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Abstract

While current methods for training robust deep learning models optimize robust
accuracy, they significantly reduce natural accuracy, hindering their adoption in
practice. Further, the resulting models are often both robust and inaccurate on
numerous samples, providing a false sense of safety for those. In this work, we
extend prior works in three main directions. First, we explicitly train the models to
jointly maximize robust accuracy and minimize robust inaccuracy. Second, since
the resulting models are trained to be robust only if they are accurate, we leverage
robustness as a principled abstain mechanism. Finally, this abstain mechanism
allows us to combine models in a compositional architecture that significantly
boosts overall robustness without sacrificing accuracy. We demonstrate the effec-
tiveness of our approach for empirical robustness on four recent state-of-the-art
models and four datasets. For example, on CIFAR-10 with ε∞ = 1/255, we
successfully enhanced the robust accuracy of a pre-trained model from 26.2% to
87.8% while even slightly increasing its natural accuracy from 97.8% to 98.0%.

1 Introduction

Despite significant progress in training robust models [3, 7, 16, 23, 30], there are two key limitations
that hinder the wider adoption of robust models in practice.

Existing Models are Robustly Inaccurate First, existing works usually only report robust accuracy,
i.e., samples for which the model robustly predicts the correct label. Meanwhile, the issue of robust
inaccuracy, i.e., samples that are robustly misclassified with a wrong label, is usually not even reported
(see Section 3). This is especially problematic for safety-critical models, where the robustness can be
mistakenly used as a safety argument. We quantify the severity of this issue in Table 1, by evaluating
recent state-of-the-art robust models. As can be seen, recent models contain up to 15% of robust
inaccurate samples and the ratio of such samples worsens with smaller perturbation regions.

Second, existing robust training methods improve the model robustness, but they also typically
degrade the standard accuracy on unperturbed inputs. To address this limitation, a number of recent
works study this issue in detail and propose new methods to mitigate it [24, 26, 28, 33].

Table 1: Percentage of robust and inaccurate samples for various recent robust models (cf. Section 6).
CIFAR-10 CIFAR-100

Zhang et al. [34] Carmon et al. [4] Gowal et al. [18] Ding et al. [10] Wang et al. [31] Rebuffi et al. [27]

B∞
1/255 4.6% 3.6% 2.9% 5.32% 2.74% 15.2%

B∞
4/255 3.3% 1.1% 0.9% 1.37% 0.84% 4.3%

B∞
8/255 2.6% 0.8% 1.3% 1.48% 1.01% 3.9%

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.
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Figure 1: Decision regions for models trained via standard training Lstd, adversarial training LTRADES
[34], and our training LERA (Equation 4). Here, our LERA achieves the same robust accuracy as
LTRADES but avoids all robust inaccurate samples by making them non-robust. Note that all models
predict over all three classes, however, the decision regions for class 2 of the LTRADES and LERA
trained models are too small to be visible. For more details, please refer to Appendix A.2.

Our Work In this work, we advance the line of work that aims to boost robustness without sacrific-
ing accuracy, but we approach the problem from a new perspective – by avoiding robust inaccuracy.

Concretely, we propose a new training method that jointly maximizes robust accuracy while mini-
mizing robust inaccuracy. We illustrate the effect of our training on a synthetic dataset (three classes
sampled from Gaussian distributions) in Figure 1, showing the decision boundaries of three models,
trained using standard training Lstd, adversarial training LTRADES [34], and our training LERA (Equa-
tion 4). First, observe that while the Lstd trained model achieves 100% accuracy, only 91.1% of these
samples are robust (and accurate). When using LTRADES, we can observe the robustness vs accuracy
tradeoff – the robust accuracy improves to 98.4% at the expense of 1.6% (robust) inaccuracy. In
contrast, using LERA, we retain the high robust accuracy of 98.4% but avoid all robust inaccurate
samples by appropriately shifting the decision boundary, rendering them non-robust.

Since our models are trained to be robust only if they are accurate, we leverage robustness as
a principled abstain mechanism. This abstain mechanism then allows us to combine models in
a compositional architecture that significantly boosts overall robustness without sacrificing accuracy.
Concretely, in Figure 1, we would define a selector model that abstains on all non-robust samples.
Then, the abstained (non-robust) samples are evaluated by the standard trained model Lstd, while the
selected samples are evaluated using the robust model LERA. This allows us to achieve the best of
both models – high robust accuracy (98.4%), high natural accuracy (100%), and no robust inaccuracy.
We release our code at: https://github.com/ymerkli/robust-abstain.

2 Related Work

Several recent works investigate the robustness and accuracy tradeoff both theoretically [11, 33] and
practically. For example, Stutz et al. [28] considers a new method based on on-manifold adversarial
examples, which are more aligned with the true data distribution than the ℓp-noise models. Mueller
et al. [24] focuses on deterministic certification and proposes using compositional models to control
the robustness and accuracy tradeoff. In our work, we also use compositional models, but focus on
empirical robustness. Our selector formulation is based on a new training that minimizes robust
inaccuracy and can be used to fine-tune any existing robust model. Further, we provide individual
robustness at inference time, rather than distributional robustness considered in prior works.

Simultaneously, a growing body of work extends models with an abstain option. Existing approaches
include selection mechanisms such as selection function [5, 15, 24], softmax response [14, 29], or
explicit abstain class [21, 22]. In our work, we explore an alternative selection mechanism that uses
model robustness. The advantage of this formulation is that the selector provides strong guarantees
for each sample and never produces false-positive selections. The disadvantage is that it introduces a
significant runtime overhead, compared to many other methods that require only a single forward pass.

Finally, some recent works also consider learning on misclassified examples. For example, MMA [10]
maximizes the margins of correctly classified examples while minimizing the classification loss on
misclassified examples. MART [31] combines the standard adversarial risk with a consistency loss
that optimizes misclassified examples towards robust predictions. Note, that this formulation actively
encourages the model toward robust inaccurate predictions, while our work does the opposite – we
minimize robust inaccuracy by penalizing robust misclassified examples.
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3 Preliminaries

Let fθ :Rd →Rk be a neural network classifying inputs x∈X ⊆Rd to outputs Rk (e.g., logits or
probabilities). The hard classifier induced by the network is given as Fθ(x) = argmaxi∈Y fθ(x)i,
where fθ(x)i is the output for the i-th class and Y, |Y| = k is the finite set of discrete labels.

Natural Accuracy Given a distribution over input-label pairs D and a classifier Fθ : X → Y , an
input-label pair (x, y) is considered accurate iff the classifier Fθ predicts the correct label y for x:

Rnat(Fθ) = E(x,y)∼D 1{Fθ(x) = y}

Robust Accuracy Given an input-label pair (x, y), we say that the classifier Fθ is robust and
accurate iff it predicts the correct label y for all samples from a predefined region Bp

ε(x), such as a
ℓp-norm ball centered at x with radius ε, i.e., Bp

ε(x)
..= {x′ : ||x′ − x||p ≤ ε}. Formally:

Racc
rob(Fθ) = E(x,y)∼D 1{Fθ(x) = y} ∧ 1{∀x′ ∈ Bp

ε(x). Fθ(x
′) = Fθ(x)} (1)

Robust Inaccuracy Similarly to robust accuracy, an input-label pair (x, y) is considered robustly
inaccurate iff the classifier Fθ predicts an incorrect label Fθ(x) ̸= y and Fθ is robust towards that
misprediction for all inputs in Bp

ε(x). Formally, the robust inaccuracy is defined as:

R¬acc
rob (Fθ) = E(x,y)∼D 1{Fθ(x) ̸= y} ∧ 1{∀x′ ∈ Bp

ε(x). Fθ(x
′) = Fθ(x)} (2)

4 Reducing Robust Inaccuracy

In this section, we present our training method that extends existing robust training approaches by
also considering samples that are robust but inaccurate. We start by describing a high-level problem
statement which we then instantiate for empirical robustness.

Problem Statement Given a distribution over input-label pairs D, our goal is to find model
parameters θ such that the resulting model maximizes robust accuracy, while at the same time
minimizing robust inaccuracy. Concretely, this translates to the following optimization objective:

argmin
θ

E(x,y)∼D β · Lrob(x, y)︸ ︷︷ ︸
optimize robust accuracy

+ 1{Fθ(x) ̸= y} · L¬acc
rob (x, y)︸ ︷︷ ︸

penalize robust inaccuracy

(3)

where β ∈ R+ is a regularization term, 1{Fθ(x) ̸= y} is an indicator function denoting samples
for which the model is inaccurate, and Lrob(x, y) with L¬acc

rob (x, y) are loss functions that optimize
robust accuracy and penalize robust inaccuracy, respectively. Here, the first loss function Lrob(x, y)
is standard and can be directly instantiated using existing approaches. The main challenge comes in
defining the second loss term, as well as ensuring that the resulting formulation is easy to optimize,
e.g., by defining a smooth approximation of the non-differentiable indicator function.

Adversarial Training We instantiate the loss function from Equation 3 as follows:

LERA = β · LTRADES(fθ,(x, y)) + (1− fθ(x)y) min
x′∈Bp

ε (x)
ℓCE(fθ(x

′), argmax
c∈Y\{Fθ(x)}

fθ(x
′)c) (4)

Below, we introduce each term in more detail and discuss the motivation behind our formulation.

Lrob To instantiate Lrob, we can use any existing adversarial training method [10, 16, 31, 34]. For
example, considering TRADES [34], Lrob is instantiated as:

LTRADES
..= ℓCE(fθ(x), y) + γmaxx′∈Bp

ε (x) DKL(fθ(x), fθ(x
′)) (5)

where DKL is the Kullback-Leibler divergence [20].

1{Fθ(x) ̸= y} Next, we consider the indicator function, which encourages learning on inaccurate
samples. Since the indicator function is computationally intractable, we replace the hard qualifier
by a soft qualifier 1− fθ(x)y. The soft qualifier will be small for accurate and large for inaccurate
samples, thus providing a smooth approximation of the original indicator function.
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L¬acc
rob Third, we define the loss that penalizes robust but inaccurate samples. This can be formulated

similar to the adversarial training objective [23], however, instead of optimizing the prediction of
the adversarial example fθ(x

′) towards the correct label y, we optimize towards the most likely
adversarial label argmaxc∈Y\{Fθ(x)} fθ(x

′)c. This leads to the following formulation:

minx′∈Bp
ε (x) ℓCE(fθ(x

′), argmaxc∈Y\{Fθ(x)} fθ(x
′)c) (6)

The purpose of the L¬acc
rob is to penalize robustness by making the model non-robust. As a result, it is

sufficient to consider only a single non-robust example, thus the minimization in the loss objective.

5 Boosting Robustness without Accuracy Loss

Next, we extend the models trained so far by leveraging robustness as a principled abstain mechanism.

Abstain Model Given input space X ⊆ Rd and label space Y , a model with an abstain option [12]
is a pair of functions (Fθ, S), where Fθ : X → Y is a classifier and S : X → {0, 1} is a selector,
acting as a binary qualifier for Fθ. Let S(x) = 0 indicate that the model abstains on input x ∈ X ,
while S(x) = 1 indicates that the model commits to the classifier Fθ and predicts Fθ(x). In our case,
we consider a robustness indicator selector SRI, which abstains on all non-robust samples:

SRI(x) = 1{∀x′ ∈ B(x) : Fθ(x
′) = Fθ(x)} (7)

Robustness Guarantees: Robust Selection Similar to robust accuracy, the robustness of an abstain
model needs to be evaluated with respect to a threat model. In our work, we consider the same threat
model as for the underlying model Fθ, namely Bp

ε(x)
..= {x′ : ||x′ − x||p ≤ ε}, a ℓp-norm ball

centered at x with radius ε. Then, we define the robust selection of an abstain model as follows:
Rsel

rob(S) = E(x,y)∼D 1{∀x′ ∈ Bp
ε(x). S(x

′) = 1}
That is, we say that a model robustly selects x if the selector S would select all valid perturbations x′ ∈
Bp
ε(x). Combined with our definition of SRI, we obtain the following criterion (cf. Appendix A.3):

Rsel
rob(SRI) = E(x,y)∼D1{∀x′ ∈ Bp

2·ε(x). Fθ(x
′) = Fθ(x)}

In other words, to guarantee that the selector SRI is robust for all x′ ∈ Bp
ε(x), we in fact need to

check robustness of the model Fθ to double that region x′ ∈ Bp
2·ε(x). This is important in order to

obtain the correct guarantees and is reflected in our evaluation in Section 6.

Compositional Architectures Consider abstain model (Fθ, S) and dataset D. Selector S partitions
D into two disjoint subsets – the abstained inputs D¬s and the selected inputs Ds for which Fθ makes
a prediction. Depending on the task, making a best-effort prediction on all samples Ds ∪D¬s may be
desirable, which leads to compositional architectures, already used by prior works [24, 32].

Let H = ((Frobust, S), Fcore) be a 2-compositional architecture consisting of a selection mech-
anism S, a robustly trained model Frobust, and a core model Fcore. Given an input x ∈ X , the
selector S decides whether the model is confident on x and commits to the robust model Frobust or
whether the model should abstain and fall back to the core model Fcore. Formally:

H(x) = S(x) · Frobust(x) + (1− S(x)) · Fcore(x) (8)
While Frobust, Fcore can be chosen arbitrarily, we here combine robust trained models (which have
lower natural accuracy), with standard trained models (which have high natural accuracy but low
robustness). The performance of H then depends on the quality of the selector S.

6 Evaluation

We evaluate our approach on four different datasets, four recent state-of-the-art empirically robust
models, including selected top models from RobustBench [8]. We show the following key results:

• Fine-tuning models with our proposed loss successfully decreases robust inaccuracy and
provides a Pareto front of models with different robustness tradeoffs.

• Our 2-compositional models significantly improve robustness by up to +61% and slightly
increase the natural accuracy by up to +0.2% (for B∞

1/255 and B∞
2/255).

We perform all experiments on a single GeForce RTX 3090 GPU and use PyTorch [25] for our
implementation. The hyperparameters used for our experiments are provided in Appendix A.2.
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Figure 2: Robust accuracy (Racc
rob) and robust inaccuracy (R¬acc

rob ) of existing robust models ( , , ,
), and models fine-tuned with our loss ( , ). Our approach consistently reduces robust inaccuracy

across various datasets, existing models and different regularization levels β.

Models Our proposed training method requires neither retraining from scratch nor modifications to
existing classifiers, thus our approach can be applied to fine-tune a wide range of existing models1. To
demonstrate this, we use existing robust pre-trained models from Carmon et al. [4], Gowal et al. [18],
Rebuffi et al. [27], and Zhang et al. [34], which were all trained for ε∞= 8/255, and all but the last
model are top models in RobustBench [8]. In our evaluation, we fine-tune each model for 50 epochs
for the considered threat model (ε∞ ∈ {1/255, 2/255, 4/255}), using LTRADES [34] and LERA (ours).
Further, we also consider models by Ding et al. [10] and Wang et al. [31] as additional baselines.

Datasets We evaluate our approach on two academic datasets – CIFAR-10 and CIFAR-100 [19],
and two commercial datasets – Mapillary Traffic Sign Dataset (MTSD) [13] and a Rail Defect Dataset
kindly provided by Swiss Federal Railways (SBB). Consider Appendix A.1 for full details.

When training on the CIFAR-10 and CIFAR-100 datasets, we use the AutoAugment (AA) policy by
Cubuk et al. [9] as the image augmentation. For the MTSD and SBB datasets, we use standard image
augmentations (SA) consisting of random cropping, color jitter, and random translation and rotation.
For completeness, our evaluation also includes models trained without any data augmentations.

Metrics We use the natural accuracy, robust accuracy, and robust inaccuracy as our main evaluation
metrics, as defined in Section 3, but evaluated on the corresponding test dataset. Further, for a fair
evaluation, we use 10-step PGD [23] attack during training and strong 40-step APGDCE [7] for testing.

6.1 Reducing Robust Inaccuracy

We first summarize the main results obtained by using our proposed loss function LERA. The results
in Figure 2 show the robust accuracy (Racc

rob) and robust inaccuracy (R¬acc
rob ) of different existing

robust models fine-tuned via TRADES [34] with ( ) and without ( ) data augmentations, and the
same models fine-tuned via our LERA with ( ) and without ( ) data augmentations. Further, we
also show MART [31] ( ), and MMA [10] ( ) finetuned models as an additional baseline. We can see
that our approach improves over the existing models across all datasets. For example, for CIFAR-10
and B∞

2/255, the Carmon et al. [4] model achieves 86.5% robust accuracy, but also 1.34% robust
inaccuracy. In contrast, using our LERA, we can obtain a number of models that reduce robust
inaccuracy to 0.29%, while still achieving robustness of 83.8%. Similar results are obtained for
other models, perturbation regions, and datasets (cf. Appendix A.7). We observe that our approach
achieves consistently lower robust inaccuracy compared to adversarial training. Further, by varying
the regularization term β, we obtain a Pareto front of optimal solutions.

6.2 Boosting Robustness without Accuracy Loss

Next, we present our results on using robustness as an abstain mechanism (Section 5) and combining
LERA trained models with state-of-the-art standard trained models in a compositional architecture
(Section 5). Note that, as discussed in Section 5, when evaluating robustness for Bp

ε , we in fact need
to consider Bp

2·ε robustness of the abstain model. We compare the following abstain mechanisms:

1Our method can also be used to train from scratch, in which case a scheduler for β should be introduced.
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Figure 3: 2-compositional natural (Rnat) and robust accuracy (Racc
rob) for ERARI ( , ), TRADESRI ( ,

), MARTRI ( ), MMARI ( ), ACE-COLTSN, ACE-IBPSN ( , ), and TRADESSR ( , ) models. The core
models used in the compositional architectures are listed in Appendix A.9. We can see that the Pareto
front of our method strictly improves over the prior work in the most important region – significantly
improving model robustness while the model accuracy does not decrease.

Softmax Response (SR) [14], which abstains if the maximum softmax output of the model fθ is below
a threshold τ for some input x′ ∈ Bp

ε(x), that is:
SSR(x) = 1{∀x′ ∈ Bp

ε(x) : maxc∈Y fθ(x
′)c ≥ τ} (9)

Similar to SRI, to guarantee robustness of SSR, we need to check the maximum softmax output of
fθ on double the region Bp

2·ε(x). To evaluate robustness of SSR, we use a modified version of APGD
called APGDconf (Appendix A.5). For each considered model (e.g., Carmon et al. [4]), we evaluate
its corresponding abstain selector: ( , ) CARMONSR, GOWALSR, etc. (all fine-tuned using TRADES).

Robustness Indicator (RI) (our work), which abstains if the model Fθ is non-robust:
SRI(x) = 1{∀x′ ∈ Bp

ε(x) : Fθ(x
′) = Fθ(x)} (10)

Note that, unlike other selectors, our robustness indicator is by design robust against an adversary
using the same threat model. For each base model, we consider two instantiations ( , ) TRADESRI,
and ( , ) ERARI (Equation 4). Further, for CIFAR-10, we also instantiate models from [10, 31] with
robustness indicator abstain: MARTRI ( ), and MMARI ( ).

Selection Network (SN), which trains a separate neural network sθ : X → R and selects if:
SSN(x) = 1{sθ(x) ≥ τ} (11)

When evaluating the robustness of an abstain model (Fθ, SSN), the robustness of both the classifier
and the selection network have to be considered. We compare against two instantiations of this
approach, both trained using certified training: ( ) ACE-COLTSN [2, 24], and ( ) ACE-IBPSN [17, 24].

A summary of the results is shown in Figure 3. Observe that the 2-compositional architectures that
use models trained by our method ( , ) improve over existing methods that optimize robust accuracy
( , , , ), as well as over models using softmax response ( , ) or selection network ( , ) to
abstain. For example, for CIFAR-10 with ε∞= 1/255 and the Carmon et al. [4] model, we improve
natural accuracy by +0.58% and +0.62%, while decreasing the robustness only by -2.75% and -2.82%,
when training with and without data augmentations respectively.

More importantly, our approach significantly improves robustness of highly accurate non-
compositional models, with minimal loss of accuracy, which we have summarized in Table 2.
We provide full results, including additional models and perturbation bounds in Appendix A.8, and
an evaluation of the considered highly accurate non-compositional models in Appendix A.9.

Table 2: Improvement of applying our approach to models trained to optimize natural accuracy only.
Here, Racc

rob denotes the robust accuracy and Rnat denotes the standard (non-adversarial) accuracy.

CIFAR-10 CIFAR-100 MTSD SBB
Zhao et al. [36], B∞

1/255 (WideResNet-28-10), B∞
2/255 (ResNet-50), B∞

2/255 (ResNet-50), B∞
2/255

Racc
rob 26.2

+61.6%−−−−−−→ 87.8 3.1
+38.8%−−−−−−→ 41.9 40.7

+29.2%−−−−−−→ 69.9 44.7
+37.7%−−−−−−→ 82.4

Rnat 97.8
+0.2%−−−−−→ 98.0 80.17

+0.01%−−−−−−→ 80.18 93.8
+0.2%−−−−−→ 94.0 91.4

−0.1%−−−−−→ 91.3
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7 Conclusion

In this work, we address the robustness vs accuracy tradeoff by avoiding robust inaccuracy and
leveraging model robustness as an abstain mechanism. We present a new training method that
jointly minimizes robust inaccuracy and maximizes robust accuracy, and that can be instantiated
using various existing robust training methods. We show the practical benefits of our approach by
leveraging compositional architectures to improve robustness without sacrificing accuracy.

However, there are also limitations and extensions to consider in the future. First, while there are
cases where our training improves robust accuracy and reduces robust inaccuracy, it does typically
result in a trade-off between the two. An interesting future work is exploring this trade-off further and
developing new techniques to mitigate it. Second, given that we compute a Pareto front of optimal
solutions, another extension is to consider model cascades that consist of different models along
this Pareto front, and progressively fall back to models with higher robust accuracy but also higher
robust inaccuracy. Third, we observed that the training becomes much harder as robust inaccuracy
approaches zero (i.e., the best case). This is because these remaining robust inaccurate examples are
the hardest to fix, and because there are only a few. In our work, we explored using data augmentation
to address this issue, but more work is needed to make the training efficient in such a low data regime.
Finally, we only consider empirical robustness in our work. Thus, a natural extension is instantiating
our problem statement from Equation 3 for deterministic or probabilistic certified robustness.
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A Appendix

A.1 Datasets

We ran our evaluations on four different datasets, namely on CIFAR-10 and CIFAR-100 [19], the
Mapillary Traffic Sign Dataset (MTSD) [13], and a rail defect dataset provided by Swiss Federal
Railways (SBB). Additionally, we used a synthetic dataset consisting of two-dimensional data points.
In the following, we explain the necessary preprocessing steps to create the publicly available MTSD
dataset.

Mapillary Traffic Sign Dataset (MTSD) The Mapillary traffic sign dataset [13] is a large-scale
vision dataset that includes 52’000 fully annotated street-level images from all around the world. The
dataset covers 400 known and other unknown traffic signs, resulting in over 255’000 traffic signs
in total. Each street-level image is manually annotated and includes ground truth bounding boxes
that locate each traffic sign in the image, as shown in Figure 4a. Further, each ground truth traffic
sign annotation includes additional attributes such as ambiguousness or occlusion. Since the focus of
this work is on classification, we convert the base MTSD dataset to a classification dataset (described
below) by cropping to each ground truth bounding box. We show samples from the resulting cropped
MTSD dataset in Figure 4b.

(a) Base Mapillary Traffic Sign Dataset (MTSD). The ground truth bounding boxes are visualized in green.
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(b) Preprocessed Mapillary Traffic Sign Dataset (MTSD).

Figure 4: Illustration of Mapillary Traffic Sign Dataset (MTSD) samples. The base dataset consists of
street-level images that include annotated ground truth bounding boxes locating the traffic signs (a).
We convert the dataset to a classification task by cropping to the ground truth bounding boxes (b).

We convert the MTSD objection detection dataset into a classification dataset as follows:

1. Ignore all bounding boxes that are annotated as occluded (sign partly occluded), out-of-
frame (sign cut off by image border), exterior (sign includes other signs), ambiguous (sign
is not classifiable at all), included (sign is part of another bigger sign), dummy (looks like
a sign but is not) [13]. Further, we ignore signs of class other-sign, since this is a general
class that includes any traffic sign with a label not within the MTSD taxonomy.

2. Crop to all remaining bounding boxes and produce a labeled image classification dataset.
Cropping is done with slack, i.e. we crop to a randomly upsized version of the original bound-
ing box. Given a bounding box BB = ([xmin, xmax], [ymin, ymax]), the corresponding
upsized bounding box is given as

UBB =
(
[xmin − λαx(xmax − xmin), xmax + λ(1− αx)(xmax − xmin)],

[ymin − λαy(ymax − ymin), ymax + λ(1− αy)(ymax − ymin)]
) (12)

where αx, αy ∼ U[0,1]
2 and λ is the slack parameter, which we set to λ = 1.0.

3. Resize cropped traffic signs to (64, 64).
2U[a,b] is the uniform distribution over the interval [a, b].
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Rail Defect Dataset (SBB) The rail defect dataset (SBB) is a proprietary vision dataset collected
and annotated by Swiss Federal Railways. It includes images of rails, each of which is annotated
with ground truth bounding boxes for various types of rail defects. We note that all the models
used in our work for this dataset are trained by the authors and not provided by SBB. In fact, for
our work, we even consider a different type of task – classification instead of the original object
detection. As a consequence, the accuracy and robustness results presented in our work are by no
means representative of the actual models used by SBB.

A.2 Hyperparameters

TRADES We use LTRADES [34] to both train models from scratch and fine-tune existing models.
When training models from scratch, we train for 100 epochs using LTRADES, with an initial learning
rate 1e-1, which we reduce to 1e-2 and 1e-3, once 75% and 90% of the total epochs are completed.
When fine-tuning models, we train for 50 epochs using LTRADES, with an initial learning rate 1e-3,
which we reduce to 1e-4 once 75% of the total epochs are completed. We use batch size 200,
use 10-step PGD [23] to generate adversarial examples during training, and set the β parameter in
LTRADES to βTRADES = 6.0.

Robustness Abstain Training We fine-tune for 50 epochs using LERA (Equation 4), with an initial
learning rate 1e-3, which we reduce to 1e-4 once 75% of the total epochs are completed. We use
batch size 200, use 10-step PGD [23] to generate adversarial examples during training, and set
βTRADES = 6.0 for the loss term Lrob = LTRADES.

MMA We use MMA [10] as an additional baseline to compare our models against. In our evaluations,
we use the dmax = 12/255 trained WideResNet-28-10 published by [10], and fine-tune it using MMA
with dmax = 4/255 for 50 epochs. We decided to fine-tune with dmax = 4/255, since we typically
evaluate smaller perturbation regions (ε∞ ∈ {1/255, 2/255, 4/255}), and since Ding et al. [10] claim
that dmax should usually be set larger than ε∞ in standard adversarial training. We fine-tune for 50
epochs, using the same hyperparameters as Ding et al. [10], and without using data augmentations.

MART We use MART [31] as an additional baseline to compare our models against. In our eval-
uations, we use the ε∞ = 8/255 trained WideResNet-28-10 (trained with 500K unlabeled data)
published by Wang et al. [31], and fine-tune it using MART for the respective smaller perturbation
region (ε∞ ∈ {1/255, 2/255, 4/255}). We fine-tune for 50 epochs, using the same hyperparameters as
Wang et al. [31], and without using data augmentations.

Synthetic Dataset In Figure 1, we illustrate the effect of our training on a synthetic three-class
dataset, where each class follows a Gaussian distribution. We then use a simple four-layer neural
network with 64 neurons per layer, and train it on N = 1000 synthetic samples, using Lstd, LTRADES
[34], and LERA (Equation 4). For each loss variant, we train for 20 epochs, use a fixed learning rate
1e-1, and batch size 10. For LTRADES and LERA, we use 10-step PGD [23] to generate adversarial
examples during training, and set βTRADES = 6.0.
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Table 3: Robust accuracy (Racc
rob) and robust inaccuracy (R¬acc

rob ) of the B∞
2/255 LERA (β = 1.0)

finetuned Gowal et al. [18] model, evaluated using both 40-step APGD [7] and AutoAttack [7].

B∞
1/255 B∞

2/255 B∞
4/255 B∞

8/255

Racc
rob R¬acc

rob Racc
rob R¬acc

rob Racc
rob R¬acc

rob Racc
rob R¬acc

rob

40-step APGD 92.93 1.01 86.45 0.33 64.09 0.06 17.20 0.0
AutoAttack 92.93 1.01 86.45 0.33 63.87 0.06 16.67 0.0

A.3 Robustness Guarantees for Robust Selection

Recall from Section 5 that, given an abstain model (Fθ, S) and a threat model Bp
ε(x)

..= {x′ : ||x′ −
x||p ≤ ε}, (Fθ, S) is robustly selecting an input x if the selector S selects all valid perturbations
x′ ∈ Bp

ε(x):
Rsel

rob(S) = E(x,y)∼D 1{∀x′ ∈ Bp
ε(x). S(x

′) = 1}

Further, recall that when evaluating the robustness of an empirical robustness indicator selector SRI

(Equation 7), we in fact need to check robustness of the model Fθ to double the perturbation region
x′ ∈ Bp

2·ε(x), which can be see from the following derivation:

Rsel
rob(SRI) = E(x,y)∼D 1{∀x′ ∈ Bp

ε(x). SRI(x
′) = 1}

= E(x,y)∼D 1{∀x′ ∈ Bp
ε(x). 1{∀x′′ ∈ Bp

ε(x
′). Fθ(x

′′) = Fθ(x
′)}}

= E(x,y)∼D 1{∀x′ ∈ Bp
2·ε(x). Fθ(x

′) = Fθ(x)}

A.4 Comparing APGD and AutoAttack Robustness

Recall from Section 6 that we use 40-step APGDCE [7] (referred to as APGD) to evaluate the empirical
robustness of classifiers Fθ. APGD is one of the adversarial attacks that constitute AutoAttack
[7], which is an ensemble of adversarial attacks. Concretely, AutoAttack consists of APGDCE [7],
APGDT

DLR [7], FABT [6], and SquareAttack [1].

In the following, we conduct an ablation study over 40-step APGD and AutoAttack by comparing
the robustness of an LERA trained model. Concretely, we consider the Gowal et al. [18] WideResNet-
28-10 model, which was finetuned for B∞

2/255 using our LERA loss (with β = 1.0) on CIFAR-10(cf.
Section 6.1). We then evaluate its robust accuracy Racc

rob and robust inaccuracy R¬acc
rob for the threat

models ε∞ ∈ {1/255, 2/255, 4/255, 8/255}, using both 40-step APGD and AutoAttack, and show the
results in Table 3. Observe that for small perturbation regions ε∞ ∈ {1/255, 2/255}, the robust
accuracy and robust inaccuracy are equivalent for 40-step APGD and AutoAttack, whereas for larger
perturbation regions ε∞ ∈ {4/255, 8/255}, AutoAttack robust accuracy is marginally lower than
40-step APGD robust accuracy.

A.5 Comparing Adversaries for Softmax Response (SR)

Recall from Section 6.2 that we evaluated the robustness of softmax response (SR) abstain models
using APGDconf, which is a modified version of APGD [7] using the alternative adversarial attack
objective by [29]. This modified objective optimizes for an adversarial example x′ that maximizes
the confidence in any label c ̸= Fθ(x), instead of minimizing the confidence in the predicted label:

x′ = argmax
x̂∈Bp

ε (x)

max
c̸=Fθ(x)

fθ(x̂)c (13)

The resulting adversarial attack finds high confidence adversarial examples, and thus represents an
effective attack against a softmax response selector SSR.

In the following, we conduct an ablation study over APGD and APGDconf by evaluating the robust
selection Rsel

rob and robust accuracy Racc
rob of an SR abstain model (Fθ, SSR) using both APGD and

APGDconf. We use the adversarially trained WideResNet-28-10 model by Carmon et al. [4] (taken
from RobustBench [8]), trained on CIFAR-10 for ε∞ = 8/255 perturbations. We then evaluate the
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Figure 5: Robust selection (Rsel
rob) and robust accuracy (Racc

rob) for CIFAR-10 softmax response (SR)
abstain models (F, SSR), for varying threshold τ ∈ [0, 1) and using the WideResNet-28-10 classifier
F by [4]. Each SR abstain model is evaluated via APGD [7] and APGDconf (Equation 13).

Table 4: Robust selection (Rsel
rob) and robust accuracy (Racc

rob) of empirical robustness indicator abstain
models (F, SRI), trained using LERA (Equation 4) and LDGA (Equation 14).

CIFAR-10 B∞
1/255 B∞

2/255

Pre-trained Model Finetuning Rsel
rob Racc

rob Rsel
rob Racc

rob

Zhang et al. [34]
(ResNet-50)

LERA 86.31 96.63 78.24 97.33
LDGA 84.98 94.92 75.73 96.22

LERA +AA 83.44 97.47 74.63 98.31
LDGA +AA 80.72 96.56 73.59 97.88

classifier as an SR abstain model (Fθ, SSR) with varying threshold τ ∈ [0, 1), and report the robust
selection and robust accuracy for varying ℓ∞ perturbations in Figure 5. Observe that for small
perturbations such as ε∞ = 1/255, APGD and APGDconf are mostly equivalent concerning robust
selection and robust accuracy. However, for larger perturbations such as ε∞=4/255, the SR abstain
model is significantly less robust to APGDconf than to standard APGD, showing the importance of
choosing a suitable adversarial attack. High confidence adversarial examples are generally more
likely to be found for larger perturbations, thus an SR selector is significantly less robust to APGDconf
than to APGD for larger perturbations.

A.6 Loss Function Ablation Study

Additionally to the LERA loss from Equation 4, we consider an alternative loss formulation for
training an empirical robustness indicator abstain model. The formulation is based on the Deep
Gamblers loss [22], which considers an abstain model (Fθ, S) with an explicit abstain class a as
a selection mechanism. Since we consider robustness indicator selection, we replace the output
probability of the abstain class fθ(x)a with the output probability of the most likely adversarial
label. This corresponds to the probability of a sample being non-robust and thus the probability of
abstaining under a robustness indicator selector. Similar to LERA, we also add the TRADES loss [34]
to optimize robust accuracy. The resulting loss is then defined as:

LDGA(fθ, (x, y)) = β · LTRADES(fθ, (x, y))− log
(
fθ(x)y +maxc∈Y\{Fθ(x)} fθ(x

′)c
)

(14)

We conduct an ablation study over the two loss functions, LERA and LDGA, for CIFAR-10 and a
ε∞ = 8/255 TRADES [34] trained ResNet-50 model. We fine-tune the model for ℓ∞ perturbations
of radii 1/255 and 2/255, using both LERA and LDGA, training for 50 epochs each and setting the
regularization parameter β = 1.0. For each loss variant, we train the base model once without data
augmentations and once using the AutoAugment (AA) policy [9].

We show the robust accuracy and the robust selection of the resulting robustness indicator abstain
models in Table 4. Observe that for all experiments, LERA trained models achieve consistently
higher robust accuracy and higher robust selection, compared to LDGA trained models. For instance,
when training for ε∞ = 1/255 perturbations without data augmentations, LERA achieves +1.71%
higher robust accuracy and +1.33% higher robust selection, compared to LDGA. Similarly, when
training with AutoAugment, LERA achieves +0.91% higher robust accuracy and +2.72% higher
robust selection. Similar results hold for ε∞=2/255 perturbations.
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Figure 6: Robust accuracy (Racc
rob) and robust inaccuracy (R¬acc

rob ) of existing robust models ( , )
fine-tuned with our proposed loss ( , ). Further, we also show models finetuned via MART [31] ( )
and MMA [10] ( ). Our approach consistently reduces the number of robust inaccurate samples across
various datasets, existing models and at different regularization levels β.

A.7 Additional Experiments on Reducing Robust Inaccuracy

In this section, we present additional experiments on reducing robust inaccuracy.

Similar to the results in Figure 2, we show the robust accuracy (Racc
rob) and robust inaccuracy (R¬acc

rob )
of different existing models fine-tuned with ( ) and without ( ) data augmentations, in Figure 6. At
the same time, Figure 6 also shows the same models fine-tuned with our proposed loss with ( ) and
without ( ) data augmentations. We again observe that our approach achieves consistently lower
robust robust inaccuracy, compared to existing robust models. For example, on CIFAR-10 and for
B∞
1/255, the model from [4] achieves 91.7% robust accuracy but also 1.8% robust inaccuracy. Using

our loss LERA and varying the regularization term β, we can obtain a number of models that reduce
robust inaccuracy to 0.14% while still achieving robust accuracy of 75.8%.

A.8 Additional Experiments on Boosting Robustness without Accuracy Loss

In this section, we present additional results on combining abstain models with state-of-the-art models
trained to achieve high natural accuracy.

Equivalent to Section 6.2, we put the abstain models trained so far in 2-composition (Section 5)
with the standard trained core models discussed in Appendix A.9. We show the natural (Rnat) and
adversarial accuracy (Racc

rob) of the resulting 2-compositional architectures in Figure 7.

We again observe that 2-compositional architectures using models trained by our method ( , )
improve over existing methods that solely optimize for robust accuracy ( , ). Further, our method
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Figure 7: Natural (Rnat) and robust accuracy (Racc
rob) for 2-compositional ERARI models ( , ), and

2-compositional TRADESRI ( , ), MARTRI ( ), and MMARI ( ) models. Further, we also consider
2-compositional ACE-COLTSN, ACE-IBPSN ( , ), and 2-compositional TRADESSR ( , ) models. The
core models used in the compositional architectures are listed in Appendix A.9.
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mostly improves both the natural and robust accuracy, compared to 2-compositional architectures
using softmax response ( , ) or selection network ( , ) to abstain. For example, on SBB and the
Zhang et al. [34] model at ε∞ = 1/255, our approach ( ) improves natural accuracy by +0.68%, while
decreasing the robust accuracy by only -1.54%.

Further, we show that 2-compositional architectures using models trained by our method achieve
significantly higher robustness and mostly equivalent overall accuracy, compared to state-of-the-
art non-compositional models trained for high natural accuracy. In Table 5, we show the natural
(Rnat) and adversarial accuracy (Racc

rob) of our 2-compositional models and illustrate the accuracy
improvement over the standard trained models discussed in Appendix A.9. For instance, consider
CIFAR-10 at ε∞ = 2/255 and the 2-compositional architecture using the Gowal et al. [18] model as
robust model Frobust. Our model improves the robust accuracy by +75.3% and the natural accuracy
by +0.1%, compared to the standard trained model by Zhao et al. [36]. Similar results hold for other
models, datasets, and perturbation regions.

Table 5: Improvements of 2-compositional architectures using models Frobust trained with our
method over non-compositional models trained to optimize natural accuracy only (Appendix A.9).

CIFAR-10 CIFAR-100 MTSD SBB

Fcore Zhao et al. [36] (WideResNet-28-10) (ResNet-50) (ResNet-50)
Frobust Carmon et al. Gowal et al. Rebuffi et al. Zhang et al. Zhang et al.

B∞
1/255

Racc
rob 86.5 (+60.3%) 87.8 (+61.6%) 44.0 (+24.1%) 84.5 (+9.8%) 88.4 (+12.7%)

Rnat 97.6 (-0.2%) 98.0 (+0.2%) 80.5 (+0.3%) 94.1 (+0.3%) 92.3 (+0.9%)

B∞
2/255

Racc
rob 73.4 (+70.5%) 78.2 (+75.3%) 41.9 (+38.8%) 69.9 (+29.2%) 82.4 (+37.7%)

Rnat 97.8 (+0.0%) 97.9 (+0.1%) 80.18 (+0.01%) 94.0 (+0.2%) 91.3 (-0.1%)

A.9 Core Models

Recall from Section 5 that an abstain model (F, S) can be enhanced by a core model Fcore, which
makes a prediction on all abstained samples, resulting in 2-compositional architectures. In Section 6.2,
we presented an evaluation of 2-compositional architectures, where we used state-of-the-art standard
trained models as core models. In Table 6, we show the natural and adversarial accuracy of core
models used in Section 6.2, for varying ℓ∞ perturbation regions, where we use 40-step APGD [7] to
evaluate robustness.

Table 6: Natural (Rnat) and adversarial accuracy (Racc
rob) of standard trained core models, used in

2-compositional architectures in Section 6.2 and Appendix A.8.

Dataset Model Fcore Rnat [%] Racc
rob [%]

B∞
1/255 B∞

2/255 B∞
4/255

CIFAR-10 Zhao et al. [36] (WideResNet-40-10) 97.81 26.18 2.92 0.06
CIFAR-100 (WideResNet-28-10) 80.17 19.9 3.06 0.15
MTSD (ResNet-50) 93.79 74.66 40.71 7.51
SBB (ResNet-50) 91.37 75.65 44.69 8.76

A.10 Robustness/Accuracy Dataset Splits

Consider a robustness indicator abstain model (Fθ, SRI) and a labeled dataset D = {(xi, yi)
N
i=1} on

which we evaluate the classifier Fθ : X → Y . Based on the robustness and accuracy of the classifier
Fθ, we can partition D into four disjoint subsets D = {Dr∧a

Fθ
, D¬r∧a

Fθ
, Dr∧¬a

Fθ
, D¬r∧¬a

Fθ
}, where:

Dr∧a
Fθ

= {(x, y) ∈ D : ∀x′ ∈ Bp
ε(x). Fθ(x

′) = Fθ(x) ∧ Fθ(x) = y}
Dr∧¬a

Fθ
= {(x, y) ∈ D : ∀x′ ∈ Bp

ε(x). Fθ(x
′) = Fθ(x) ∧ Fθ(x) ̸= y}

D¬r∧a
Fθ

= {(x, y) ∈ D : ∃x′ ∈ Bp
ε(x). Fθ(x

′) ̸= Fθ(x) ∧ Fθ(x) = y}
D¬r∧¬a

Fθ
= {(x, y) ∈ D : ∃x′ ∈ Bp

ε(x). Fθ(x
′) ̸= Fθ(x) ∧ Fθ(x) ̸= y}
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We illustrate this dataset partitioning on the CIFAR-10 [19] dataset. We consider a TRADES [35]
trained ResNet-50 and the WideResNet-28-10 models by Carmon et al. [4], Gowal et al. [18] (taken
from Robustbench [8]), where each model is adversarially pretrained for ε∞= 8/255 and then fine-
tuned via TRADES to the respective ℓ∞ threat model illustrated Table 7. Further, we also consider a
standard trained ResNet-50. We then evaluate the robustness and accuracy of each model using 40-
step APGD [7]. Considering Table 7, note that standard adversarial training methods do not necessarily
eliminate the occurrence of robust inaccurate samples (x, y) ∈ Dr∧¬a

Fθ
, and that the robust inaccuracy

generally increases for smaller perturbation regions. Further, we note that while standard trained
models have low robust inaccuracy, they also have low overall robustness, resulting in low overall
robust accuracy.

Further, we also illustrate the robustness-accuracy dataset partitioning on CIFAR-100 [19]. We
consider a standard trained WideResNet-28-10 and the adversarially trained WideResNet-28-10 by
Rebuffi et al. [27]. Again, the model by Rebuffi et al. [27] was pretrained for ε∞=8/255 perturbations
and then TRADES fine-tuned for the respective threat model indicated in Table 8. We again evaluate
the robustness-accuracy dataset partitioning for varying ℓ∞ perturbations using 40-step APGD [7], and
list the exact size of each data split in Table 8.

Notably, we observe that on the model by Rebuffi et al. [27], 15.24% of all test samples are robust but
inaccurate for ε∞=1/255 perturbations, which is a significantly larger fraction compared to similar
models on CIFAR-10.

Table 7: CIFAR-10 robustness-accuracy dataset partitioning. We consider a TRADES [34] trained
ResNet-50, adversarially trained WideResNet-28-10 models [4, 18], and a standard trained ResNet-
50. Adversarially trained models are trained for the respective perturbation region. Each model is
evaluated for the indicated ℓ∞ threat model, using 40-step APGD [7].

Threat
Model Data Split

Relative Split Size [%]

Zhang et al.
(ResNet-50)

Carmon et al.
(WRN-28-10)

Gowal et al.
(WRN-28-10)

Lstd

(ResNet-50)

B∞
1/255

|D¬r∧¬a
Fθ

| 5.17 3.33 2.85 6.97
|Dr∧¬a

Fθ
| 4.64 3.61 2.88 0.0

|D¬r∧a
Fθ

| 6.18 3.32 3.87 74.89
|Dr∧a

Fθ
| 84.01 89.74 90.40 18.14

B∞
2/255

|D¬r∧¬a
Fθ

| 7.94 7.38 4.86 6.97
|Dr∧¬a

Fθ
| 4.13 2.40 2.25 0.0

|D¬r∧a
Fθ

| 10.38 3.20 6.74 91.80
|Dr∧a

Fθ
| 77.55 87.02 86.15 1.23

B∞
4/255

|D¬r∧¬a
Fθ

| 13.42 8.23 6.64 6.97
|Dr∧¬a

Fθ
| 3.31 1.05 0.87 0.0

|D¬r∧a
Fθ

| 17.19 16.87 15.96 93.03
|Dr∧a

Fθ
| 66.08 73.85 76.53 0.0

B∞
8/255

|D¬r∧¬a
Fθ

| 18.17 9.55 9.21 6.97
|Dr∧¬a

Fθ
| 2.64 0.76 1.31 0.0

|D¬r∧a
Fθ

| 29.79 27.82 23.78 93.03
|Dr∧a

Fθ
| 49.40 61.87 65.70 0.0
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Table 8: CIFAR-100 robustness-accuracy dataset partitioning. We consider a standard trained
WideResNet-28-10 and the adversarially trained WideResNet-28-10 by Rebuffi et al. [27], trained
for the respective perturbation region considered in each evaluation. Each model is evaluated for the
indicated ℓ∞ threat model, using 40-step APGD [7].

Threat
Model Data Split

Relative Split Size [%]

Rebuffi et al.
(WRN-28-10)

Lstd

(WRN-28-10)

B∞
1/255

|D¬r∧¬a
Fθ

| 15.20 19.80
|Dr∧¬a

Fθ
| 15.24 0.03

|D¬r∧a
Fθ

| 7.75 60.27
|Dr∧a

Fθ
| 61.81 19.9

B∞
2/255

|D¬r∧¬a
Fθ

| 32.75 19.82
|Dr∧¬a

Fθ
| 8.71 0.01

|D¬r∧a
Fθ

| 5.11 77.11
|Dr∧a

Fθ
| 53.43 3.06

B∞
4/255

|D¬r∧¬a
Fθ

| 30.57 19.83
|Dr∧¬a

Fθ
| 4.34 0.0

|D¬r∧a
Fθ

| 23.16 80.02
|Dr∧a

Fθ
| 41.93 0.15

B∞
8/255

|D¬r∧¬a
Fθ

| 33.70 19.83
|Dr∧¬a

Fθ
| 3.91 0.0

|D¬r∧a
Fθ

| 26.66 80.17
|Dr∧a

Fθ
| 35.73 0.0
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