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Ò Decaf: A Deconfounding Causal Generative Model
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Abstract
Causal generative models (CGMs) have recently
emerged as capable approaches to simulate the
causal mechanisms generating our observations,
enabling causal inference. Unfortunately, existing
approaches either are overly restrictive, assuming
the absence of hidden confounders, or lack gen-
erality, being tailored to a particular query and
graph. In this work, we introduce Decaf, a CGM
that accounts for hidden confounders in a single
amortized training process using only observa-
tional data and the causal graph. Importantly, De-
caf can provably identify all causal queries with
a valid adjustment set or sufficiently informative
proxy variables. Remarkably, for the first time to
our knowledge, we show that a confounded coun-
terfactual query is identifiable, and thus solvable
by Decaf, as long as its interventional counter-
part is as well. Our empirical results on diverse
settings—including the Ecoli70 dataset, with 3 in-
dependent hidden confounders, tens of observed
variables and hundreds of causal queries—show
that Decaf outperforms existing approaches, while
demonstrating its out-of-the-box flexibility.

1 Introduction
Causal queries, or what if questions, seek to determine how
changes in one variable affect another, which is crucial to
evaluate the effects of interventions in fields such as health-
care (Feuerriegel et al., 2024), marketing policies (Varian,
2016) or education (Zhao & Heffernan, 2017). Importantly,
when empirical trials are infeasible due to ethical, finan-
cial, or practical constraints, answering causal queries from
observational data becomes essential.
To adress this challenge, causal generative models (CGMs)
(Javaloy et al., 2023; Chao et al., 2023; Khemakhem et al.,
2021) have recently emerged as powerful and flexible tools
for modelling structural causal models (SCMs), allowing
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Figure 1: Decaf can be effortlessly applied to highly com-
plex causal graphs, such as that of the Ecoli70 dataset
(Schäfer & Strimmer, 2005), with multiple independent hid-
den confounders and dozens of variables. We dash hidden
confounders, and highlight direct confounded effects that
are now identifiable, or still unidentifiable, with Decaf.

for efficiently sampling interventional and counterfactuals
distributions, and enabling the estimation of any causal
query of interest. However, all existing CGMs also assume
causal sufficiency, i.e., that all confounders are observed.

However, causal sufficiency is rarely satisfied in practice,
making hidden confounding a major challenge in causality,
as it generally renders causal queries unidentifiable, i.e.,
that they cannot be uniquely expressed as a function of the
observations. While recent advances have shown that some
confounded causal queries are identifiable if there exist suffi-
ciently informative proxies of the hidden confounders (Miao
et al., 2018; 2023; Wang & Blei, 2021), these approaches
are still limited to specific intervention-outcome pairs and
do not allow for counterfactual estimation.

Our objective is to bridge the gap between these two lines of
work. To this end, we introduce the deconfounding causal
normalizing flow (Decaf Ò), to the best of our knowledge,
the first CGM that allows the estimation of any identifiable
causal query—including counterfactuals—in the presence
of hidden confounders, with only observational data, the
causal graph, and a single amortized training process. More
in detail, Decaf resembles variational autoencoders (Kingma
& Welling, 2014) as it is trained with an ELBO and com-
prises: i) a causal normalizing flow (CNF) (Javaloy et al.,
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Ò Decaf: A Deconfounding Causal Generative Model

2023) as “decoder”, adapted to be conditioned on the (po-
tentially many) hidden confounders; and ii) a conditional
normalizing flow (Winkler et al., 2019) as “encoder”, com-
puting the posterior distribution of the hidden confounders.
Furthermore, we theoretically demonstrate that Decaf accur-
ately estimates all identifiable causal queries (interventional
and counterfactual) for which we can find a valid adjustment
set or sufficiently informative proxy variables, significantly
extending existing results from prior works (Miao et al.,
2018; Wang & Blei, 2021; Javaloy et al., 2023).
All of the above is well illustrated in the Ecoli70 dataset
(Schäfer & Strimmer, 2005), whose causal graph is depicted
in Fig. 1. Specifically, by training Decaf once on this data-
set, we can efficiently model all 43 observed variables and
3 independent hidden confounders and, most importantly,
compute any causal query on demand during deployment.
Out of all the direct causal effects (i.e., edges) in Fig. 1, De-
caf can accurately estimate all unconfounded effects, as well
as 8 out of the 11 confounded ones. In stark contrast with
previous works, Decaf also estimates counterfactual queries,
increasing the previous count to 16 identifiable queries.
In order to assist practitioners, we provide algorithms to eas-
ily check whether a particular query of interest is identifiable
in our framework, and we will make our code publicly avai-
able upon acceptance. Moreover, we empirically validate
our claims on semi-synthetic and real-world experiments,
demonstrating that Decaf outperforms existing alternatives
while being widely applicable. Therefore, Decaf offers a
practical and efficient solution for causal inference in the
presence of hidden confounding, bridging the gap between
general CGMs and specialized solutions.

2 Related Works
We discuss the most relevant works to put Decaf into context,
and provide a more detailed literature review in App. D.

Generative causal models. In order to faithfully learn a
SCM, one common approach consists modeling each vari-
able as a function of its causal parents with an independent
model, starting from the root nodes. As of the choice for
modeling these functions, prior works range from simple
yet well-established additive noise models (ANMs) (Hoyer
et al., 2008), to more complex but powerful diffusion-based
causal models (DCMs) (Chao et al., 2023), among oth-
ers (Kocaoglu et al., 2018; Yang et al., 2020; Pawlowski
et al., 2020; Parafita & Vitrià, 2022). Due to its nature, this
approach typically is parameter-intensive, and can easily
overfit and propagate errors to descendant variables.
Alternatively, recent works have explored using a single
(structurally-constrained) network to model the SCM at
once, e.g., using autoregressive flows (Khemakhem et al.,
2021; Javaloy et al., 2023), or graph neural networks
(GNNs) (Zečević et al., 2021; Sánchez-Martı́n et al., 2022).

Among these, the causal normalizing flow (CNF) deserves
special attention, given its flexibility and theoretical guar-
antees, which we discuss later in §3.2. Most importantly,
all the approaches above assume causal sufficiency, i.e. the
absence of hidden confounders, limiting their applicability
in settings with hidden confounding.

Causal inference with latent confounders. Another line
of work relies on structural assumptions for correctly an-
swering causal queries. However, these approaches typically
deal only with interventional queries (i.e., not counterfac-
tual ones) and are tailored to a specific causal graph and
a single treatment-outcome pair, requiring us to train one
model per query. In particular, existing works exploit in-
strumental variables (IVs) (Angrist & Pischke, 2009) or
mediators (Pearl, 2009) to achieve this goal and, more re-
cently, a body of works exploit proxy variables to account
for latent confounding (Allman et al., 2009; Kuroki & Pearl,
2014; Kallus et al., 2018; Louizos et al., 2017; Miao et al.,
2023; 2018). Of particular interest is the Deconfounder by
Wang & Blei (2021), a probabilistic model that interprets
multiple treatments as null proxies to find a substitute of the
hidden confounders and estimate causal queries.

3 Background

3.1 Confounded Structural Causal Models
Next, we introduce some ideas from the causality literature
used throughout this work to model the causal structure of
the data and answer causal queries of interest.

Definition 1. A (confounded) Structural Causal Model
(SCM) is a triplet M := (f, Pu, Pz) describing a data-
generating process over a set of D observed (endogenous)
variables x := (x1, x2, . . . , xD) as

xi := fi(pa(i), ui, z) for i = 1, 2, . . . , D , (1)
with u := (u1, u2, . . . , uD) ∼ Pu , z ∼ Pz ,

and where fi represents the structural equation to compute
the i-th endogenous variable, xi, from its observed causal
parents, pa(i), the i-th exogenous variable, ui, and the vec-
tor of hidden confounders, z.1

Note that, while we make the dependence on the hidden
confounders explicit for all observed variables in Eq. 1,
we assume w.l.o.g. that a subset of them may not be dir-
ectly affected by the hidden confounders. Furthermore,
given a SCMM, we denote by G the faithful causal graph
that it induces, representing only the direct causal relation-
ships between pairs of endogenous and hidden variables
and, when necessary, also exogenous variables.
One key element in causality is the do operator (Pearl, 2012),
denoted by do(t), which conceptualizes the action of ex-

1Bold denotes random vectors.
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Ò Decaf: A Deconfounding Causal Generative Model

ternally intervening on a treatment variable t, i.e., to set t
to a fixed value independently of its parents. In turn, the
do operator enables the computation of interventional and
counterfactual queries in SCMs (Peters et al., 2017), i.e., of
population and instance-wise what if questions.

Definition 2. A causal query Q(M) := p(y | do(t), c)
is a distribution over y ∈ x (the outcome variable), as a
result of intervening upon the variable t ∈ x (the treatment
variable). Additionally, Q(M) denotes an interventional or
counterfactual query if the variable c is, respectively, the
empty set or the vector of factual observed values, xf.

However, in the presence of hidden confounders, one cannot
simply apply the do-operator to evaluate causal queries, as
the computations involve the causal parents and the unac-
counted confounders would bias the results. Instead, one
needs to find alternative ways to compute these quantities if
possible, as we discuss in §2.

3.2 Causal Normalizing Flows
Causal normalizing flows (CNFs) (Javaloy et al., 2023) play
an important role in this work, as they form the basic build-
ing blocks of Decaf, given their identifiability guarantees
despite a mild set of assumptions.
Similar to Eq. 1, a CNF is defined as a pair (Tθ, Pu) form-
ing a data-generating process that yields a set of D endo-
genous variables as x := T−1

θ (u) , where u ∼ Pu and
Tθ : RD → RD is a normalizing flow (Papamakarios et al.,
2021). In particular, Tθ is a normalizing flow with addi-
tional structural constraints, ensuring that it induces the
same causal graph as the underlying SCM.
Javaloy et al. (2023) demonstrated that CNFs form a general
class of identifiable SCMs, and that they can approximate
the underlying SCM as closely as required simply by max-
imizing the observed joint evidence, i.e., maxθ log pθ(x) .
Moreover, CNFs also allow for efficient sampling of any
interventional and counterfactual distribution, enabling their
use for complex causal-inference task.
Unfortunately, as discussed in §1, CNFs need to assume
causal sufficiency to provide the above guarantees, thus
limiting their applicability. In this work, we attempt to ad-
dress this limitation and account for the presence of hidden
confounders without losing theoretical guarantees.

4 Problem Statement
In this work, we assume the existence of an unobserved
confounded SCM,M, as in Def. 1, of which we have access
to N i.i.d. observations and its induced causal graph, G.
Our objective is therefore to design a CGM that can faith-
fully answer as many causal queries from the original SCM
as possible, despite the presence of unobserved hidden con-
founders. In other words, to find a substitute model ofM
that we can use to accurately perform causal inference.

x

T−1
ϕ z T−1

θ
xε u

G

Figure 2: Sketch of Decaf architecture. Tϕ and Tθ are
conditional normalizing flows, with the top input as condi-
tion; G is the causal graph, and ε is a non-causal random
variable needed by the normalizing flow to sample z.

Assumptions. Regarding the underlying SCM M, we
simply assume that it i) has C1-diffeomorphic structural
equations,2 and ii) induces an acyclic graph. We denote the
family of SCMs meeting these assumptions by M.

5 Deconfounding Causal Normalizing Flows

To help bridge the gap between CGMs and tailored hidden-
confounding solutions, we now present the deconfounding
causal normalizing flow (or Decaf Ò).

Intuitively, Decaf takes a well-grounded CGM such as the
causal normalizing flow (Javaloy et al., 2023), which can
provably approximate unconfounded SCMs and perform
causal inference, and expand it such that it accounts for hid-
den confounding by building data-driven substitutes of these
confounders, an idea that has been successfully explored in
the past (Wang & Blei, 2019; 2021; Bica et al., 2020).

Decaf achieves the above by following a similar structure
as that of a variational autoencoder (Kingma & Welling,
2014). That is, Decaf comprises two main components.
First, an inference network which approximates the intract-
able posterior distribution of the hidden confounders, given
their observed children. Second, a generative network that
exploits structural constraints to accurately model the under-
lying SCM, given a substitute for hidden confounders. Each
of these parts comes with their own challenges, however,
which we now explain in detail:

Generative network. As mentioned in §3.2, we use CNFs
(Javaloy et al., 2023) as our starting point. However, since
our generative model needs to take in hidden confounders
as conditional inputs, we adapt CNFs to use conditional
normalizing flows (Winkler et al., 2019), instead of uncon-
ditional ones. The resulting model, Tθ , is thus an invertible
transformation describing a data-generating process, condi-
tioned on z, which can map a set of exogenous variables u
to our observations and vice versa, i.e.,

Tθ(x, z) = u ∼ Pu and x = T−1
θ (u, z) , (2)

2That is, that f has inverse and both f and f−1 are continuously
differentiable w.r.t. the exogenous variables.
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Ò Decaf: A Deconfounding Causal Generative Model

where we further exploit the given causal graph to ensure
that the generative process is faithful, i.e., such that

pθ(x | z) =
D∏
i=1

pθ(xi | pa(i), z) , (3)

defining now a process similar to that given in Def. 1. Just
as in Def. 1, only the children of z will actually condition
on z in Eq. 3. Furthermore, Tθ allows us to write down the
exact likelihood of the data given z,

log pθ(x | z) = pu(Tθ(x, z))|det(∇xTθ(x, z))| . (4)

Deconfounding network. To model the posterior distribu-
tion of the hidden confounders given our observations, i.e.,
the abduction step needed to compute counterfactuals (Pearl,
2009), we use another conditional normalizing flow (Wink-
ler et al., 2019), as it can approximate the true posterior
distribution arbitrarily well. Once again, we exploit prior
knowledge about the causal graph and mask the resulting
network, Tϕ, such that it models each independent hidden
confounder zk using only its observed children, i.e.,

qϕ(z | x) =
Dz∏
k=1

qϕ(zk | ch(zk)) , (5)

where Dz is the number of independent hidden confounders.

Training process. We jointly train both networks defined
above as it would be typically done in deep latent-variable
models, i.e., during training we maximize the evidence lower
bound (ELBO) (Kingma & Welling, 2014):

L(θ,ϕ) = Eqϕ [log pθ(x | z)]−KL[qϕ(z | x)∥ p(z)] (6)
= Eqϕ [log pθ(x, z)] + H(qϕ(z | x)) , (7)

where p(z) is the prior distribution of z, KL the Kullback-
Leibler divergence (Kullback & Leibler, 1951), and H the
differential entropy (Kolmogorov, 1956).

The motivation for this choice is three-fold. First, we want
the generative network to explain the observations given
samples from qϕ (first term of Eq. 6). Second, as we do not
know the optimal size for z, we need to prevent the decon-
founding network from allocating information exclusive of
x in z (entropy term in Eq. 7). Finally, all the theory in §6
relies on Decaf matching the data evidence, pdata(x), which
we encourage Decaf to do since

max
ϕ,θ

L(ϕ,θ) = min
ϕ,θ

KL[pdata(x)∥ pθ(x)]

+ KL[qϕ(z | x)∥ pθ(z | x)] . (8)

Causal inference. Since the tuple (Tθ, Pu, Pz) defines a
confounded SCM as defined in Def. 1, we can use Decaf

to efficiently sample from observational and interventional
distributions by: i) sampling z from p(z); and ii) sampling
x from either pθ(x | z) or pθ(x | z, do(t)), as proposed by
Javaloy et al. (2023). For counterfactual inference, we can
use the deconfounding network to perform the induction
step, as the second KL term in Eq. 8 shows that it approxim-
ates the posterior induced by Tθ (i.e., its z-inverse given x).
Therefore, to generate counterfactual samples we simply
need to: i) sample from qϕ(z | xf); and ii) sample again
from pθ(x | z, do(t)). We provide more details about these
steps and the do-operator in App. C.

6 Theoretical Results

We take advantage that our work is at intersection of CGMs
and hidden-confounding solutions to leverage and expand
the theory of both research fields. While we present here
an intuitive summary of our main theoretical results, formal
statements and derivations can be found in App. A.

Note that, throughout this section, we assume that Decaf
matches the true data evidence, i.e., pdata(x) = pθ(x) .
Given that CNFs (and hence Decaf) are universal density ap-
proximators (Papamakarios et al., 2021), we should be able
to always meet this assumption, provided enough resources.

6.1 Causal Query Identifiability
First, we study which queries are identifiable with Decaf.
We call a query identifiable if we are guaranteed to produce
the same query distribution as the original SCM by matching
the data evidence. More formally, we adopt the following
definition (Pearl, 2009, Def. 3.2.4):

Definition 3. Let Q(M) be a causal query of a modelM.
We call Q identifiable if, for any two modelsM1,M2 ∈M,
Q(M1) = Q(M2) whenever pM1

(x) = pM2
(x) > 0 .

Another relevant concept for this section is that of a valid
adjustment set (Peters et al., 2017, Def. 6.38). In plain terms,
if we were to compute a causal query, say p(y | do(t)), a
valid adjustment set b is a subset of variables such that:
i) it blocks all backdoor paths between y and t, and ii) it
is independent of the variable t after severing all incoming
edges in t in the associated causal graph. As a consequence,
we can use b to apply the adjustment formula,

p(y | do(t)) =
∫

p(y | t,b) p(b) db . (9)

Additionally, we refer to b as invalid if only i) holds.

6.1.1 INTERVENTIONAL QUERIES

We first look at the identifiability of interventional queries,
i.e., queries of the form Q(M) = pM(y | do(t)) , where
y, t ∈ x are any two endogenous variables. We summarize
our findings in the following proposition, which we properly
formalize in App. A.2:

4
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n z w

t y

b

L R/

Figure 3: Generic causal graph where we are interested in
the interventional query Q(M) = p(y | do(t)) . Blue and
red edges play a crucial role, as their presence or absence
induce different types of identifiability conditions.

Proposition 6.1 (Informal). Decaf is able to identify a given
interventional causal query if one of the following exists:
i) a valid adjustment set b not containing z,

ii) an invalid one where p(b | do(t)) is identifiable, or

iii) sufficiently informative proxy and null proxy variables.

To help us go through the requirements in Prop. 6.1, let us
break them down with the example depicted in Fig. 3 where,
depending on the presence or absence of edges L and R, we
face qualitatively different identifiability scenarios:

1. Unconfounded case, LR. If neither treatment nor out-
come are directly influenced by z, then we can always find
a valid adjustment set that does not include z. We extend
the results of Javaloy et al. (2023) to show that Decaf can
identify any interventional causal query of this type.

2. Confounded-treatment case, LR. If only the treatment
is directly affected by z, we run into two possible scenarios.
First, if we are able to find a valid adjustment set e.g., b and
w in Fig. 3, then Decaf can always identify the interven-
tional query. Otherwise, Decaf could still identify the query
if we find an invalid adjustment set where p(b | do(t)) is
still identifiable by Decaf.

3. Confounded-outcome case, LR. When only the out-
come variable directly depends on z, Decaf can identify any
interventional query, as it necessarily exists a valid adjust-
ment set not containing z. In our running example, variables
n and b would block all backdoor paths in Fig. 3, and Decaf
would properly estimate the interventional query.

4. Fully-confounded case, LR. When both variables dir-
ectly depend on z, identifiability is more challenging, as any
adjustment set necessarily involves the hidden confounder.
In this case, we extend in Prop. A.2 the results from Miao
et al. (2018) and Wang & Blei (2021) to allow for general
causal graphs and additional covariates. In short, we find
that an interventional query is identifiable if we can find:
i) a proxy w, independent of t, to distinguish z from the
exogenous variables u; and ii) a null proxy n, independent
of y given t and z, to discern the correct structural equation.
Additionally, as in prior works (Miao et al., 2018; Wang &
Blei, 2021), z should be complete given the proxies (refer to

tcf ycf

ncf wcf

un ut z uy uw

nf wf

tf yf

ô ôô

Figure 4: Twin counterfactual network, with observed
nodes in gray. By duplicating the structural equations, we
prove query identifiability in the counterfactual world while
conditioning on the factual one.

Def. 5 for a formal definition). That is, both proxies should
be sufficiently informative to accurately approximate z.

6.1.2 COUNTERFACTUAL QUERIES

We focus next on the identifiability of counterfactual quer-
ies, i.e., queries of the form Q(M) = pM(ycf | do(tcf),xf),
where xf is the observed factual, and where we are interested
in the distribution the outcome would have had, had we in-
tervened on the treatment variable. We demonstrate, for the
first time to our knowledge, that counterfactual query identi-
fiability holds for as many queries as for the interventional
case. More specifically, we show that:

Proposition 6.2 (Informal). When an interventional query
p(y | do(t)) is identifiable by Decaf, then it equally identifies
the counterfactual query p(ycf | do(tcf),xf).

The formal result can be found in Prop. A.7. In short, our
result means that, if we can identify an interventional query,
then we can identify its counterfactual counterpart as well.
Our result exploits the notion of twin SCM (Balke & Pearl,
1994), which duplicates the structural equations for the fac-
tual and counterfactual worlds while sharing the exogenous
variables, and the fact that Prop. A.2 allows for queries with
additional covariates as long as they do not form colliders,
which is always the case with xf in pM(ycf | do(tcf),xf), as
we show in the example twin network from Fig. 4.

6.2 Identifying Exogenous Distributions
Besides causal query identifiability, another question of
interest is whether Decaf recovers the true exogenous vari-
ables, up to component-wise transformations, disentangling
the sources of variability of each endogenous variable. In
App. A.1, we expand the results of Javaloy et al. (2023) to
prove that Decaf identifies3 the underlying SCM for those
variables not directly affected by z, i.e.:

Corollary 6.3 (Informal). Decaf identifies the underlying
SCM, restricted to every variable other than ch(z), up to an

3In the sense of Xi & Bloem-Reddy (2023).
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Ò Decaf: A Deconfounding Causal Generative Model

element-wise transformation of the exogenous distribution.

Moreover, we conjecture that Decaf should in most cases
properly disentangle the rest of exogenous variables and z,
Although we do not formally prove it, we refer to the use
case of §7.3 to illustrate that the exogenous variables and
the latent variables extracted by Decaf. Our intuition is that,
if some children of z are conditionally independent, the
information common to them can only be explained via z.
In addition, the entropy term in Eq. 7 discourages Decaf
from using the components of z that are not necessary for
explaining the observations. Recent works proved similar
results under slightly stronger assumptions (von Kügelgen
et al., 2021; Zheng et al., 2022; Brady et al., 2023).

6.3 Practical Guidelines & Implications

In this section, we outline the different aspects to consider
for the successful application of Decaf to solve causal quer-
ies in real-world scenarios.

Training. One key advantage of Decaf is that it needs to
train only once per dataset. However, maximizing the ELBO
makes it also susceptible to posterior collapse (Wang et al.,
2021), i.e., to the KL term in Eq. 6 vanishing, and hence the
posterior equating the prior distribution. Fortunately, we can
leverage existing solutions, e.g., implement regularization
terms as the one proposed by Vahdat & Kautz (2020). Re-
call also that, following §6, model selection should use an
observational goodness-of-fit metric as selection criterion.

Solving causal queries. Whilst Decaf can compute any
causal query, unidentifiable causal queries may still lead to
incorrect estimates. To ensure reliability, we must verify the
identifiability of each specific query of interest, for which
we provide algorithms that check identifiability in the causal
graph in App. E. Namely, Alg. 5 checks if a query that in-
volves a specific treatment-outcome pair, which includes
average treatment effects and counterfactuals, is identifi-
able. If we were interested in a query on all variables, e.g.,
as samples from an interventional distribution, we should
evaluate the identifiability of the causal effects between the
treatment and all its descendants, as proposed in Alg. 6.

Limitations. Decaf relaxes the assumption of causal suf-
ficiency, but it still relies on completeness for the proxies,
a common condition for nonparametric identification in
causal inference (D’Haultfoeuille, 2011; Chen et al., 2014).
This condition is untestable with observational data alone,
though collecting additional proxies can help satisfy com-
pleteness (Andrews, 2011). Moreover, we assume that the
true SCM is C1-diffeomorphic with respect to the exogen-
ous variables, which precludes theoretical guarantees for
modeling discrete variables, although Javaloy et al. (2023);
de Vassimon Manela et al. (2024) show that, in practice,
CNFs effectively approximate discrete distributions.
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Figure 5: Ablation. Counterfactual error as we change the
number of proxy variables and the latent dimensionality. We
show means and 95% confidence intervals over 5 realiza-
tions, intervening on the 25th, 50th, and 75th percentile of t.

7 Empirical Evaluation
In this section, we assess the performance of Decaf com-
paratively to existing methods. Namely, we show that De-
caf accurately estimate interventional and counterfactual
queries when the requirements of Prop. 6.1 are met, and
that it effectively estimates the exogenous information. We
provide all experimental details in App. B.

Common evaluation. For all experiments, we estimate
the performance on the interventional and counterfactual
regimes via the mean absolute error (MAE) of, respectively,
the average treatment effect (ATE) and the counterfactual
samples, with respect to the ground-truth values. Moreover,
we use as reference a CNF that does observe the hidden
confounders, which we refer to as oracle. We also account
for differences across observed variables by computing all
errors over the standardized variables.

7.1 Ablation study
First, we conduct a simple ablation to understand how mis-
specifying the dimensionality of z may affect Decaf, as well
as its sensitivity to the number of available proxies. For
additional details and results, refer to App. B.1.

n1 nS

z1 z2

t y

. . .
Experimental setup. We consider two
synthetic SCMs, linear and non-linear, that
follow the causal graph depicted in the inset
figure, comprising two independent hidden
confounders affecting every variable, and
S null proxies. Then, we evaluate how well
Decaf estimates the direct effect of t on y
while changing the number of proxy variables, S, and the
specified latent dimensionality, Dz.

Results. Fig. 5 shows the counterfactual error for all cases,
where we clearly observe that increasing the number of
proxies reduces them, and with a drastic change as we add
the second proxy, corroborating Prop. 6.1.
Similarly, we observe that underestimating Dz increases the
error (especially if we assume causal sufficiency, Dz = 0)
while overestimating it does not. This indicates that, indeed,
the entropy term in Eq. 6 prevents non-shared information
from being modeled through z, as discussed in §5.
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(a) Sachs’ dataset.
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(b) Ecoli70 dataset.

Figure 6: Error boxenplots for different CGMs, averaged over all identifiable direct effects of the Sachs (Fig. 7) (a) and
Ecoli70 (Fig. 1) (b) datasets, after intervening in their 25th, 50th, and 75th percentiles in 5 random initializations.

7.2 Semi-synthetic Experiments
Next, we evaluate how Decaf performs relatively to existing
approaches and, to this end, we consider semi-synthetic
datasets for which we have access to the ground-truth SCMs.
Additional details can be found in Apps. B.2 and B.3.

Baselines. We compare Decaf with three CGMs which as-
sume causal sufficiency and are thus unaware of the hidden
confounders: CNFs (Javaloy et al., 2023); ANMs (Hoyer
et al., 2008); and DCMs (Chao et al., 2023); and with the
Deconfounder (Wang & Blei, 2019), which uses proxies to
provide unbiased ATE estimates under hidden confounding,
yet it requires a model per treatment-outcome pair. We use
the oracle as reference model to lower bound the error.

7.2.1 PROTEIN-SIGNALLING NETWORKS

We first conduct a similar semi-synthetic experiment as that
of Chao et al. (2023), based on a protein-signalling network

PKC PKA

Raf Jnk

Mek Erk Akt P38

Plcg PIP3 PIP2

Figure 7: Sachs’ causal
graph. Green denotes iden-
tifiable confounded effects.

dataset (Sachs et al., 2005).
Specifically, we randomly
generate a non-linear SCM
that induces the same
causal graph as the original
dataset, depicted in Fig. 7,
except for the root nodes,
for which we use the ori-
ginal data. As a result, we
have a hidden confounder
with two dimensions, PKC
and PKA, and three treatment variables to intervene upon,
Raf, Mek, and Erk. We consider additive and non-additive
structural equations, measure the effect of interventions on
the downstream nodes and, more importantly, ensure that the
randomized effect of the hidden confounder is perceptible.

Results. We present a summary of the results in Fig. 6a,
where we can observe that Decaf outperforms every ap-
proach in all cases, for both ATE and counterfactual errors,
remaining fairly close to the oracle model. Moreover, we
appreciate a great difference in performance between Decaf
and CNFs, which corroborates the importance of the pro-

posed encoder and variational training employed by Decaf,
since a CNF is equivalent to Decaf with Dz = 0 .

7.2.2 GENE NETWORKS

Next, we repeat a similar experiment as in the previous
section, considering this time the causal graph of the Ecoli70
dataset (Schäfer & Strimmer, 2005) as reference, shown in
Fig. 1, representing a gene network from E. coli data. This
time, we replace root nodes with Gaussian variables.

Results. Similar to the previous case, the results presented
in Fig. 6b demonstrate that Decaf is indeed able to closely
match the performance of the oracle model, outperforming
existing approaches. However, the non-additive case also
shows significant long-tailed error distributions for all mod-
els, showing that Decaf can suffer the same problems as
any data-centric approach, and that it is still needed to put
attention on its effective training.
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0.8
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T
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r
It is also worth-pointing out that
the striking performance of the De-
confounder is a result of evaluat-
ing causal queries that cannot be
identified by the model. As we dis-
cuss in App. B, the Deconfounder
offers guarantees regarding ATE
estimation and with more restrictive assumptions. If we
plot instead the ATE error evaluated on only those paths that
meet the assumptions placed by the Deconfounder, as shown
in the inset figure, we see that it now achieves significantly
lower errors that the unaware approaches.
Remarkably, this experiment highlights every strength of the
proposed approach, since Decaf: i) models several hidden
confounders affecting different sets of variables; ii) iden-
tifies all causal queries for which we have some proxy in-
formation; and iii) achieves the above in an agnostic manner,
i.e., training out-of-the-box and one single time, despite the
graph having 43 observed variables.

7.3 Fairness Real-world Use Case
Taking inspiration from the experiments by Kusner et al.
(2017) and Javaloy et al. (2023), we aim to show how model-

7
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Sex GPA

Race LSAT Know Decile3

Fam FYA

Figure 8: Causal graph assumed for the law school dataset.
Decile3 is only used by the classifiers.

Table 1: Test RMSE in Decile3 prediction and MMD
comparing different-group prediction distributions.

Unfair Unaware Decaf Ò Fair K Fair Add Mean

RMSE 1.477 1.479 1.652 2.818 2.817 2.83
MMD 0.110 0.102 0.0018 10−6 10−8 0

ling confounded SCMs with Decaf can be leveraged beyond
causal query estimation and, in particular, for counterfactual
fairness prediction. See App. B.4 for further details.

Dataset and objective. Our aim is to train a predictor,
using the law school dataset (Wightman, 1998) which com-
prises information of 21 790 law students, that remains ac-
curate while being fair—using demographic parity as fair-
ness criterion (Feldman et al., 2015)—toward the sensitive
attributes of the students. In particular, we are interested in
predicting the decile of a student in its 3rd year of univer-
sity, given their undergraduate and 1st year grades, family
income, race, and sex.

Experimental setup. First, we train Decaf assuming a
causal graph such as the one in Fig. 8, excluding Decile3,
where all grades are affected by a common “knowledge”
hidden confounder. Then, we train a simple predictor using
as input the hidden confounder and non-sensitive exogenous
variables estimated by Decaf. If, as discussed in §6.2, Decaf
successfully recovers the exogenous variables, we expect the
predictor to be fair yet slightly less accurate, since Decile3
is directly affected by the sensitive attributes.

Results. Tab 1 shows the prediction error (RMSE) and
the difference between groups (MMD) for the proposed pre-
dictor using Decaf, comparing with an unfair predictor that
uses sensitive attributes; an unaware predictor that excludes
sensitive attributes, and two fair predictors—Fair K and
Fair Add—proposed by Kusner et al. (2017).

As shown in Fig. 9, Decaf provides a much fairer predictor
than the unfair and the unaware predictors at the cost of
slightly higher RMSE. We can also appreciate that the other
two fair approaches are so by predicting a constant value for
every individual, which can be also observed comparing the
RMSE obtained by these predictors with a naive predictor
that predicts the mean of the distribution in Tab 1.
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Figure 9: Distribution of predicted Decile3. Fairer pre-
dictors yield similar distributions across the two considered
groups on each attribute (Sex and Race).

8 Concluding Remarks

In this work, we have bridged the current gap between
CGMs, which fail to account for hidden confounders, and
hidden-confounding solutions, which are tailored to a spe-
cific causal query and thus need to train once per query.
To this end, we have introduced Decaf, and theoretically
shown that it can accurately estimate causal queries in the
presence of hidden confounders, if there exists a valid ad-
justment set or sufficiently informative proxies, extending
prior results (Miao et al., 2018) to also consider counterfac-
tuals. We have empirically shown that Decaf outperforms all
considered baselines, better estimating confounded causal
queries shown to be identifiable, and properly identifying
exogenous distributions to train fair classifiers. Finally,
we have provided algorithms to check the identifiability of
causal queries which, along Decaf, provides practitioners
with a powerful pipeline to perform causal inference in the
presence of hidden confounders.

Future work. Our work opens many intriguing venues,
e.g., integrating alternative identification strategies, such as
instrumental variables (Hartford et al., 2017), to expand the
range of identifiable queries that Decaf can estimate. We
also find it interesting to apply Decaf to settings with time-
varying treatments, where multiple interventions have to be
performed. In real-world scenarios, it would be exciting
to include interventional data during training, and seeing
Decaf applied to real-world problems such as decision sup-
port systems (Sanchez et al., 2022), educational analysis
(Murnane, 2010), or policy making (Fougère & Jacquemet,
2021), yet always validating them with interventional data.

8
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Impact statement
This research contributes to advance causal inference in ma-
chine learning, particularly enhancing the ability to estimate
causal effects despite unobserved variables. Thus, this work
supports more informed decision-making in scenarios where
controlled experimentation is impractical or unethical, such
as healthcare or education. As with all advances in causal
inference, practitioners should be aware of the limitations
and assumptions of causal models. Particularly, in sensitive
applications, where decisions are based on accurate causal
conclusions, validation with interventional data should
be prioritized whenever possible to ensure reliability.
Overall, this work aligns with the broader goal of improving
machine learning and does not introduce significant ethical
risk beyond those traditionally associated with the field.
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Schäfer, J. and Strimmer, K. A shrinkage approach to large-
scale covariance matrix estimation and implications for
functional genomics. Statistical applications in genetics
and molecular biology, 4(1), 2005. (Cited in pages 1, 2,
7, and 23.)

Scutari, M. Learning Bayesian Networks with the bnlearn
R Package. Journal of Statistical Software, 35(3):1–22,
2010. doi: 10.18637/jss.v035.i03. (Cited in pages 22 and
23.)

Spirtes, P., Glymour, C., and Scheines, R. Causation, pre-
diction, and search. MIT press, 2001. (Cited in page 17.)

Tchetgen, E. J. T., Ying, A., Cui, Y., Shi, X., and Miao,
W. An introduction to proximal causal learning. ArXiv
preprint, abs/2009.10982, 2020. URL https://arxi
v.org/abs/2009.10982. (Cited in page 29.)

Vahdat, A. and Kautz, J. NVAE: A Deep Hierarchical
Variational autoencoder. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.
URL https://proceedings.neurips.cc/p
aper/2020/hash/e3b21256183cf7c2c7a66
be163579d37-Abstract.html. (Cited in page 6.)

Varian, H. R. Causal inference in economics and marketing.
Proceedings of the National Academy of Sciences, 113
(27):7310–7315, 2016. (Cited in page 1.)
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Zečević, M., Dhami, D. S., Velivcković, P., and Kersting,
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A Causal identifiability

A.1 Model identifiability
In this section, we briefly discuss the identifiability of those variables that are indirectly confounded by z or not confounded
at all, i.e., of those variables that are not children of any hidden confounder. As we discuss now, we can reduce our SCM to
a conditional SCM that only models these variables, recovering the identifiability guarantees from Javaloy et al. (2023).
To prove model identifiability, we resort to what we call the induced conditional SCM, which intuitively represents the
original SCM where we restrict our view to these variables, and assume the rest of the variables are given.

Definition 4 (Induced conditional SCM). Given a SCMM = (f, Pu, Pz), and a subset of observed variables x′ ⊂ x, we
define the induced conditional SCM ofM given x′, denoted byM|x′ , to the SCM result of having observed x′, and where
causal generators and exogenous variables are restricted to only those components associated with the rest of variables.

x1 z x2

x3 x5

x6 x7 x8

(a) Confounded SCM.

•
x1

•
x2

x3 x5

x6 •
x7

x8

(b) Conditional unconfounded SCM.

Figure 10: Example of: (a) a confounded SCMM; and (b) its induced conditional counterpart,M|x′ , when the children of
the hidden confounder are observed and fixed. Note thatM|x′ has no hidden confounding.

We provide a visual depiction of this idea in Fig. 10. Using this definition, we can observe that, if we were to condition of
the children of the hidden confounder, we would be left with a (conditional) unconfounded SCM, as the influence of the
hidden confounder has been completely blocked by conditioning on its children. Now, if we have two models that perfectly
match their marginal distributions, this means that they perfectly match their induced conditional SCM, no matter which
value we observed for ch(z), and we can thus leverage existing results from Javaloy et al. (2023) for unconfounded SCMs.

Corollary A.1. Assume that we have two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) that are compatible, i.e., they
induce the same causal graph, and which coincide in their marginal distributions, p(x) = p̃(x). Then, both SCMs, restricted
to every variable other than ch(z), are equal up to an element-wise transformation of the exogenous distributions.

Proof. The proof follows almost directly from (Javaloy et al., 2023, Theorem 1). First, note that the two induced conditional
SCMs are no longer influenced by z once that we have observed a specific realization of ch(z), so that we can drop z
from their structure, i.e., we can denote them byM|ch(z) = (f|ch(z), Pu|ch(z)) and M̃|ch(z) = (f̃|ch(z), Pũ|ch(z)) . To ease
notation, let us call x∁ := x \ ch(z) the variables that are not children of z.
Next, note that for almost every realization of ch(z), we have that p(x∁ | ch(z)) = p̃(x∁ | ch(z)) since p(x) = p̃(x) by
assumption and p(x) = p(x∁ | ch(z))p(ch(z)) . As a result, for each realization of ch(z) we can apply Theorem 1 of
Javaloy et al. (2023), which yields that the two induced conditional SCMs are equal up to an element-wise transformation of
the exogenous distribution.
Finally, since the causal generators and exogenous distributions of the induced SCMs are, for almost every ch(z), identical
to their counterparts in the original SCMs (as we have just discarded those components associated with ch(z)), we get
that the elements in the two SCMs associated with every variable except those in ch(z) are identical up to said (possibly
ch(z)-dependent) transformation.

A.2 Query identifiability
We now prove the identifiability of the causal queries considered in the main text.
To this end, one key property that we will use in the following is that of completeness (see, e.g., the work of Wang & Blei
(2021)). Intuitively, we say that a random variable z is complete given another random variable n if “any infinitesimal
change in z is accompanied by variability in n” (Miao et al., 2023), yielding enough information to recover the posterior
distribution of z. This concept is similar in spirit to that of variability in the case of discrete random variables (Nasr-Esfahany
et al., 2023). In practice, completeness is more likely to be achieved the more proxies we measure (Andrews, 2011).
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Definition 5 (Completeness). We say that a random variable z is complete given n for all c if, for any square-integrable
function g(·) and almost all c,

∫
g(z, c)p(z | c,n) dz = 0 for almost all n, if and only if g(z, c) = 0 for almost all z.

The following proposition is a generalization of the results previously presented by Miao et al. (2018) and Wang & Blei
(2021), where we include an additional covariate c to the causal query, and make no implicit assumptions on the causal
graph allowing, e.g., for the treatment and outcome variables to share some observed parents. However, note that c cannot
be a collider (e.g., forming a subgraph of the form n→ c← y) as, otherwise, conditioning on it would make independent
variables dependent (in the example, y and n), and the causal effect of t on y would not be identifiable (Peters et al., 2017).

Proposition A.2 (Query identifiability). Assume that we have two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) that are
compatible, i.e., they induce the same causal graph, and which coincide in their marginal distributions, p(x) = p̃(x). Then,
they compute the same causal query, p(y | do(t), c) = p̃(y | do(t), c), where y, t, c ⊂ x, if there exists two proxies w,n ⊂ x
and a variable b ⊂ x, none of them overlapping nor containing variables from the previous subsets, such that:

i) w is conditionally independent of (t,n) given b, z and c. That is, w⊥⊥ (t,n) | b, z, c .

ii) n is conditionally independent of y given t, b, z and c. That is, y⊥⊥n | t,b, z, c .

iii) (b, z) forms a valid adjustment set for the query p(y | do(t), c). That is, given c, they are independent of t after severing
any incoming edges to it, do(t)⊥⊥ (b, z) | c , and they block every backdoor path from t to y.

iv) z is complete given n for all t, b, and c,

v) z̃ is complete given w for all b and c,

and the following regularity conditions also hold:

vi)
∫∫

p̃(z̃ | w,b, c)p̃(w | z̃,b, c) dz̃dw <∞ for all b, c, and

vii)
∫
p̃(y | t,b, z̃, c)2p̃(z̃ | b, c) dz̃ <∞ for all t, b, and c.

Proof. First, note that the first three independence assumptions hold for both models,M and M̃, as they induce the same
causal graph. Following the same arguments as Miao et al. (2018, Proposition 1), we have that assumptions v), vi), and vii)
guarantee the existence of a function h̃ such that it solves the integral equation over M̃,

p̃(y | t,b, z̃, c) =
∫

h̃(y, t,b,w, c)p̃(w | b, z̃, c) dw , (10)

since assumption vi) ensures that the conditional expectation operator is compact (Carrasco et al., 2007), assumption v) that
all square-integrable functions are in the image of the operator (i.e., the operator is surjective), and assumption vii) that
p̃(y | t,b, z̃, c) is indeed part of the image.
We can show that h̃ also solves a similar integral equation, this time over the other SCM,M, as follows:

p(y | t,b,n, c) = p̃(y | t,b,n, c) [equal marginals] (11)

=

∫
p̃(y | t,b,n, z̃, c)p̃(z̃ | t,b,n, c) dz̃ [augment with z̃] (12)

=

∫
p̃(y | t,b, z̃, c)p̃(z̃ | t,b,n, c) dz̃ [assumption ii)] (13)

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, c)p̃(z̃ | t,b,n, c) dz̃dw [plug Eq. 10] (14)

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, t,n, c)p̃(z̃ | t,b,n, c) dz̃dw [assumption i)] (15)

=

∫
h̃(y, t,b,w, c)p(w | t,b,n, c) dw . [equal marginals] (16)

Similarly, we can relate the expression for the interventional distribution of both models:

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, z̃, c)p̃(b, z̃ | c) dbdz̃ [augment and assumption iii)] (17)

=

∫
p̃(y | t,b, z̃, c)p̃(b, z̃ | c) dbdz̃ [backdoor criterion] (18)
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Ò Decaf: A Deconfounding Causal Generative Model

=

∫∫
h̃(y, t,b,w, c)p̃(w | b, z̃, c)p̃(b, z̃ | c) dbdw dz̃ [plug Eq. 10] (19)

=

∫
h̃(y, t,b,w, c)p(b,w | c) db dw [equal marginals] (20)

= p(y | do(t), c) , (21)

where the last equality is a consequence of Eq. 16 as we will show now. More specifically, we have that

p(y | t,b,n, c) =
∫

h̃(y, t,b,w, c)p(w | t,b,n, c) dw [Eq. 16] (22)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, t,n, c)p(z | t,b,n, c) dw dz , [augment with z] (23)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, c)p(z | t,b,n, c) dw dz . [assumption i)] (24)

Similarly, we have that

p(y | t,b,n, c) =
∫

p(y | t,b,n, z, c)p(z | t,b,n, c) dz [augment with z] (25)

=

∫
p(y | t,b, z, c)p(z | t,b,n, c) dz . [assumption ii)] (26)

Now, equating both expressions we have that

0 =

∫∫ {
p(y | t,b, z, c)−

∫
h̃(y, t,b,w, c)p(w | b, z, c) dw

}
p(z | t,b,n, c) dz , (27)

which, due to assumption iv), implies that

p(y | t,b, z, c) a.e.
=

∫
h̃(y, t,b,w, c)p(w | b, z, c) dw . (28)

Finally, putting all together we see that we can write the interventional distribution of the original model using h̃,

p(y | do(t), c) =
∫∫

p(y | do(t),b, z, c)p(b, z | c) db dz [augment and assumption iii)] (29)

=

∫∫
p(y | t,b, z, c)p(b, z | c) dbdz [backdoor criterion] (30)

=

∫∫
h̃(y, t,b,w, c)p(w | b, z, c)p(b, z | c) db dzdw [Eq. 28] (31)

=

∫
h̃(y, t,b,w, c)p(b,w | c) dbdw , [equal marginals] (32)

which justifies the last equality in Eq. 21.

n z w

t y

b

Figure 11: Example for which
Prop. A.2 applies, and where b
is not the empty set.

Using a causal graph similar to the one presented by Miao et al. (2018), we now provide
some intuition on the semantics of each random variable in Prop. A.2. More specifically,
consider the causal graph that we depict in Fig. 11, and say that we want to identify the
causal query p(y | do(t)) (that is, the same query as in Prop. A.2 but with c = ∅). As
it is common in the causal inference literature (Peters et al., 2017; Spirtes et al., 2001), t
and y represent the treatment and outcome random variables. More specific to Prop. A.2
are n and w. The variable w is a proxy variable whose role is that of distinguishing the
information from z and other variables, to reconstruct the information of z and block
the backdoor path that z would usually block. Similarly, the variable n is another proxy
variable which, in this case, serves the purpose of verifying that the substitute formed
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Ò Decaf: A Deconfounding Causal Generative Model

with w is indeed a good substitute. Finally, the variable b serves the purpose of blocking all the remaining backdoor paths
that z may not block, so that we can apply the backdoor criterion.
Moreover, note that for all interventional queries we will let c be the empty set, similar to the results proved by Miao et al.
(2018) and Wang & Blei (2021). We will consider cases when c is not empty later in App. A.3 to prove counterfactual
identifiability. Note also that Prop. A.2 reduces to the existing results when we have that c = b = ∅ .
Using this general proposition, we can now reason about causal identifiability in a wide range of scenarios, where t and y
may or may not be directly caused by the hidden confounder, as we show in the following subsections.

A.2.1 UNCONFOUNDED CASE

First, we consider the case where neither t nor y are directly affected by the hidden confounder, i.e., z /∈ ch(z) . In this case,
the proof can be simplified and drop the requirement of finding valid proxy variables.

Corollary A.3 (Unconfounded case). Assume that we have two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) that are
compatible, i.e., they induce the same causal graph, and which coincide in their marginal distributions, p(x) = p̃(x).
Assume that y, t /∈ ch(z) . Then, p(y | do(t), c) = p̃(y | do(t), c), where y, t, c ⊂ x .

Proof. The proof follows directly by applying Prop. A.2 with the minimal subset b ⊂ pa(t) \ {c} that blocks all the
backdoor paths, and by noticing that in this case there is no need to use the variables z and z̃. That is, we can go from Eq. 17
to Eq. 21 directly by using only b and the equal-marginals assumption:

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, c)p̃(b | c) db (33)

=

∫
p̃(y | t,b, c)p̃(b | c) db (34)

=

∫
p(y | t,b, c)p(b | c) db (35)

= p(y | do(t), c) . (36)

Even though we can leverage and simplify Prop. A.2 as shown above, it is worth remarking that, for this particular case,
the model identifiability results described in App. A.1 are stronger, as it provides results on the identifiability of the causal
generators and exogenous distributions, and therefore of any causal query derived from them.

A.2.2 FULLY CONFOUNDED CASE

In the case where both variables are directly confounded by z, we cannot do much but to see whether we can apply
Prop. A.2 with c = ∅ and a valid b. If we manage to find two proxies w and n that hold the independence conditions from
Prop. A.2 and that change the posterior of z enough, then we can use the proposition to ensure the identifiability of the query.
Otherwise, the query is not identifiable and the model might or might not estimate the query correctly.

A.2.3 CONFOUNDED OUTCOME CASE

For the case where only the outcome random variable is directly affected by the hidden variable, we can apply a similar
reasoning as we did in the case with no direct confounding, although this time we cannot leverage the model identifiability
results from Javaloy et al. (2023). More specifically:

Corollary A.4 (Confounded-outcome case). Assume that we have two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) that
are compatible, i.e., they induce the same causal graph, and which coincide in their marginal distributions, p(x) = p̃(x).
Assume that t /∈ ch(z) . Then, p(y | do(t), c) = p̃(y | do(t), c), where y, t, c ⊂ x .

Proof. The proof is identical to that of Cor. A.3.
z

b t y

Figure 12: Textbook example
of a front-door in a SCM.

Front-door example. While the proof above is trivial given the previous results, it is
worth stressing that for them to hold it is necessary to model the hidden confounder as
we do in this work with the proposed Decaf, and that other approaches may not work
for all cases. As an example, consider the SCM depicted in Fig. 12, where we have that
the outcome is directly confounded by z, while t is not. In this case, a Decaf should be
able to identify the true causal query p(y | do(t)), using z̃ to model the influence of b
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Ò Decaf: A Deconfounding Causal Generative Model

onto y that is not explained through t. Other models that do not model z (e.g., an unaware causal normalizing flow (Javaloy
et al., 2023)), would not be able to match the observed marginal likelihood as they assume that y⊥⊥b | t yet we know that
y⊥̸⊥b | t in the true model. Even more, with those models we would have that p(y | do(t)) = p(y | t) which is clearly false
by just looking at Fig. 12.
To be even more explicit, in this case we would have a factorization of the form

p̃(b, t, y, z̃) = p̃(z̃)p̃(b | z̃)p̃(t | b)p̃(y | t, z̃) . (37)

Then, the estimated interventional distribution that a Decaf estimates as
∫
p̃(y | t, z̃) dz̃ equals the true one:

p(y | do(t)) =
∫

p(y | t,b)p(b) db [b forms a valid adjustment set] (38)

=

∫ {∫
p̃(y | t,b, z̃)p̃(z̃ | t,b) dz̃

}
p̃(b) db [latent factorization and equal marginals] (39)

=

∫∫
p̃(y | t, z̃)p̃(z̃ | b)p̃(b) dbdz̃ [causal graph factorization in Eq. 37] (40)

=

∫
p̃(y | t, z̃)p̃(z̃) dz̃ [marginalize b] (41)

= p̃(y | do(t)) . (42)

Remarkably, the identification of p(y | do(t)) allows us to solve also the query p(y | do(b)) leveraging the frontdoor
criterion (Peters et al., 2017).

p(y | do(b)) =
∫

p(t | b)p(y | do(t)) dt [frontdoor criterion] (43)

=

∫
p̃(t | b)

∫
p̃(y | t, z̃)p̃(z̃) dz̃dt [plug in Eq. 41 and equal marginals] (44)

= p̃(y | do(b)) (45)

A.2.4 CONFOUNDED TREATMENT CASE

z xi

t y

Figure 13: Case where
no valid adjustment set
can be found.

When only the treatment variable t is directly confounded, we can find two different scenarios:
if we are able to find a valid adjustment set b blocking all confounded paths, in which case
we can reason just as in the other partially confounded case, and otherwise, where we rely on
the identifiability with respect to this invalid adjustment set. For example, if it happens to be
a parent of y which is directly caused by the treatment variable t and the hidden confounder
z as in Fig. 13, we cannot find a valid adjustment set for the causal query, but an invalid one
may still serve us if we can identify the same query with the adjustment set as outcome.

Corollary A.5 (Confounded-treatment case). Assume that we have two compatibleSCMs
M := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃) , i.e., they induce the same causal graph, and which
coincide in their marginal distributions, p(x) = p̃(x). Assume also that y /∈ ch(z) . Then,
p(y | do(t), c) = p̃(y | do(t), c), where y, t, c ⊂ x if there exists a subset b ⊂ x not containing variables from the previous
subsets, such that one of the following two conditions are true:
i) b forms a valid adjustment set for the query p(y | do(t), c).

ii) b forms an invalid adjustment set for the query p(y | do(t), c) but the query p(b | do(t), c) is identifiable. That is, b
blocks all the backdoor paths, and p(b | do(t), c) = p̃(b | do(t), c) .

Proof. If condition i) holds, then we have a valid adjustment set, and the proof is identical to that of Cor. A.3.
Otherwise, if condition ii) holds, we have that the interventional query on y equals the observational query when conditioned
on b, but that now b is not independent of do(t), i.e.,

p̃(y | do(t), c) =
∫

p̃(y | do(t),b, c)p̃(b | do(t), c) db (46)
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Ò Decaf: A Deconfounding Causal Generative Model

n z w

t y

(a)

un ut z uy uw

nf wf

tf yf

(b)

tcf ycf

ncf wcf

un ut z uy uw

nf wf

tf yf

ô ôô

(c)

Figure 14: Example of the transition from (a) the regular depiction of a (confounded) SCM, to (b) an explicit SCM where
the exogenous variables are drawn, and (c) a counterfactual twin SCM where the data-generating process is replicated in the
“factual and counterfactual worlds”. Besides, figure (c) also depicts which nodes are observed and which edges are severed,
in order to compute a counterfactual query of the type p(ycf | do(tcf),xf) .

=

∫
p̃(y | t,b, c)p̃(b | do(t), c) db (47)

=

∫
p(y | t,b, c)p(b | do(t), c) db (48)

= p(y | do(t), c) , (49)

where we needed to use that the query p(b | do(t), c) is identifiable in the third equality.

A.3 Counterfactual query identifiability
In this section, we show that counterfactual query identifiability is a direct result of the interventional query identifiability
from the previous section.
In order to formally define counterfactuals, in this section we introduce the concept of counterfactual SCMs in a somewhat
novel way. Namely, we combine the concepts of twin networks from Pearl (2009) (which replicates the data-generating
process) and that of counterfactual SCMs from Peters et al. (2017) (which defines a counterfactual prior to the intervention).

Definition 6 (Counterfactual twin SCM). Given a SCMM = (f, Pu, Pz), we define its counterfactual twin SCM as a
SCMMcf where all structural equations are duplicated, and the exogenous noise is shared across replications, and where
additionally one of the halves is observed (“the factual world”), and the other half is unobserved (“the counterfactual world”).

We provide in Fig. 14 a more intuitive depiction on the construction of these counterfactual twin networks. From this
definition, one can recover the counterfactual SCM defined by Peters et al. (2017) by just focusing on the replicated part
of the counterfactual twin network, and conditioning the exogenous noise and hidden confounder on the observed half,
i.e., (f, Pu | xf , Pz | xf) . Similarly, one can compute the usual counterfactual query by performing an intervention on the
counterfactual twin network, i.e., by replacing the intervened equations by the constant intervened value, and computing the
query conditioned on the factual variables, p(ycf | do(tcf),xf). This is visually represented in Fig. 14c.
In order to prove query identifiability in the counterfactual setting, we need to use the following technical result regarding
the completeness of a random variable:

Lemma A.6. If a random variable z is complete given n for all b, as given by Def. 5, then it is complete given n for all b
and c, where c is another continuous random variable.

Proof. We prove this result by contradiction. Assume that the result does not hold, then there must exist a non-zero measure
subset of the space of b×cfor which there exists a square-integrable function g(·) such that

∫
g(z,b, c)p(z | b, c,n) dz = 0

for almost all n, but g(z,b, c) ̸= 0 for almost all z.
Since this subset has positive measure, there must contain an ε-ball within. If we now focus on the b-projection of this ball
where we fix c to its value on the centre, we have that it is a subset of non-zero measure in the space of b (as otherwise it
would be zero-measure in the Cartesian-product measure), where the function g(·, c) breaks our initial assumption of the
completeness of z. Thus, we reach a contradiction.
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Ò Decaf: A Deconfounding Causal Generative Model

Given Def. 6, it is rather intuitive that, if a causal query is identifiable in a SCMM, then it has to be identifiable in both
halves of its induced counterfactual twin SCMMcf, as they are identical. More importantly, we can now leverage again
Prop. A.2, this time with c = xf, to prove counterfactual query identifiability whenever we have interventional query
identifiability.

Proposition A.7 (Counterfactual identifiability). Assume that we have two SCMsM := (f, Pu, Pz) and M̃ := (f̃, Pũ, Pz̃)
that are compatible, i.e., they induce the same causal graph, and which coincide in their marginal distributions, p(x) = p̃(x).
Then, if a query p(y | do(t)) is identifiable in the sense of Prop. A.2, where y, t ⊂ x, then the query p(ycf | do(tcf),xf) is
also identifiable in their induced counterfactual twin SCMs as long as the regularity conditions still hold, i.e., if:
i)

∫∫
p̃(z̃ | w,b, c)p̃(w | z̃,b, c) dz̃dw <∞ for all b, c, and

ii)
∫
p̃(y | t,b, z̃, c)2p̃(z̃ | b, c) dz̃ <∞ for all t, b, and c.

Proof. We essentially need to prove that the independence and completeness assumptions keep holding when we add the
factual covariate, c = xf .
For the independence, we need to show that, if we have a set of variables that fulfil the independence conditions from
Prop. A.2, then this set of variables keeps holding them if we include c = xf . This is, however, easy to show since factual
and counterfactual variables only have “tail-to-tail” dependencies, i.e., they are connected only through the shared exogenous
variables. As a result, if two variables from the same half are conditionally independent given a third set of variables,
conditioning on the other half cannot change this independence.
For the completeness, we need to show that introducing the factual variable retain the completeness assumed in Prop. A.2.
However, this is direct to show using the technical result in Lemma A.6. Specifically, it holds that
i) z is complete given n for all t, b, and c , and

ii) z̃ is complete given w for all b and c .
Therefore, we have shown that the requirements of Prop. A.2 hold when we append a factual variable in the twin network,
and thus we can reapply all the results from the previous sections to the counterfactual cases.

It is important to note that, while the results above provide counterfactual identifiability whenever we have interventional
identifiability, we still rely on how much of a good approximation the encoder is to the inverse of the decoder in the proposed
Decaf model. That is, the quality of the encoder determines how well we can perform the abduction step to compute
counterfactuals. This consideration is unique to counterfactuals, as we just had to sample the latent variable as usual in the
case of interventional queries.

B Experimental details and additional results

B.1 Ablation study
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Figure 15: ATE absolute error varying the number of available
proxies (S) and the dimensionality of the latent space (Dz).
Mean and 95% confidence interval over 5 realizations and all
interventions, made in percentiles 25, 50 and 75 of x1. Oracle
represents a causal normalizing flow that observes z.

First, in Fig. 15 we present the ATE error committed
for each combination of proxies and latent dimension,
complementary to the figure of the presented in §7.1. If
we observe the ATE error, we extract the same conclusion
as observing counterfactual error, the causal effect is not
recoverable with less than two proxies, and more proxies
result in better estimates. On the other hand, the selection
of the dimension of the latent space bigger than the true
dimension of the latent confounders does not affect the
performance negatively.
In addition, we show the equations that we have used
for the ablation study. There exist two unobserved con-
founders, z1 and z2. The set of all observed proxies
{x3, x4, ..., x12} is represented in the graph of §7.1 as x3.
Note that the proxies available in the nonlinear experi-
ment are bounded or periodic, specially sigmoids and hyperbolic tangents saturate and max(0, x) loses all the information
about the confounder for negative values and sines and cosines are periodic functions. In other words, the distributions
p(z | xi) are not complete, we lose information about z when in the transformations to each x. However, if we add more
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Ò Decaf: A Deconfounding Causal Generative Model

proxies of the confounders, the information that the proxies contain about the confounder is higher, and the causal effect of
x1 on x2 becomes recoverable.

Linear Nonlinear



z1 ∼ Pz1

z2 ∼ Pz2

x1 = 1.5 · z1 + 0.5 · z2 + 0.4 · u1

x2 = −0.75 · z1 + 0.6 · z2 + 0.9 · x1 + 0.3 · u2
x3 = −0.5 · z1 + 0.3 · z2 + 0.5 · u3

x4 = 0.75 · z1 − 0.4 · z2 + 0.4 · u4
x5 = −0.85 · z1 + 0.6 · z2 + 0.6 · u5
x6 = 0.6 · z1 + 0.6 · z2 + 0.55 · u6
x7 = −0.8 · z1 + 0.4 · z2 + 0.4 · u7

x8 = 0.9 · z1 − 0.7 · z2 + 0.6 · u8
x9 = −0.72 · z1 + 0.5 · z2 + 0.56 · u9

x10 = 0.78 · z1 + 0.4 · z2 + 0.58 · u10
x11 = −0.55 · z1 + 0.7 · z2 + 0.6 · u11

x12 = 0.88 · z1 + 0.3 · z2 + 0.4 · u12



z1 ∼ Pz1

z2 ∼ Pz2

x1 =
z21
4
· sin

(z2
2

)
+ z1 + 0.6 · u1

x2 =
z1 · x1

4
+ 0.8 · z2 + 0.5 · x1 + x1 · u2 · 0.3 + 0.2 · u2

x3 = 0.6 · z21 +
(z2
4

)3

+ 0.3 · sin
(z2
2

)
+ 0.5 · u3

x4 = sin
(z1
2

)
+ cos

(z2
3

)
+ 0.4 · u4

x5 = cos
(z1
2

)
− tanh

(z2
3

)
+ 0.6 · u5

x6 = tanh
(z1
2

)
+ σ

(z2
2

)
+ 0.55 · u6

x7 = σ
(z1
2

)
+max(0,−z2) + 0.4 · u7

x8 = max(0, z1)− 0.5 ·max(0, z2) + 0.6 · u8
x9 = max(0,−z1) + 0.3 ·max(0,−z2) + 0.5 · z1 · u9
x10 = 0.8 ·max(0, z1) + 0.3 ·max(0, z2) + 0.58 · u10
x11 = 0.75 ·max(0,−z1) + 0.5 ·max(0, z2) + 0.6 · u11
x12 = 0.3 · z31 + 0.5 · |z2|+ 0.4 · u12

B.2 Semi-synthetic Sachs’ dataset
This dataset represents a network of protein-signaling in human T lymphocites. Every variable, except PKA and Plcg can be
intervened upon; therefore, there is not only one causal query of interest, but tens of possible causal queries can arise in this
setting. This highlights one of the strenghts of Decaf, because we only need a single trained model to answer all identifiable
causal queries.

The original data contains a total of 853 observational samples; however, we have decided to evaluate our model on
semi-synthetic data because of the following reasons:

• The original network of Sachs et al. (2005) contains cycles, which is violation of one of our assumptions. However, we
have found different versions of the causal graph (Kaltenpoth & Vreeken, 2023; Luo & Zhao, 2011) that do not contain
cycles. Therefore, we have decided to employ the causal graph that appears in the library bnlearn (Scutari, 2010)—a
recognized library for Bayesian Nerwork learning—as ground truth causal graph. The best way to ensure that the causal
graph used is the ground truth is by generating samples according to the causal graph. In addition, that causal graph is
the one used by Chao et al. (2023).

• We can compare our model with one of the baseline models, DCM, with the same dataset as Chao et al. (2023) used.

• Semi-synthetic data allows us to compute all metrics to evaluate causal queries, having the ground truth.

For generating the data in this experiment, we have followed the procedure proposed by Chao et al. (2023), where they take
the causal graph of Sachs et al. (2005) and the empirical distribution of the root nodes, and generate the rest of the variables
with random non-linear mechanisms. In addition, exogenous variables have been included in an additive and non-additive
manner, respectively.

In the following, we complement the figures presented in §7 with a table that summarizes all the interesting metrics,
evaluated on the confounded identifiable causal queries shown in Fig. 7. Interventional distributions and counterfactuals
have been computed intervening in percentiles 25, 50 and 75 of the intervened variable.

Since observational MMD is computed only once, the statistics given in Tab 2 are calculated only over 5 runs. On the
other hand, we have as many interventional MMDs per run as interventions have been made. However, the statistics of
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Ò Decaf: A Deconfounding Causal Generative Model

interventional MMD are computed over all the interventions of all intervened variables and 5 runs (5 runs × 3 intervened
variables = 15 samples). Finally, statistics over counterfactual error and ate error aggregate all the intervention-outcome
pairs over the five runs. For example, in this case we intervene on 3 variables, performing 3 different interventions and
we evaluate on 3, 2, and 1 variable respectively for each intervened variable, and we have a total of (3+2+1)×3×5 = 90
different measurements to compute the statistics.

Table 2: Performance metrics on Sachs datasets. Meanstd over five runs and all causal queries of interest. Interventions on
Raf, Mek and Akt and evaluating on confounded identifiable effects. Bold indicates significantly better results (95% CI
from a Mann-Whitney U test). Lower error values indicate better performance.

Additive Nonadditive

Model MMD obs MMD int |ATE err| |CF err| MMD obs MMD int |ATE err| |CF err|
×104 ×104 ×102 ×102 ×104 ×104 ×102 ×102

Oracle CNF 4.841.84 7.506.17 6.056.83 10.0310.29 5.962.37 6.712.97 2.342.02 4.843.43

Aware Decaf Ò 2.150.54 7.829.59 17.8917.72 17.924.01 5.122.42 5.393.33 3.264.09 6.824.65

Deconfounder – − 34.3433.45 71.1386.98 – − 8.1410.69 63.1579.12

Unaware
CNF 5.801.58 73.9488.78 44.4939.12 56.0938.89 5.111.90 12.7920.73 9.7415.71 15.1515.37
ANM 83.8613.41 110.28112.43 22.4214.06 29.4012.22 81.907.21 60.40144.08 23.8813.94 28.9712.44
DCM 87.802.95 125.59118.20 21.2111.34 28.256.96 14.234.57 69.74390.81 8.447.96 27.5023.71

The metrics in Tab 2 indicate that Decaf outperforms all baselines across all interventional and counterfactual causal queries
in both settings of the semi-synthetic datasets. However, as discussed in §8, a limitation of our empirical approach is that the
differences in observational MMD, the selection criterion for CGMs, are marginal between the oracle, Decaf, and CNF.
Notably, Decaf even achieves a lower MMD than the oracle. This discrepancy arises because the number of variables is
large, and the MMD differences are on the order of 10−4.

B.3 Semi-synthetic Ecoli70 dataset
The Ecoli 70 dataset represent the gene expression of 46 genes of the RNA-seq of Escherichia coli bacteria. The assumed
causal graph comes from the study of (Schäfer & Strimmer, 2005), which provides insight into the regulatory mechanisms
governing E. coli gene expression. Examples of interventions in these networks are gene knockout and gene overexpression
(Long & Antoniewicz, 2014). A priori, there could be several variables in which intervening can be interesting in evaluating
the effects in the cell.
For this experiment, we have generated the data in the same way as done with Sachs’ dataset with random mechanisms, but
in this case, since we do not have enough samples, root nodes follow standard Gaussian distributions. We have included
an additive and a nonadditive ways of including exogenous variables. In this case, we have used a semi-synthetic dataset
because the real dataset available in bnlearn (Scutari, 2010) contains only 9 samples.
In Fig. 1 is presented the causal graph of this setting.
In addition, note that Fig. 1 has been extracted from our Alg. 5 of causal effect identfiability. That is, we have specified the
causal graph and the variables that are unmeasured, and our Algorithm returns (in green) all the paths that are identifiable by
Decaf. Consider that black arrows are also identifiable, not only by Decaf, but also for any CGM that approximates the
observed data. In red, arrows that are not identifiable by Decaf because there are not enough proxies to infer an unbiased
causal effect.
A table summarizing the results obtained in the estimation confounded identifiable causal queries are presented in Tab 3.
The statistics have been computed in the same way as in Sachs’ dataset. In the case of ATE and CF error, they have been
computed only on the direct confounded identifiable paths, i.e., the green paths in Fig. 1.
Decaf significantly outperforms the baselines in ATE and counterfactual estimation in the additive setting and in ATE
estimation in the nonadditive setting. The MMD differences, both observational and interventional, are negligible between
the oracle, Decaf, and CNF, likely due to the high number of variables diluting estimation bias. Counterfactual differences
in the nonadditive setting are also insignificant. However, compared to the oracle, the gap between the oracle and unaware
CGMs is smaller than in the additive case. While Decaf reaches an intermediate point, the difference remains insignificant.

B.3.1 COMMENT ON DECONFOUNDER RESULTS

One may realize that the errors committed by the Deconfounder of (Wang & Blei, 2019; 2021) are greater than the errors
committed by the unaware models. First of all, we want to underline that, although the Deconfounder allows us to predict
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Ò Decaf: A Deconfounding Causal Generative Model

Table 3: Performance metrics on Ecoli70 dataset. ATE and CF error statistics computed aggregating all causal queries and 5
runs. Intervened and evaluated on the direct confounded identifiable causal effects of Fig. 1. Bold indicates significantly
better results (95% CI from a Mann-Whitney U test). Lower error values indicate better performance.

Additive Nonadditive

Model MMD obs MMD int |ATE err| |CF err| MMD obs MMD int |ATE err| |CF err|
×104 ×104 ×102 ×102 ×104 ×104 ×102 ×102

Oracle CNF 2.340.62 6.055.28 5.047.42 9.9112.46 1.490.57 4.058.22 3.514.84 1.671.64

Aware Decaf Ò 2.970.34 10.009.11 7.298.61 17.4812.98 1.630.46 9.1921.42 8.7217.61 2.152.10
Deconfounder – − 27.3526.17 82.15116.90 – − 30.0033.24 9.909.47

Unaware
CNF 2.981.15 10.2512.13 23.9125.16 34.0223.90 1.950.77 10.2020.87 12.7219.21 2.452.06
ANM 32.802.81 44.3317.62 21.8823.89 31.3320.64 13.173.95 27.5631.57 15.0418.18 2.711.88
DCM 31.650.27 49.5036.83 24.4533.31 30.2224.83 18.786.01 33.3736.14 15.0722.37 2.362.08

counterfactuals, the algorithm does not present any guarantees of a correct counterfactual estimation because it does not
model the exogenous variables of the SCM. That is the reason of the bad performance in couterfactual estimation.

On the other hand, let us justify some of the other paths where the errors of the Deconfounder are greater than unaware
models. In Sachs’ datasetto model the causal effect Ekt→Akt, the factorization model of the deconfounder uses Raf, Mek,

Jnk and P38 to extract the substitute confounder; the factorization model assumes that all those variables are independent
conditioned to z̃, while that is not the case in the true SCM and, therefore, this SCM violates the independence assumption
of (Wang & Blei, 2019). The same argument is valid for the paths yceP→yfaD, lacA→yaeM, yceP→yfaD, ydeE→pspA

and pspB→pspA.

ATE error CF error

0.0

0.2

0.4

0.6

0.8

1.0

Oracle Decaf Deconfounder CNF ANM DCM

Figure 16: ATE and CF error evaluating only links where
deconfounder should work in the additive case.

On the other hand, the paths lacZ→yaeM, asnA→lacY

are frontdoor paths that Decaf can identify because it mod-
els the hidden confounder following the true causal graph.
However, the Deconfounder is not designed to model this
paths. To evaluate its performance for frontdoor paths,
Deconfounder uses the same variables as Decaf to extract
the substitute of the confounder. However, the Decon-
founder assumes independence conditioned to the substi-
tute confounder and that is not the case; therefore, we are
violating the independence assumption again.

The only two paths that meet the Deconfounder assump-
tions in Fig. 1 are lacA→lacY and yedE→pspB. And
we can observe that in those paths, the Deconfounder performs at least as well as unaware methods. On the other hand, all the
factor models used for the Deconfounder implementation (PPCA, Deep exponential families and Variational autoencoder)
assume additive noise. Therefore, interventional distributions in nonadditive settings are not computable theoretically with
these models.

Table 4: Performance metrics on Ecoli70 dataset. Statistics computed an all samples over 5 runs, intervening and evaluating
only in the causal effects that Deconfounder should solve. Bold indicates significantly better results (95% CI from a
Mann-Whitney U test). Lower error values indicate better performance.

Model |ATE err| ×102 |CF err| ×101

Oracle CNF 8.3110.95 1.491.86

Aware Decaf Ò 9.1810.42 2.182.02

Deconfounder 14.3515.24 12.0315.81

Unaware
CNF 27.8230.17 4.013.62
ANM 27.6329.74 3.643.15
DCM 42.4554.23 4.084.12
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Ò Decaf: A Deconfounding Causal Generative Model

B.3.2 METRICS ON THE OTHER PATHS

In this subsection we include a comparison between all the models in the unconfounded and the unidentifiable effects. For
unconfounded effects, our expectation is to observe that all the CGMs achieve a performance comparable with the oracle.
On the other hand, we expect to have higher errors in unidentifiable effects, since we do not have theoretical guarantees.

ATE error CF error

Additive

0.0

0.1

0.2

ATE error CF error

Nonadditive

Oracle Decaf CNF ANM DCM

Figure 17: Error boxenplots on the Ecoli70 dataset for differ-
ent CGMs, averaged over all unconfounded direct effects (see
Fig. 1) after intervening in their 25th, 50th, and 75th percent-
iles and 5 random realizations of the experiment.

Unconfounded Effects. The results for unconfounded
effects are summarized in Fig. 17 and Tab 5, considering
only direct effects for ATE and counterfactual error com-
putations. As expected, Decaf and CNF achieve metrics
comparable to the oracle in both ATE and counterfac-
tual estimations, particularly evident in Fig. 17, where
error distributions are nearly identical. 5 does not show
statistically significative differences between Decaf and
CNF. Notably, architectures based on causal normalizing
flows outperform ANM and DCM, which model each
causal mechanism, fi, with separate networks. This dif-
ference is crucial in settings with many variables and
complex relations, where scalability is essential. Unlike
ANM and DCM, which suffer from error propagation and
limited scalability, causal normalizing flows leverage a
single amortized model, making them more efficient in
high-dimensional scenarios.
Finally, note that the Deconfounder has not been included in these metrics because it is not designed for unconfounded
queries and there are many queries, while one Deconfounder model is needed for each query.

Table 5: Performance metrics on Ecoli70 dataset. Statistics computed on all unconfounded direct effects and 5 runs. Bold
indicates significantly better results (95% CI from a Mann-Whitney U test). Lower error values indicate better performance.

Additive Nonadditive

Model MMD int |ATE err| |CF err| MMD int |ATE err| |CF err|
×104 ×102 ×102 ×104 ×102 ×102

Oracle CNF 3.723.73 2.002.27 1.273.49 1.942.96 1.921.99 1.764.10

Aware Decaf Ò 4.595.58 2.112.39 1.423.81 2.767.61 1.931.87 1.754.04

Unaware
CNF 4.776.09 2.022.21 1.223.18 2.977.64 1.951.92 1.713.93
ANM 34.728.56 3.573.02 2.024.09 15.1312.57 3.533.15 2.645.34
DCM 36.2314.29 3.482.75 2.692.30 21.2213.68 3.422.63 3.003.42

ATE error CF error

Additive

0.0

0.2

0.4

ATE error CF error

Nonadditive

Oracle Decaf CNF ANM DCM

Figure 18: Error boxenplots on the Ecoli70 dataset for differ-
ent CGMs, averaged over all unidentifiable direct effects (see
Fig. 1) after intervening in their 25th, 50th, and 75th percent-
iles and 5 random realizations of the experiment.

Unidentifiable Effects. The results for unidentifiable
effects—causal queries that violate the assumptions in
§6—are summarized in Fig. 18 and Tab 6. Notably,
the oracle performs significantly better than the other
CGMs. As seen in Fig. 18, error distributions are highly
skewed, with ATE and counterfactual errors reaching ex-
treme values—considering that metrics are computed on
the standarized variables. Tab 6 shows no significant
differences between the metrics achieved by Decaf and
CNF.

B.4 Law school fairness use-case
The experiment with real-world data was inspired by Kus-
ner et al. (2017) and Javaloy et al. (2023).
The purpose is to find a fair estimator of the decile that
the grades of each student will occupy in their third year
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Table 6: Performance metrics on Ecoli70 dataset. Statistics computed on all unidentifiable direct effects and 5 runs. Bold
indicates significantly better results (95% CI from a Mann-Whitney U test). Lower error values indicate better performance

Additive Nonadditive

Model MMD int |ATE err| |CF err| MMD int |ATE err| |CF err|
×104 ×102 ×103 ×105 ×102 ×102

Oracle CNF 3.713.52 1.791.36 5.8815.16 16.986.87 1.751.59 1.624.57

Aware Decaf Ò 3.833.93 3.767.90 31.2192.38 18.675.64 2.183.73 2.116.13

Unaware
CNF 4.544.81 4.7510.65 44.76126.36 20.226.68 2.323.80 2.136.25
ANM 34.385.17 7.4312.64 52.70137.99 130.7141.64 4.013.82 2.937.21
DCM 35.494.95 7.6713.93 67.46132.21 198.2358.62 3.432.76 3.293.92

uS Sex GPA uG

uR Race LSAT uL z

uFI Fam FYA uFYA

Figure 19: Confounded SCM modeled by Decaf.

of university.

The dataset contains information on 27, 000 law students who were admitted by the Law School Admissions Council
(LSAC) from 1991 through 1997. We have performed an experiment similar to that carried out by Kusner et al. (2017),
where race and sex were treated as sensitive attributes. We have considered the following variables to include in our study:

• Race: binary indicator of the race that distinguish between white and non-white.

• Sex: binary indicator of the sex that distinguish between male and female.

• Fam: family income.

• LSAT: the grade achieved in the Law School Admission Test (LSAT).

• UGPA: the undergraduate grade point average (GPA) of the student previous to the admission.

• FYA: first-year average grade.

• Decile3: the decile of the grades in the third year of university. This is the variable to predict.

For our purpose, we consider that an estimator, ŷ, is fair if it meets Demographic parity, defined in (Kusner et al., 2017,
Def. 3) as follows. A predictor ŷ satisfies demographic parity if the predicted distributions for different values of a sensitive
attribute are equal: p(ŷ | t = 0) = p(ŷ | t = 1). We evaluate the difference between predicted distributions using MMD—a
lower distance between the predictions for the two groups of a sensitive attributes denotes a fairer predictor.

The assumed causal graph is slightly different from that of Kusner et al. (2017), since their purpose is to make a fair
prediction FYA accounting only for Race, Sex, LSAT and UGPA. However, we include Fam and FYA as predictors and the
task is to predict Decile3 and the assumed causal graph is the one of Fig. 8.

Proposed fair predictor with Decaf. We propose to model the confounded SCM presented in Fig. 19, where are explicitly
shown the exogenous variables, that are independent of the other variables of the graph except of their associated endogenous
variable.

Afterwards, we predict the outcome, Decile3 from the extracted latent variable that acts as substitute of the knowledge
and the exogenous variables of FYA and Fam, following the causal graph of Fig. 8, using a generalized linear model:
p̃(Decile3 | uFI,uFYA, z). Decaf models z and the exogenous variables as independent from Race and Sex. Therefore,
the prediction of Decile3 should be fair.

Baselines. The baselines used to compare our approach are the methods Fair K and Fair add proposed in Kusner et al.
(2017).
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Ò Decaf: A Deconfounding Causal Generative Model

Fair K is a fair predictor categorized in Level 2 in Kusner et al. (2017), which postulates that the student’s knowledge, know
affects GPA, LSAT, FYA and Decile 3, following the distributions described below.

Fam ∼ N
(
bFam + wR

FamRace, 1
)
,

GPA ∼ N
(
bG + wK

G know+ wR
GRace+ wS

GSex+ wFam
G Fam, σ2

G

)
,

LSAT ∼ Poisson
(
exp(bL + wK

L know+ wR
LRace+ wS

LSex+ wFam
L Fam)

)
,

FYA ∼ N
(
wK

F know+ wR
F Race+ wS

FSex+ wFam
F Fam, 1

)
,

Decile3 ∼ Poisson
(
exp(wK

Dknow+ wR
DRace+ wS

DSex+ wFam
D Fam)

)
,

know ∼ N (0, 1).

(50)

Then, the posterior distribution know is inferred using MonteCarlo with the probabilistic programming language Pyro
(Bingham et al., 2019). The outcome is predicted using the inferred know using a generalized linear model: p̃(Decile3 |
know).

On the other hand, Fair Add predicts the outcome from the residuals of predicting each variable with each parent, which
guarantees that these residuals are independents of Race and Sex. That is, the predictor estimates the distribution
p(Decile3 | rFam, rUGPA, rLSAT, rFYA), where these residuals are computed as:

rFam = Fam− E[Fam | Sex, Race]
rUGPA = UGPA− E[GPA | Sex, Race, Fam]
rLSAT = LSAT− E[LSAT | Sex, Race, Fam]
rFYA = FYA− E[FYA | Sex, Race, Fam]

(51)

All predictors used are generalized linear models.

Discussion of Results. Although the fair methods proposed by Kusner et al. (2017) achieve significantly better demo-
graphic parity than our approach using Decaf (as indicated by a much lower MMD), their predictive performance is
substantially inferior. Specifically, their performance is comparable to predicting the outcome using only the mean of the
distribution, which serves as a baseline in Tab 1. In contrast, Decaf achieves a 98% reduction in MMD while incurring only
an 11% increase in RMSE, as illustrated in Fig. 9.

These experiments demonstrate that leveraging Decaf to model confounded Structural Causal Models is beneficial beyond
causal query estimation, leading to improved overall performance.

C Do-operator

We introduce here the algorithms that Decaf employ to generate interventional samples and counterfactuals. But first, we
include those of Javaloy et al. (2023), since we leverage these CNFs as building blocks for Decaf. Note that the notation
applied for Decaf is slightly different from the that used in the causal flows, naming the intervened variable as t, instead of
xi, in order to be consistent with the notation used in §3 and §6. However, note that both variables play the same role, and
that t ⊂ x.

C.1 Do-operator in causal normalizing flows

Algorithm 1 Algorithm to sample from the interventional distribution, P (x | do(xi = α)). From Javaloy et al. (2023).

1: function SAMPLEINTERVENEDDIST(i, α)
2: u ∼ Pu ▷ Sample a value from the observational distribution.
3: x← T−1

θ (u)
4: xi ← α ▷ Set xi to the intervened value α.
5: ui ← Tθ(x)i ▷ Change the i-th value of u.
6: x← T−1

θ (u)
7: return x ▷ Return the intervened sample.
8: end function
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The computation of counterfactuals follows the steps of abduction, action and prediction postulated by (Pearl et al., 2016).
The abduction step consists of using the observations to determine the value of the exogenous variables. Then, action is
computing the intervention, modifiying the causal mechanism of the intervened variable and prediction consist of using the
exogenous variables and the modified SCM to compute the counterfactual.

Algorithm 2 Algorithm to sample from the counterfactual distribution, P (xcf | do(xi = α),xf). From Javaloy et al. (2023).

1: function GETCOUNTERFACTUAL(xf, i, α)
2: u← Tθ(x

f) ▷Abduction: Get u from the factual sample.
3: xi

f ← α ▷Action: Set xi to the intervened value α.
4: ui ← Tθ(x

f)i ▷Action: Change the i-th value of u.
5: xcf ← T−1

θ (u) ▷Prediction: Get counterfactual
6: return xcf ▷ Return the counterfactual value.
7: end function

C.2 Do-operator in interventional distributions with Decaf

The sampling process consists of sampling first from the prior distribution of the latent variables and from the distribution of
the exogenous variables. Then, one can use the generative network (Tθ) to take samples of the rest of variables, changing
the components of u associated with t. Note that z is not the input of the normalizing flow, but a condition (or context).
Therefore, z is transformed neither in the forward nor the reverse pass of the flow.

Algorithm 3 Algorithm to sample from the interventional distribution, P (x | do(t = α)) with Decaf.

1: function SAMPLEINTERVENEDDIST(t, α)
2: z ∼ Pz ▷ Sample a value from the prior of z.
3: u ∼ Pu ▷ Sample a value from the observational distribution.
4: x← T−1

θ (u, z)
5: t← α ▷ Set t to the intervened value α.
6: ut ← Tθ(x, z)t ▷ Change the component of u associated with t.
7: x← T−1

θ (u, z)
8: return x ▷ Return the intervened sample.
9: end function

Additionally, the process to compute the average treatment effect (ATE) involves to generate interventional distributions.
For example, to compute the ATE comparing two interventions (α1, α2) in the variable t, we would generate samples of the
interventional distributions, p(x | do(t = α1)), p(x | do(t = α1)), respectively, and approximate their expectations with
MonteCarlo.

ATE = E[x | do(t = α2)]− E[x | do(t = α1)] (52)

Unfortunately, if we were interested in evaluating the ATE on only one variable, y, the process would involve to generate
samples of the whole interventional distribution and select only the samples of the interested variable.

C.3 Do-operator in counterfactuals with Decaf

As part of the abduction step, our model estimates the posterior distribution of hidden confounders given a factual datapoint,
qϕ(z | xf). Therefore, the counterfactual given by the model is no longer a single point but comes from a distribution. To
obtain a single sample that allows us to compare it with the true counterfactual, we estimate the mean of the posterior
distribution from samples using MonteCarlo, and we use that value to generate a counterfactual.
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Ò Decaf: A Deconfounding Causal Generative Model

Algorithm 4 Algorithm to sample from the interventional distribution, P (x | do(t = α)) with Decaf.

1: function GETCOUNTERFACTUAL(xf, t, α)
2: qϕ(z | xf)← Deconfounding network(xf) ▷ Abduction: Get z from the factual sample.
3: z ∼ Eqϕ [z | xf] ▷Abduction: Estimate the mean of the distribution.
4: u← Tθ(x

f, z) ▷Abduction: Get u from the factual sample.
5: tf ← α ▷Action: Set t to the intervened value α.
6: ut ← Tθ(x

f, z)t ▷Action: Change the component of u associated with t.
7: xcf ← T−1

θ (u, z) ▷ Prediction: compute the counterfactual
8: return xcf ▷ Return the counterfactual value.
9: end function

D Additional details on related work of causal inference with hidden confounders
In this section we go deeper into the methods of causal inference in scenarios where there are unobserved confounders.
First of all, we want to remark that all the following methods have been designed to address causal inferences in specific
causal graphs (or subgraphs), therefore they can be used when there exists the causal relationships presented in Fig. 20.
In the following text, we assume the notation introduced in §3, where z is the hidden confounder, t is the intervened variable
or treatment and y is the outcome, i.e. the variable where we want to evaluate the causal effects.
We have classified the different approaches depending on the graph that they are designed to address. However, there are
two considerations that are common for all these approaches.
First, the methods follow a two-stage process: i) extracting a substitute for the unobserved confounder, z̃, using the variables
affected by the confounder or instrumental variables, and ii) estimating the outcome given this substitute, ỹ ∼ p(y | z̃, t). In
larger causal graphs, one predictor must be trained for each outcome, and one extractor must be trained per independent
confounder.
Second, none of these methods shows the ability of identify counterfactuals, since they do not model exogenous variables.

Presence of null proxies independent of t (Fig. 20a). We say n to be a null proxy of z if it is a child of z independent
of the outcome, y, given z: n⊥⊥ y | z. Methods for estimating causal effects were developed when null proxies of the
confounder were available and those proxies are independent of the intervened variable: n⊥⊥ t | z. We can use these proxies
to infer a substitute. Among these, Allman et al. (2009); Kuroki & Pearl (2014) studies the case in which the confounder is
categorical and uses matrix factorization to extract a substitute when there are at least three Gaussian proxies (Allman et al.,
2009), when the conditional distribution of the confounder given the proxy is known or when other proxies are available
(Kuroki & Pearl, 2014). Kallus et al. (2018) also employ matrix factorization to cases where the confounder is continuous
and the relation with the covariates and the treatment (but not with the outcome) is linear. In addition, Kallus et al. (2019)
uses kernel functions to extract the substitute confounder when the generators are nonlinear. The most relevant method based
on deep generative methods is proposed by Louizos et al. (2017), consisting of a VAE to extract the substitute confounder
when several null proxies are available, although there is no theoretical guarantee of its operation. Finally, Miao et al. (2023)
offers a regression-based approach to estimate the unobserved confounder under equivalence, which assumes that any model
of the joint achieves element-wise transformations of the latents, which is not feasible to check: p̃(t, z | n) = p(t, V (z) | n).
The graph in which all these methods operate can be found in Fig. 20a.

Presence of two proxies: null and not null (Fig. 20b). When the null proxies affect treatment (see Fig. 20b: the proxy,
n, affects treatment t), Miao et al. (2018) offers theoretic guarantees of causal identifiability in the presence of another
proxy, w, and completeness conditions. The proxy w can be active, that is, it can directly affect y. Practically, in Tchetgen
et al. (2020) the two-stage proximal least squares (P2SLS) we can find the method to infer the substitute confounder from
p(w | t,n). P2SLS can be implemented using neural networks to achieve greater flexibility.

Instrumental variable (Fig. 20c). Another condition that allows causal inference is the presence of instrumental variables
(IVs), i.e. variables that affect only the treatment and are independent of both the unobserved confounder and the outcome
given the treatment (in Fig. 20c, n is an IV). In linear DGP, Pearl (2009); Angrist & Pischke (2009) demonstrates that a
two-stage regression process mitigates the confounding bias as the only effect that flows from the instrumental variable to
the outcome is through treatment. A substitute of the confounder is extracted by computing the conditional distribution of
the treatment given the instrumental variable: z̃ ∼ p(t | n). Furthermore, (Hartford et al., 2017) develops an extension of
this theory to include arbitrarily complex nonlinear DGP, designing a two-step deep approach, based on neural networks.
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Ò Decaf: A Deconfounding Causal Generative Model

Multitreatment affected by a common confounder (Fig. 20d). Finally, the multitreatment scenario (Fig. 20d) has been
studied by Wang & Blei (2019); Ranganath & Perotte (2018). It is called multitreatment because all covariates can be seen as
a treatment over the outcome, y. It is assumed that, in the true DGP, there exist several covariates that are independent given
the unobserved confounder. Therefore Wang & Blei (2019) propose to use a factorization model, such as probabilistic PCA
or Poisson Matrix Factorization, to infer the substitute confounder. A factorization model assumes that the distribution of all
the treatments factorizes in the following way: p(t, z) = p(z)

∏d
i=1 p(ti | z), which should allow to construct a substitute

of the confounder from the posterior of z: z̃ ∼ p̃(z̃ | t). However, these method only offers identifiaibility in the asymptotic
setting where the number of treatments is infinite. On the other hand Ranganath & Perotte (2018) proposes a method that
uses a VAE as a factorization model, adding a regularization term to reduce the additional mutual information between the
estimated confounder and treatment tj given the rest of treatments t−j . Again, the theoretical guarantees of this approach
need an infinite number of treatments to achieve unbiased estimates of causal effects.

Wang & Blei (2021) connect the ideas of Miao et al. (2018) and Wang & Blei (2019) ensuring causal identification in the
multitreatment setting when it is known that some of the treatments can act as null proxies, that is, they do not affect the
outcome. This assumption allows them to provide theoretical guarantees when the number of treatments does not tend to be
infinite.

How is Deconfounder Wang & Blei (2019; 2021) related to our work. As Decaf does, Deconfounder infers the posterior
distribution of the substitute of the confounder from the observational data using a generative model. However, the
application of a factorization model restricts the structural dependencies that we can model. For example, the Deconfounder
cannot model the structural dependencies of Fig. 20b, since the factorization model assumes n⊥⊥ t⊥⊥w | z. In contrast, the
Decaf uses a causal flow, which does allow this dependencies because the causal graph is encoded in the flow.

We also stress that Decaf models the whole confounded SCM, including the exogenous variables. This allows to compute
counterfactuals and train in a query-agnostic manner. In contrast, Deconfounder cannot compute counterfactuals and needs
of a separate model per query.

n z

t y

(a) One proxy.

n z w

t y

(b) Two proxies.

n z

t y

(c) Instrumental variable.

z

t1 t2 t3 t4

y

(d) Multitreatment.

Figure 20: Ad-hoc graphs. (a) Kuroki & Pearl (2014); Louizos et al. (2017); Miao et al. (2023); Kallus et al. (2018; 2019);
Allman et al. (2009) address the case where n is independent of t. (b) Miao et al. (2018) is designed for the case where there
exist two proxies. (c) Graph with an instrumental variable, but this graph is out of the scope of our framework. (d) Wang &
Blei (2019; 2021); Ranganath & Perotte (2018) are designed for the multitreatment setting.

E Algorithms for causal query identification

As explained in §6.3, we can ask Decaf to solve any causal query, but we do not have the guarantee that the estimation that
Decaf returns is correct unless the query is identifiable. Therefore, we provide the practitioner with algorithms to check the
identifiability of causal queries.

Specific treatment-outcome pair. We start presenting the Alg. 5 to identify a causal query specifying the pair treatment
and outcome, which is valid for estimating the interventional distribution of the outcome—p(y | do(t), c)—and the
counterfactual—p(ycf | do(t),xf)—, since we postulated in §6 that the latter is identifiable if the former is.

We have employed this algorithm in all the paths of Sachs and Ecoli70 datasets to check the identifiability of all the direct
causal effects—where y is a child of t—, in order to get a visual representation of the identifiable queries of a complex graph.
However, due to the large number of possible causal queries resulting from all edge combinations in the 43-node Ecoli70
dataset, we have not analyzed identifiability for all indirected queries.

Trivially, if one is interested in evaluating a query which involves several outcomes, {y1, y2, ..., yO}, one causal query per
yi should be evaluated.
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Ò Decaf: A Deconfounding Causal Generative Model

Algorithm 5 Identification of causal queries that include intervention and outcome (t, y)

Require: Graph G, intervention variable t, outcome variable y, covariates c, hidden variables z
Ensure: Boolean indicating if query is identifiable

1: z← hidden variables that are parents of both t and y
2: return True if z is ∅ ▷ Unconfounded is identifiable
3: for all zk ∈ z do
4: Comment: Each zk is an independent component of z
5: n-proxies← children of zk d-separated from t given (z, c)
6: w-proxies← children of zk d-separated from y given (z, c)
7: if there exist n ∈ n-proxies and w ∈ w-proxies such that n is d-separated from w given (z, c) then
8: zk is deconfounded
9: end if

10: end for
11: return all zk are deconfounded

Evaluation on all the variables. Although the Alg. 6 consist of applying Alg. 5 iteratively, we also find it interesting
to include the extension to identify causal queries evaluated on all variables in the dataset, which is useful for using
Decaf as a generative model for the interventional distribution—p(x | do(t))—, or offering complete counterfactual
samples—p(xcf | do(t),xf)—intervening in a specific variable, t ⊂ x.

Algorithm 6 Identification of causal queries, intervening in t and evaluating in all variables

Require: Graph G, intervention variable t, hidden variables z
Ensure: Boolean indicating if the interventional distribution is identifiable

1: z← hidden variables that are parents of t
2: for all xi ∈ descendants of t do
3: Comment: Evaluate only on descendants of the intervention
4: Check (t, xi) identifiability with Alg. 5
5: end for
6: return all (t,xi) are identifiable

E.1 Pipeline for using Decaf

N

Dataset D Graph G Queries {Qi}Ni=1

for each Qi do

Query Qi

Train Decaf

Decaf trained
Check Query identifiability

Alg. 5 and Alg. 6

Is Qi identifiable?
Estimate Qi(M)
Alg. 3 and Alg. 4

Q̂i(M) ⌢

NoYes

Figure 21: Block diagram of the pipeline.

Our framework provides a systematic approach to solving causal
queries by integrating Decaf, a model trained on observational data,
with algorithms designed for query identifiability analysis.
As depicted in the pipeline, the framework takes as input a dataset
D, a causal graph G, and a set of N interesting queries {Qi}Ni=1. The
process begins by training Decaf on D and G, enabling it to learn the
confounded SCM,M.
Simultaneously, the identifiability of each causal query Qi is assessed
using dedicated algorithms (Alg. 5 and Alg. 6). If Qi is identifiable,
the trained Decaf is used to estimate Qi(M) (Alg. 3 and Alg. 4),
yielding the estimated causal effect Q̂i(M). If Qi is not identifiable,
the framework indicates that answering the query is not feasible given
the available data and causal structure. Other causal queries can
be answered by the model without retraining, provided that their
identifiability is verified beforehand.
This workflow ensures a principled approach to causal inference,
leveraging both data-driven modelling and theoretical guarantees on
identifiability. Both the Decaf model and the algorithms for query
identifiability and estimation will be included in the code that we will
provide upon acceptance.
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Ò Decaf: A Deconfounding Causal Generative Model

Validation with interventional data. As a final step in the pipeline in real-world scenarios, especially in sensitive
applications, we encourage practitioners to validate the framework with interventional data. Causal queries such as average
treatment effects (ATEs) can be validated if a randomized experiment is available in which interventions are carried out on
the treatment variable.
However, in cases where experiments on the required variable are not available, our framework can still be partially validated
by assessing the completeness of the inferred hidden confounder given the observed proxies. This can be done by evaluating
causal effects in another causal query that shares the same hidden confounder. Specifically, if a causal query Q1 lacks
interventional data, but another query Q2 involving the same hidden confounder is identifiable, the inferred confounder
from Q2 can be postulated as a valid substitute for estimating Q1. This indirect validation method provides a way to assess
the reliability of our framework without requiring direct interventions for every confounded query.
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