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Abstract

Omni-modal reasoning is essential for intelligent systems to understand and draw
inferences from diverse data sources. While existing Omni-modal Large Language
Models (OLLM) excel at perceiving diverse modalities, they lack the complex
reasoning abilities of recent Large Reasoning Models (LRM). However, enhanc-
ing the reasoning ability of OLLMs through additional training presents signifi-
cant challenges, including the need for high-quality data, task-specific adaptation,
and substantial computational costs. To address these limitations, we propose
ThinkOmni, a training-free framework that lifts textual reasoning to omni-modal
scenarios. ThinkOmni introduces two key components: 1) LRM-as-a-Guide,
which leverages off-the-shelf LRMs to guide the OLLM decoding process; 2)
Stepwise Contrastive Scaling, which adaptively balances perception and reasoning
signals without manual hyperparameter tuning. Experiments on six multi-modality
reasoning benchmarks demonstrate that ThinkOmni consistently delivers perfor-
mance improvements, with main results achieving 70.2% on MathVista and 75.5%
on MMAU. Overall, ThinkOmni offers a flexible and generalizable solution for
omni-modal reasoning and provides new insights into the generalization and ap-
plication of reasoning capabilities.

1 Introduction

The advent of Large Language Models (LLM) has marked a significant shift from traditional fast
thinking paradigms, which rely on immediate and intuitive responses, to slow thinking, which empha-
sizes reflective and iterative reasoning, known as Large Reasoning Models (LRM). Recent LRMs,
such as DeepSeek-R1 (Guo et al., 2025) and o1 (OpenAI, 2025), have demonstrated exceptional
performance in specialized reasoning tasks like mathematical problem-solving and code generation.
Nonetheless, their effectiveness remains predominantly constrained to textual inputs, thus limiting
their applicability to more complex, omni-modal real-world scenarios involving text, audio, images,
and videos (see Fig. 1(a)).

Omni-modal reasoning is essential for synthesizing diverse data sources and enabling sophisticated
inference in context-rich tasks. Strong omni-modal reasoning capabilities have profound implications
for practical applications such as advanced virtual assistants (Zhang et al., 2025) and embodied
robots (Gan et al., 2020). Although recent advances in Omni-modal Large Language Models
(OLLM) (Xu et al., 2025; Li et al., 2025b; Liu et al., 2025c; Fu et al., 2025; Luo et al., 2025) have
shown promise in comprehending various input modalities, these models typically fall short when
tasked with intricate reasoning across modalities, as illustrated in Fig. 1(b). Therefore, a fundamental
research challenge is how to effectively extend and elevate the reasoning capabilities of models from
primarily textual inputs to truly omni-modal scenarios.

Actually, this is not a trivial problem, and despite considerable efforts, existing approaches to omni-
modal reasoning are still limited in several critical aspects. Specifically, 1) Insufficient modality
diversity. Current studies largely focus on specific modalities (e.g., image (Liu et al., 2025b;a; Lin
et al., 2025), audio (Li et al., 2025a), or video (Wang et al., 2025)), rather than generalizing across
arbitrary combinations of modalities. 2) Task-specific enhancement. Enhancements proposed for
existing OLLMs (Zhao et al., 2025; Zhong et al., 2025; Rouditchenko et al., 2025; Yang et al., 2025b)
remain confined to particular downstream tasks, lacking broader generalizability. 3) Data scarcity
and high training costs. Current methods predominantly rely on extensive supervised finetuning
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Figure 1: Comparison between existing methods and ThinkOmni. We integrate an OLLM with
an LRM via guidance decoding, enabling advanced reasoning abilities with omni-modal input.

(SFT) (Xu et al., 2024; Yang et al., 2025c) (requiring tens of thousands of reasoning examples) or
reinforcement finetuning (RFT) (Shao et al., 2024; Yu et al., 2025) approaches demanding training
computational resources (e.g., 8×40G VRAM for 7B model, 16×80G VRAM for 32B model). These
challenges collectively motivate an important question: Is it possible to overcome the constraints of
data and training conditions to bring general reasoning abilities to omni-modal content?

In this paper, we propose ThinkOmni, a novel training-free framework designed to lift textual
reasoning to omni-modal scenarios (see Fig. 1(d)). Unlike existing approaches (see Fig. 1(c)) reliant
on costly data annotation or additional model training, ThinkOmni directly leverages off-the-shelf
LRMs as decoding-time guides for OLLMs. Specifically, we first introduce the LRM-as-a-Guide
strategy, enabling the integration of reasoning capabilities from LRMs into OLLMs. We further
identify a potential issue: a fixed guidance weight is unsuitable for all the tasks, and manual,
task-specific adjustment is impractical. To resolve this, we propose a Stepwise Contrastive Scaling
module, adaptively balancing perceptual and reasoning signals based on real-time analysis of model
predictions. This module adapts to various task types and facilitates coherent omni-modal reasoning.
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Figure 2: Performance comparison.

Extensive experiments conducted on six challenging multi-
modal reasoning benchmarks demonstrate the effectiveness
of our method. Specifically, our method improves the state-
of-the-art open source OLLM Qwen2.5-Omni (Xu et al.,
2025) by substantial margins without additional training,
as shown in Fig. 2, rivaling or surpassing models that un-
dergo extensive RFT. Additionally, compared to other guid-
ance decoding algorithms (Li et al., 2022; Liu et al., 2024),
our method reduces the burden of multi-modal data input,
thereby maintaining decoding efficiency.

ThinkOmni provides a flexible framework for lifting textual
reasoning to a more diverse and enriched input space. By
leveraging the strengths of OLLM and LRM, we explore the
effective generalization of reasoning capabilities to omni-
modal scenarios in a training-free manner. Besides, our
method is not limited to current LRMs. As new LLM technologies emerge (often developing faster
than multi-modal variants), our approach can be easily adapted to improve performance across
multi-modal variants and other downstream domains.

2 Preliminaries

2.1 Next Token Prediction

Given an omni-modal input O (e.g., images, audios, videos) and a sequence of text tokens x<t =
(x1, x2, . . . , xt−1), the OLLM M first computes the logits zt for the next token xt:

zt = M (x<t,O), (1)
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where zt ∈ RV and V is the vocabulary size. The probability distribution P for xt is then given by

P (xt | x<t,O) = Softmax(zt). (2)

Then x<t+1 = (x1, x2, . . . , xt). The model computes a distribution and decodes a token at each
step, resulting in an auto-regressive generation process.

2.2 Inference-time Guidance Decoding

Finetuning large language models is time-consuming and costly, highlighting the need for methods
to modify or control models’ behaviors without additional training. In this subsection, we introduce
the following works to understand our method better: Contrastive Decoding (Li et al., 2022), Visual
Contrastive Decoding (Leng et al., 2024), ProxyTuning (Liu et al., 2024), and ProxyThinker (Xiao
et al., 2025). For models within the same family (i.e., sharing the same token vocabulary), these
methods guide base model decoding by introducing a contrastive pair at the logits level:

ẑ = zbase + α · (z+ − z−)︸ ︷︷ ︸
contrastive pair

, (3)

where α controls the influence of the guidance signal. Here, z+ and z− represent the logits from the
positive and negative references, respectively. These encourage or discourage certain behaviors in
the model’s output. This mechanism is analogous to a differential amplifier circuit, which amplifies
the desired signals while suppressing noise. Consequently, the model can reduce hallucinations or
achieve preference alignment during inference without additional training.

Amat. LLMGuid. LLM
Large

Amat. LLM

Input

Output

(a) Contrastive Decoding (b) Visual Contrastive Decoding (c) ProxyTuning, ProxyThinker

Multi-modal LLM

NoiseInput

OutputOutput

Input

Guid. LLM Amat. LLM

Figure 3: Guidance decoding methods. “Guid.” denotes
the guiding model, and “Amat.” denotes the amateur model.

In Contrastive Decoding (Fig. 3(a)),
the contrastive pair is formed by com-
paring the responses to the same
prompt from the original guiding
model and an additional amateur
model, with z+ set to zbase. In Visual
Contrastive Decoding (Fig. 3(b)), the
contrastive pair is created by applying
different input conditions to the same
model. Specifically, z− is obtained
by adding Gaussian noise to the input
image and then performing inference.
In contrast to these approaches, Prox-
yTuning and ProxyThinker (Fig. 3(c))
construct contrastive pairs across different models within the same family, aiming to transfer behav-
iors from more minor, guiding models to larger, amateur models.

Existing guidance decoding methods are limited to scenarios with consistent input modalities and
available expert models. There is often no suitable expert model in omni-modal settings or other
downstream tasks, making it technically challenging to construct effective guidance signals. More-
over, the heterogeneity of modalities complicates the alignment and integration of guidance during
inference. Our work addresses these challenges by designing a framework for cross-modal guidance
decoding, enabling preference alignment without requiring modality-specific expert models.

3 Method

This section outlines the implementation roadmap of ThinkOmni, starting with a straightforward
guidance decoding approach. We first introduce LRM-as-a-Guide, which separates the input modal-
ities of the Omni-modal Large Language Model (OLLM) and incorporates an off-the-shelf Large
Reasoning Model (LRM) as a guiding component. While this approach is practical, coordinating
fixed guidance decoding hyperparameters remains challenging due to the varying demands for rea-
soning signals across different tasks and scenarios. To address this shortcoming, we propose Stepwise
Contrastive Scaling, a module that dynamically adjusts parameters based on real-time analysis of
model predictions, thereby adapting automatically to each decoding scenario. An overview of our
framework is provided in Fig. 4.
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Figure 4: Overview of ThinkOmni. The framework begins by separating input modalities of the
OLLM and introducing the LRM as a guiding model. Stepwise Contrastive Scaling dynamically
adjusts guidance parameters based on real-time prediction analysis, enabling adaptive and effective
decoding across diverse tasks.

3.1 LRM-as-a-Guide

As discussed in Sec. 2.2, to address the gap where current guidance decoding approaches are limited
to models with matched input modalities, we introduce the LRM-as-a-Guide, which lifts advanced
textual reasoning into the omni-modal content through collaborative decoding with OLLM.

Let MO denote the OLLM and MR denote the LRM. As shown in Fig. 6(a), we compute the
base logits with full omni-modal input, zbase = MO(x<t,O). Then we discard the omni-modal
content and feed MO only the textual prefix x<t. The results are treated as the negative logits
z− = MO(x<t). The positive logits are produced by the LRM on the same prefix z+ = MR(x<t).
As formulated in Eq. (3), the token probability distribution will then serve as

P̂ = Softmax
[
MO(x<t,O) + α ·

(
MR(x<t)−MO(x<t)

) ]
, (4)

where the scalar α determines the extent to which the LRM influences the OLLM. After obtaining
the mixed logits, we normalize them to probabilities and then sample the next token as usual.

Although the LRM cannot access omni-modal information, we mitigate this disadvantage and amplify
the reasoning preference through the logits contrastive. During the generation process, the OLLM
and LRM collaborate in a complementary manner. The OLLM, serving as the primary agent,
extracts and integrates omni-modal clues, while the LRM provides deeper reasoning over the textual
trace. As decoding progresses, the LRM can compensate for the lack of omni-modal information
by leveraging the already decoded tokens, and the OLLM achieves logical reasoning through the
reasoning preferences supplied by the LRM. Their strengths are seamlessly fused through logit
mixing, resulting in a unified decoding framework that effectively integrates perception and reasoning.

3.2 Stepwise Contrastive Scaling

While LRM-as-a-Guide effectively enables collaboration between the LRM and OLLM, there re-
mains room for improvement regarding the choice of the fixed guidance weight α. A fixed α may
not consistently achieve the optimal balance between perception and reasoning across different tasks.

(a) Case Study from MMAU

Audio Content:
"Male Speech and Child

Speech with music."

Answer: ...The audio contains a
background of music and speech...
The audio clearly includes music...

High LRM guidance i.e., 

Answer: ...Since I can't hear the
actual audio, I'll have to rely on the

information given...

Low LRM guidance i.e., High LRM guidance i.e., 

Answer: Step 1: Understand the Geometry...
Step 2: Calculate the Arc Length...
Step 3: Relate the Arc Length to...

Low LRM guidance i.e., 

Answer: ...I am very confused about
the construction of this paper

cap because I can't get...

User: Use a sector paper sheet with a central angle of 120.0 and a radius of 6.0 to roll
into a conical bottomless paper cap. What is the bottom perimeter of the paper cap?

User: Based on the given audio, identify which sound cannot be heard.

🤔😎 🤔 😎

(b) Case Stydy from MathVista

Figure 5: Case studies from (a) MMAU and (b) MathVista. (Sakshi et al., 2024; Lu et al., 2023)
Tasks require different levels of LRM involvement. Using a fixed α limits the ability of the model to
optimally adapt to task-specific needs, highlighting the need for a more flexible approach.
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(b) Step-wise Contrastive Scaling

There are three people in this video, but ...,
so it should be a cellist. Wait, there are two
playing cello. Hmm... I think the one sitting
in the center is more likely.

Figure 6: Detailed process of ThinkOmni. (a) The OLLM handles multi-modal inputs, while
the LRM focuses on textual reasoning. By mixing their logits, the system effectively integrates
perception and reasoning during token generation. (b) Each decoding step balances perception and
reasoning dynamically by comparing logit distributions under different conditions and models.

The OLLM prefers a smaller α to emphasize omni-modal cues, while the LRM benefits from a
larger α to strengthen its guidance. Additionally, since z+ and z− do not possess comprehensive
omni-modal content, excessive reliance on them (adopting a large α) can lead to recognition bias
such as hallucination (Fig. 5(a)). Conversely, setting α too low may diminish the effectiveness
of guidance, thereby constraining the logical reasoning capabilities (see Fig. 5(b)). Motivated by
this, we propose Stepwise Contrastive Scaling, which dynamically apportions a token’s prediction
budget between perception and reasoning through online analysis of logits.

We introduce a stepwise influence metric to determine whether each decoding step is dominated by
perception or reasoning. Specifically, all the generated logits are first transformed into probability
distributions with a softmax function, let PO , PR, P denote the corresponding distributions for
MO(x<t,O), MR(x<t), and MO(x<t), respectively. The pairwise distances between these distri-
butions are then quantified by the Jensen–Shannon divergence, which is employed in DoLa (Chuang
et al., 2023) to measure the similarity between two logits. This metric is symmetric, bounded, and
numerically stable, making it well-suited for our purposes:

DR = JS
(
PR ∥ P

)
, DP = JS

(
PO ∥ P

)
. (5)

Intuitively, DR reflects the unique influence of reasoning preference, whereasDP captures the contri-
bution from perceptual omni-modalities. A larger pairwise distance signifies that the corresponding
factor (perception or reasoning) impacts the current decoding step more. Building on this metric,
we proceed to reformulate Eq. (4) and introduce an additional contrastive logits term:

P̂ = Softmax
[
MO(x<t,O)+αr

t ·
(
MR(x<t)−MO(x<t)

)
+αp

t ·
(
MO(x<t,O)−MO(x<t)

)]
, (6)

where αr
t acts as the original guidance weight, capturing enhanced reasoning capability, whereas the

difference contributed by αp
t serves as an aggressive visual contrastive term (Leng et al., 2024) (i.e.,

by directly removing non-textual inputs rather than adding noise), reflecting augmented perceptual
capability. To improve decoding stability, we normalize the coefficients as αr

t = DR/(DR +DP )
and αp

t = DP /(DR +DP ), ensuring that the blended logits remain numerically stable. In practice,
when both DR and DP are small, the adaptive mixing reduces to P̂ ≈ PO, recovering the original
OLLM distribution. When both divergences are large, normalization induces a competitive dynamic,
allocating a larger weight to the modality with greater divergence.

As shown in Fig. 4, the entire ThinkOmni procedure is training-free, requiring no additional finetun-
ing or corpus statistics. Leveraging stepwise contrastive scaling, LRM-as-a-Guide can autonomously
evaluate the relative contributions of perceptual and reasoning signals at each generation step, seam-
lessly balancing these complementary abilities without manual hyperparameter tuning.
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Table 1: Model performance on several omni-modal reasoning benchmarks. Here, DeepSeek
refers to DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025), and Qwen3 denotes Qwen3-8B (Yang
et al., 2025a). The numbers in parentheses indicate the performance changes compared to the base
OLLMs Qwen2.5-Omni-3B / 7B (Xu et al., 2025) and Omni-R1 (Zhong et al., 2025).

Model MathVista
test-mini

MathVision
test

MathVerse
test-mini

MMAU(v05.15.25)
test-mini

DailyOmni
test

OmniBench
test

Close-Sourse Model
GPT-4o 63.8 30.4 50.8 62.5 56.5 -
Gemini-2.0-Flash 73.1 41.3 59.3 70.5 67.8 -
Open-Sourse Omni Model
Baichuan-Omni-1.5 63.6 - - 66.2 50.0 42.9
Ola 68.4 - - 70.3 50.71 -
Open-Sourse RFT Omni Model
Omni-R1 64.7 25.4 39.8 70.5 59.6 43.0
HumanOmniV2 68.8 25.4 37.3 75.3 58.5 41.9
ThinkOmni-Qwen2.5-Omni-3B
Qwen2.5-Omni-3B 56.0 18.2 32.0 69.4 56.6 37.5
+ DeepSeek 56.1(+0.1) 20.2(+2.0) 33.5(+1.5) 70.1(+0.7) 57.1(+0.5) 39.9(+2.4)
+ Qwen3 58.1(+2.1) 25.3(+7.1) 38.8(+6.8) 70.6(+1.2) 57.3(+0.7) 39.5(+2.0)
ThinkOmni-Qwen2.5-Omni-7B
Qwen2.5-Omni-7B 66.8 25.0 40.2 71.5 57.9 42.1
+ DeepSeek 68.8(+2.0) 28.2(+3.2) 42.0(+1.8) 73.8(+2.3) 59.8(+1.9) 43.2(+1.1)
+ Qwen3 70.2(+3.4) 32.9(+7.9) 45.1(+4.9) 75.5(+4.0) 59.5(+1.6) 43.6(+1.5)
ThinkOmni-Omni-R1
Omni-R1 64.7 25.4 39.8 70.5 59.6 43.0
+ DeepSeek 66.1(+1.4) 27.0(+1.6) 43.1(+3.3) 73.1(+2.6) 60.3(+0.7) 43.5(+0.5)
+ Qwen3 71.3(+6.6) 31.5(+6.1) 45.2(+5.4) 75.4(+4.9) 59.8(+0.2) 43.4(+0.4)

4 Experiment

4.1 Experiment Setup

Models To validate the effectiveness of ThinkOmni, we conduct experiments on three OLLMs:
Qwen2.5-Omni-3B / 7B (Xu et al., 2025) and Omni-R1 (Zhong et al., 2025). We utilize the
DeepSeek-R1-Distill series (Guo et al., 2025) and the Qwen3 series (Yang et al., 2025a), both in
thinking mode, as our LRMs to guide decoding.

Benchmarks To demonstrate the generalizability of ThinkOmni, we evaluate it on omni-modal
scenarios using six benchmarks, comprising over 10, 000 test samples in total: MathVista (test-
mini) (Lu et al., 2023), MathVision (Wang et al., 2024), MathVerse (test-mini) (Zhang et al., 2024),
MMAU-v05.15.25 (test-mini) (Sakshi et al., 2024), Daily-Omni (Zhou et al., 2025), OmniBench (Li
et al., 2024). More details are provided in Appendix B.1.

Evaluation We first use template matching for multiple-choice questions to extract the option
from the model’s output. If the answer cannot be extracted directly, we use GPT-4o to extract it
and then compare the extracted answer to the gold answer. For free-form questions, we first use
GPT-4o to extract the answer from the model’s output, then compare the extracted answer to the gold
answer to determine if their meanings are consistent. This process is designed to account for various
expressions in the answers.

4.2 Main Result

To evaluate the generality and scalability of ThinkOmni, we benchmark the improvements of different
LRM guides on several OLLMs with varying capability levels. Our main results are presented
in Tab. 1. The experiment result shows that ThinkOmni brings extensive improvements across
all OLLMs, LRMs, and benchmarks. For example, with the Qwen3 guide, ThinkOmni brings
remarkable improvement to Qwen2.5-Omni-7B on MathVision by 7.9%, achieving the final score of
32.9%. Since LRMs do not have access to omni-modal data contents, our results demonstrate that
ThinkOmni indeed lifts the complex reasoning of LRMs to the omni-modal scenario.
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Table 2: Comparison with several training-free methods. All are built upon Qwen2.5-Omni-7B.

Method MathVista
test-mini

MMAU(v05.15.25)
test-mini

OmniBench
test

Base Model 66.8 71.5 42.1
Average Logits Fusion 55.0(-11.8) 55.7(-15.8) 36.1(-6.0)
Caption-then-Answer 61.0(-5.8) 59.7(-11.8) 32.3(-9.8)
VCD 63.5(-3.3) 72.1(+0.6) 42.8(+0.7)
ProxyTuning 67.0(+0.2) 72.3(+0.8) 43.0(+0.9)
ThinkOmni (Ours) 68.8(+2.0) 73.8(+2.3) 43.2(+1.1)

We compare our approach with methods trained using reinforcement learning finetuning (RFT) (i.e.,
Omni-R1 (Zhong et al., 2025) and HumanOmniV2 (Yang et al., 2025b)). Based on the same foun-
dation model, Qwen2.5-Omni-7B, our DeepSeek-guided model achieves comparable performance,
while our Qwen3-guided model consistently outperforms all the RFT-based methods. Moreover,
our approach can be applied to models already undergoing RFT, further demonstrating broad perfor-
mance improvements.

In addition, we observe differences in performance gains, which the following factors can explain: 1)
the capabilities of LRM models, newer models like Qwen3, with stronger logical understanding and
reasoning abilities, achieve greater improvements compared to DeepSeek under identical settings;
2) the training data of LRMs is biased towards scientific and mathematical content, leading to more
pronounced gains on these tasks; 3) the tested tasks themselves differ in their demands for reasoning
ability, with scientific and mathematical tasks typically requiring more reasoning than audio or
general omni-modal tasks.

4.3 Compare with Training-free Methods

We use the original evaluation results of the OLLMs as a baseline. In addition, we compare our
method with several other training-free methods: 1) Average Logits Fusion, which directly averages
the output logits of the OLLM and LRM during inference. 2) Caption-then-Answer, where the
OLLM generates a detailed caption for the omni-modal input, and the LRM answers the question
based on this caption. 3) Visual Contrastive Decoding (VCD) (Leng et al., 2024), which enhances
perception by introducing noise to input content to generate negative logits. 4) ProxyTuning (Liu
et al., 2024; Xiao et al., 2025), which enhances model performance by leveraging the logits from
both the reinforcement finetuned small model and the original model, both of which are of the same
type (LLM in ProxyTuning, VLM in ProxyThinker, and OLLM in our implementation).

As shown in Tab. 2, compared to the base OLLM, only ProxyTuning and ThinkOmni achieve
performance improvements, with our method delivering a more substantial gain. For Average Logits
Fusion, although simple mixing of logits allows the model to generate outputs, it negatively impacts
answer accuracy due to improper integration. The Caption-then-Answer experiment demonstrates
that when the LRM alone is responsible for answering, even with multi-modal information provided
by the OLLM, performance drops significantly because information transmission is one-way. The
OLLM cannot respond to the LRM’s specific needs. VCD is designed to enhance attention to multi-
modal information rather than reasoning ability, so its performance declines on MathVista, which
requires stronger reasoning skills.

4.4 Ablation Study

Ablation study on fixed α and adaptive αr OLLM has limited capability in complex reasoning,
while LRM cannot access multi-modal content. Over-reliance on either component leads to sub-
optimal performance. As shown in Fig. 7(a), adjusting the fixed guiding weight α markedly impacts
results: when α = 0, performance matches the original OLLM, and extreme α values reduce scores
on both benchmarks. In contrast, our Stepwise Contrastive Scaling (Full ThinkOmni) consistently
achieves superior results across both benchmarks. Furthermore, Fig. 7(b) visualizes the distribution
of the dynamic αr, revealing distinct shifts across different tasks and underscoring the adaptive
nature of our method in autonomously tuning parameters to meet specific task requirements.
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(a) (b)
Figure 7: Ablation on guidance weight. Left: Performance varies with the constant guidance weight
α. Each task’s optimal α range differs, with α = 0 as the OLLM baseline. Right: ThinkOmni uses
adaptive dynamic weights, and the dynamic αr shows a similar distribution shift, indicating that
stepwise contrastive scaling can flexibly adapt to different task requirements.

Figure 8: LRM-as-a-Guide performance scaling. We replace the Guide LRM on several bench-
marks to study the impact of different LRM sizes and different LRM series on the performance of
our method. The baseline refers to the performance of the Qwen2.5-Omni-7B

Ablation study on different LRMs Fig. 8 demonstrates the performance of Qwen2.5-Omni-7B
under the guidance of LRM across different model sizes and series. When the LRM size is too
small, performance on MathVista and OmniBench both degrades, as the language capabilities of
LRM and the base OLLM are insufficiently matched. A sufficiently strong LRM positively impacts
all benchmarks, with larger LRMs generally yielding better results than smaller ones. However,
increasing the size to Qwen3-14B does not lead to further improvements on MMAU and OmniBench,
suggesting that enhanced reasoning ability has a limited effect on these tasks, although the results
still surpass the baseline.

4.5 Analysis

Qualitative analysis Fig. 9 illustrates the generation process of ThinkOmni, where darker colors
indicate greater LRM contributions to each token. These tokens, often logical connectives (e.g.,
“but”, “Therefore”) and key terms (e.g., “traditional”, “common”), are evenly distributed, showing
that LRM consistently guides reasoning rather than merely supplementing OLLM. This highlights
LRM’s role in analyzing multi-modal clues and driving logical inference. In contrast, lighter tokens
are mainly function words and specific terms reflecting multi-modal content, suggesting that OLLM
focuses on retrieving information and constructing fluent responses under LRM’s guidance. For
more cases, see Appendix D.

Failure case analysis We identified several representative failure cases from the response. 1)
ThinkOmni demonstrates correct multimodal perception, but conflicting information within the
input leads to erroneous reasoning. As shown in Fig. 10(a), the model correctly recognizes that the
highest visible marking on the beaker is 400ml. However, due to the beaker being labeled as 600ml,
the model incorrectly infers that only a portion of the beaker is visible in the image, resulting in the
wrong final answer. 2) Insufficient perceptual ability and limited sensitivity to subtle differences in
the input lead to incorrect answers. As illustrated in Fig. 10(b), the model fails to accurately detect
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Why would the audience find this performance novel?

A. Because the performance featured a completely
different set of instruments, resulting in unique timbres.

B. Because the performance was much faster than the
original composition.

C. Because the performance included vocal parts not
present in the original composition.

D. Because the performance was done in an
unconventional venue.

score

Figure 9: An OmniBench case study. This case study visualizes the reasoning process of
ThinkOmni-Qwen2.5-Omni-7B, highlighting the stepwise contrastive scaling coefficient αr.

(a) Failure case in MathVista (b) Failure case in MMAU

To determine the highest amount this beaker can
measure, let's analyze the markings on the beaker:

1. The beaker is labeled as "BOROSILICATE
GLASS 600ml".
2. The measurement markings on the beaker show
volume increments in milliliters (ml).
3. The highest visible marking on the beaker is
"400".

Given that the beaker is specifically labeled as
600ml, but the markings only go up to 400ml, it
appears that the image only shows a portion of the
beaker. Therefore, the final answer is 600.

Question: What is the highest amount this class measures? 

Correct perception but
Wrong reasoning

The drum kit initiates its performance at the start of
the audio, which is marked by the presence of finger
snaps. Therefore, the correct answer is B.

Question: At what point does the drum kit begin to play in the audio?
(A) After the introduction        (B) At the very beginning
(C) During the chorus             (D) When the bass starts 

Wrong perception leads
to Wrong reasoning

GT: 400
GT: A

Intro
ChorusDrum kit

begin

Bass starts

Figure 10: Failure case study. (a) ThinkOmni makes a reasoning error due to conflicting information
between the visible beaker markings (400ml) and the label (600ml). (b) ThinkOmni fails because it
cannot accurately detect the drum kit’s true start time in the audio.1

the actual onset of the drum kit in the audio and mistakenly identifies the beginning of the audio as
the start of the drum kit’s performance, ultimately producing the wrong answer.

Efficiency analysis Although our method introduces some additional computation, it remains
efficient. We measured generation latency on an H800-80G GPU with KV cache in the generate
stage, benchmarking VCD (Leng et al., 2024), ProxyTuning (Liu et al., 2024), and ThinkOmni using
100 random OmniBench (Li et al., 2024) samples. VCD performs two forward passes per step,
while ProxyTuning and ThinkOmni require three. As shown in Tab. 3, our method (7B+7B setting)
incurs 1.38× in the prefill stage (first token generation) and 2.88× in the generate stage (response
generation utilizing KV cache). Importantly, during decoding, the guiding model in ThinkOmni
processes only text, which helps to reduce latency.

Table 3: Generation latency comparison. Prefill Time: first token generation latency; Generate
Time: response generation with KV cache. Results are averaged over 100 samples from OmniBench.

Guidence Decoding Method Model Size Prefill Time ↓ Generate Time ↓
None (Baseline) 7B 0.138s 0.025s
VCD (Leng et al., 2024) 7B 0.262s (1.89×) 0.050s (2.00×)
ProxyTuning (Liu et al., 2024) 7B + 3B + 3B 0.406s (2.94×) 0.086s (3.44×)
ThinkOmni (Ours) 7B +7B 0.191s (1.38×) 0.072s (2.88×)
ThinkOmni (Ours) 7B +1.5B 0.191s (1.38×) 0.069s (2.76×)

5 Related Work

Omni-modal Large Language Models With the rapid advancement of large language models,
expanding their capabilities to omni-modal domains has become a key focus. Omni-modal Large
Language Models (OLLM) align and process information from multiple modalities, capturing richer

1For the reader’s understanding, the colored markings in Fig. 10 are visual aids added afterward and were
not provided to the model.
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semantics and context than single-modal systems. Proprietary models (Hurst et al., 2024; Deepmind,
2025) demonstrate impressive real-time multi-modal interaction, while open-source efforts such as
Qwen2.5-Omni (Xu et al., 2025; Li et al., 2025b; Liu et al., 2025c; Yang et al., 2025b; Fu et al.,
2025; Xie & Wu, 2024; Chen et al., 2024) are quickly closing the gap in modality alignment and
deployment.

Large Reasoning Model Recent advances in large-scale reasoning models, such as o1 (OpenAI,
2025) and DeepSeek-R1 (Guo et al., 2025), highlight the challenge of robust general reasoning.
Early methods used supervised fine-tuning with chain-of-thought data (Xu et al., 2024; Deng et al.,
2024), while recent work leverages reinforcement learning (Shao et al., 2024; Xiaomi et al., 2025;
Team et al., 2025; Yu et al., 2025; Tan et al., 2025; Zhu et al., 2025) for autonomous reasoning. As
OLLMs tackle complex cross-modal reasoning, bridging perception and reasoning remains a core
challenge.

Decoding-time Algorithm Decoding-time algorithms refine language model outputs at inference
in a training-free manner. Contrastive Decoding (O’Brien & Lewis, 2023) improves long-form gen-
eration by avoiding degenerate outputs, and Visual Contrastive Decoding (Leng et al., 2024) reduces
hallucination via visual input perturbation. ProxyTuning (Liu et al., 2024) combines expert outputs
and injects knowledge from finetuned models. ProxyThinker (Xiao et al., 2025) extends ProxyTun-
ing to multi-modal reasoning tasks. Beyond visual modalities, ThinkOmni adaptively integrates
reasoning with omni-modal perception, achieving a flexible fusion of fast and slow thinking.

6 Conclusion

We present ThinkOmni, a training-free inference-time framework that achieves robust and general-
izable reasoning enhancement by introducing an off-the-shelf LRM guide decoding with a stepwise
adaptive scaling mechanism. Across six challenging multi-modal benchmarks, it delivers consis-
tent gains, often matching or surpassing reinforcement-fine-tuned models, suggesting a general and
extensible paradigm for omni-modal reasoning.

Limitation ThinkOmni requires shared vocabularies between the OLLM and LRM for logit fusion
and introduces extra inference overhead due to additional forward passes. Nevertheless, we believe
our approach offers valuable insights for bridging the gap between multi-modal and textual LLMs
and provides a sustainable direction for future LLM improvements.

Ethics statement

This work introduces a training-free, data-free inference framework using only publicly available
models (Qwen2.5-Omni (Xu et al., 2025), Omni-R1 (Zhong et al., 2025), DeepSeek-R1 (Guo et al.,
2025), Qwen3 (Yang et al., 2025a)) and benchmarks (see Appendix B.1), without collecting new hu-
man, biometric, or sensitive data. Risks stem from inherited biases, possible hallucinated cross-modal
attributions, and over-trust in generated reasoning chains; the method does not ensure factuality or
safety in high-stakes domains. Before deployment, we advise bias auditing, human oversight, and
external safety / factuality filters. Environmental impact is reduced relative to finetuning because no
additional training is performed.

Reproducibility statement

Reproducibility is supported by: 1) the explicit inference formulation (Eq. 4 and Eq. 6; Algo-
rithm 1); 2) unified decoding hyperparameters (see Appendix B.1); 3) public benchmark splits and
the two-stage answer extraction pipeline follow VLMEvalKit (Duan et al., 2024); 4) hardware spec-
ification (H800-80G GPU, KV cache enabled). The code will be coming up soon upon acceptance.
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LLM Usage

LLMs were used only for 1) minor code scaffolding/refactoring (boilerplate, log parsing), 2) linguistic
polishing after technical content was finalized, and 3) answer string normalization in the evaluation
pipeline (format extraction, not scoring). They were not used for ideas, model/method design,
experiments, analyses, claims, or interpretations. The researchers authored, validated, and cross-
checked all algorithms, equations, results, and conclusions. Every LLM-assisted output was manually
reviewed to prevent hallucination. Thus, LLM involvement provides no creative contribution and
does not affect the authenticity or reliability of the paper.
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A A detailed explanation for ThinkOmni

At each decoding step t, the Omni-modal Large Language Model (OLLM) generates two token
probability distributions: conditioned on the full omni-modal input and the textual input only. In
contrast, the Large Reasoning Model (LRM) outputs a single distribution based solely on the textual
input.

We would like to decide how much of the next-token decision should be driven by perception (P (t)
O )

and how much by abstract reasoning (P (t)
R ). To gauge the disagreement between these signals, we

compute two Jensen–Shannon divergences

D
(t)
R = JS

(
P

(t)
R ∥ P (t)

)
, D

(t)
P = JS

(
P

(t)
O ∥ P (t)

)
.

D
(t)
R is large when the reasoner (LRM) wants a different token than the perceiver (OLLM text-only);

D
(t)
P is large when masking the multi-modal content changes the OLLM’s belief is crucial, i.e. when

perception.

Why does this work?

1. If the current step mainly requires perception (e.g. reading a label in the image or detecting
a sound), masking the modalities hurts the OLLM, so D

(t)
P is large while D

(t)
R stays small.

Consequently αr
t ≈ 0 and the model trusts the perception logits.

2. If the step calls for reasoning (e.g. algebraic manipulation after the visual information is
extracted), the text-only LRM disagrees with P (t), so D

(t)
R dominates and αr

t ≈ 1. The
generation is therefore guided by the stronger logical signal from the LRM.

3. For mixed cases, αt smoothly interpolates between the two extremes, allowing the decoder
to blend perception and reasoning in real time.

B Pseudo Code

To clearly illustrate the decoding procedure of ThinkOmni, we provide the overall pseudocode in
Algorithm 1. This algorithm describes how the Omni-modal Large Language Model (OLLM) and
the Large Reasoning Model (LRM) collaborate at inference time to achieve adaptive, training-free
omni-modal reasoning. At each decoding step, the framework dynamically fuses the perception and
reasoning signals via stepwise contrastive scaling, ensuring optimal balance between multi-modal
understanding and deep reasoning.

B.1 Experiment Details

Hyperparameter Settings During our experiments, we used the following inference parame-
ters to ensure standard model outputs and to prevent performance degradation and endless rep-
etitions, following (Yang et al., 2025a): a temperature of 0.6, a top p value of 0.95, a
repetition penalty of 1.03, and a max new tokens of 4096. In addition, all LRMs
append the <think> tag to the end of the prompt during inference to ensure the reasoning state is
activated (Guo et al., 2025).

Benchmarks Details The datasets used in our experiments include MathVista (Lu et al., 2023),
MathVision (Wang et al., 2024), MathVerse (Zhang et al., 2024), MMAU (Sakshi et al., 2024),
Daily-Omni (Zhou et al., 2025) and OmniBench (Li et al., 2024).

• MathVista (Lu et al., 2023): We evaluate on the test-mini split of MathVista (1,000
samples), a unified benchmark for mathematical reasoning in visual contexts, which includes
three newly introduced datasets (IQTest, FunctionQA, and PaperQA), as well as 9 MathQA
and 19 VQA datasets from previous work.

• MathVision (Wang et al., 2024): We evaluate on the MathVision dataset (3,040 samples),
a curated collection of high-quality mathematical problems with visual contexts. Covering
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Algorithm 1: ThinkOmni Decoding Framework
Input: OLLM MO; LRM MR; omni-modal input O ; initial tokens x<t

Output: Generated sequence Y
Y ← x<t;
for t = 1 to T do

zbase ← MO(x<t,O); z− ← MO(x<t); z+ ← MR(x<t); // Compute logits
PO ← Softmax(zbase); PR ← Softmax(z+); P ← Softmax(z−); // Get
distributions

DR ← JS(PR ∥ P ); DP ← JS(PO ∥ P );
αr
t ← DR/(DR +DP ); αp

t ← DP /(DR +DP ); // Adaptive weights
ẑt ← zbase + αr

t (z
+ − z−) + αp

t (z
base − z−);

P̂t ← Softmax(ẑt); // Fuse and normalize

Sample xt from P̂t; Append xt to Y ; x<t+1 ← (x1, ..., xt);
if xt is end-of-sequence then

break
end

end
return Y ;

16 mathematical disciplines and five difficulty levels, MATHVision offers a comprehensive
and diverse benchmark for assessing the mathematical reasoning abilities of LMMs.

• MathVerse (Zhang et al., 2024): We evaluate on the test-mini split of MathVerse (3,940
samples), a visual math benchmark with 2,612 multi-subject problems and diagrams. Each
issue is annotated into six multi-modal versions, totaling 15K samples, to assess MLLMs’
understanding of visual information in math reasoning.

• MMAU (Sakshi et al., 2024): We evaluate on the test-mini split of MMAU (1,000 samples),
which consists of 10K audio clips with natural language questions and answers across
speech, sounds, and music. Covering 12 retrieval and 15 reasoning types, MMAU challenges
models with expert-level, domain-specific audio understanding and reasoning.

• Daily-Omni (Zhou et al., 2025): We evaluate on Daily-Omni (1,197 samples), which
contains 684 videos from 11 YouTube categories and questions requiring integration of
audio, visual, and textual information. The benchmark covers 30-second and 60-second
videos to assess multi-modal reasoning abilities.

• OmniBench (Li et al., 2024): We evaluate on OmniBench (1,142 samples), which covers
a wide range of reasoning and cognitive skills, from perception to complex reasoning.
Tasks include object recognition, temporal and spatial reasoning, symbolic and quantitative
processing, and various audio types, including speech, sound events, and music.

C Future Work

ThinkOmni represents an attempt to introduce omni-modal capabilities based on textual reasoning
abilities. We plan to explore additional modalities, such as 3D point clouds, protein structures, and
reasoning applications in image/video generation scenarios. Moreover, we are also curious about
”what truly works during the reasoning process”, which is of great significance for understanding
why reasoning abilities in the textual domain can generalize to a wider range of modalities.
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D More Cases

Please answer the following question based on the given image and audio:
where this person in white close might be.
Please choose only one answer from the following options:
A. woman in jail
B. woman in shelter
C. man in court
D. man in police station

Audio content:
(Key to open the door + conversation + close the door)
I'll come back when the paperwork is complete.

Answer:
The dim lighting, bare walls, and the presence of a simple bed suggest a confined space
typical of a jail cell. The sound effects of metal clanging and a door slamming reinforce the
idea of a prison environment. The person's attire is modest, which could indicate a prisoner.

While shelters can have similar settings, the specific sound effects and the presence of a bed
rather than a cot or sleeping bag make it less likely. Shelters typically have more varied
furnishings and may not have the same level of confinement.

The setting does not resemble a courtroom, which usually has a bench, desks, and more
formal attire. The sounds heard do not match those of a court proceeding.

A police station might have similar elements, but the presence of sound effects and the
specific description of the room as a cell point more towards a jail rather than a police
station. Police stations often have more varied spaces and different types of furniture.

The answer is: A.

Figure 11: Omni-modal Reasoning.

Question: What is the most likely environment and time of day for these sounds?
Choices:
(A) Urban street at night
(B) Quiet home interior in the morning
(C) Busy office during lunch hour
(D) Forest trail at dusk

Answer: The cat's meowing, combined with bird chirping, suggests a quiet setting where
both animals are active, which is more common in a natural environment like a forest trail
during dusk. The presence of bird chirping also indicates daylight, eliminating the
possibility of it being at night or during a busy office hour. The quietness of the environment
points towards a home interior, but the presence of birds suggests an outdoor setting,
making the forest trail at dusk a less likely choice. Therefore, the most probable
environment is a quiet home interior in the morning. 

The answer is: B.

Audio content:
The audio includes the sounds of cats and birds, and the ambient sound is relatively open.

Figure 12: Audio Reasoning.
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Question: The derivative of f(x) at x=2 is ____ that at x=5
Choices:
(A) larger than
(B) equal to
(C) smaller than

Answer: To determine the relationship between the derivative of f(x) at x=2 and x=5,
we need to analyze the graph of the function f(x) = |2x - 3| + 1.

1. Identify the critical point: The function f(x) = |2x - 3| + 1 has a V-shape, which
means it has a vertex where the expression inside the absolute value changes sign.
This occurs at 2x - 3 = 0, which gives x = 3/2.

2. Analyze the slope on either side of the vertex:
   - For x < 3/2, the expression inside the absolute value is negative, so f(x) = -(2x - 3)
+ 1 = -2x + 3 + 1 = -2x + 4. The slope here is -2.
   - For x > 3/2, the expression inside the absolute value is positive, so f(x) = (2x - 3)
+ 1 = 2x - 3 + 1 = 2x - 2. The slope here is 2.

3. Evaluate the slopes at x=2 and x=5:
   - At x=2, which is greater than 3/2, the slope is 2.
   - At x=5, which is also greater than 3/2, the slope is still 2.

Since the slope (derivative) is the same for both x=2 and x=5, the derivative of f(x) at
x=2 is equal to that at x=5.

Therefore, the correct answer is B.

Figure 13: Visual Reasoning.
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