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Abstract

We propose a novel approach for distilling visual knowl-
edge from a large-scale pre-trained segmentation model,
namely, the Segment Anything Model (SAM). Our goal is to
pre-train the Agglomerator, a recently introduced column-
style network architecture inspired by the organization of
neurons in the Neocortex, to learn part-whole hierarchies
in images. Despite its biological plausibility, we find that
the original pre-training strategy of the Agglomerator, us-
ing supervised contrastive loss, fails to work effectively with
natural images. To address this, we introduce a new pre-
training strategy that aims to instill the model with prior
knowledge of the compositional nature of our world. Our
approach involves dividing the input image into patches
and using the center point of each patch to generate seg-
mentation masks through SAM. SAM produces three results
per point to handle ambiguity at the whole, part, and sub-
part levels. We then train a simple encoder to utilize the
intermediate feature maps of the Agglomerator and recon-
struct the embeddings of the masks. This forces the net-
work’s intermediate features to learn objects and their con-
stituent parts. By employing our pre-training strategy, we
significantly enhance the classification performance on Im-
agenette, achieving an accuracy improvement from 58.6%
to 91.2% without relying on any augmentation. Remark-
ably, we achieve this with a minimal parameter count of
only 3.2 million, which is approximately 54 times smaller
than the originally proposed Agglomerator. These results
demonstrate both exceptional data and resource efficiency.
Our code is available at: https://github.com/
AhmedMostafaSoliman/distill-part-whole

1. Introduction

In recent years, deep neural architectures have made sig-
nificant advancements in various AI tasks, notably with
convolutional neural networks (CNNs) [18] and more re-

Figure 1. The image is divided into a grid of p × p patches. By
using the central points of each patch as prompts, SAM gener-
ates multiple masks for each point, effectively resolving ambi-
guity. The figure illustrates this process by showcasing the three
segmentation masks obtained when prompting SAM with a point
within the boy’s hat. These masks correspond to different levels of
granularity: one representing the entire object (the boy), another
depicting a part of the object (the complete face with the hat), and
finally, a subpart (the boy’s hat).

cently, architectures based on the vision transformer [5].
These architectures have achieved state-of-the-art results in
many computer vision tasks. However, critics of deep learn-
ing argue that it struggles to handle compositional hierar-
chies effectively. CNNs, in particular, have been criticized
for their limitations in capturing spatial relationships be-
tween identified patterns. For instance, if different parts of
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a face image are swapped, a CNN may still identify it as a
face since it focuses on static patterns rather than encoding
explicit spatial relationships.

On the other hand, transformer-based architectures offer
greater flexibility and fewer biases due to their self-attention
mechanism. This mechanism allows any part of the input to
attend to any other part, enabling the model to learn pat-
terns more effectively from the data. However, this flexi-
bility comes at the cost of increased data requirements and
computational resources needed for training. Additionally,
recent research [25] suggests that current state-of-the-art vi-
sion models struggle to generalize well to completely out-
of-domain examples, highlighting the need for further in-
vestigation into the nature of human vision, which excels at
domain generalization.

Furthermore, interpretability is a significant concern
with these models. Using a model as a black box without
understanding how it makes decisions can be problematic in
various scenarios. The lack of interpretability raises ques-
tions about trust, accountability, and ethical implications.
Therefore, it is crucial to explore approaches that address
these challenges, aiming for models that better handle com-
positional hierarchies, generalize across domains, and pro-
vide interpretability.

Compelling evidence from cognitive science suggests
that the human visual cortex processes scenes by hierarchi-
cally analyzing them into objects and their constituent parts.
These hierarchical relationships involve transformations be-
tween intrinsic coordinate frames of reference, connecting
the viewpoints of the parts and wholes [11].

In their work [7], the authors propose an arrangement of
neurons in the Neocortical regions, organized into columns
and layers, that facilitates the learning of the structure of the
world. The core concept is that each column specializes in
processing a specific portion of the sensory input array, such
as input from the retina. A column comprises multiple lev-
els, enabling it to capture information about a particular lo-
cation across multiple hierarchical levels. To illustrate this
concept in the context of visual inputs, let’s consider a col-
umn responsible for processing a small part of the sensory
input from the retina, specifically representing a portion of
a dog’s eyes. At the lowest level of the column, it would
encode features specific to that part of the eye. At the next
level, it would represent features of the entire eye, and at the
highest level, it would capture features of the entire dog.

In [12], Hinton presents a design document outlining a
neural network architecture that captures the concept of the
part-whole hierarchy. This proposal aligns closely with the
ideas expressed by Hawkins in [7]. Hinton’s motivation
stems from various biological and mathematical analogies,
as well as the success of recent ideas such as neural fields,
the transformer, and contrastive learning. The resulting de-
sign document, referred to as GLOM, provides a compre-

hensive framework combining these influences. However,
this paper didn’t provide a fully implemented system but
rather laid the groundwork for researchers to pursue more
human-like vision systems based on these principles.

A realization of GLOM called Agglomerator [6] was de-
veloped and demonstrated comparable results to the state-
of-the-art on various datasets, including MNIST, small-
NORB, CIFAR10, and CIFAR100. However, the authors
did not report results on more complex datasets. They ac-
knowledged the need for further exploration of different
pre-training strategies. While the system exhibits strong
biological plausibility, interpretability, and alignment with
neuroscience research on the columnar structure of the
brain, achieving practical results on natural images has
proven challenging. As anticipated by Hinton in [12], train-
ing a GLOM-based system is not as straightforward as train-
ing a convolutional network.

In this paper, we explore the capabilities of the Agglom-
erator on a subset of 10 classes from ImageNet, specifically
Imagenette. We demonstrate that the current state of Ag-
glomerator, employing the originally proposed pre-training
strategy utilizing supervised contrastive loss, fails to effec-
tively learn to classify natural images from Imagenette. To
overcome this limitation, we propose a novel pre-training
strategy that harnesses additional supervision information
obtained from unlabeled images. This additional supervi-
sion is obtained by leveraging the Segment Anything Model
(SAM) [16], a powerful pre-trained class-agnostic segmen-
tation framework.

Our contributions can be summarized as follows:

• We provide evidence that the current state of Agglom-
erator, utilizing the originally proposed pre-training
strategy based on supervised contrastive loss, struggles
to effectively learn the classification of natural images
from ImageNet.

• We demonstrate how to leverage the vast potential of
unlabelled images to acquire extra supervision infor-
mation for Agglomerator. This is achieved by utiliz-
ing the pre-trained Segment Anything Model (SAM),
a class-agnostic segmentation framework.

• We devise a pre-training strategy that capitalizes on the
extra supervision obtained from SAM. Through this
approach, we achieve significant performance gains
of over 30% on Imagenette [14]. Remarkably, these
improvements are accomplished while using approx-
imately 54 times fewer parameters compared to the
original Agglomerator, all without relying on data aug-
mentation techniques.



2. Background and Related Work
2.1. Knowledge Distillation

A significant factor contributing to the success of deep
learning is the scaling up of both model parameters and
training data. However, this approach often leads to de-
ploying state-of-the-art models that are either unattainable
or prohibitively expensive. In contrast, humans possess
the remarkable ability to generalize from just a few exam-
ples, even when faced with completely unfamiliar scenar-
ios. This suggests that scaling up data requirements may
not be the optimal path toward achieving more human-like
vision.

Knowledge distillation (KD) provides a solution for
transferring knowledge from a teacher model to a smaller
student model. Different types of knowledge can be con-
veyed from the teacher to the student. In the realm of im-
age classification, one popular approach is response-based
knowledge distillation. This method utilizes the teacher
model’s logits to guide the student model in generating sim-
ilar final output responses. A well-known response-based
KD algorithm, introduced in [13], distills the knowledge of
soft targets from the teacher model, which are estimated us-
ing the softmax function. Intriguingly, aligning the student
model’s outputs with the teacher’s soft targets has a sim-
ilar effect to label smoothing [15], a technique known to
improve model performance. However, directly supervis-
ing the final layer output of a model is applicable only to
supervised classification tasks, as the softmax output repre-
sents class probabilities. Furthermore, this approach does
not address the supervision of the student model’s internal
representations beyond the last layer.

Another approach in knowledge distillation is feature-
based knowledge extraction, which involves capturing
knowledge from the intermediate layers of the teacher
model and training the student model to produce similar re-
sponses in its own intermediate layers. This method was
initially introduced in [22], where a deeper and thinner stu-
dent model received hints from the teacher’s hidden repre-
sentations to enhance generalization and runtime efficiency.

Our work closely aligns with this approach as we pri-
marily focus on utilizing the response of the teacher model,
SAM, to directly supervise the intermediate features of the
Agglomerator. By leveraging the teacher’s responses, the
student model can learn from the acquired knowledge and
incorporate it into its own intermediate features. This en-
ables the student model to benefit from the expertise of
the teacher model, enhancing its ability to capture essential
characteristics of the data.

2.2. Related Foundation Models

Several efforts have been made to devise architectures
capable of representing scene parse trees. One such archi-

tecture is the Capsule Network [23], which constructs layers
of capsules, fundamental elements trained to respond to ob-
jects or their parts. Through dynamic routing by agreement,
each capsule establishes connections with its correspond-
ing parents, forming a parse tree of the scene. The perfor-
mance of Capsule Networks has shown competitiveness on
datasets like MNIST [4], CIFAR10, CIFAR100 [17], and
smallNORB [19]. However, they struggle to match the per-
formance of convolutional or transformer-based approaches
on more complex datasets.

As noted by Hinton in [12], one major issue with
capsules is that using a mixture of capsules to model the set
of objects or parts forces a hard decision on whether two
closely related parts are considered similar or different. If
we use two different capsules to model each part separately,
then we are not able to capture the similarity between
them. On the other hand, if we use the same capsule to
model them both, routing to a parent becomes ambiguous.
This limitation in modeling relationships between parts
can hinder the capsule network’s ability to effectively
represent complex hierarchies in more intricate datasets.

The Reversible Columns Network [2] serves as a foun-
dational model inspired by the columnar structure observed
in the brain. In this paper, the term ”columns” refers to
replicated networks, specifically ConvNext [20] blocks
used as the individual columns. The macro design of the
architecture consists of an array of columns with reversible
connections between each consecutive pair of columns.
This arrangement allows the columns to progressively
disentangle information across different levels. The levels
closest to the input capture lower-level information, while
those closest to the output encode more semantic informa-
tion. Intermediate supervision is also incorporated in this
work by adding a decoder head to the last level of each
column. The network is trained on an auxiliary task, which
involves reconstructing the input image. By including this
auxiliary task, the network receives additional supervision
at intermediate stages, enhancing the learning process.

2.3. Agglomerator

The Agglomerator framework is a realization of the
GLOM system introduced by Hinton and is the framework
to which we apply our pre-training strategy. Within the Ag-
glomerator framework, an initial step involves transforming
images with dimensions of H × W into N = h × w
patches. Where, h = H/4 and w = W/4. Each patch
among the N patches corresponds to a specific column
within the framework. These columns are responsible for
encoding the representations of their respective patches
across multiple layers, capturing different levels of ab-
straction. At each level of each column, the embedding



Figure 2. (a) the original image, (b) masking with cropping, and
(c) masking without cropping retaining position information.

vector for each level is iteratively updated. The updated
vector at each time step (t) is derived from four sources.
Firstly, the vector from the previous time step (t − 1) is
considered. Additionally, the bottom-up prediction from
the level below at the previous time step, the top-down
prediction from the level above at the previous time step,
and attention from all vectors at the same level from the
previous time step are incorporated. These components
are combined by employing four learnable parame-
ters, resulting in the vector at the current time step (t).

The network is trained in two phases, firstly the pre-
training phase where each image is duplicated, and has Ran-
dAugment applied to it then the network’s contrastive head
is pre-trained using the supervised contrastive loss. The
process hopes that through the pretraining phase, the net-
work is going to learn to successfully decompose the scene
into objects and their constituent parts. While this could be
true for easier datasets, and training on so many epochs, this
proves to be quite challenging to do for natural images like
in ImageNet. After the pre-training phase, a linear classifier
on top of the contrastive head is trained using cross-entropy
loss to predict the classification output.

3. Methodology

Deep neural networks, with their large capacity, possess
the risk of overfitting the training data. They can exploit
inherent biases present in the dataset, allowing the network
to take shortcuts and learn specific intermediate features as
needed. Simply minimizing the contrastive loss during the
pre-training phase and then the cross-entropy loss during
the classification phase does not guarantee that the Agglom-
erator’s internal representation will effectively capture the
desired parse tree structure of the image.

To address this challenge, we propose an effective
method for pre-training the model and subsequently lever-
aging the pre-trained model for the classification task. The

core idea is to introduce additional supervision to guide the
network in learning what it should represent at each level
within each column. Having prior knowledge of the hierar-
chical composition of scenes, objects, and their constituent
parts, allows the network to easily generalize while being
data efficient.

By incorporating this additional supervision, we aim to
ensure that the network learns to accurately capture the
intended hierarchical structure. This approach helps the
model acquire the necessary knowledge to represent the
parse tree of the image, ultimately enhancing its perfor-
mance in the classification task.

3.1. SAM masks generation

Since our image is divided into (N = p × p) patches,
we use the coordinates of the center point of each patch
to prompt SAM to give us the segmentation output at each
point. Since each point can belong to a sub-part, part, or
object we do have an ambiguous situation and SAM will
resolve this by generating a multi-level segmentation out-
put that corresponds to the hierarchy at this specific point.
Figure 1 demonstrates the mask generation process and the
output we expect to get from SAM at any specific point.
The multi-level segmentation output from SAM is given by
the 5D tensor M ∈ RB×N×L×H×W . Where B is the batch
size, N is the number of points used to prompt SAM to gen-
erate masks (which should match the number of patches in
the Agglomerator), L is the number of outputs per point
prompt (which should match the number of levels used in
Agglomerator), H, and W are the output masks dimensions
which match the input image dimensions.

3.2. Positional information

While the architecture of the Agglomerator implicitly in-
cludes position information, given that each column pro-
cesses a specific patch of the input, we adopt a unique ap-
proach to incorporate the position signal into the masks.
Rather than masking out the desired part of an image and
cropping it separately to obtain its embeddings, we retain
the desired part within a dark background and embed the
entire image. In this approach, the background surrounding
the desired part is masked out, while the object itself re-
mains visible. This allows us to encourage the network fea-
tures to be aware not only of the semantic information of the
object but also of its precise location within the image. Re-
cent neuroscience research [8] suggests that columns have a
distinctive capability to represent location. Thus, by incor-
porating the location-awareness aspect, we aim to enhance
the network’s understanding of both the object’s semantic
attributes and its spatial placement within the image.



Figure 3. Our proposed pre-training procedure. (A) Agglomerator’s internal representation Z, (B) Embedding of Agglomerator’s internal
representation Ze, (C) Multi-level output of SAM masks M , and (D) Embedding of Multi-level output of SAM masks Me. The procedure
aims to minimize the mean squared error between (B), and (D) as described in 3.3

3.3. Intermediate Supervision

To supervise Agglomerator’s hidden representation,
firstly, we employ a trainable MLP encoder for Agglom-
erator’s internal hidden representation which is given by
Z ∈ RB×N×L×D. Where D is the dimension of the vector
representation of each patch. The output from the Agglom-
erator’s encoder is another hidden representation which is
given by the tensor Ze ∈ RB×N×L×De , where De is the
size of the embedding of the hidden representation of each
patch.

Similarly, we utilize a scaled-down version of the
pre-trained MaxVIT [24] image encoder, known as pico
MaxVIT, to create embeddings for the generated SAM
masks as explained in 3.1. M is passed to the MaxVIT
encoder to obtain the masks embeddings which output an
embedding representation of M , Me ∈ RB×N×L×De ,
where De is the image embedding size we obtain from the
MaxVIT encoder which matches the aforementioned hid-
den representation size in Ze.

Since our objective is to align Agglomerator’s encoded
hidden representation with the embeddings of SAM masks,
we would like to keep the mean squared error (MSE) be-

tween the Ze and Me as low as possible. Having this ob-
jective achieved means that Z is indeed representative of a
valid part-whole hierarchy since it was able to predict the
hierarchy we created using SAM.

Since we are mostly concerned with the classification
task in this paper, we care the most about the semantic pars-
ing of the image, while we do not care as much about the
sub-part level detail in the hierarchy. Therefore we reflect
this in the loss function by splitting up the loss into as many
components as levels and then weighing each level’s loss in-
dividually, with more weight being given to the last level’s
representation. The loss at each level k, Lk, is the MSE
between the kth level in Ze and Me which is given by

1

B ×N ×De

B∑
b=1

N∑
i=1

D∑
j=1

(Zk
e [b, i, j]−Mk

e [b, i, j])
2 (1)

The total loss we use in our pre-training approach is given
by: ∑n

k=1(αk · Lk)∑n
i=1 αk

(2)



Where Lk is the mean squared error between Agglomer-
ator’s kth level embeddings, and the embeddings of the kth

level output of SAM masks, and αk is the weight associated
to Lk in the loss function.

3.4. Visualization

Following the footsteps of the original work in Agglom-
erator, we visualize the islands of agreement for multiple
images and show that indeed the model has learned a good
enough representation of the objects present in the scene by
having similar embedding vectors all over locations repre-
senting the same object, or part of it. Figure 4, shows the
islands of agreements at different levels. Patches with sim-
ilar embedding vectors are assigned similar colors. As we
go up in the hierarchy, i.e. the rightmost columns, we see
that the embedding vectors converge to form two islands.
One for the foreground, and the other for the background.

4. Experiments
4.1. Dataset

All the experiments were run on Imagentte[14], a subset
of 10 classes from the widely used benchmark ImageNet.
We chose this dataset since it offers the complexity of natu-
ral images to demonstrate the effectiveness of our approach
while saving computational resources and computing time.

4.2. Implementation Details

We resize all images to 224 × 224, which is a standard
resolution to use with ImageNet. We divide the image
into 14 × 14 patches. We prompt the huge version of
SAM for a multi-level output, obtaining 3 masks that
also match the number of levels we use in the Agglom-
erator. The pico version of MaxViT [24] trained on
ImageNet-1k by [26], was used to obtain the embeddings
of the generated masks with an embedding vector size
D = 256. We chose α3 = 0.7, α2 = 0.2, and α1 = 0.1
(i.e. the weights for the loss function at levels 2, 1,
and 0 are 0.7, 0.2, and 0.1 respectively). We use the
recently introduced lion [3] to train all the networks. We
test both strategies to create masks for the objects and
their parts, as demonstrated in Figure 2. We used lion
optimizer for both training and pre-training, with a batch
size of 512, learning rate 5e−4, and weight decay 0.075.

4.3. Results

Firstly, we experiment with different design choices
in our pre-training strategy. We try masking without
cropping vs masking with cropping as demonstrated in
Figure 2. We achieve better validation accuracy when
we embed the masked image without cropping the ob-
ject vs when we crop the masked object, validation

Mask Strategy Accuracy

with cropping 80.56%
without cropping 89.5%

Table 1. Validation Accuracy for different masking strategies

Encoder Parameters (M) Accuracy

Included 14.2 89.5%
Removed 3.2 91.2%

Table 2. Validation accuracy when using an encoder for Agglom-
erator’s intermediate features vs not using an encoder.

accuracy for both approaches is shown in Table 1. We
hypothesize that this is due to the fact that we retain
information about the object’s position in the embedding.

We also try using a simple Multilayer Perceptron (MLP)
encoder to obtain a representation for the Agglomerator lev-
els versus using directly these levels and pushing it to agree
with SAM mask embeddings (i.e using an identity function
as the MLP encoder and directly minimize the loss between
Z and Me). The MLP consists of 4 fully connected layers
with GELU [10] activation and layer normalization [1]
applied to the output of each layer. The results are shown
in Table 2. Therefore, we find that not cropping the masks
before embedding while removing the encoder yields
the best-performing variant for our pre-training strategy.

We subsequently proceed to a comparison between our
best variant and the supervised contrastive loss originally
proposed by the authors of Agglomerator. Additionally,
we include a baseline of Agglomerator without any pre-
training for the purpose of comparison. Our approach
outperforms the contrastive pre-training approach by a
huge margin of more than 30% while using approximately
54 times fewer parameters and no data augmentation. Aug-
menting the final classification layer with RandAugment
in our approach resulted in no change in the performance.
Augmenting in the pre-training phase also is not needed
since we can directly use any amount of unlabeled data
in our pre-training approach. This huge performance
gap shows that Agglomerator pre-trained with supervised
contrastive loss fails to deal with the complexity present in
natural images. While the supervised contrastive loss does
encourage embeddings at the last level (i.e., scene-level
embeddings) to be closer for images of the same class and
farther apart for different classes, it falls short in compelling
the network to learn a granular breakdown of scenes into
distinct objects and their constituent parts. Additionally,
Agglomerator’s authors noted that their pre-training
method demands substantial computational resources when



Pre-Training Augmentation Parameters (M) Accuracy

None RandAugment 172 49.48%
Supervised Contrastive Loss RandAugment 172 58.6%

SAM pre-training (ours) None 3.2 91.2%

Table 3. Validation accuracy of different pre-training strategies for
Agglomerator vs our best pre-training variant

Size (px) Epochs Optimizer BS Accuracy

128 5 Ranger 32 87.43%
192 5 Ranger 64 86.76%
256 5 Ranger 64 86.85%
224 5 Lion 512 90.17%
224 18 Lion 512 91.28%

Table 4. Comparison of our approach’s validation accuracy (high-
lighted in bold) with several leaderboard submissions using Fas-
tai’s implementation of ”Bag of Tricks for Image Classification
with Convolutional Neural Networks” on the Imagenette dataset.

applied to datasets like ImageNet, and that more efficient
pre-training strategies are needed. The final comparison be-
tween the pre-training strategies is summarized in Table 3.

We also included the performance of a convolutional-
based solution, XResnet-50 [9], which incorporates a mix-
ture of state-of-the-art tricks to enhance its performance, as
a reference for comparison. This solution primarily relies
on the Fastai library, a popular tool that provides access to
various cutting-edge techniques for rapid application. The
results from the leaderboard for Imagenette, where several
users utilized Fastai and reported their findings, are included
in the comparison. Some of the techniques these solutions
employed are Random Erasing Data Augmentation [28],
Mish [21], and BlurPool [27]. A summary of the results
in comparison with our best variant is presented in Table 4.

5. Conclusion

We have introduced a novel method to incorporate prior
knowledge about the compositional structure of the world
by distilling this knowledge from SAM. We exploit the fact
that Agglomerator explicitly represents the part-whole hier-
archy in the scene and find a connection between this rep-
resentation and the multi-level output of SAM by guiding
both representations to agree in the latent space. With this
approach, we pre-train a significantly smaller version of the
originally proposed Agglomerator, approximately 54 times
smaller, while achieving a remarkable improvement in val-
idation accuracy. Our approach is appealing because of its
extreme data efficiency; we do not require any class labels,
not even from the training set, during the pre-training phase.
Additionally, our method demonstrates great promise in

generalization by eliminating the need for data augmenta-
tion.

Through our research, we aspire to pave the way for fur-
ther advancements in achieving a more human-like vision
in neural network architectures. By leveraging prior knowl-
edge and enhancing data efficiency, we hope that our work
will inspire and guide researchers in their quest to push the
boundaries of artificial intelligence and create models that
exhibit even greater cognitive capabilities.
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