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Abstract

Dialogue Topic Segmentation (DTS) aims to001
divide dialogues into coherent segments. DTS002
plays a crucial role in various NLP downstream003
tasks, but suffers from chronic problems: data004
shortage, labeling ambiguity, and incremental005
complexity of recently proposed solutions. On006
the other hand, Despite advances in Large Lan-007
guage Models (LLMs) and reasoning strategies,008
these have rarely been applied to DTS. This pa-009
per introduces Def-DTS: Deductive Reasoning010
for Open-domain Dialogue Topic Segmenta-011
tion, which utilizes LLM-based multi-step de-012
ductive reasoning to enhance DTS performance013
and enable case study using intermediate result.014
Our method employs a structured prompting ap-015
proach for bidirectional context summarization,016
utterance intent classification, and deductive017
topic shift detection. In the intent classification018
process, we propose the generalizable intent019
list for domain-agnostic dialogue intent classi-020
fication. Experiments in various dialogue set-021
tings demonstrate that Def-DTS consistently022
outperforms traditional and state-of-the-art ap-023
proaches, with each subtask contributing to im-024
proved performance, particularly in reducing025
type 2 error. We also explore the potential for026
autolabeling, emphasizing the importance of027
LLM reasoning techniques in DTS.028

1 Introduction029

Dialogue Topic Segmentation (DTS) is a task that030

aims to divide a dialogue into segments where031

each segment focuses on a coherent topic. Figure 1032

shows an example of topic shift within a single dia-033

logue. DTS is crucial for various natural language034

processing (NLP) tasks, including response predic-035

tion (Lin et al., 2020; Xu et al., 2021b; He et al.,036

2022), response generation (Li et al., 2016; Xu037

et al., 2021a; Liu et al., 2022), dialogue state track-038

ing (Das et al., 2024), summarization (Bokaei et al.,039

2016; Chen and Yang, 2020; Qi et al., 2021; Zhong040

et al., 2022), question answering (Yoon et al., 2018;041

Figure 1: An example of a topic shift in a conversation.
The cues for a topic shift are highlighted in red.

Zhang et al., 2022), and machine reading compre- 042

hension (Ma et al., 2024). 043

Despite growing interest, DTS suffers from sev- 044

eral chronic challenges. First, the shortage of an- 045

notated data has led most recent DTS studies to an 046

unsupervised way, which generally yields subop- 047

timal performance. Second, ambiguity in segment 048

labeling has hindered the development of effec- 049

tive approaches. Lastly, recent studies: DialSTART 050

(Gao et al., 2023), UR-DTS (Hou et al., 2024) have 051

proposed incremental approaches that require more 052

parameter and complexity, enhancing prior studies: 053

CSM (Xing and Carenini, 2021) and DialSTART 054

(Gao et al., 2023), respectively. This progression 055

indicates that DTS is a challenging and often un- 056

derestimated problem. 057

While DTS struggles with its complexities, NLP 058

has witnessed significant advancements with the 059

rise of Large Language Models (LLMs) and reason- 060

ing methodologies. However, even considering the 061

robust problem-solving skills of these LLMs and 062

the challenges posed by DTS, reasoning strategies 063

are rarely applied in the DTS area. This is because 064

DTS has largely been treated as a lightweight sub- 065

task in NLP. Nonetheless, with the rise of AI-driven 066
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chat services, the demand for more advanced DTS067

modules is growing. LLMs with reasoning capa-068

bilities are well-suited to meet this need, making069

LLM-based DTS a viable solution.070

To establish clear criteria for topic shifts and071

simplify complex subtasks, we propose Def-DTS:072

a deductive reasoning approach for open-domain073

dialogue topic segmentation using LLM-based074

multi-step reasoning. Def-DTS employs structured075

prompting to guide LLMs through bidirectional076

context summarization, utterance intent classifica-077

tion, and deductive topic shift detection at the utter-078

ance level, with an emphasis on domain-agnostic079

intent classification.080

To evaluate Def-DTS, we test it on three dialogue081

datasets spanning open-domain and task-oriented082

settings across three key metrics. Our method con-083

sistently outperforms traditional and state-of-the-084

art unsupervised, supervised, and prompt-based085

techniques by a significant margin. Ablation studies086

confirm that each subtask enhances overall perfor-087

mance, with intermediate intent classification par-088

ticularly improving true-positive detection. Finally,089

we explore LLM-based auto-labeling for DTS. Our090

contributions are fourfold:091

• We introduce LLM reasoning techniques to092

DTS for the first time, consolidating insights093

from previous methodologies into a deductive094

and cohesive prompt design.095

• We propose a reformulation of DTS as an096

utterance-level intent classification, enabling097

flexible and task-agnostic prompting.098

• Our method empirically demonstrates supe-099

rior performance across nearly all comparative100

baselines, underscoring the efficacy of prompt101

engineering in DTS.102

• Through an in-depth analysis of our ap-103

proach’s reasoning results, we shed light on104

the challenges LLM reasoning faces in DTS105

and discuss the possibility of using LLM as a106

DTS auto-labeler.107

2 Related Works108

2.1 Dialogue Topic Segmentation109

Dialogue topic segmentation divides dialogues into110

coherent topic units. Due to limited annotated111

datasets, researchers have largely relied on unsuper-112

vised approaches despite their complexity (Xing113

and Carenini, 2021). Early methods like TextTil- 114

ing (Hearst, 1997) detected topic shifts via lexical 115

similarity, later improved with embedding-based 116

methods (Song et al., 2016). 117

Recent research emphasizes topical coherence 118

and similarity scoring. CSM (Xing and Carenini, 119

2021) leverages BERT-based coherence, while 120

Dial-START (Gao et al., 2023) incorporates Sim- 121

CSE (Gao et al., 2021) for topic similarity. SumSeg 122

(Artemiev et al., 2024) extracts key information via 123

summaries and applies smoothing to handle topic 124

variations. UR-DTS (Hou et al., 2024) enhances 125

segmentation by rewriting utterances to recover 126

missing references. Despite these advances, data 127

scarcity and performance limitations persist. 128

To address this, SuperDialSeg (Jiang et al., 2023) 129

introduces a supervised approach using large-scale 130

DGDS datasets (Feng et al., 2020, 2021). How- 131

ever, the available datasets remain limited for open- 132

domain conversations. 133

LLMs are also influencing DTS. S3-DST (Das 134

et al., 2024) applies structured prompting for di- 135

alogue state tracking and segmentation, but lacks 136

general applicability to diverse DTS settings. 137

2.2 Reasoning Strategy at LLM Inference 138

The advancement of LLMs (Brown et al., 2020) 139

has led to research on the integration of System 140

2 reasoning, including in-context learning (Brown 141

et al., 2020) and chain-of-thought prompting (Wei 142

et al., 2022). These techniques enable LLMs to 143

tackle complex tasks, such as symbolic mathemat- 144

ics (Yang et al., 2024), retrieval-augmented genera- 145

tion (Lewis et al., 2020), and data generation (Adler 146

et al., 2024). Studies show that intermediate rea- 147

soning steps significantly enhance performance in 148

areas like multi-hop reasoning (Wang et al., 2023) 149

and math problem-solving (Imani et al., 2023). 150

Building on this, we integrate LLM-based reason- 151

ing into DTS, leveraging its potential to improve 152

segmentation accuracy in this inherently complex 153

task. 154

3 Def-DTS 155

3.1 Overall Flow 156

Our method (Figure 2) applies multiple subtasks 157

to each utterance using a structured prompt for- 158

mat. The prompt template (Figure 2b) includes four 159

parts: valid label list, task description, output for- 160

mat, and input. As shown in Figure 2c, it comprises 161

three main subtasks: (i) bidirectional context ex- 162
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Figure 2: Prompt configuration and overall flow of our method: Def-DTS. (a) We utilize general intent list including
the intent-specific examples to enable domain-agnostic categorization. (b) We employ the xml structured input-
output format to stably provide the dialogue. (c) We instruct LLM to process the multi-step reasoning for each
utterance in a inference.

Algorithm 1 Def-DTS
Require: IntentPool X = {x1, x2, . . . , xm}
Require: StructuredDialogue D = {di}Ni=1, where di =
{ui, si} (utterance ui and speaker si)

Ensure: Results R = {ri}Ni=1, where ri = {Pi, Qi, Xi, Ti}
(bidirectional context (Pi, Qi), intent Xi, topic shift Ti)

1: R← ∅, S ← STRUCTUREDIALOGUE(D)
2: for i← 1 to N do
3: Pi ← EXTRACTCONTEXT(D,max(1, i− 2), i)
4: Qi ← EXTRACTCONTEXT(D, i+1,min(i+3, N))
5: Xi ← CLASSIFYINTENT(D[i], Pi, Qi, X)
6: Ti ← CLASSIFYTOPICSHIFT(Xi)
7: ri ← ri ∪ {(Pi, Qi, Xi, Ti)}
8: end for
9: return R

10: function EXTRACTCONTEXT(D, start, end)
11: context← SUMMARIZE(D[start : end])
12: return ”Ustart-Uend”, context
13: end function

14: function CLASSIFYINTENT(utterance, P,Q,X)
15: return classified_intent
16: end function

17: function CLASSIFYTOPICSHIFT(x)
18: return x ∈ {"introduce_topic", "change_topic"} ?

"YES" : "NO"
19: end function

20: function SUMMARIZE(context)
21: return summarized_context
22: end function

traction, (ii) utterance intent classification, and (iii) 163

deductive topic shift classification. Each subtask is 164

executed deductively, with further details in Algo- 165

rithm 1. 166

3.2 Structured Format 167

Inspired by previous DST research (Das et al., 168

2024), we use an XML-based structured prompt 169

to standardize LLM output, enhancing parsing effi- 170

ciency and minimizing post-processing. The input 171

template (Figure 2b) organizes utterances in <Ux> 172

elements, each containing speaker and utterance 173

content. The output (Figure 2c) follows the same 174

structured format, ensuring consistent labeling. A 175

complete template is available in Appendix A.1. 176

3.3 Bidirectional Context Extraction 177

In the first stage of Def-DTS, we instruct the LLM 178

to summarize both the preceding and subsequent 179

dialogues for each utterance. Considering bidirec- 180

tional context is commonly used in many methods 181

such as the BERT architecture (Devlin et al., 2019) 182

and frequently employed in unsupervised settings 183

(Gao et al., 2023; Hou et al., 2024), this strategy 184

has proven effective for understanding context in 185

dialogue. Although Das et al., 2024 only extracts 186

the preceding context to prevent contextual for- 187

getting, we improve upon this by extracting both 188

the preceding and subsequent contexts to enable 189

context-aware dialogue topic segmentation and pre- 190

vent contextual forgetting. 191

We opted for a fixed window size to ensure ap- 192
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plicability in unsupervised and real-world environ-193

ments without predefined segments, as it offers a194

robust approach when segment boundaries are not195

available. As shown in Figure 2c(i), we instruct196

the model to summarize no more than two pre-197

ceding turns using the <preceding_context> tag198

and no more than three subsequent turns using the199

<subsequent_context> tag. This window size of200

-2:-1 and 1:3 was chosen to balance context infor-201

mativeness and token efficiency, an approach that202

is similar to the method used in (Gao et al., 2023).203

By summarizing each context range, we aim to204

conserve tokens while maintaining nuanced topic205

relationships.206

Each element is composed of <range> . . .207

</range> for defining the summary scope and208

<context>. . . </context> for the actual sum-209

mary. Summarizing in this manner ensures that we210

capture relevant dialogue while keeping the context211

concise. Our experiments reveal that this approach212

effectively facilitates the observation of nuanced213

topic relationships.214

3.4 Utterance Intent Classification215

Intent Description

JUST Commenting on the preceding context
COMMENT without any asking. Not a topic shift

JUST Answering preceding utterance.
ANSWER Not a topic shift

DEVELOP Developing the conversation to similar
TOPIC and inclusive sub-topics. Not a topic shift

INTRODUCE Introducing a relevant but different topic.
TOPIC A topic shift

CHANGE Completely changing the topic.
TOPIC A topic shift

Table 1: Utterance intent list for open-domain dialogue.
Using this list, we categorize the utterance and deduc-
tively classify the topic shift label.

As there are issues with the ambiguity of the216

DTS datasets, simply providing descriptions for217

topic classification is insufficient to convey a pre-218

cise definition of topic changes. Therefore, we sug-219

gest that classifying the utterance using a well-220

defined and distinct list of labels, similar to in-221

tent classification, would be beneficial for DTS.222

Although most of intent classification tasks have223

been conducted within the context of Task Oriented224

Dialogue (TOD) (Liu and Lane, 2016; Chen and225

Luo, 2023), TOD typically involves datasets that226

are specific to a particular domain, making gen-227

eralization to other domains or more open-ended228

conversations challenging. 229

As a way to address this issue, we find that Xie 230

et al., 2021 identified five patterns of conversational 231

responses that are utilized in their annotation guide- 232

lines. These patterns reflect the natural characteris- 233

tics of the utterances, enabling intent classification 234

for various forms of dialogue. Detailed intent pat- 235

terns and descriptions are in Table 1. 236

Inspired by this research, we instruct model to 237

detect topic change through utterance intent classi- 238

fication. Specifically, after the bidirectional context 239

extraction, as shown in Figure 2c(ii), model clas- 240

sifies the utterance into an intent of the predefined 241

general intent pool (upper box of Figure 2a), con- 242

sidering previously generated bidirectional context. 243

Additionally, we enhance the model’s under- 244

standing of the intents by providing example di- 245

alogue for each intent, as shown in the General in- 246

tent pool in Figure 2a. The intent-specific examples 247

provide the model with a helpful guideline detect- 248

ing topic changes, allowing it to derive results in 249

the subsequent subtask, deductive topic shift. Also 250

in order to prove the significance of our intent la- 251

bels through statistical frequency analysis from the 252

traditional text segmentation method, which can be 253

found in Section 5.4. We observed significant per- 254

formance improvements across various dialogue 255

settings using this technique, enabling a detailed 256

analysis of each intent. The process of selecting 257

examples in Appendix A.4. 258

3.5 Deductive Topic Shift Classification 259

Finally, the model predicts whether the topic is 260

changing based on the deductive guidelines from 261

the previous intent classification result, as shown in 262

Figure 2c(iii). This task is processed in an enforced 263

manner, and the model deductively outputs the pre- 264

determined label based on the intent classification 265

results of the previous step, according to the tail of 266

description (i.e. Not a topic shift or A topic shift) 267

for each intent described in Table 1. 268

We explicitly instruct the model to process this 269

step for two reasons. First, it simplifies the parsing 270

process, making the task easy to handle. Second, it 271

ensures that the model explicitly outputs the result 272

of primary goal, allowing it to stay focused on the 273

main objective(DTS), while working through the 274

subtasks. 275
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Dataset # Sample Utterance per Dial. Segment per Dial.

avg min max avg avg.len

TIAGE 100 15.6 14 16 4.2 3.8
SuperDialseg 1322 12.1 7 19 4.0 3.0
Dialseg711 711 26.2 7 47 4.9 5.4

Table 2: Statistics of datasets for dialogue topic segmen-
tation.

4 Experiments276

4.1 Datasets277

We evaluated our method on three datasets: TIAGE,278

SuperDialseg, Dialseg711 to verify the perfor-279

mance of our method in both open-domain and task-280

oriented settings. Dataset statistics are presented in281

Table 2.282

TIAGE (Xie et al., 2021) is the only publicly283

available dataset with topically segmented daily284

conversations, derived from PersonaChat (Zhang285

et al., 2018) and designed to model topic shifts286

in open-domain dialogue. SuperDialseg (Jiang287

et al., 2023) is a large-scale dialogue segmenta-288

tion dataset based on document-grounded corpora,289

offering a framework for identifying segmentation290

points in document-based dialogues. Dialseg711291

(Xu et al., 2021b) is a real-world dialogue dataset292

auto-labeled from MultiWOZ (Budzianowski et al.,293

2018) and Stanford Dialog Dataset (Eric et al.,294

2017), created by joining dialogues with distinct295

topics, resulting in clear topical differences and296

low coherency at segment boundaries due to its297

synthetic nature.298

4.2 Evaluation Metrics299

As early studies (Xing and Carenini, 2021; Jiang300

et al., 2023; Artemiev et al., 2024) did, we lever-301

age Pk error (Beeferman et al., 1997), WindowDiff302

(WD) error (Pevzner and Hearst, 2002), and the f1303

score. The Pk error is calculated by counting the304

existence of a misallocated segment with a sliding305

window of predictions. The WD error is calculated306

by comparing the number of boundaries within307

the sliding window of gold labels and predictions.308

Note that the lower Pk or WD means the higher309

performance.310

4.3 Comparison Methods311

We propose a sophisticated DTS method based on312

prompt engineering way and compare its perfor-313

mance with various unsupervised, supervised, and314

LLM-based methodologies. First, we compare our315

method with a random baseline that arbitrarily as-316

signs segment boundaries based on a randomly cho- 317

sen number of segments. Next, we compare it to no- 318

table unsupervised learning methods based on Text- 319

Tiling like Coherence Scoring Model (CSM) (Xing 320

and Carenini, 2021), DialSTART (Gao et al., 2023), 321

SumSeg (Artemiev et al., 2024). We also compare 322

supervised learning methodologies. We selected 323

the basic BERT model(Devlin et al., 2019), the ad- 324

vanced and high-performing RoBERTa model(Liu, 325

2019), RetroTS-T5(Xie et al., 2021) system for our 326

comparative analysis. Finally, we compare our ap- 327

proach with recently introduced LLM-based meth- 328

ods. We applied these methods using gpt-4o.1 We 329

selected the PlainText prompts performed in Super- 330

Dialseg(Jiang et al., 2023) and the prompt of S3- 331

DST(Das et al., 2024). The details of the method- 332

ology utilized for each of the actual comparisons 333

are discussed in the Appendix D.1. 334

4.4 Experimental Results 335

The experimental results are presented in Ta- 336

ble 3. Def-DTS consistently demonstrated supe- 337

rior performance among LLM-based methods and 338

achieved state-of-the-art results on the TIAGE and 339

Dialseg711 datasets, which are closely aligned with 340

our objective of analyzing general open-domain di- 341

alogues. In contrast, other LLM-based methods 342

showed lower performance not only compared to 343

supervised learning and some unsupervised meth- 344

ods, indicating that simply using an LLM is not a 345

guarantee of success. 346

TIAGE Compared to S3-DSTuttr, the recent 347

LLM-based method, our method achieved reduc- 348

tions of more than 0.2 in both Pk and WD er- 349

rors, along with an impressive increase of more 350

than 0.4 in the F1 score. Furthermore, Def-DTS 351

outperformed even the supervised approaches in 352

TIAGE, surpassing them in all metrics by over 10%, 353

thus highlighting the effectiveness of our approach 354

in achieving high performance across various di- 355

alogue environments without additional training, 356

even in domain-agnostic settings. 357

SuperDialseg Our method outperformed all un- 358

supervised methods. Although it showed lower per- 359

formance compared to models trained using super- 360

vised learning, it achieved the best results among 361

unsupervised methods that use prompt-based tech- 362

niques. 363

1https://platform.openai.com/docs/models/
gpt-4o
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Method TIAGE SuperDialseg Dialseg711

Pk↓ WD↓ F1↑ Pk↓ WD↓ F1↑ Pk↓ WD↓ F1↑

Unsupervised Learning Methods

Random 0.526 0.664 0.237 0.494 0.649 0.266 0.533 0.714 0.204

TextTiling 0.469 0.488 0.204 0.441 0.453 0.388 0.470 0.493 0.245
TextTiling+Glove 0.486 0.511 0.236 0.519 0.524 0.353 0.399 0.438 0.436
CSM 0.400 0.420 0.427 0.462 0.467 0.381 0.278 0.302 0.610
DialSTART 0.482 0.528 0.378 0.373 0.412 0.627 0.179 0.198 0.733
SumSeg 0.482 0.496 0.075 0.479 0.485 0.119 0.477 0.483 0.070

Supervised Learning Methods

BERT 0.418 0.435 0.124 0.214 0.225 0.725 - - -
RoBERTa 0.265 0.287 0.572 0.185 0.192 0.784 - - -
RetroTS-T5 0.280 0.317 0.576 0.227 0.237 0.733 - - -

LLM-based Methods

Plain Text 0.445 0.485 0.185 0.412 0.427 0.048 0.333 0.353 0.010
S3-DSTuttr 0.439 0.498 0.265 0.442 0.469 0.404 0.087 0.109 0.790
Def-DTS (Ours) 0.232 0.256 0.699 0.315 0.324 0.686 0.015 0.018 0.979

Table 3: Performances on three datasets. Due to absence of train and validation split for Dialseg711 dataset, There
are no report in dialseg711’s supervised learning part. The best results for each method group are highlighted in
bold. The best performances around all method are indicated as red colored text.

Dialseg711 Our approach also delivered superior364

performance. Notably, it surpassed the strongest365

LLM-based approach, S3-DSTuttr, underscoring366

the general applicability and robustness of our367

method.368

Overall, these consistent improvements across369

all tested datasets confirm the robust effectiveness370

of our approach for diverse open-domain dialogue371

scenarios, demonstrating that it not only excels372

in unsupervised settings, but also surpasses previ-373

ously leading LLM-based methods. This further374

establishes potential of our method for delivering375

high performance even under challenging, domain-376

agnostic conditions.377

5 Analysis and Discussion378

5.1 Ablation Study379

To assess the contributions of each part of our ap-380

proach, we performed an ablation study. The results381

are shown in Table 4. In the w/o all components382

case, the model is instructed to detect topic shifts383

without context extraction or intent classification.384

In the w/o intent case, the model detects topic385

shifts after context extraction for each utterance.386

We observe that w/o intent performs worse than387

w/o all components, indicating that relying solely388

Method TIAGE

Pk↓ WD↓ F1↑

w/o all 0.295 0.333 0.605
w/o intent 0.316 0.342 0.524

w/o examples 0.287 0.308 0.617
w/o context 0.263 0.296 0.682

w/o bidirectional 0.269 0.301 0.659
Def-DTS 0.232 0.256 0.699

Table 4: Ablation study.

on dialogue context for topic shift prediction does 389

not yield optimal performance. In the w/o exam- 390

ples case, this is essentially Def-DTS but without 391

examples for intent. w/o examples performed better 392

than w/o intent, showing that processing context 393

into intent before using it for topic shift prediction 394

provides a significant advantage. In the w/o context 395

case, the model is instructed to detect topic shifts 396

after intent classification for each utterance, which 397

is the opposite of the w/o intent case. This result 398

demonstrates that intent classification, when sup- 399

ported by appropriate examples, has a significant 400

impact on topic shift prediction for individual ut- 401

terances. In the w/o bidirectional context case, the 402

subsequent context is not considered at the context 403
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extraction step. Compared to both the Def-DTS and404

w/o context case, this case showed lower perfor-405

mance, highlighting that considering bidirectional406

context is crucial for intent classification and topic407

shift detection. In summary, each module of Def-408

DTS contributes to performance improvement, and409

when all modules are applied, they work synergisti-410

cally to yield a substantial increase in performance.411

5.2 Intent Classification Accuracy412

Intent TP FP TN FN Acc

JUST_COMMENT 0 1 498 35 0.93
JUST_ANSWER 0 1 456 23 0.95

DEVELOP_TOPIC 0 0 119 47 0.71
INTRODUCE_TOPIC 189 68 0 0 0.73

CHANGE_TOPIC 21 6 0 0 0.78

Table 5: Intent-level confusion matrix for TIAGE bench-
mark.

As our method deduces topic shifts directly from413

utterance intent, analyzing the intent classification414

results is crucial. We examine the confusion ma-415

trix (Table 5) to identify the utterance types that416

the model struggles with. Since there is no ground417

truth about intent and only topic shift labels are418

provided, correctness is determined by whether the419

predicted intent aligns with the topic shift label. For420

instance, if an utterance is a topic shift but classi-421

fied as JUST_COMMENT for intent and NO for422

topic shift, it counts as a False Negative (FN).423

Most results performed well in topic shift424

classification, except for two cases: positives in425

JUST_COMMENT and JUST_ANSWER. These426

findings indicate that the model’s primary chal-427

lenge lies in distinguishing subtle topic differences428

as actual shifts, a more significant factor in per-429

formance degradation than other utterance types.430

Analysis of additional datasets (SuperDialseg, Di-431

alseg711) is in Appendix B.432

5.3 Intent Level Comparison433

We compared the performance of various ap-434

proaches across different intent categories pre-435

dicted by our method, as shown in Figure 3. In436

(a) MATCHED INTENT, for utterances without437

a topic shift, other methodologies achieved ap-438

proximately 80-85% accuracy when our method439

was also correct. However, for utterances that in-440

volve a topic shift, the accuracy of other methods441

dropped to around 20-50% for the correct case442

of our method. In (b) MISMATCHED CASE, for443

Figure 3: (a) MATCHED INTENT indicates the accu-
racy of the other methodologies for grouped utterances
by our intent classification process only in the true cases
of our method. (b) MISMATCHED CASE indicates
the co-error count of the other methodologies with our
methods for only in the false cases of our method.

utterances without a topic shift, other methods cor- 444

rectly classified 50% of the cases where our method 445

was incorrect. However, for utterances with a topic 446

shift, other methods failed to classify 80% of the 447

cases that our method also missed. This demon- 448

strates that detecting utterances with actual topic 449

shifts is considerably more challenging than detect- 450

ing those without topic shifts. Our method outper- 451

forms the other methodologies by roughly 20% 452

in cases without topic shifts, and by over 40% 453

in cases with topic shifts. In summary, while our 454

approach improves accuracy across all cases, it 455

shows even greater improvement when handling 456

utterances with topic shifts. 457

5.4 Linguistic Test for Intent Labels 458

To demonstrate the impact of intent labels on topic 459

shifts, we adopted methods from statistical lin- 460

guistics. Traditional text segmentation uses pauses, 461

cue words, and referential noun phrases to identify 462

boundaries (Passonneau and Litman, 1997). Galley 463

et al., 2003 found a significant correlation between 464

cue phrases and topic segmentation. Building on 465

this, we hypothesized that cue words in labels like 466

"introduce topic" and "change topic" correlate with 467

their overall frequency in the data. A χ2 test yielded 468

χ2(32) = 76.2263, p < 0.001, confirming a signif- 469

icant relationship. This validates our labels as lin- 470

guistically rich markers of discourse boundaries 471

and provides a criterion for selecting topic-shift 472

data in new datasets. 473
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Model TIAGE SuperDialseg Dialseg711

Pk↓ WD↓ F1↑ Pk↓ WD↓ F1↑ Pk↓ WD↓ F1↑

Plain Text + Llama 0.472 0.515 0.215 0.492 0.495 0.026 0.350 0.373 0.032
Plain Text + Qwen 0.495 0.533 0.162 0.485 0.487 0.059 0.422 0.434 0.012

S3-DSTuttr + Llama 0.456 0.474 0.143 0.490 0.512 0.072 0.158 0.190 0.553
S3-DSTuttr + Qwen - - - - - - - - -

Def-DTS + Llama 0.307 0.339 0.552 0.384 0.385 0.432 0.029 0.039 0.941
Def-DTS + Qwen 0.327 0.345 0.530 0.433 0.434 0.171 0.102 0.208 0.729

Table 6: Performances on the local LLMs. We employed Llama-3.1-70B-Instruct and Qwen2.5-72B-Instruct for
Llama and Qwen, respectively. The case of best performance across all method are highlighted in bold.

5.5 Performance Comparison for Local LLMs474

We conducted experiments using local LLMs in-475

stead of GPT-4, specifically using Lama 3.1 and476

Qwen 2.5, with the exact model names listed in Ta-477

ble 6. For the experiments, we tested three prompts:478

Plain Text, S3-DSTuttr, and Def-DTS. To ensure479

efficiency, we randomly sampled 100 examples480

from each dataset. Def-DTS achieved the highest481

performance in all datasets in this experiment. Ex-482

periments with LLMs of various sizes are presented483

in the Appendix C. In the case of Qwen, formatting484

errors were observed in all datasets. Although plain485

is an unstructured method, it did not have errors,486

but its performance remained comparatively lower.487

These results demonstrate that Def-DTS maintains488

high accuracy in different LLMs.489

5.6 Discussion for Possibility of Auto-Labeling490

As various auto-labeling methodologies have been491

proposed to date, we assess prompt engineering492

could potentially serve as a viable auto-labeling493

methodology. We conducted a preliminary exper-494

iment to assess the feasibility of using prompt en-495

gineering for DTS. We compared the segment la-496

bels generated by GPT-4 for Def-DTS with the497

correct labels using Cohen’s Kappa score. The re-498

sults showed Kappa scores of 0.485 for TIAGE,499

0.429 for SuperDialseg, and 0.975 for Dialseg711,500

indicating moderate agreement for TIAGE and Su-501

perDialseg, and almost perfect agreement for Di-502

alseg711. Notably, our labeling result for TIAGE503

exceeded the 0.479 agreement score observed be-504

tween actual human annotators. While improve-505

ments are needed given the moderate agreement,506

these findings suggest that our approach can still507

function as a minimal annotator.508

6 Conclusion 509

Previous approaches to DTS have been constrained 510

by several challenges, including data shortage, 511

ambiguity of segment labeling, and increasingly 512

complex model architectures. Concurrently, The 513

promising approach of reasoning with LLMs has 514

yet to be explored in the context of DTS. To address 515

these issues, we propose Def-DTS, that leverages 516

LLMs in conjunction with sophisticated reason- 517

ing strategies. Def-DTS incorporates bidirectional 518

context extraction, a crucial component in previ- 519

ous research, along with the novel task of utter- 520

ance intent classification. This approach demon- 521

strates significant performance improvements in 522

both the open-domain dialogue setting and the 523

task-oriented dialogue setting. Its efficacy across 524

diverse datasets is enhanced through the provision 525

of dataset-specific examples in the utterance in- 526

tent classification task, enabling adaptable perfor- 527

mance in varied dialogue contexts. Through its pri- 528

mary findings and diverse analysis, we demonstrate 529

the efficacy of LLM-reasoning as a promising ap- 530

proach to DTS. It not only highlights the potential 531

of our method, but it also statistically delineates 532

the challenges to be addressed in future research. 533

In subsequent investigations, we intend to explore 534

the feasibility of automated labeling for DTS and 535

examine the potential integration of DTS with other 536

NLP downstream tasks through LLM reasoning. 537

7 Limitations 538

Firstly, though we have demonstrated the signifi- 539

cance of the current intent labels by statistical lin- 540

guistic experiments, we cannot entirely rule out 541

the possibility that more suitable intent labels ex- 542
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ist. Additionally, as we provide a first approach for543

selecting representative examples, a more in-depth544

exploration of methodologies for selecting optimal545

examples remains a future step of this research. In546

order to improve the quality of intents and exam-547

ples in a variety of dialogue settings, the funda-548

mental problem must be addressed first, namely549

the provision of quality datasets for DTS. Dialogue550

should include thorough labeling criteria and real-551

istic dialogue domains to address our limitations.552

However, human labeling is not only still expensive553

but also carries the risk of inconsistent or ambigu-554

ous labeling. We believe that automated labeling555

using LLMs with a sophisticated guideline will556

play a crucial role in creating a more sustainable557

and reliable DTS environment.558

References559

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh,560
Pallab Bhattacharya, Annika Brundyn, Jared Casper,561
Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al.562
2024. Nemotron-4 340b technical report. arXiv563
preprint arXiv:2406.11704.564

Aleksei Artemiev, Daniil Parinov, Alexey Grishanov,565
Ivan Borisov, Alexey Vasilev, Daniil Muravetskii,566
Aleksey Rezvykh, Aleksei Goncharov, and Andrey567
Savchenko. 2024. Leveraging summarization for568
unsupervised dialogue topic segmentation. In Find-569
ings of the Association for Computational Linguis-570
tics: NAACL 2024, pages 4697–4704, Mexico City,571
Mexico. Association for Computational Linguistics.572

Doug Beeferman, Adam Berger, and John Lafferty.573
1997. Text segmentation using exponential mod-574
els. In Second Conference on Empirical Methods575
in Natural Language Processing.576

Mohammad Hadi Bokaei, Hossein Sameti, and Yang577
Liu. 2016. Extractive summarization of multi-party578
meetings through discourse segmentation. Natural579
Language Engineering, 22(1):41–72.580

Tom Brown, Benjamin Mann, Nick Ryder, Melanie581
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind582
Neelakantan, Pranav Shyam, Girish Sastry, Amanda583
Askell, Sandhini Agarwal, Ariel Herbert-Voss,584
Gretchen Krueger, Tom Henighan, Rewon Child,585
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens586
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-587
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,588
Christopher Berner, Sam McCandlish, Alec Radford,589
Ilya Sutskever, and Dario Amodei. 2020. Language590
models are few-shot learners. In Advances in Neural591
Information Processing Systems, volume 33, pages592
1877–1901. Curran Associates, Inc.593

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang594
Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-595
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A Prompts829

A.1 Prompt Template830

Prompt Template
<valid_utterance_intent> <item>
<name>JUST_COMMENT</name>
<desc>Commenting on the preceding context without any asking. Not a topic shift</desc>
<example>
<speaker1>My dad works for the New York Times.</speaker1>
<speaker2>Oh wow! You know, I dabble in photography; maybe you can introduce us some-
time.</speaker2>
<speaker1>Photography is the greatest art out there. (not a topic shift)</speaker1>
</example>
</item>
<item>
<name>JUST_ANSWER</name>
<desc>Answering preceding utterance. Not a topic shift</desc>
<example>
<speaker1>Do you teach cooking? </speaker1>
<speaker2>No, since I’m a native of Mexico, I teach Spanish. (not a topic shift)</speaker2>
</example>
</item>
<item>
<name>DEVELOP_TOPIC</name>
<desc>Developing the conversation to similar and inclusive sub-topics. Not a topic shift</desc>
<example>
<speaker1>Pets are cute!</speaker1>
<speaker2>I heard that Huskies are difficult dogs to take care of. (not a topic shift)</speaker2>
</example>
</item>
<item>
<name>INTRODUCE_TOPIC</name>
<desc>Introducing a relevant but different topic. A topic shift</desc>
<example>
<speaker1>You are an artist? What kind of art, I do American Indian stuff.</speaker1>
<speaker2> I love to eat too, sometimes too much. (a topic shift)</speaker2>
</example>
</item>
<item>
<name>CHANGE_TOPIC</name>
<desc>Completely changing the topic. A topic shift</desc>
<example>
<speaker1>What do you do for fun?</speaker1>
<speaker2>I drive trucks so me and my buds go truckin in the mud.</speaker2>
<speaker1>Must be fun! My version of that’s running around a library!</speaker1>
<speaker2>That’s cool! I love that too. Do you have a favourite animal? Chickens are my favourite. I love
them. (topic shift)</speaker2>
</example>
</item>
</valid_utterance_intent>
<valid_topic_shift_label>
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Prompt Template
<item>
<name>YES</name>
<desc>The current utterance has **weak OR no topical** relation to the preceding conversation context
OR is the first utterance in the conversation, marking the beginning of a new dialogue segment.</desc>
</item>
<item>
<name>NO</name>
<desc>The current utterance has **relevant OR equal** topic to the preceding conversation con-
text.</desc>
</item>
</valid_topic_shift_label>

## TASK ##
You are given a dialogue starting with U. From utterance number 0, you have to answer the following
sub-tasks for each utterance.
1. Summarize the preceding and subsequent context in <=3 sentences seperately
The range of the context should be previous or next 1-3 utterances except for the case of the first or last
utterance.
For example, given current utterance number is 2, preceding range is 0-1, subsequent range is 3-5.
2. Output the utterance_intent
Use the list <valid_utterance_intent> ... </valid_utterance_intent> to categorize utterance.
Consider topical difference between preceding and subsequent context.
3. Output the topic_shift_label
Use the list <valid_topic_shift_label> ... </valid_topic_shift_label>.

## OUTPUT FORMAT ##
<U{utterance number}>
<preceding_context>
<range>{range of utterances referred in context}</range>
<context>{context of the previous 1-3 utterances}</context>
</preceding_context>
<subsequent_context>
<range>{range of utterances referred in context}</range>
<context>{context of the next 1-3 utterances}</context>
</subsequent_context>
<utterance_intent>{valid utterance intent}</utterance_intent>
<topic_shift_label>{valid topic shift label}</topic_shift_label>
</U{utterance number}>

## INPUT ##
{XML-structured dialogue}

## OUTPUT ##

Table 7: We provide prompt template for main dataset: TIAGE. Each dataset has different characteristics to other
datasets, so we modified intent pool from original template for each dataset.
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A.2 Intent Labels for other datasets831

Intent Description

DIFFERENT Questioning about something that is not similar or
QUESTION topically different to preciding context. A topic shift

RELEVANT Questioning about something that is similar or topically
QUESTION coherent to preceding context. Not a topic shift

ANSWERING Answering preceding utterance.
Not a topic shift

ADDITIONAL An additional comment from the same speaker
COMMENT in addition to a previous utterance. Not a topic shift

Table 8: Utterance intent list for SuperDialseg dataset.

For the Dialseg711 dataset, we delete an intent832

named INTRODUCE_TOPIC from the original in-833

tent list. For the SuperDialseg dataset, the topic834

shift occurs when the utterance refers to a differ-835

ent document to previous utterance. As shown in836

Table 8, we completely change the intent from the837

original to fit to document grounded dialogue set-838

ting based topic transition.839

A.3 Modification of TIAGE Response840

Patterns841

Scenario Topic Shift

Commenting on the previous context No
Question answering No

Developing the conversation to sub-topics No
Introducing a relevant but different topic Yes

Completely changing the topic Yes

Table 9: Intent labels in different dialog scenarios.

TIAGE (Xie et al., 2021) was originally designed842

for real-time topic shift detection without using a843

subsequent context. Consequently, its conversation844

response pattern list cannot be applied as is for our845

full-dialogue segmentation task. To address this,846

we propose two methods. First, instead of classify-847

ing each utterance with only its immediate context,848

we retrieve both preceding and subsequent context849

to inform our decisions. This bidirectional view850

captures how an utterance relates to what was said851

before and what follows, enabling more precise852

intent classification. Second, we adapt TIAGE’s853

original response pattern list to our classification854

objectives by reorganizing patterns (e.g., Asking)855

and refining the description of each intent (e.g.,856

Relevant, Inclusive). This transformation ensures857

a more granular detection of whether an utterance858

continues the topic or shifts in a subtle way. By859

employing these enhancements, we achieve signif-860

icantly better performance in segmenting topics861

across entire dialogues, surpassing the results ob- 862

tained by using TIAGE’s list unaltered. 863

A.4 Construction of Intent Examples 864

For the TIAGE dataset, we used the examples di- 865

rectly from their paper. For other datasets, we ran- 866

domly selected parts of the conversation from the 867

Train split that adhere to the following rules: 868

• Select 2–3 consecutive utterances for each ex- 869

ample. 870

• Ensure that the final utterance in the example 871

corresponds to the target utterance intent. 872

• Extract all the examples from a single dia- 873

logue. 874

• Keep the utterance lengths concise (within 875

100 characters). 876

This domain-independent guideline can be an ini- 877

tial pathfinder to tailor the best examples in dia- 878

logue, though it may not be perfect. 879

B Analysis on other datasets 880

B.1 Ablation Study 881

Method SuperDialseg Dialseg711

Pk↓ WD↓ F1↑ Pk↓ WD↓ F1↑

w/o all 0.378 0.382 0.467 0.007210 0.009416 0.987245
w/o intent 0.363 0.364 0.448 0.093486 0.127211 0.701330

w/o examples 0.338 0.341 0.646 0.005826 0.012322 0.984733
w/o context 0.327 0.331 0.635 0.005800 0.008464 0.989770
Def-DTS 0.317 0.322 0.674 0.009024 0.013738 0.982143

Table 10: Ablation study for identifying effectiveness of
each subtask within our method.

As shown in Table 10, we found that the absence 882

of some module leads to performance degradation. 883

For efficient evaluation, we used 100 randomly 884

sampled dialogue for the ablation study for Su- 885

perDialseg and Dialseg711 each. This data is the 886

same as we used in Section 5.5. Especially on the 887

SuperDialseg dataset, we observed a consistent im- 888

provement by adding any subtask. However, with 889

respect to Dialseg711 dataset, the existence of con- 890

text extraction module is crucial to performance 891

improvement. Even the w/o case surpasses our full- 892

attached method. we conjecture that the issue is 893

due to over-concentration for local context, same 894

as the result of ablation study for TIAGE, moreover, 895

on the case of dialseg711 having clear topic shift 896

signal, just predicting label is enough to solve the 897

problem. After all, our intent classification module 898

elevates the performance across all datasets. 899

14



B.2 Intent Classification Accuracy900

SuperDialseg

Intent TP FP TN FN Acc

DIFFERENT_QUESTION 2456 688 83 192 0.74
RELEVANT_QUESTION 1 0 811 989 0.45

ANSWERING 0 2 7819 168 0.98
ADDITIONAL_COMMENT 0 0 1264 211 0.86

Dialseg711

Intent TP FP TN FN Acc

JUST_COMMENT 0 6 5067 14 0.996
JUST_ANSWER 0 6 7675 8 0.998

DEVELOP_TOPIC 0 3 2359 13 0.993
CHANGE_TOPIC 2708 66 0 0 0.976

Table 11: Intent-level confusion matrix for other
datasets.

We conducted a detailed accuracy analysis for901

the other datasets and the results are presented in902

Table 11.903

For SuperDialseg, as shown in Table 8,904

four new intent pools were applied. ADDI-905

TIONAL_COMMENT, ANSWERING, and REL-906

EVANT_QUESTION are classified as non-topic907

shift cases, whereas the case of DIFFER-908

ENT_QUESTION is classified as a topic shift case.909

However, the instruction following was not well ex-910

ecuted for the case of DIFFERENT_QUESTION.911

For the case of RELEVANT_QUESTION, the912

following instruction was well executed with913

one exception, but its accuracy was relatively914

low. The difference in explanations between the915

case of RELEVANT_QUESTION and DIFFER-916

ENT_QUESTION could be linked to the actual917

dataset characteristics and topic changes. In con-918

trast, the cases of ANSWERING and ADDI-919

TIONAL_COMMENT showed significantly high920

classification accuracy. This comparison suggest921

that improving Question-type intents will lead to922

an overall improvement in performance.923

For Dialseg711, overall accuracy was higher924

compared to other datasets where the following925

deductive instruction not executed for less than 1%926

of utterances. For the results of the three intents,927

excluding the case of CHANGE_TOPIC, 18% of928

DEVELOP_TOPIC, 30% of JUST_COMMENT,929

and 42% of JUST_ANSWER cases among all false930

cases were misclassified due to errors in instruc-931

tion following. It is believed that this issue can be932

resolved through additional instructions or prompt933

modifications for instruction following.934

C Additional experiments on local LLMs 935

Def-DTS leverages LLM reasoning capabilities, so 936

model size significantly affects performance. Ta- 937

ble 6 shows that S3-DST on Qwen 70B had for- 938

matting errors, which discouraged us from testing 939

smaller LLMs initially. However, considering the 940

growing capabilities and applications of sLLMs, 941

we conducted additional experiments on: Llama 942

8B, Qwen 7B, Qwen 32B. 943

The experimental result is shown in table 12. Al- 944

though Def-DTS struggled with smaller models 945

and dialseg711, it showed greater improvements 946

with larger models by leveraging LLM reasoning 947

capability. However, we acknowledge that applying 948

Def-DTS to smaller LLMs would require adjust- 949

ments such as additional parameter modification. 950

D Details for Experiment 951

D.1 Details for Implementation 952

The model used for our experiments is gpt- 953

4o for closed LLM, Llama-3.1-70B-Instruct and 954

Qwen2.5-72B-Instruct for open-source LLM. At 955

first, we considered two closed models: gpt-4o and 956

Claude-3.5-sonnet. But Claude was excluded due 957

to poor accuracy compared to gpt-4o at a prelim- 958

inary evaluations and there are no prior studies 959

applied their method to the claude family. For the 960

inference of open-source LLMs, we utilized a com- 961

putational infrastructure consisting of 4*NVIDIA 962

A100 80GB GPU. We conducted our experiments 963

without employing any model-specific tuning or 964

quantization techniques, thus maintaining the orig- 965

inal model architecture and parameters. We kept 966

the hyperparameters initially stated, except for the 967

temperature that we set to 0 for reproducibility of 968

our experiments. 969

D.2 Details for Reproduce 970

For the SuperDialseg paper(Jiang et al., 2023), we 971

obtained experimental results for the Random, Text- 972

Tiling, TextTiling+Glove, CSM, BERT, RoBERTa, 973

and RetroTS-T5 methods. 974

We reproduced the experimental result for 975

PlainText(Jiang et al., 2023), S3-DST(Das et al., 976

2024), DialSTART(Gao et al., 2023), and Sum- 977

Seg(Artemiev et al., 2024), which either lacked F1 978

scores or did not perform experiments on certain 979

datasets. 980

During reproduction, we maintained all settings, 981

including seeds, without any parameter modifica- 982

tions. However, We observed results that differed 983
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Method Model TIAGE SuperDialseg Dialseg711

Pk↓ WD↓ F1↑ Error Pk↓ WD↓ F1↑ Error Pk↓ WD↓ F1↑ Error

Plain Text
Llama 8B 0.529 0.604 0.303 1 0.497 0.504 0.036 0 0.350 0.373 0.032 0
Qwen 7B 0.509 0.563 0.249 2 0.517 0.522 0.132 1 0.486 0.513 0.069 0
Qwen 32B 0.476 0.515 0.221 0 0.466 0.471 0.083 0 0.391 0.415 0.015 0

S3-DSTuttr

Llama 8B 0.460 0.460 0.018 0 0.472 0.494 0.076 0 0.188 0.196 0.705 0
Qwen 7B 0.563 0.860 0.299 57 0.578 0.952 0.351 47 0.582 0.759 0.093 71
Qwen 32B 0.430 0.455 0.211 22 0.431 0.443 0.106 57 0.237 0.270 0.497 83

Def-DTS
Llama 8B 0.474 0.525 0.218 1 0.473 0.527 0.398 0 0.246 0.268 0.464 10
Qwen 7B 0.462 0.465 0.022 20 0.473 0.474 0.071 14 0.162 0.170 0.715 44
Qwen 32B 0.338 0.374 0.501 38 0.392 0.400 0.429 1 0.221 0.343 0.435 18

Table 12: Performances on the local LLMs. We employed Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct and
Qwen2.5-32B-Instruct for Llama 8B, Qwen 7b and Qwen 32B, respectively. Pk, WD, F1 were calculated only for
correctly formatted outputs.

Model TIAGE SuperDialseg Dialseg711

Pk↓ WD↓ F1↑ Pk↓ WD↓ F1↑ Pk↓ WD↓ F1↑

Unsupervised Learning Methods

DialSTART - - - - - - 0.179 0.198 -
SumSeg 0.438 0.455 - 0.469 0.480 - - - -

LLM-based Methods

Plain Text (GPT-3.5) 0.496 0.560 0.362 0.318 0.347 0.658 0.290 0.355 0.690
S3-DSTturn - - - - - - 0.009 0.008 -

Table 13: Performances reported in their original papers.
Denoted as DialSTART indicates main result of Gao
et al., 2023, SumSeg indicates main result of Artemiev
et al., 2024, Plain Text indicates ChatGPT variant of
Jiang et al., 2023’s main result and S3-DSTturn indi-
cates main result of Das et al., 2024.

from the original experiments. Their original exper-984

imental results are presented in Table 13.985

For the reproduction of LLM-based methods, we986

made the necessary modifications in the following987

cases.988

Plain Text (Jiang et al., 2023): As Plain Text was989

the only methodology that disclosed the system990

prompt, we equitably refrained from using system991

prompts. We compared results with and without992

system prompts, finding nearly identical perfor-993

mance aside from parsing inconveniences.994

S3-DST (Das et al., 2024): S3-DST constructs995

prompts on a turn basis, while we performed on an996

utterance basis. Their approach is not suitable for997

our approach when dialogue has consecutive utter-998

ance or odd numbers of utterances. Therefore, we999

modified turn-based inference to utterance-based.1000

All final prompts used are attached to our reposi-1001

tory (prompts directory).1002

E Licenses for artifacts 1003

Datasets TIAGE, SuperDialseg: MIT License, 1004

Dialseg711: We were unable to find a license for 1005

this dataset. However, you can find details of the 1006

dataset in the original paper(Xu et al., 2021b). 1007

Models Qwen2.5-70B-Instruct, Qwen2.5-32B- 1008

Instruct, Qwen2.5-7B-Instruct: Qwen License, 1009

Llama3.1-72B-Instruct, Llama3.1-8B-Instruct: 1010

Llama License. 1011
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