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ABSTRACT

Understanding 4D point cloud sequences online is of significant practical value in
various scenarios such as VR/AR, robotics, and autonomous driving. The key goal
is to continuously analyze the geometry and dynamics of a 3D scene as unstructured
and redundant point cloud sequences arrive. And the main challenge is to effectively
model the long-term history while keeping computational costs manageable. To
tackle these challenges, we introduce a generic online 4D perception paradigm
called NSM4D. NSM4D serves as a plug-and-play strategy that can be adapted to
existing 4D backbones, significantly enhancing their online perception capabilities
for both indoor and outdoor scenarios. To efficiently capture the redundant 4D
history, we propose a neural scene model that factorizes geometry and motion
information by constructing geometry tokens separately storing geometry and
motion features. Exploiting the history becomes as straightforward as querying
the neural scene model. As the sequence progresses, the neural scene model
dynamically deforms to align with new observations, effectively providing the
historical context and updating itself with the new observations. By employing
token representation, NSM4D also exhibits robustness to low-level sensor noise
and maintains a compact size through a geometric sampling scheme. We integrate
NSM4D with state-of-the-art 4D perception backbones, demonstrating significant
improvements on various online perception benchmarks in indoor and outdoor
settings. Notably, we achieve a 9.6% accuracy improvement for HOI4D online
action segmentation and a 3.4% mIoU improvement for SemanticKITTI online
semantic segmentation. Furthermore, we show that NSM4D inherently offers
excellent scalability to longer sequences beyond the training set, which is crucial
for real-world applications.

1 INTRODUCTION

The utilization of 4D point cloud sequences, which combine 3D spatial information with temporal
dynamics, has become integral to numerous modern AI applications, such as robotics, autonomous
driving, and AR/VR. These sequences offer a distinct advantage by faithfully capturing the geometry
and motion of dynamic scenes. Consequently, the online understanding of such 4D data has emerged
as a crucial task, necessitating the persistent and consistent comprehension of scene geometry and
dynamics based on only current and historical observations.

While advancements have been made in autonomous driving through the use of domain-specific
representations like 2D BEV maps or domain-specific knowledge like known ego-motion, a significant
gap remains for a generic framework capable of addressing scenarios that defy these priors. For
generic online 4D perception, existing works usually treat point cloud sequences as unstructured 4D
data (Liu et al., 2019; Fan & Yang, 2019; Fan et al., 2021; Wen et al., 2022; Garcia & de Queiroz,
2017; Fan et al., 2022; He et al., 2022; Shi et al., 2022) without exploiting the prior that such points
are sampled from 3D geometry moving following some low-dimensional trajectories. Current point
cloud observation directly queries features from raw point clouds at different time stamps in history
whose motion and geometry are coupled. This can be hard to optimize and usually leads to less
effective 4D features. Moreover, existing works usually leverage a fixed-length window to restrict
the temporal query scope for computation feasibility. This also prevents online 4D perception from
accessing long-term spatial-temporal context.
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Figure 1: NSM4D employs geometry and motion factorization to carry out implicit reconstruction.
The neural scene model is recurrently constructed through dynamic updating, effectively aggregating
historical observations to form a comprehensive scene while keeping track of the motion information.

The current challenges of generic online 4D perception mainly come from two aspects. First, the 4D
point cloud sequence usually couples 3D geometry and its dynamic motion, forming a redundant and
noisy data form in a high dimensional space. This could lead to a severe learning issue. Second, it
is crucial to track the geometry and motion information over an extended history as they could be
useful at any time. However, retrieving this historical data may suffer from computation explosion as
the sequence grows longer and longer without careful design.

To address the aforementioned challenges, we introduce a novel paradigm named NSM4D, which
serves as a plug-and-play technique adaptable to existing 4D backbones, enabling them to achieve
effective and efficient online 4D perception capabilities. Our approach is grounded in the insight
that the information within a 4D sequence can be efficiently factorized into geometry and motion
through dynamic 3D reconstruction, significantly reducing data redundancy while facilitating the
incorporation of long-term history. Querying a dynamic reconstruction for historical spatial-temporal
contexts would be much more efficient compared with directly querying the raw 4D data. However,
existing dynamic reconstruction techniques lack reliability and efficiency when dealing with noisy
point cloud sequences. To overcome this limitation, we propose to reconstruct the scene implicitly,
forming a neural scene model that consists of a set of geometry tokens equipped with factorized
geometry and motion features. The neural scene model is constructed recurrently through a dynamic
updating method as shown in Figure 1. At each time step, upon the arrival of a new point cloud
observation, we leverage a token updating module to align the neural scene model with the current
observation. In particular, we estimate a scene flow from the previous time step and employ it to
shift the tokens and update the motion features of the existing neural scene model. Concurrently,
we exploit a token generation module to extract token-wise geometry and motion features from
the current observation and further integrate the new tokens into the neural scene model through
a token merging module. The token merging module efficiently updates the neural scene model
while maintaining its moderate size. As a result, the neural scene model keeps track of the point
cloud sequence and provides a compact and dynamic summary of the up-to-date history for online
perception. Furthermore, the token-level representation enhances reconstruction robustness against
sensing noise and scene flow estimation errors, resulting in a lightweight, flexible, and expressive
dynamic memory.

We extensively evaluate our approach on several benchmarks including both indoor and outdoor
scenarios. We find that NSM4D significantly boosts the online perception ability of the state-of-
the-art 4D perception models(+9.6% accuracy on HOI4D action segmentation, +1.9% mIoU on
HOI4D semantic segmentation, +3.4% mIoU on SemanticKITTI). We also observe that NSM4D
demonstrates exceptional scalability, extending its effectiveness to longer sequences that surpass the
length of the training sequences.

Our contributions are threefold: First, we propose a new paradigm that serves as a plug-and-play
strategy to existing 4D backbones by compressing the historical point cloud sequence into a compact
neural scene model to boost their ability of online 4D perception. Second, we design a token-based
neural scene model by factorizing the geometry and motion information from a point cloud sequence
and present a dynamic updating method to recurrently construct the model. Third, we conduct
extensive experiments and analysis, the strong results show the effectiveness of NSM4D and its
generalizability to different tasks and both indoor and outdoor scenarios.
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2 RELATED WORK

Point Cloud Sequence Processing holds great importance for enabling intelligent agents to
comprehend the dynamic nature of our 3D world. Existing methods can be divided into two
categories: voxel-based (Lin et al., 2018; Wang et al., 2020; Choy et al., 2019) and point-based (Fan &
Yang, 2019; Fan et al., 2021; 2022; Wen et al., 2022; Zhong et al.; Rempe et al., 2020; Wei et al., 2022;
Min et al., 2020). For voxel-based methods, MinkowskiNet (Choy et al., 2019) apply 4D convolution
to extract spatio-temporal information from voxel grids. SpSequenceNet (Shi et al., 2020) utilizes
KNN to aggregate 4D spatio-temporal information on both global and local level. SVQNet (Chen
et al., 2023) constructs voxel-adjacent network to take full advantage of history knowledge. For the
point-based method, PSTNet (Fan et al., 2022) proposes point spatio-temporal (PST) convolution
to reach informative representations of point cloud sequences. P4Transformer (Fan et al., 2021)
employs a transformer to avoid point tracking for raw point cloud sequence modeling. PPTr (Wen
et al., 2022) introduces primitive fitting and memory pool to integrate long-term information. These
methods primarily concentrate on offline settings, exhibiting limited capability when it comes to
adapting to online scenarios. Therefore, we propose NSM4D, which is a plug-and-play strategy that
can be adapted to existing 4D backbones, significantly improving their online perception capability.

Online Perception holds the key to real-world applications. In real application scenarios, the
entire sequence is not accessible and predictions are required solely based on historical observations.
Many methods focusing on online perception have been proposed for practical application needs.
VISOLO (Han et al., 2022) utilizes grid-structured representation for effective instance segmentation.
Colar (Yang et al., 2022) introduces exemplar-consultation mechanism to formulate an efficient
network for action segmentation. DVIS (Zhang et al., 2023) incorporates referring tracker and
temporal refiner to decouple online instance segmentation into subtasks. (Mersch et al., 2022) exploits
2D range image representation to perform online point cloud prediction. Existing works for online
perception mainly focus on 2D video with less work focusing on 4D point cloud sequences. Online
understanding of 4D point cloud sequences poses challenges due to the unstructured and redundant
data format. Therefore, we propose NSM4D, a novel plug-and-play module that offers a generic
paradigm for online processing of 4D point cloud sequences.

Memory Mechanism. Memory mechanism has been substantially studied in different tasks. Such
mechanisms are mostly designed to tackle long sequences and dense input. Considering the variations
of data, the proposed memory mechanisms are mainly used in two scenarios: indoor scene and
outdoor scene. For indoor scenarios, SMT (Fang et al., 2019) incorporates global scene memory
to facilitate policy generation. PointRNN (Fan & Yang, 2019) introduces a 4D recurrent neural
network to effectively aggregate historical point features and caches them. PPTr (Wen et al., 2022)
computes primitive-level representations of long-range videos and maintains an offline memory pool.
For outdoor scenarios, BEVFormer (Li et al.) introduces BEV maps and multi-stage attention to
exploit spatio-temporal information from historical multi-camera images. These methods either use a
global feature for historical frames, or directly integrate some basic memory models for historical
information aggregation. Others utilize strong domain prior knowledge in a more convenient way
but at the cost of losing versatility. Our proposed NSM4D not only aggregates historical geometry
and motion information in a more synergetic and compact way but also maintains the generalization
ability on both indoor and outdoor scenarios.

3 PROBLEM STATEMENT

In the context of a point cloud sequence, online 4D perception refers to the task of understanding
the state or forecasting the behavior of the point cloud as each new frame arrives. In this paper, our
primary focus lies on two tasks: online action segmentation and online semantic segmentation. In
the context of action segmentation, the objective is to assign an action label to each processed frame.
While in semantic segmentation, the goal is to assign a semantic label to each individual point.

When comparing online perception to offline perception, there are two main differences that conse-
quently introduce specific challenges. First, in online perception, predictions have to be provided
frame by frame instead of all at once. We need to integrate the information from early timestamps
to enhance contextual understanding while maintaining computational efficiency. So effectively and
efficiently caching computations from early timestamps is of great importance. However, offline
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perception is not bound by this constraint. Second, online perception needs to deal with temporal
observations of varying lengths from the history. Short history presents challenges in accurately
modeling the complete geometry of the scene, whereas a long history poses greater difficulties in
modeling the motion of the scene. However, offline perception has a more homogeneous temporal
context and should be more friendly to learn and optimize. Our design focuses on adapting existing
offline backbones to mitigate the gap.

4 NEURAL SCENE MODEL

Our goal is to devise a methodology that is both effective and efficient for sequentially aggregating
long-term historical information for precise 4D online perception. NSM4D aims to achieve this
by introducing a generic paradigm design that enables seamless integration with the existing 4D
networks, empowering them with the capability of efficient and effective online 4D perception.

There are three key challenges in our design. The first challenge arises from the redundant and noisy
nature of the point cloud sequence, necessitating the compression into a more compact and robust
representation. An effective way is to decouple geometry and motion to reduce the representation
into a low-dimensional space. This separation is advantageous as it allows for distinct depiction
of the dynamic scene by capturing the specific aspects of geometry and motion. Many previous
approaches have mixed these two aspects, potentially resulting in the loss or confusion of their
distinct characteristics. The second challenge pertains to the dynamic nature of the coordinate
system, which constantly changes due to the unknown varying camera poses. Aligning the features of
different frames within this changing coordinate system presents a significant challenge, rendering the
compression of the point cloud sequence difficult. The third challenge involves ensuring a lightweight
compression of historical information, which is memory-friendly while also capable of preserving
long-term historical information. We propose NSM4D, which constructs a neural scene model to
preserve geometry tokens separately storing geometry and motion features to compress past scene
information and leverage estimated scene flows to dynamically deform and update the neural scene
model when new frames are encountered.

Existing generic 4D backbones generally include two modules: local feature extraction to process
point clouds into a set of features, spatial-temporal context aggregation that usually encodes
coupled geometry and motion information to provide a context of the frame of interest. To achieve
seamless adaptation, we rely on the first module as our grounding point, while substituting the second
module with NSM4D.

4.1 OVERVIEW

An overview of our dynamic updating method is shown in Figure 2, which consists of three modules.
The 4D Tokenization module extracts token-wise geometry and motion features from the current
observation. It utilizes the local feature extractor in the 4D backbone we rely on to extract point/voxel
features. Simultaneously, an auxiliary flow estimator is introduced to encode point motion features
independently. Next, geometry tokens are sampled throughout the frame, and these tokens are utilized
to perform set abstraction, resulting in token-wise geometry and motion features. This process enables
NSM4D to acquire more compact and lightweight features, greatly facilitating subsequent scene
model updates. The Token Updating module is employed to deform the scene model in order to
align the neural scene model with the current observation. This is achieved by utilizing the estimated
scene flow to shift the geometry tokens and update the motion features of the existing neural scene
model, resulting in a deformed model. Next, we integrate the new tokens from the current frame into
the deformed neural scene model using the Token Merging module. To preserve the model size,
this module also incorporates a sample convolution to control the token numbers. And we will get a
deformed and updated neural scene model at timestamp t now. Finally, a cross-attention module is
applied between the current frame’s feature and the neural scene model feature to efficiently retrieve
useful history information to generate accurate dense predictions.

4.2 4D TOKENIZATION

We choose to decouple geometry and motion exploiting the prior that points in the sequence are
sampled from 3D geometry and move along low-dimensional trajectories. This approach should be
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Figure 2: Overview of NSM4D. (a) 4D Tokenization module samples tokens and extracts token-
wise geometry and motion features from the current observation. (b) Token Updating module
utilizes scene flow to deform the scene model by shifting the tokens and updating the motion feature,
ensuring alignment with the current observation. (c) Token Merging module integrates new tokens
to efficiently update the neural scene model while maintaining its moderate size.

an effective way to compress the point cloud sequence to reduce redundancy and noise. Additionally,
geometry and motion contain distinct information that contributes to the depiction of the 4D scene.
Therefore, it is crucial to consider these aspects separately.

For the geometry feature, we use the set abstraction technique to sample anchor points to extract
token-wise geometry features, regardless of whether the network NSM4D grounds on is built upon
point features, voxel features, or any other feature representation. For motion features, point-wise
scene flow is a good indicator of the motion information of the dynamic scene. To obtain the
point-wise motion feature, we encode the scene flow calculated by the state-of-the-art flow estimator
RAFT3D(Teed & Deng, 2021). Subsequently, we employ the same anchor points to perform set
abstraction, resulting in the generation of token-wise motion features.

Token-wise Geometry Feature. For each frame, we sample rs anchor points TR = {α}rsi among a
set of features extracted by the base network. For each anchor point α, we group its neighbor feature
and utilize set abstraction as introduced in PointNet++(Qi et al., 2017) to construct the token-wise
geometry feature Fα. Uniformly sampled tokens with geometry features GR = {(α, Fα)}rsi=1
represent the scene geometry of the frame in a compact way.

Abstracting the geometry feature to the token-level offers two key advantages. First, it results in a
more compact and robust representation compared to point-level or voxel-level representations. Each
token represents the geometry of a local region, leading to enhanced efficiency and robustness in
constructing the scene model. Second, as we will discuss further, shifting the geometry tokens to a
new coordinate system requires the use of scene flow. Averaging the token-wise scene flow should be
more robust than using point-wise or voxel-wise representations, as the latter are more susceptible to
noise interference.

Token-wise Motion Feature. Movement trajectory faithfully depicts the historical motion informa-
tion. However, tracking the trajectory of each point in the 4D scene is highly difficult, with two main
challenges. First, the coordinate system constantly changes between frames, so the observed motion
is a mixture of actual object motion and camera ego-motion, which is not easy to factorize. Second,
there are points in and out between frames, making it unfeasible to track all of them.

To alleviate the above challenges, making some approximations is reasonable. Thus, we use scene
flow as an alternative to actual motion. Although the scene flow mixes the object motion and camera
ego-motion, it still contains information on rough moving direction and speed, which are also crucial
cues. Accumulation of scene flows is an approximation of movement trajectory. In addition, we
utilize the scene flow to shift geometry tokens, as will be discussed in detail in the next section.

We use RAFT3D(Teed & Deng, 2021) to estimate the scene flow FR =
{
f̃ i
}N

i=1
. Specifically,

RAFT3D estimates the dense flow field by iteratively updating the SE3 field with the constructed
4D correlation volume. We can get a relatively accurate estimation at large throughput rates with
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a good balance of performance and speed. Subsequently, a shared MLP embedding layer followed
by a recurrent network is employed to construct the point motion feature. Finally, the same anchor
points TR = {α}rsi=1 are utilized to perform set abstraction to extract token-wise motion features
MR = {(α,Dα)}rsi=1.

4.3 TOKEN UPDATING

To accommodate the incoming frame, we shift the scene model to the new coordinate system to
ensure alignment. Achieving alignment between the frame of interest and the memory is a non-trivial
task. However, leveraging the estimated scene flows and geometry tokens, we make this alignment
feasible and attainable. Below, we present a formal illustration of the process.

Token Shift. TW = {ω}ni=1 represents the geometry tokens of the scene model where ω is the token
coordinate. Upon the arrival of a new point cloud frame, we shift the geometry tokens from the last
frame coordinate system to the current frame one and get T̂W = {(ω + fω)}ni=1, where fω is the
token-level scene flow averaged from the point-level scene flow FR.

During the token shift process, we simply copy-and-paste the token-wise geometry feature to en-
courage the network to learn the invariant geometry feature. Shifted tokens with geometry feature is
ĜW = {(ω + fω, Fω)}ni=1 now. We do not consider the equivariance property of the feature here
due to it will introduce further computation overhead and the robustness of the equivariance is also
not guaranteed.

Token-wise Motion Feature Update. After shifting the tokens, the motion feature still stays on
characterizing the motion information before the current frames. We need to update the motion
feature to incorporate new motion as the tokens have been shifted. Specifically, we leverage the
shifted tokens to perform set abstraction on the point motion feature of the current frame. We then
concatenate the extracted token features with the existing ones. Finally, an MLP is employed to fuse
the features and carry out the necessary updates. We represent the updated motion features with their
corresponding shifted tokens as M̂W = {(ω + fω, Dω)}ni=1.

4.4 TOKEN MERGING

Having shifted the neural scene model to the current frame, we have successfully aligned the tokens
and features with the current frame. Consequently, merging the new tokens and features into the
scene model to incorporate the information from the new frame becomes a straightforward process.
After merging, the tokens TW is expanded to TW + TR, the geometry feature ĜW is expanded
to ĜW + GR, and the motion feature M̂W is expanded to M̂W +MR. Next, we execute sample
convolution modules SG and SM on the merged geometry features and motion features, respectively,
employing set abstraction techniques to regulate the number of tokens. We will get new neural scene
model tokens with new token-wise geometry features GW = SG(ĜW +GR), and motion features
MW = SM (M̂W +MR). This maintains the size of the scene model and yields the new tokens
with geometry and motion features.

4.5 NEURAL SCENE MODEL QUERY

With the neural scene model, which has already incorporated all required historical information, we
can directly interact with it to get valuable historical cues for the current dense prediction. We achieve
this through the cross-attention mechanism. It is done by setting the current frame’s geometry token
feature as the query and the scene model’s geometry and motion token feature as the key. The whole
attention process is illustrated in the following equation.

Q = WQ ·GR,KG = WKG
·GW , VG = WVG

·GW

KM = WKM
·MW , VM = WVM

·MW

Feature = Softmax

(
QKT

G√
dk

)
VG + Softmax

(
QKT

M√
dk

)
VM
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Subsequently, distinct prediction heads are employed for action and semantic segmentation, leading
to the generation of final prediction results. In the case of action segmentation, we utilize a maximum
operation on the tokens to extract a global feature, which is then processed by an MLP to obtain the
final classification scores for the current frame. For semantic segmentation, we incorporate a decoder
with deconvolution that performs upsampling to obtain per-point classification scores.

5 EXPERIMENTS

In this section, we apply NSM4D as a plug-and-play strategy to modern 4D networks to equip them
with a strong ability for online 4D perception. We show experiment results on several indoor and
outdoor benchmarks.

5.1 DATASETS AND METRICS

HOI4D (Liu et al., 2022) is a large-scale 4D egocentric dataset with rich annotations, to catalyze the
research of category-level human-object interaction. It consists of 3863 point cloud sequences by
9 participants interacting with 800 different object instances from 16 categories over 610 different
indoor rooms, with 150 frames in each sequence. We follow the official data split of HOI4D with
2971 training scenes and 892 test scenes. In terms of HOI4D action segmentation, it offers action
labels for each frame, encompassing a total of 19 distinct classes. For HOI4D semantic segmentation,
it provides per-point labels with a total of 39 classes.

SemanticKITTI (Behley et al., 2019) is a large-scale outdoor dataset for autonomous driving
applications. The data was captured using a 64-beam LiDAR sensor. There are totally 22 sequences.
The semantic segmentation task in this dataset is officially divided into two phases. The first phase,
known as the single-scan phase, involves labeling 19 semantic classes without differentiating between
moving and static objects. The second phase, referred to as the multi-scan phase, expands the
semantic segmentation task to include 25 semantic classes distinguishing between moving and static
objects. We select the multi-scan task as the validation benchmark for NSM4D, as this task requires
the model to effectively aggregate information from multiple frames in order to differentiate between
moving and static objects. This choice of task allows for a clear demonstration of NSM4D’s online
perception capability.

Metrics. For action segmentation, we report the following metrics: framewise accuracy (Acc),
segmental edit distance, as well as segmental F1 scores at the overlapping thresholds of 10%, 25%,
and 50%. Overlapping thresholds are determined by the IoU ratio. For semantic segmentation, the
mean Intersection of Union(IoU) is used as the evaluation metric.

Implementation Details. As NSM4D is a plug-in strategy, we ground NSM4D on three existing 4D
networks including P4Transformer (Fan et al., 2021) and PPTr (Wen et al., 2022) for indoor scenarios,
and Point Transformer V2 (Wu et al., 2022) for outdoor scenarios. In HOI4D action segmentation, we
adopt a sequence length of 150, consistent with prior work, but with some minor modifications that
will be elaborated on later. Additionally, we employ longer sequence lengths to assess the scalability
of NSM4D. As for HOI4D semantic segmentation and SemanticKITTI, we utilize a sequence length
of 3, following a conditional setting. All models are trained in an end-to-end fashion using a frozen
flow estimator on an NVIDIA A100 GPU. For action segmentation and semantic segmentation,
frame-wise and point-wise cross-entropy losses are employed individually.

5.2 INDOOR DATASETS

HOI4D online action segmentation. HOI4D dataset provides sequences with a fixed length of 150.
However, longer sequences are more common for real-world scenarios. We also observe that training
on the former fixed-pattern data (similar start and end action) leads to significant overfitting and
has weak generality to sequences with a random starting scene, reflecting the irrationality of data
organization. To alleviate these problems, we prepare a new dataset leveraging data from the HOI4D
action segmentation dataset. Specifically, given sequences with 150 frames in HOI4D, we flip the
sequence for a reverse sequence of 150. Then we stitch together the original and reverse sequences to
get longer sequences. We follow the setup of HOI4D and preserve a training set with 2971 sequences

7



Under review as a conference paper at ICLR 2024

Method Frames Acc Edit F1@10 F1@25 F1@50

P4Transformer 150 52.65 39.71 42.42 36.89 26.49
+ NSM4D(Ours) 150 58.74 47.88 51.67 44.14 35.79

PPTr 150 61.73 49.19 53.08 48.49 38.56
+ NSM4D(Ours) 150 67.78 63.17 68.01 63.71 51.85
+ NSM4D(Ours) 600 71.31 67.95 72.14 68.09 56.46

Method Frames mIoU

P4Transformer 3 41.61
+ NSM4D(Ours) 3 42.54

PPTr 3 42.73
+ NSM4D(Ours) 3 44.04
+ NSM4D(Ours) 10 44.67

Table 1: Left. Online action segmentation results on HOI4D. Right. Online semantic segmentation
results on HOI4D.
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SparseConv 48.99 94.7 24.1 54.1 69.6 43.4 17.3 93.2 45.1 79.8 89.5 61.7 87.7 62.9 74.6 63.8 50.0 73.9 85.4 53.6
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+ NSM4D(Ours) 54.48 96.3 56.4 71.5 83.1 60.4 24.6 94.7 59.1 81.8 91.5 57.7 90.2 67.9 79.1 65.6 54.7 79.4 86.2 61.5

Table 2: Multi-scan semantic segmentation results on SemanticKITTI.

and a test set with 892 sequences. Each sequence starts with a randomly sampled index. There are 22
classes now due to new actions appearing in the flipped sequence.

As reported in the left of Table 1, it introduces a large margin of improvement over all the reported
metrics when introducing NSM4D into the vanilla models on the length of 150, demonstrating the
strong ability of the neural scene model to aggregate the historical geometry and motion information.
As our scene model should benefit from long-term information, we apply it to longer sequences.
As shown in the table, the performance increases as the sequence length gets longer, showing the
capability of NSM4D to maintain long-term historical information. However, the vanilla models
do not exhibit such properties, which we will have a more detailed discussion regarding the long
sequence scalability in Section 5.4.

HOI4D online semantic segmentation. As reported in the right of Table 1, it shows significant
improvement when introducing NSM4D into the vanilla models. It further demonstrates the strong
ability of NSM4D to maintain and leverage spatio-temporal information for dense prediction task.
Further performance is observed when enlarging the sequence length, demonstrating the long sequence
scalability of NSM4D.

5.3 OUTDOOR DATESTES

SemanticKITTI online semantic segmentation. As shown in Table 2, with the incorporation of
NSM4D, vanilla models gain a significant improvement. This strongly indicates the generalizability
of NSM4D to dense prediction tasks in outdoor scenarios. Furthermore, the notable improvement on
moving objects and small objects, when compared to vanilla models, serves as a compelling example
of NSM4D’s capability to effectively aggregate historical geometry and motion information to serve
the current frame.

5.4 ANALYSIS

To provide more insights of NSM4D, we conduct several analysis experiments on HOI4D action
segmentation. We primarily focus on discussing the scalability of our method and demonstrating the
effectiveness of geometry and motion factorization. More additional ablation studies can be found in
the appendix.

Long sequence scalability. In real-world scenarios, the length of point cloud sequences can vary
greatly, depending on the application and the environment. A robust model should possess the
ability to adapt to various sequence lengths, particularly when dealing with very long sequences.
Nonetheless, due to memory limitations, training can only be conducted on sequences of limited
length, which may lead to discrepancies when applied to longer sequences. We observed such a
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Figure 3: Left. As the inference sequence length increases, the performance of PPTr decreases
significantly. However, incorporating NSM4D leads to further enhancements in performance. Right.
Visualization results of PPTr and PPTr+NSM4D on action segmentation.

phenomenon in existing methods. However, our method exhibits exceptional scalability when it
comes to handling long sequences, showcasing its superiority in this regard.

We train PPTr and PPTr+NSM4D using a sequence length of 150 and perform inference under
varying sequence lengths. As depicted in the left of Figure 3, the performance of PPTr experiences
a significant drop as the sequence length increases. However, incorporating NSM4D yields further
enhancements in performance. This is primarily attributed to our core design, which involves
factorizing the geometry and motion and dynamically updating the scene model. As a result, more
information is effectively integrated to enhance perception in a structured manner. In contrast, existing
methods tend to struggle when presented with noisy raw observations lacking proper alignment. The
prediction results on HOI4D action segmentation depicted on the right side of Figure 3 offer a more
intuitive illustration. PPTr+NSM4D demonstrates the ability to provide accurate and continuous
results on long sequences, whereas PPTr alone often becomes confused and generates discontinuous
results.

Effectiveness of geometry and motion. In our design, we employ geometry and motion factorization
to capture distinct aspects of the dynamic scene. The geometry module is responsible for aggregating
historical observations to construct a comprehensive scene representation. On the other hand, the
motion module accumulates scene flow to comprehend object motion and camera ego-motion. When
evaluating NSM4D with only the geometry module, the performance reaches 64.03, while using
only the motion module yields a result of 65.91. Both of these scores are lower than the complete
implementation’s performance of 67.78. This observation highlights the crucial roles played by each
component in the factorization process within our design.

Furthermore, the synergy between the geometry and motion components is evident, as a thorough
understanding of geometry necessitates a robust comprehension of motion. Similarly, a more accurate
understanding of motion relies on precise geometry correspondence. Therefore, the interplay between
geometry and motion is essential for achieving a comprehensive understanding of the scene in an
online manner.

6 CONCLUSION

In this paper, our focus lies in investigating the task of online 4D perception in general scenarios. We
introduce NSM4D, a novel paradigm that can be seamlessly integrated into existing 4D backbones,
thereby offering a substantial enhancement to their online perception capabilities. We apply our
design to various backbones and models for both indoor and outdoor scenes. Extensive experiments
and ablation studies demonstrate that NSM4D significantly boosts the online perception performance
of the base models. We firmly believe that the generalizability of NSM4D enables its utilization in a
diverse range of scenarios. The limitation is that we don’t consider real-time applications so far, we
aim to optimize NSM4D to achieve real-time inference speed in our future work.
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