1.26 2.03 1.23 2.01 1.09 1.80 1.11 1.89 1.07 1.77|1.16 1.91
Vicuna-7B EAGLE-2 2.19 537 2.20 548 2.04 5.12 1.82 4.77 1.68 4.13 1.76 4.56|1.95 4.91
EAGLE-3 225 570 2.25 572 2.10 5.38 1.89 5.01 1.71 4.28 1.88 4.98|2.01 5.18
Star 2.50 6.25 2.45 592 2.33 5.56 2.03 4.75 1.97 4.22 2.09 5.13|2.23 5.30
SPD 0.88 1.22 0.84 1.25 0.84 1.32 0.79 1.18 0.81 1.14 0.88 1.24|0.84 1.22
LLAVA-v1.6 Kangaroo 1.23 1.57 1.17 1.53 1.07 144 1.01 124 1.07 1.34 1.21 1.67|1.13 146
Vicuna-13B EAGLE-2 2.35 3.75 3.02 4.30 3.03 4.67 2.03 3.87 2.18 3.83 2.18 3.41|2.46 3.97
EAGLE-3 2.92 477 3.12 4.61 3.06 4.89 2.08 4.03 2.26 4.04 2.19 3.55|2.61 4.32
STAR 3.51 5.37 3.55 5.00 3.38 5.88 2.35 3.92 2.59 4.09 2.38 3.992.96 4.71
SPD 0.81 1.15 0.79 1.11 0.80 1.12 0.80 1.13 0.75 1.07 0.77 1.09/0.79 1.11
Pixtral-12B Kangaroo 1.18 1.41 1.08 1.35 1.03 1.36 1.19 1.48 1.14 145 1.09 1.41|1.12 141
EAGLE-2 2.76 3.81 2.24 3.01 2.76 3.87 2.23 3.24 2.03 3.09 1.79 2.69|2.30 3.28
EAGLE-3 2.79 4.02 2.33 3.25 2.80 4.03 2.25 3.51 227 3.58 1.92 2.98|2.39 3.56
STAR 2.98 3.93 2.56 3.48 2.99 3.79 2.34 3.32 2.26 3.09 2.22 3.22|2.56 3.47
SPD 1.07 1.47 1.01 1.33 1.07 146 097 1.26 1.06 1.44 0.85 1.20|1.00 1.36
Kangaroo 1.37 1.59 1.12 1.24 122 141 1.12 1.29 1.18 1.36 1.28 1.42|1.22 1.39
SmolVLM-2B EAGLE-2 2.62 3.60 1.92 2.67 224 3.11 141 1.77 1.60 2.18 1.77 2.49|1.93 2.64
EAGLE-3 277 3.82 2.11 3.04 2.63 3.65 1.46 190 1.64 2.29 1.84 2.64|2.08 2.89
STAR 2.93 3.61 2.33 3.30 296 3.67 1.59 2.12 1.81 2.48 2.01 2.66|2.27 2.97

et al| 2024cid). Target VLMs remain frozen while only draft models undergo training. We uti-
lize the LLaVA-mix 665k dataset with 55,000 training samples, supplemented by 1,000 samples
from each evaluation benchmark that are disjoint from the test sets for domain adaptation. For both

Under review as a conference paper at ICLR 2026

phases within TPPT, the training proceeds for 68,000 iterations using AdamW optimizer (5; = 0.9,
B2 = 0.95 with a learning rate of 3 x 10~° and gradient clipping at 0.5.

For multi-resolution training in TPPT, the visual token pruning budget pool is defined as R =
{0.1n,0.2n,...,n}, where n denotes the total number of prompt tokens. The head pruning con-
figuration is set as H; = {0.25H,0.5H,0.75H, H }, where H; is the number of retained attention
heads and H is the total number of heads. Adaptive token feature injection searches across the last
five layers of the target model to determine the optimal layer index for injecting features into the
draft model. After TPPT is complete, the optimal draft model is selected by exhaustively searching
through all subnetwork candidates to identify the one that achieves the highest speedup. The draft
architecture comprises three decoder layers. Loss term weights are configured as: Lt = 0.2,
Laistin = 0.2, and Lk1, = 1.0. All experiments run on a single NVIDIA A100 80GB GPU.

For the main results in Table 2] we measure decoding speed with an inference batch size of 1,
following standard practice in speculative decoding, and report wall-clock time per generated token
over the full decoding pipeline. All methods (STAR and SPD, Kangaroo, Medusa, Hydra, EAGLE-
1, EAGLE-2) are implemented and evaluated in PyTorch 2.0.1 with HuggingFace Transformers
4.36.2 under CUDA 12.4, without additional inference frameworks such as vLLM or TensorRT-
LLM. The hardware comparison in Table 3] further evaluates the same implementations on NVIDIA
H100 80GB and RTX8000 48GB GPUs under the same software configuration.

The TPPT framework involves a comprehensive search process to identify optimal architectures
across diverse configurations. However, this one-time training overhead remains small. Using
LLaVA-v1.6-Vicuna-7B on four NVIDIA A100 80GB GPUs, Phase 1 supernet training requires
approximately 3.5 hours per epoch, and Phase 2 subnet training takes around 4.5 hours due to ad-
ditional dynamic pruning operations. The subsequent exhaustive search to identify optimal sub-
networks varies by dataset complexity. For instance, evaluating each NAS configuration on MMT-
Bench requires approximately 12 minutes per 100 mini-batches on a single NVIDIA A100 GPU.
This search is conducted offline once per model-hardware pair to select the final draft configuration,
and is not repeated during deployment. As a result, the search cost is fully amortized over all sub-
sequent inference on that model-hardware pair and remains negligible compared to TPPT training
and standard VLM pretraining or fine-tuning.

4.1 MAIN RESULTS AND DISCUSSION

Table 2] demonstrates STAR’s performance across four VLMs and six multimodal benchmarks,
showing consistent superiority over existing speculative decoding methods in both speedup ratios S
and token acceptance lengths 7. STAR achieves substantial acceleration across all evaluated models,
with average speedups ranging from 2.32x to 3.16x compared to standard autoregressive decod-
ing. Most notably, STAR outperforms the strongest baseline EAGLE-3 by significant margins: 10%
LLaVA-7B (2.35% vs 2.13x), 9% on LLaVA-13B (3.16x vs 2.89x), 10% on Pixtral-12B (2.69 x
vs 2.45x%), and 5% on SmolVLM-2B (2.32x vs 2.20x). The token acceptance lengths follow
similar trends, with STAR achieving 7 values of 5.46, 4.82, 3.68, and 3.05 respectively. Interest-
ingly, while STAR’s token acceptance lengths are sometimes comparable to or slightly lower than
EAGLE-3 (e.g., 5.46 vs 5.30 on LLaVA-7B, 4.82 vs 4.63 on LLaVA-13B), STAR achieves higher
speedups through attention head pruning and visual token compression, which reduce draft model
FLOPs. This creates a favorable trade-off where slightly lower or comparable draft quality is more
than compensated by substantially more efficient token generation. For instance, on LLaVA-13B,
STAR achieves 3.16x speedup with 7 = 4.82, while EAGLE-3 achieves 2.89x speedup despite
comparable 7 = 4.63, demonstrating the effectiveness of STAR’s architectural optimizations.

Larger models demonstrate greater benefits from STAR’s optimizations. The 13B LLaVA model
achieves the highest speedup of 3.16x, compared to 2.35x for the 7B variant. This aligns with the
expectation that computationally heavier target models create more opportunities for draft model
acceleration. Pixtral-12B shows competitive performance despite its larger parameter count, sug-
gesting that STAR’s target-aware compression effectively handles diverse architectural designs.

STAR exhibits varying effectiveness across different benchmark types. Vision-language reasoning
tasks like MMT-Bench and ScienceQA consistently yield the highest speedups (e.g., 2.67x and
2.45x% respectively on LLaVA-7B), as these tasks benefit from STAR’s ability to capture semantic
relationships between visual and textual content. Conversely, tasks requiring precise visual detail

Under review as a conference paper at ICLR 2026

SmolVLM-2B LLava-7B {R,H, -2} m{L H,L} S No Mid 55-25%
B Pixtral-12B BN | lava-13B pm{R, 1, L} STAR BN SS-50% EESS-75%
—=— Original Draft FLOP T AIFD —-T

GFLOP

Accept Length

MMT SEED Sci. QA MMT SEED SQ

() (d)

Figure 3: (a) FLOPs of the selected draft models. (b) STAR performance in various NAS settings.
(c) Evaluation of AIFD. (d) Impact of A on STAR performance. In (b)—(d), bars show speedup (left
axis) and red curve shows acceptance length (right axis).

recognition, such as OCRBench, show more modest improvements (2.11x on LLaVA-7B), reflect-
ing the inherent difficulty of compressing visual information without accuracy loss.

SPD and Kangaroo show limited effectiveness for multimodal tasks, often achieving speedups barely
above 2.08x. Multi-head approaches (Medusa, Hydra) perform better but remain substantially
below STAR’s performance. The EAGLE series, is the strongest competition but lacks STAR’s
multimodal-specific optimizations, resulting in lower performance across all evaluated scenarios.

Figure [3(a) illustrates the diversity of optimal draft models discovered by STAR across different
datasets for 7' = 0. Specifically, we plot the FLOPs of the searched optimal draft models alongside
those of the original draft models without attention head pruning or visual token pruning. For ex-
ample, on LLaVA-7B, the optimal draft configuration requires only 0.76 GFLOPs on MMT-Bench
versus 1.53 GFLOPs for the full model. This comparison highlights how STAR adapts the draft
model architecture to different data distributions for improved speedup highlighted in Table 2]

Temperature settings critically impact performance, with STAR achieving optimal results at de-
terministic decoding 7' = 0 but degrading moderately under stochastic sampling 7" = 1 due to
increased token variance. Nevertheless, on LLaVA-v1.6-Vicuna-7B, STAR maintains superior per-
formance with 2.23 x speedup and 7 = 5.30 versus EAGLE-3’s 2.01 x speedup and 7 = 5.18.

4.2 ABLATION STUDIES

Impact of NAS searching dimension. To evaluate the impact of each NAS search dimension, we
conduct ablation studies on LLaVA-v1.6-Vicuna-7B using MMT-Bench. Specifically, we assess the
contributions of searching visual token pruning (), attention head pruning (H]’»), and adaptive target
feature injection (I’) by disabling each dimension individually. The results are shown in Figure [3|(b),
where {R, H, —2} denotes searching only for the optimal visual token and head pruning while fixing
the draft injection to the second-to-top layer. Similarly, {1, H, L} and {R, 1, L} indicate disabling
visual token and head pruning search. Figure [3(b) shows that STAR achieves the highest speedup
(2.67x) while maintaining competitive token acceptance (7 = 6.27). Removing head pruning di-
mension reduces speedup to 2.62x but increases acceptance length to 7 = 6.44, as the larger draft
model with full attention heads captures more information but incurs higher computational cost. Re-
moving visual pruning dimension further decreases speedup to 2.51x while achieving the highest
acceptance length (7 = 6.50), since processing all visual tokens provides complete visual context
at the expense of increased latency. Using the target feature injection at fixed position degrades
performance (2.48x speedup), showing that adaptive target feature injection is crucial.

Evaluation of AIFD. We evaluate
the impact of the adaptive inter-
mediate feature distillation (AIFD) Table 3: GPU performance comparison: Eagle vs STAR.
strategy described in Section [3.2] on Eagle2 STAR
STAR performance. Experiments GPUs
p p Speedup Tokens/S | Speedup Tokens/S

are conducted using the LLaVA-
v16-Vicuna-7B model across A100 2.26 x 82.48 2.58 94.43

MMT.Bench. SEED-Bench. and H100 2.60x 138.52 2.99x 153.12
ScienceQA datasets. To show its RTX8000 1.83 % 36.43 2.23 % 43.73

Under review as a conference paper at ICLR 2026

advantage, we design four baselines:

(1) No Mid Tuning (No Mid), which trains STAR without intermediate features; (2) Static-25%
(S8-25%), using features from fixed position of target model’s 25% depth; (3) Static-50% (S-50%)
extracting from 50% depth; and (4) Static-75% (S-75%) utilizing 75% depth features.

Figure [3[c) presents the results. Training without intermediate supervision yields the lowest perfor-
mance across all metrics. Static-25% and Static-50% show comparable performance, while deeper
layers provide progressively better guidance, with Static-75% achieving the strongest static results.
However, AIFD consistently outperforms all static baselines, confirming that adaptive layer selec-
tion based on attention entropy and stability effectively identifies the most informative supervision
signals for draft model training.

Adaptivity of STAR across Different Hardware Conditions. Unlike existing SD baselines that
are agnostic to hardware conditions, STAR adapts to different hardware platforms by searching the
subnetwork space and adjusting draft model configurations, achieving superior performance across
diverse hardware conditions. To show this, we evaluate STAR across three different GPU architec-
tures: Nvidia RTX8000 48GB, Nvidia A100 80GB, and Nvidia H100 80GB, representing different
hardware conditions. The experiments are conducted on the LLaVA-v1.6-Vicuna-7B model across
the MMT-Bench, SEED-Bench, and ScienceQA datasets. Table @indicates that STAR consistently
outperforms EAGLE-2 across all hardware configurations. On high-performance GPUs like H100,
STAR achieves 2.99x speedup compared to EAGLE-2’s 2.60x, with throughput reaching 153.12
tokens/s versus 138.52 tokens/s. On resource-constrained hardware like RTX8000, STAR achieves
2.23x speedup while EAGLE-2 drops to 1.83%, showing STAR’s robustness across diverse hard-
ware environments.

Impact of Lambda Setting. As described in equation EI, the loss weights Afeqs, Agistitz, and
Ak 1 control the relative importance of the loss function. Since Lcq: and Lgierin are both smooth
L1 losses operating at similar scales with comparable roles in feature alignment, we set Afeqr =
Adistin to simplify hyperparameter tuning. The KL divergence loss maintains consistent influence
with A = 1. Figure d) demonstrates the impact of varying Atcq: on LLaVA-v1.6-Vicuna-
7B performance across three benchmarks. Each number represents the static (S) value for both
Afeat and Agisein, While Mg, is fixed to 1. Increasing Afqq: from 0.05 to 0.2 consistently improves
performance metrics across all datasets, indicating that stronger feature supervision enhances draft
model quality. However, further increasing to 0.4 leads to performance degradation, suggesting that
excessive feature supervision can impair the model’s ability to generalize effectively. This validates
our choice of Afeqr = Agistinn = 0.2, as the optimal balance point.

5 CONCLUSION

In this paper, we introduce STAR, a speculative decoding framework optimized for vision-language
models. By combining neural architecture search and attention-guided feature distillation, STAR
achieves up to 3.8 x speedup over the existing SD baseline while preserving task performance across
diverse multimodal benchmarks. Our results highlight the effectiveness of STAR for fast, scalable
multimodal inference and demonstrate that hardware-aware, target-guided draft design is a practical
and robust path toward accelerating future VLM deployments.

6 LIMITATIONS

Our contribution is primarily system-level and application-driven: rather than proposing a new
generic NAS algorithm or theoretical decoding principle, we instantiate a multimodal, hardware-
aware search space for draft design and, given its current moderate size, adopt exhaustive evalu-
ation; as the space scales to richer architectures or devices, STAR can naturally incorporate more
advanced strategies such as OFA-style predictor-based search, remaining orthogonal and comple-
mentary to future advances in speculative decoding methods.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors adhere to the ICLR Code of Ethics. This work presents a computational optimization
technique for vision-language models using publicly available datasets and models. The proposed
STAR framework improves computational efficiency without altering model capabilities or introduc-
ing new risks. The research focuses on technical acceleration methods and does not raise concerns
regarding bias, fairness, privacy violations, or potential harmful applications.

REPRODUCIBILITY STATEMENT

Complete source code for STAR implementation is provided in supplementary materials. Section
4 provides comprehensive experimental details including hyperparameters, training procedures, and
hardware specifications. All experiments use publicly available datasets with specified preprocess-
ing steps. Baseline methods are implemented following their original papers for comparison with
STAR. Results are reported across multiple runs to ensure reliability.

7 USE OF LARGE LANGUAGE MODELS

LLMs were used solely for grammar checking and minor language improvements. Usage was
limited to proofreading and correcting grammatical errors. LLMs were not involved in research
ideation, methodology design, experimental analysis, or results interpretation. All content remains
the work of human authors who take full responsibility for the manuscript.

REFERENCES

Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jes-
sica Chudnovsky, Diogo Costa, Baudouin De Monicault, Saurabh Garg, Theophile Gervet, et al.
Pixtral 12b. arXiv preprint arXiv:2410.07073, 2024.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Yakoub Bazi, Mohamad Mahmoud Al Rahhal, Laila Bashmal, and Mansour Zuair. Vision—language
model for visual question answering in medical imagery. Bioengineering, 10(3):380, 2023.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Christel Chappuis, Valérie Zermatten, Sylvain Lobry, Bertrand Le Saux, and Devis Tuia. Prompt-
rsvqa: Prompting visual context to a language model for remote sensing visual question answer-
ing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1372-1381, 2022.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient adap-

tation of pretrained language models for image captioning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 18030-18040, 2022.

11

Under review as a conference paper at ICLR 2026

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer Vision, pp. 19-35. Springer, 2024a.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1294-1303, 2019.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11030-11039, 2020.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024b.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: towards general-purpose vision-language
models with instruction tuning. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS °23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Maksim Dzabraev, Alexander Kunitsyn, and Andrei Ivaniuta. VIirm: Vision-language models act as
reward models for image captioning. arXiv preprint arXiv:2404.01911, 2024.

Mukul Gagrani, Raghavv Goel, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott.
On speculative decoding for multimodal large language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8285-8289, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaél Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
man, Yi Gao, Basil Mustafa, lain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, Andras
Gyorgy, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucifiska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Igbal, Shashir Reddy, Shruti
Sheth, Siim Pdder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam

12

Under review as a conference paper at ICLR 2026

Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786,

Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang, Zicheng Liu, Yumao Lu, and Lijuan Wang.
Scaling up vision-language pre-training for image captioning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 17980—17989, 2022.

Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng, Bradley McDanel, and Sai Qian
Zhang. Speculative decoding and beyond: An in-depth survey of techniques. arXiv preprint
arXiv:2502.19732, 2025.

Jitesh Jain, Zhengyuan Yang, Humphrey Shi, Jianfeng Gao, and Jianwei Yang. Ola-vlm: Elevating
visual perception in multimodal 1lms with auxiliary embedding distillation, 2024. URL https:
//arxiv.org/abs/2412.09585.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Bohan Li, Hankun Wang, Situo Zhang, Yiwei Guo, and Kai Yu. Fast and high-quality auto-
regressive speech synthesis via speculative decoding. arXiv preprint arXiv:2410.21951, 2024a.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan. Seed-
bench-2: Benchmarking multimodal large language models. arXiv preprint arXiv:2311.17092,
2023.

Chuanhao Li, Zhen Li, Chenchen Jing, Shuo Liu, Wenqi Shao, Yuwei Wu, Ping Luo, Yu Qiao, and
Kaipeng Zhang. Searchlvlms: A plug-and-play framework for augmenting large vision-language
models by searching up-to-date internet knowledge. arXiv preprint arXiv:2405.14554, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024c.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024d.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceler-
ation of large language models via training-time test. arXiv preprint arXiv:2503.01840, 2025.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892-34916, 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-1lava—-next/.

Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
multimodal models. Science China Information Sciences, 67(12), December 2024c. ISSN
1869-1919. doi: 10.1007/s11432-024-4235-6. URL hhttp://dx.doi.org/10.1007/
s11432-024-4235-06.

13

https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2412.09585
https://arxiv.org/abs/2412.09585
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
http://dx.doi.org/10.1007/s11432-024-4235-6
http://dx.doi.org/10.1007/s11432-024-4235-6

Under review as a conference paper at ICLR 2026

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurlIPS), 2022.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In International Conference on Learning Representations
(ICLR), 2024.

Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Za-
kka, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, et al. Smolvlm: Redefining small and
efficient multimodal models. arXiv preprint arXiv:2504.05299, 2025.

Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
mark for question answering about charts with visual and logical reasoning. In Findings of the
Association for Computational Linguistics: ACL 2022, pp. 2263-2279, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL
https://aclanthology.org/2022.findings—acl.177.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating genera-
tive large language model serving with tree-based speculative inference and verification. arXiv
preprint arXiv:2305.09781, 2023.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances
in neural information processing systems, 32, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Desh Raj, Gil Keren, Junteng Jia, Jay Mahadeokar, and Ozlem Kalinli. Faster speech-llama infer-
ence with multi-token prediction. arXiv preprint arXiv:2409.08148, 2024.

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
reduction for efficient large multimodal models. arXiv preprint arXiv:2403.15388, 2024.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models, 2025. URL
https://arxiv.org/abs/2502.02013.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Sigi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang Wang, and Jingjing Liu. Contrastive dis-
tillation on intermediate representations for language model compression, 2020. URL https:
//arxiv.org/abs/2009.14167.

Zelong Sun, Dong Jing, Guoxing Yang, Nanyi Fei, and Zhiwu Lu. Leveraging large vision-language
model as user intent-aware encoder for composed image retrieval. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 7149-7157, 2025.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 12965-12974, 2020.

14

https://aclanthology.org/2022.findings-acl.177
https://arxiv.org/abs/2502.02013
https://arxiv.org/abs/2009.14167
https://arxiv.org/abs/2009.14167

Under review as a conference paper at ICLR 2026

Guankun Wang, Long Bai, Wan Jun Nah, Jie Wang, Zhaoxi Zhang, Zhen Chen, Jinlin Wu, Mo-
barakol Islam, Hongbin Liu, and Hongliang Ren. Surgical-lvim: Learning to adapt large vision-
language model for grounded visual question answering in robotic surgery. arXiv preprint
arXiv:2405.10948, 2024.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decod-
ing: Exploiting speculative execution for accelerating seq2seq generation. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 3909-3925, 2023a.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023b.

Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui
He, Jiaqi Wang, Feng Wu, et al. Pyramiddrop: Accelerating your large vision-language models
via pyramid visual redundancy reduction. arXiv preprint arXiv:2410.17247, 2024.

Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang,
Yuqi Lin, Shuo Liu, Jiayi Lei, Quanfeng Lu, Runjian Chen, Peng Xu, Renrui Zhang, Haozhe
Zhang, Peng Gao, Yali Wang, Yu Qiao, Ping Luo, Kaipeng Zhang, and Wenqi Shao. Mmt-bench:
A comprehensive multimodal benchmark for evaluating large vision-language models towards
multitask agi, 2024.

Zhengqing Yuan, Zhaoxu Li, Weiran Huang, Yanfang Ye, and Lichao Sun. Tinygpt-v: Efficient
multimodal large language model via small backbones. arXiv preprint arXiv:2312.16862, 2023.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He,
Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 27362746, 2022.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava:
A framework of small-scale large multimodal models. arXiv preprint arXiv:2402.14289, 2024.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason Corso, and Jianfeng Gao. Unified
vision-language pre-training for image captioning and vqa. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 13041-13049, 2020.

A APPENDIX

The complete algorithm for our Two-Phase Progressive Training (TPPT) framework is presented
in Algorithm [I} This algorithm encompasses both the warm-up training phase (Phase 1) and the
multi-resolution training phase (Phase 2) described in Section [3.1]

To validate the sufficiency of our chosen search space granularity, we conduct experiments compar-
ing standard and doubled search resolution configurations on LLaVA-v1.6-Vicuna-7B across three
benchmarks (Table d). During the TPPT training phase, both standard and doubled granularity con-
figurations utilize their respective complete search spaces. Our standard Head Pruning Ratio trains
with search space {0.25,0.5,0.75, 1.0}, while the Double Head Pruning Ratio configuration trains
with the finer grained space {0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0}. Similarly, our stan-
dard Vision Compression Ratio trains with the budget pool R = {0.1n,0.2n, ..., n}, whereas the
Double Vision Compression Ratio trains with {0.05n,0.1n,0.15n,...,n}. After training, we per-
form exhaustive NAS search across all trained subnetworks to identify the optimal configuration
for each benchmark. https://docs.google.com/document/d/1Lcvzm48zDczDiioMK4FW Wluho-
p84M1zKBL7DtyThe0/edit?tab=t.pk6znxnmmek7, where MMT Bench uses 8,000 training sam-
ples, SEED Bench uses 8,000 samples, ScienceQA uses 6,000 samples,OCRBench uses 8,000 sam-
ples, ChartQA uses 8,000 samples and MathVista uses 5,000 samples, with all benchmarks evaluated
on 1,000 test samples.

15

Under review as a conference paper at ICLR 2026

Algorithm 1 Two-Phase Progressive Training for drafting (TPPT)

Require: Training dataset D, supernet draft model M 4, target model M.,
Output: Trained model with optimal subnet architectures

Initialize supernet parameters 6

Phase 1: Supernet Training

for each supernet training epoch do

for each batch B € D do

T, S + M:q(B) {Target model forward pass}
S% < S {Target’s final hidden features}
5S¢ « AIFD(S) {Adaptive Intermediate Layer distillation}
D,E™, EM « Ma,(B, S*) {Draft model forward pass}
Compute Loss(S*" JE™ St EM T D)
Update 0

Phase 2: Subnet Training

for each subnet training epoch do

for each batch B € D do

T,S < M:a(B)
S¢ « AIFD(S)
Sample r, H},!' From R, H, L
B’ <+ Prune(B,) {Apply Visual Token Compression }
5" + S {Extract Target’s feature from selected layer}
D,E™, EM « Ma.(B', Hj, 5" {Draft Model forward }
Compute Loss(S*" JE™ St EM T D)
Update 0

Table [demonstrates that doubling the search space granularity yields negligible performance dif-
ferences, with maximum speedup variation of only 0.02x, confirming that our chosen search space
provides adequate coverage of the optimization landscape without requiring computationally expen-
sive fine-grained search. Furthermore, comparing these results with the preliminary experiments
in Table |1| reveals STAR’s training effectiveness: after full TPPT training, STAR achieves sub-
stantially higher speedups (2.65x vs 2.57x for head pruning configurations, 2.67x vs 2.56x for
visual compression) despite maintaining comparable token acceptance lengths. This improvement
demonstrates STAR’s ability to apply more aggressive pruning strategies during training while pre-
serving draft model quality, enabling superior speed-accuracy trade-offs compared to naive pruning
approaches applied without integrated training optimization.

Table 4: Analysis of search space granularity on LLaVA-v1.6-Vicuna-7B at Temperature=0
‘ MMT-Bench ‘ SEED-Bench-2 | ScienceQA ‘ OCRBench | ChartQA ‘ MathVista

Configuration

S T S T S T S T S T S T
Head Pruning Ratio 2.65 632 | 2.54 6.20 244 6.10 | 202 484 | 1.92 435|203 522
Double Head Pruning Ratio 266 634 | 2.53 6.18 244 6.09 | 201 4.82 | 1.90 4.38 | 2.03 5.19
Vision Compression Ratio 2.67 640 | 2.60 6.22 257 6.02 | 207 4.88 | 1.94 444 | 2.13 532

Double Vision Compression Ratio | 2.66 6.37 | 2.62 6.22 257 6.00 | 209 4.85 | 195 443|212 528

Table [5] reveals the fundamental trade-off in speculative decoding between draft sequence length
and computational efficiency. The draft window size determines the maximum number of tokens
the draft model can generate before verification by the target model. As y increases from 4 to 8, the
average accepted token length (7) consistently improves across all benchmarks, with MMT-Bench
showing an increase from 4.89 to 7.05 tokens. However, this improvement comes at the cost of
reduced speedup ratios, which decline from 2.76x to 2.59x on MMT-Bench. This trade-off occurs
because when draft sequences are rejected, the computational cost of generating all the rejected
tokens is wasted, and rejection typically happens early in the sequence, rendering most subsequent
tokens in longer draft windows wasteful. The diminishing speedup returns beyond y=6 suggest
an optimal balance point where the computational overhead of generating additional draft tokens
begins to outweigh the benefits of potentially longer accepted sequences. This analysis validates our
choice of y=6 in the main experiments and demonstrates that effective speculative decoding requires
careful calibration between speculation aggressiveness and computational efficiency.

16

Under review as a conference paper at ICLR 2026

Table 5: Evaluation of draft window size (y) impact on STAR performance for LLaVA-v1.6-Vicuna-
7B at Temperature=0.

MMT-Bench | SEED-Bench-2 | ScienceQA
S T S T S T

276 489 | 2.68 4.79 253 4387
273 578 | 2.69 5.62 256 5.09
267 627 | 2.61 6.18 245 571
262 672 | 2.55 6.54 241 593
259 7.05 | 251 7.07 236 6.37

~ (Draft Window Size)

o o e Y

As shown in Figure] while entropy captures the average uncertainty of token-level attention dis-
tributions, it reflects how dispersed or concentrated the attention is in each layer. However, model
stability and information flow depend on how that entropy changes across layers. A entropy high-
lights fluctuations, revealing whether a layer’s attention is becoming more stable or more chaotic
relative to its neighbors. If we used only entropy, we would overlook these dynamic shifts and miss
layers where abrupt structural changes or information transitions occur. By summing entropy and
A entropy, the total metric integrates both the static view of uncertainty and the dynamic view of its
variation, providing a more faithful signal for selecting layers and guiding downstream decisions.

—&— Entropy + Delta Entropy

0.35 Entropy
—4— Delta Entropy

0.25

0.20

Value

0.15 4

T T
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layers

Figure 4: Layer-wise comparison of entropy, Aentropy, and their sum.

17

	Introduction
	Related Work
	Methodology
	Two-Phase Progressive Training for Drafting
	Adaptive Intermediate Feature Distillation
	TPPT Loss Design

	Results
	Main Results and Discussion
	Ablation Studies

	Conclusion
	Limitations
	Use of Large Language Models
	Appendix

