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Abstract
Objective. In this article, we present data and
methods for decoding hand gestures using surface
electromyogram (EMG) signals. EMG-based up-
per limb interfaces are valuable for amputee reha-
bilitation, artificial supernumerary limb augmen-
tation, gestural control of computers, and virtual
and augmented reality applications. Approach.
To achieve this, we collect EMG signals from the
upper limb using surface electrodes placed at key
muscle sites involved in hand movements. Addi-
tionally, we design and evaluate efficient models
for decoding EMG signals. Main results. Our
findings reveal that the manifold of symmetric
positive definite (SPD) matrices serves as an effec-
tive embedding space for EMG signals. Moreover,
for the first time, we quantify the distribution shift
of these signals across individuals. Significance.
Overall, our approach demonstrates significant po-
tential for developing efficient and interpretable
methods for decoding EMG signals. This is par-
ticularly important as we move toward the broader
adoption of EMG-based wrist interfaces.
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1. Introduction
EMG signals are recorded non-invasively by placing sensors
on the skin surface to measure electrical activity generated
by motor unit activation. The global characteristics of the
EMG signal, such as amplitude and power spectrum, depend
on numerous idiosyncratic factors. These include anatom-
ical characteristics, such as the thickness of subcutaneous
tissue, the distribution and size of motor unit (MU) territo-
ries, and the spread of endplates and tendon junctions within
the MU. Physiological factors, such as the distribution of
conduction velocities within motor unit fibers, the shape
of intracellular action potentials (Farina et al., 2004), and
muscle fatigue (Enoka & Duchateau, 2008), also influence
the signal. Additionally, circumstantial factors, such as
precise electrode placement (Huebner et al., 2015; Kleine
et al., 2001), further contribute to signal variability. The
combined effects of these factors are further complicated
by interactions between signals originating from multiple
neighboring muscles. As a result, signals from individual
EMG electrodes tend to be highly confounded and opaque,
limiting their practical utility.

We demonstrate that covariance matrices, constructed us-
ing the pairwise covariance of electrical signals measured
across different electrodes, effectively capture the combined
influence of various physiological and anatomical factors.
Consequently, this approach provides a robust framework
for quantifying differences in EMG signals across individ-
uals. Furthermore, the spatial patterns captured by these
covariance matrices exhibit rich geometric structures, which
can be effectively leveraged to distinguish different hand
gestures.

1.1. Prior work

Existing methods rely on constructed features such as signal
root-mean-square, time-domain statistics, as described by
Hudgins et al., histograms (Zardoshti-Kermani et al., 1995),
marginalized discrete wavelet transform (Lucas et al., 2008),
or a normalized combination of all the above. These features
are typically evaluated using classifiers such as linear dis-
criminant analysis (LDA), support vector machines (SVM),
k-nearest neighbors (k-NN), and random forests.
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Additionally, some studies employ deep learning models,
including convolutional neural networks (CNN) (Rahimian
et al., 2020a; Geng et al., 2016; Wei et al., 2019; Khushaba
et al., 2022), recurrent neural networks (RNN) (Quivira
et al., 2018; Sun et al., 2021), transformer-based networks
(Rahimian et al., 2021; Montazerin et al., 2023), and hybrid
architectures combining RNN and CNN (Rahimian et al.,
2020b; Hu et al., 2018). Xiong et al. analyze EMG signals
using SPD covariance matrices; however, by mapping the
learned features onto a tangent plane and decoding them in
Euclidean space, this approach fails to leverage the natural
geometric structure of the data.

Despite their advancements, all these methods overlook the
strong spatial correlations in muscle contraction patterns.
Furthermore, they often involve a large number of trainable
parameters - ranging in the tens of thousands - and require
complex transfer learning paradigms and extensive retrain-
ing for deployment across individuals. Moreover, none of
these established techniques readily adapt to signal varia-
tions caused by factors such as muscle fatigue and sensor
displacement.

1.2. Our contribution

To overcome the limitations of existing methods, we pro-
pose a more principled approach by analyzing EMG signals
on a Riemannian manifold, which offers a more comprehen-
sive and natural framework for representing the data struc-
ture compared to conventional Euclidean analysis. Specifi-
cally, the SPD covariance matrices derived from multivariate
EMG time series form a structured representation on a cone
manifold with a Riemannian metric. This geometric frame-
work naturally preserves the spatial correlations in muscle
contraction patterns.

To ensure computational efficiency and numerical stability,
we study these SPD matrices via Cholesky decomposition
in the Cholesky space (Lin, 2019), which consists of lower
triangular matrices with positive diagonal elements. We
demonstrate that covariance matrices from different indi-
viduals occupy distinct neighborhoods within the manifold
space due to the combined influence of anatomical and phys-
iological factors on EMG signals. Furthermore, we quan-
tify inter-individual differences in EMG signals using the
geodesic distance - the length of the shortest curve between
two points on a surface (between corresponding covariance
matrices).

Leveraging this geometric structure, we introduce two super-
vised learning algorithms - manifold minimum distance to
mean and manifold support vector machine - along with one
unsupervised learning algorithm, manifold k-medoids clus-
tering, to classify hand gestures directly on the Riemannian
manifold. This approach not only mitigates the challenges
associated with existing feature extraction techniques and

deep learning models but also offers a more interpretable
and data-efficient alternative for EMG-based gesture recog-
nition.

2. Methods and materials
We use three different datasets to demonstrate the efficacy
of our methods. First, we utilize the widely used NI-
NAPRO (Non-Invasive Adaptive Prosthetics) DATABASE 2-
EXERCISE 1, provided by Atzori et al. Second, we employ
a high-density EMG dataset from Malešević et al. Third,
we use a dataset collected by us, named UCD-MYOVERSE-
HAND-0. The first two datasets allow us to compare our
methods with previously benchmarked approaches, while
the inclusion of our own dataset ensures additional valida-
tion.

By selecting three distinct datasets, we aim to verify that
our methods perform consistently well across different data
collection platforms and experimental setups. Below, we
provide a detailed explanation of the data acquisition proto-
cols and EMG processing methods.

2.1. EMG data acquisition setup

A total of 30 subjects participated in our study (UCD-
MYOVERSE-HAND-0). Please refer to the ethical statement
for the subject selection criteria.

For UCD-MYOVERSE-HAND-0, we used Delsys double
differential EMG electrodes (Delsys, Inc.) and an NI USB-
6210 multifunction I/O device (National Instruments Cor-
poration – 16 inputs, 16-bit, 250 kS/s) to acquire EMG data
at a sampling rate of 2000 Hz. The Delsys electrodes trans-
mitted the acquired data wirelessly to a base station, which
then relayed the data to a computer via a USB connection
through the NI USB-6210 data acquisition system.

A graphical user interface (GUI) was designed to display
hand gestures on a screen. Subjects performed the displayed
gesture with their dominant hand while seated comfortably
in a chair, with their forearm resting on an elevated platform
on the table. They were allowed to choose a resting position
that was most comfortable for them and could adjust it
throughout the experiment. Each gesture was performed for
2 s, followed by a resting period of 2 s. Specifically, the
gesture was displayed on the screen for 2 s, followed by a
blank screen for another 2 s. Subjects were instructed to
perform the gesture for the duration the image was visible
and to rest during the blank screen period.

The experiment was divided into six sessions, each con-
sisting of sixty trials - six repetitions for each of the ten
gestures. The order of gestures within a session was pseudo-
randomly generated to assess how variations in performing
gestures affect decoding accuracy. If all six repetitions of
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a gesture occurred sequentially, it could lead to repetitive,
unconscious, and highly consistent movements, which we
aimed to avoid. In total, each subject completed 360 trials.

To synchronize GUI instructions with data streamed from
the Delsys system, we used ZeroMQ sockets (ZeroMQ) and
Lab Streaming Layer (LSL) in Python. Data streams were
synchronized to the master clock on the computer, which
received both EMG data and event markers from the GUI.
We observed a maximum clock drift of approximately 50
ms.

2.1.1. EMG OF DIFFERENT HAND GESTURES IN
UCD-MYOVERSE-HAND-0

Forearm EMG was collected from intact subjects using
twelve electrodes. Eight electrodes were placed evenly
spaced around the main belly of the forearm muscles, posi-
tioned below the elbow at approximately one-third of the
distance from the elbow to the wrist. The remaining four
electrodes were placed evenly spaced around the wrist joint.

Each subject performed ten different hand gestures, with
each gesture repeated thirty-six times. The ten gestures
included wrist movements in four cardinal directions (up,
down, left, and right), three types of pinches (index finger
pinch, middle finger pinch, and two-finger pinch), splay,
power grasp, and pointing index (figure 1). These gestures
were selected to reflect commonly used interactions with
computers. Wrist movements in cardinal directions can be
used for navigating the screen (moving it up, down, left, and
right), while the pinch gestures can be used for zooming in,
zooming out, and making selections.

Figure 1. Ten gestures included in the UCD-MYOVERSE-HAND-
0 experiment. From top-left: up, down, left, right, index point, two
finger pinch, power grasp, middle finger pinch, splay, index finger
pinch.

2.1.2. EMG OF DIFFERENT HAND GESTURES IN
NIANPRO: DATABASE 2-EXERCISE 1

The dataset consists of EMG signals collected from forty
intact subjects using twelve electrodes at 2000 Hz. Eight
electrodes were placed evenly spaced around the forearm at
the height of the radio-humeral joint, while two electrodes
were placed on the main activity spots of the flexor digito-
rum superficialis and the extensor digitorum superficialis.

Subjects performed seventeen different gestures, each re-
peated six times. The seventeen gestures include: thumbs
up, extension of the index and middle fingers with flexion of
the others, flexion of the ring and little fingers with extension
of the others, thumb opposing the base of the little finger,
abduction of all fingers, fingers flexed together in a fist,
pointing index, adduction of extended fingers, wrist supina-
tion (axis: middle finger), wrist pronation (axis: middle
finger), wrist supination (axis: little finger), wrist pronation
(axis: little finger), wrist flexion, wrist extension, wrist ra-
dial deviation, wrist ulnar deviation, and wrist extension
with a closed hand.

For further details on data acquisition and processing, see
Atzori et al.

2.1.3. HIGH DENSITY EMG OF DIFFERENT HAND
GESTURES IN MALEŠEVIĆ ET AL.

The dataset consists of EMG signals collected from nineteen
intact subjects using 128 electrodes placed at the forearm
level at 2048 Hz. Although the experiment initially included
twenty subjects, the data for subject 5 was corrupted and
therefore excluded.

Subjects performed 65 unique gestures, each formed by
combining 16 basic single-degree-of-freedom movements.
Each gesture was repeated five times.

For further details on data acquisition and processing, refer
to Malešević et al.

2.2. EMG data preprocessing

The data collection environment was carefully controlled to
eliminate AC electrical interference. EMG signals undergo
minimal preprocessing. Signals are z-normalized along the
time dimension for each channel. The preprocessed EMG
signals are then used to construct covariance SPD matri-
ces. We detail the EMG analysis methods in the following
section.

2.3. EMG data analysis

EMG signals are collected using a set of sensors, denoted
as V , and are represented as a matrix X with dimensions
(V, SAMPLING FREQUENCY × GESTURE DURATION).
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Signal covariance matrices are then computed from the
preprocessed EMG signals using

E = XX T .

The resulting matrices, E , are symmetric and positive semi-
definite. To ensure positive definiteness, we apply a shrink-
age estimator as follows:

E ← (1− η)E + η trace(E)I

where I is an identity matrix of the same dimensions as E .
Through empirical evaluation, we found that setting η = 0.1
is sufficient for all EMG data. The covariance matrices, E ,
have dimensions V × V .

Directly working with SPD matrices using affine-invariant
or log-Euclidean metrics (Arsigny et al., 2007) involves
computationally expensive operations, such as matrix expo-
nential and matrix logarithm calculations. These operations
make mappings between the manifold space and the tan-
gent space, and vice versa, computationally intensive. To
address this, Lin proposed methods to operate on SPD ma-
trices using Cholesky decomposition. They established a
diffeomorphism between the Riemannian manifold of SPD
matrices and Cholesky space. In Cholesky space, the com-
putational burden is significantly reduced: logarithmic and
exponential computations are restricted to the diagonal ele-
ments of the matrix, making them element-wise operations.
Additionally, the Fréchet mean (centroid) is derived in a
closed form. For an SPD edge matrix E , the corresponding
Cholesky decomposition L = CHOLESKY(E) is such that
E = LLT . A matrix ⌊L⌋ is the strictly lower triangular part
of the matrix L, and a matrix D(L) is the diagonal part of
the matrix L. In the following section, we explain in detail,
the methods used to analyze SPD matrices.

2.3.1. DISTANCE BETWEEN TWO SPD MATRICES E1
AND E2

The geodesic distance between two SPD matrices E1 and E2
is same as the distance between the corresponding Cholesky
matrices L1 and L2 and is calculated as

d(L1,L2) =
{
||⌊L1⌋ − ⌊L2⌋||2F

+ || logD(L1)− logD(L2)||2F
}1/2

, (1)

where ||.||F denotes the Frobenius norm.

2.3.2. FRÉCHET MEAN (CENTROID) OF SPD MATRICES

Given a set of (n) SPD edge matrices E , we first calcu-
late their corresponding Cholesky decompositions L =
CHOLESKY(E), such that E = LLT . Then, the Fréchet
mean of the Cholesky decomposed matrices L is given by

FCHOLESKY =
1

n

n∑
i=1

⌊Li⌋ +

exp

(
1

n

n∑
i=1

log(D(Li)

)
. (2)

2.3.3. k-MEDOIDS CLUSTERING ALGORITHM

We implement the classic k-medoids algorithm (Kaufman
& Rousseeuw, 1990) using partitioning around medoids
(PAM) heuristic by replacing the Euclidean distance with
the geodesic distance in equation 1.

2.3.4. MINIMUM DISTANCE TO MEAN ALGORITHM
(MDM)

Given m classification classes and n training samples, SPD
matrices in the training set {Eji }, where i ∈ {1, 2, ..., n}and
j ∈ {1, 2, ..., m} are used to construct centroids for each of
the m classes such that the centroid of class j is,

Cj = E({CHOLESKY(Ej)}), (3)

where the Fréchet mean E is calculated according to equa-
tion 2. Given a test dataset of SPD matrices {T }, T ∈
T is assigned to that class whose centroid is nearest to
CHOLESKY(T ). That is, the class of T is

argmin
j
d(CHOLESKY(T ), Cj), (4)

where d(.) is calculated according to equation 1.

2.3.5. SUPPORT VECTOR MACHINE (SVM)

For training the SVM, we use a kernel

K : CHOLESKY SPACE × CHOLESKY SPACE → R,

such that

K = exp(−γd2(L1, L2)), (5)

where L1, L2 are Cholesky factors of SPD matrice E1 and
E2 and γ > 0. d(.) is defined according to equation 1. In
appendix A, following the arguments in Jayasumana et al.,
we prove that the kernel in equation 5 is a valid kernel.

2.3.6. t-SNE FOR EMG DATA VISUALIZATION

We use the t-SNE (t-Stochastic Neighbor Embedding) al-
gorithm, adapted from Van der Maaten & Hinton, for data
visualization. Unlike standard t-SNE, which takes vectors as
input and uses Euclidean distance, we input edge matrices
E and employ the distance defined in equation 1.
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3. Results
Here, we demonstrate that different hand gestures can be
decoded with high accuracy using simple algorithms such
as k-medoids (section 2.3.3), minimum distance to mean
(section 2.3.4), and SVM (section 2.3.5) on the manifold
of SPD matrices. This finding highlights that EMG signal
covariance matrices capture meaningful and distinguishing
information, and that the manifold of SPD matrices serves
as a natural embedding space for EMG signals.

3.1. Results for UCD-MYOVERSE-HAND-0

EMG data was collected at a sampling frequency of 2000
Hz using 12 electrodes, with each gesture lasting 2 s. For
each gesture, the EMG data is represented as a matrix X
of dimensions (12 × 4000), where 12 corresponds to the
number of electrode channels and 4000 corresponds to the
temporal dimension (i.e., 2 s × 2000 Hz). The correspond-
ing covariance SPD matrices, denoted as E , have dimensions
(12× 12). We decode covariance matrices E using MDM,
SVM, and k-medoids algorithms defined on the manifold of
SPD matrices.

We present the average classification accuracies across sub-
jects in table 1. Detailed subject-wise results are provided
in appendix C.1.

Subject Number
Classification Methods

MDM SVM (γ = 1) k-medoids
Average 0.82 0.86 0.70

Table 1. Average classification accuracy for 30 subjects in UCD-
MYOVERSE-HAND-0. Data from the first three sessions (i.e., the
first 18 repetitions of each gesture) were used for training, while
data from the last three sessions (i.e., the last 18 repetitions of
each gesture) were used for testing the MDM and SVM algorithms.
Chance decoding accuracy is 1

10
= 0.1.

3.2. Results for NINAPRO: DATABASE 2-EXERCISE 1

EMG data was collected at a sampling frequency of 2000 Hz
using 12 electrodes, with each gesture lasting 5 s. For each
gesture, the EMG data is represented as a matrix X with
12 rows (corresponding to the 12 electrode channels) and
10000 columns (corresponding to the temporal dimension,
i.e., 5 s × 2000 Hz). Therefore, the dimensions of X are
(12× 10000).

The corresponding covariance SPD matrices, denoted as E ,
have dimensions (12 × 12). We decode these covariance
matrices using the MDM, SVM, and k-medoids algorithms,
which are defined on the manifold of SPD matrices.

To evaluate our approach, we compare the results obtained
using our methods with those reported in Sun et al. and
Rahimian et al. (table 2). Detailed subject-wise results for
all 40 subjects using manifold-based methods are provided

in appendix C.2. For train-test data split, refer to Sun et al.;
Rahimian et al.

Method Accuracy
4-layer 3rd order dilation 0.824

4-layer 3rd order dilation (LSTM) 0.797
4-layer 2nd order dilation (LSTM) 0.796
4-layer 1st order dilation (LSTM) 0.793

Sun et al. 4-layer baseline 0.753
2-layer CNN 0.746

2-layer LSTM 0.702
1-layer LSTM 0.684
2-layer MLP 0.662

SVM (Euclidean) 0.307
TEMGNet 200 ms 0.821

Rahimian et al. TEMGNet 300 ms 0.829
Manifold MDM 0.92

Proposed Manifold SVM 0.93
methods Manifold k-medoids 0.82

Table 2. Our proposed methods leverage manifold representation
and outperform baselines. The unsupervised k-medoids algorithm
is, to our knowledge, the only unsupervised method for EMG
classification. Unlike neural networks with tens of thousands of
parameters, our methods are computationally efficient. Chance
decoding accuracy is 1

17
= 0.059.

3.3. Results for high density EMG in MALEŠEVIĆ
ET AL.

High-density EMG was collected at 2048 Hz using 128
electrodes. The duration of each gesture varied, which we
denote as the variable T . The data corpus consisted of 65
unique hand gestures, with each gesture repeated five times.
For each gesture, the EMG data is represented as a matrix
X , where X has T columns (temporal dimension) and 128
rows (corresponding to the 128 electrode channels). Thus,
the dimensions of X are (128× T ).

The covariance SPD matrix E has dimensions (128× 128).
We use MDM, SVM, and k-medoids algorithms, as de-
scribed previously, to classify the SPD matrices E . The
results of our manifold-based classification methods are
presented in table 3.

Additionally, we compare our results with the methods pro-
posed by Montazerin et al. in table 4.

3.4. EMG data visualization using t-SNE

We use t-SNE (section 2.3.6) to visualize the SPD covari-
ance matrices of hand gestures. These visualizations demon-
strate that the covariance matrices of EMG signals exhibit
structured representations on the manifold of SPD matri-
ces, a finding further validated through simple classification
methods defined on the manifold in previous sections.

The t-SNE embedding reveals that SPD matrices from dif-
ferent subjects occupy distinct neighborhoods on the mani-
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Fold number
Classification methods

MDM SVM (γ = 0.1) k-medoids
1 0.83 ± 0.07 0.84 ± 0.08
2 0.95 ± 0.04 0.96 ± 0.03
3 0.96 ± 0.03 0.97 ± 0.03 0.87 ± 0.05
4 0.95 ± 0.04 0.96 ± 0.04
5 0.91 ± 0.05 0.92 ± 0.04

Average 0.92 ± 0.07 0.93 ± 0.07 0.87 ± 0.05

Table 3. Classification accuracy averaged across 19 subjects in
Malešević et al. Following the work in Montazerin et al., we per-
form 5-fold cross validation analysis. Chance decoding accuracy
is 1

65
.

Method Accuracy
Montazerin et al. 512 sample window and 0.92

128 channels (their best)
Manifold MDM 0.92

Proposed Manifold SVM 0.93
methods Manifold k-medoids 0.87

Table 4. The proposed methods achieve performance comparable
to the transformer-based approach in Montazerin et al., while
being computationally efficient. Moreover, they are better suited
for deployment across individuals and real-time adaptation due to
their transparent nature. For instance, drift in EMG signals caused
by sensor position shifts or muscle fatigue can be addressed simply
by updating the centroids of the SPD matrices in the manifold
MDM algorithm, rather than repeatedly fine-tuning or retraining a
transformer. Chance decoding accuracy is 1

65
.

fold, as shown in figure 2. This variation in EMG signals
arises from a combination of anatomical, physiological,
and circumstantial factors and can be quantified using a
single geodesic distance metric across all individuals, as de-
picted in figure 3. Due to these differences in spatial muscle
contraction patterns among individuals, generalizing deep
learning algorithms across the entire population remains
challenging.

However, with this appropriate non-Euclidean representa-
tion of the data, spatial muscle contraction patterns within
an individual are sufficiently distinct to enable unsupervised
classification of various gestures, as demonstrated in figure
4, thereby eliminating the need for complex transfer learn-
ing paradigms or model retraining when deploying across
individuals.

Furthermore, since patterns from different individuals oc-
cupy separate neighborhoods on the manifold, directly com-
paring gestures across all subjects leads to extremely poor
gesture differentiation (figure 5).

Nevertheless, using parallel transport (see appendix B),
these distinct gesture patterns can be aligned across indi-
viduals, with an accuracy bounded by the accuracy of unsu-
pervised classification (figure 6). Figure 7 illustrates why
parallel transport (see appendix B), as opposed to Euclidean
transport, is the appropriate approach in the manifold space.

4. Observations and conclusions
1⃝ EMG signals are multivariate and capture muscle acti-

vation patterns across spatially separated locations using
multiple sensor nodes. This multivariate nature of EMG,
which reflects a distributed yet concerted effort from mul-
tiple muscles to execute a given gesture, suggests that the
data structure is not inherently Euclidean. In this article, we
empirically demonstrate that this is indeed the case.

Signal covariance matrices, which represent the covariances
of EMG signals across all pairs of sensor nodes, form struc-
tured representations on the manifold of SPD matrices, nat-
urally distinguishing different hand gestures. This suggests
that covariance features, rather than convolutional filters,
are more suitable for EMG signal feature extraction.

2⃝We showed that EMG signals exhibit discriminative rep-
resentations on the manifold, allowing classification even
with unsupervised clustering algorithms. However, EMG
signals from different individuals occupy distinct neighbor-
hoods within the manifold space.

We need to verify whether EMG signals from certain in-
dividuals or groups - such as those with a high BMI, who
typically have more subcutaneous fat - lie in the same neigh-
borhood or whether each individual is inherently different.
If the latter is true, we must further explore its implications
for generalizable machine learning models.

3⃝ Following the previous point, we should explore whether
zero-shot learning algorithms can be developed, allowing a
model trained on a set of individuals to generalize to unseen
individuals.

As demonstrated here, few-shot learning is straightforward.
If we have a few labeled samples for each gesture, we can
perform unsupervised classification and use parallel trans-
port to align EMG signals across individuals.
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Subject Labels

Figure 2. t-SNE of SPD covariance matrices using Riemannian distance indicates that the SPD matrices from different subjects lie in
different neighborhoods of the manifold. This is due to shift in EMG signals owing to the combined effect of various anatomical,
physiological, and circumstantial factors. Embedding is for NINAPRO: DATABASE 2-EXERCISE 1. Embedding is colored according to
subjects. Each of the 40 subjects performed 102 trials (17 gestures, each repeated 6 times).
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Figure 3. Riemannian geodesic distance between the centroids of SPD covariance matrices of 40 subjects in NINAPRO: DATABASE

2-EXERCISE 1. Geodesic distance quantifies the differences in EMG signals between subjects due to the combined effect of various
physiological and anatomical factors. The centroid of a given subject is calculated as the Log-Cholesky average of SPD covariance
matrices of all 102 trials (17 gestures, each repeated 6 times). X and Y axes are numbered according to subjects.
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Figure 4. t-SNE of SPD matrices of subject 0 from NINAPRO: DATABASE 2-EXERCISE 1 shows that different gestures within a subject
have contrasting spatial patterns. We can classify these distinct gestures with supervised algorithms such as minimum distance to
mean (MDM) and support vector machine (SVM) or unsupervised algorithms such as k-medoids clustering using Riemannian distance.
Classification accuracy using the above methods is presented in appendix C.2 for all 40 subjects. Embedding is colored according to
gestures. The subject performed 17 gestures with each gesture repeated six times.
The gestures are: 0: thumb up, 1: extension of index and middle - flexion of the others, 2: flexion of ring and little finger - extension of the
others, 3: thumb opposing base of little finger, 4: abduction of all fingers, 5: fingers flexed together in fist, 6: pointing index, 7: adduction
of extended fingers, 8: wrist supination (axis: middle finger), 9: wrist pronation (axis: middle finger), 10: wrist supination (axis: little
finger), 11: wrist pronation (axis: little finger), 12: wrist flexion, 13: wrist extension, 14: wrist radial deviation, 15: wrist ulnar deviation,
and 16: wrist extension with closed hand.
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Figure 5. t-SNE of SPD covariance matrices using Riemannian distance without accounting for intersubject differences reveals that
the SPD matrices for the same gesture from different subjects do not cluster together. This is the same embedding in figure 2 colored
according to gestures (instead of subjects). Each of the 40 subjects performed 102 trials (17 gestures, each repeated 6 times).
The gestures are: 0: thumb up, 1: extension of index and middle - flexion of the others, 2: flexion of ring and little finger - extension of the
others, 3: thumb opposing base of little finger, 4: abduction of all fingers, 5: fingers flexed together in fist, 6: pointing index, 7: adduction
of extended fingers, 8: wrist supination (axis: middle finger), 9: wrist pronation (axis: middle finger), 10: wrist supination (axis: little
finger), 11: wrist pronation (axis: little finger), 12: wrist flexion, 13: wrist extension, 14: wrist radial deviation, 15: wrist ulnar deviation,
and 16: wrist extension with closed hand.
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Figure 6. t-SNE of SPD covariance matrices using Riemannian distance after aligning the gestures using parallel transport as described in
appendix B and illustrated in figure 7. Data is aligned assuming ground truth labels for visualization purposes. Otherwise, alignment
accuracy is bounded by the accuracy of unsupervised classification. This demonstrates how data from different individuals in figure 5 can
be aligned according to gestures so that the same gestures from different individuals are transported to the same neighborhood in the
manifold space. Embedding is colored according to gestures. Each of the 40 subjects performed 102 trials (17 gestures, each repeated 6
times).
The gestures are: 0: thumb up, 1: extension of index and middle - flexion of the others, 2: flexion of ring and little finger - extension of the
others, 3: thumb opposing base of little finger, 4: abduction of all fingers, 5: fingers flexed together in fist, 6: pointing index, 7: adduction
of extended fingers, 8: wrist supination (axis: middle finger), 9: wrist pronation (axis: middle finger), 10: wrist supination (axis: little
finger), 11: wrist pronation (axis: little finger), 12: wrist flexion, 13: wrist extension, 14: wrist radial deviation, 15: wrist ulnar deviation,
and 16: wrist extension with closed hand.
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Figure 7. Euclidean transport is inappropriate in the manifold space. Point A is an SPD matrix that represents the EMG signal covariance
for a given gesture, say a pinch, for a given subject. Point B is another SPD matrix representing the reference location for that gesture on
the manifold: say, a particular reference subject’s centroid for the pinch gesture. The length of the curve joining A and B is the geodesic
distance between the two points. Points C and D, like A and B are SPD matrices that represent different gestures; for instance, the
reference locations for a power grasp and a wrist flexion. Green arrows illustrate the Euclidean transport of a tangent vector from A to B.
Pink arrows represent the parallel transport of a tangent vector from A to B. Parallel transport rotates the vector along the path from A
to B so that the vector in the tangent plane of A remains in the tangent plane of B when transported. It can be seen that the Euclidean
transport of a vector in the tangent plane of A results in vectors that are no longer in the tangent plane along the path to B. The Euclidean
transport of vectors therefore cannot appropriately traverse a geodesic. The square patches at A and B represent the tangent planes.
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Figure 8. t-SNE of SPD matrices of subject 0 from UCD-MYOVERSE-HAND-0 shows that different gestures within a subject have
contrasting spatial patterns. We can classify these distinct gestures with supervised algorithms such as minimum distance to mean
(MDM) and support vector machine (SVM) or unsupervised algorithms such as k-medoids clustering using Riemannian distance. Average
classification accuracy across subjects using the above methods is presented in table 1. Embedding is colored according to gestures. The
subject performed 10 gestures with each gesture repeated 36 times.
Ten gestures are: 1 - Down, 2 - Index finger pinch, 3 - Left, 4 - Middle finger pinch, 5 - Index point, 6 - Power grasp, 7 - Right, 8 - Two
finger pinch, 9 - Up, 10 - Splay.
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A. Manifold SVM kernel
Here, we prove that the kernel used in section 2.3.5 is a
valid kernel.

We shall prove that the kernel K = exp(−γd2(L1, L2))
for L1, L2 ∈ CHOLESKY SPACE is a valid kernel for all
γ > 0.

For a kernel to be valid, it must be positive definite (Jaya-
sumana et al., 2015).

From theorem 5.2 in Jayasumana et al., a kernel

K : CHOLESKY SPACE × CHOLESKY SPACE → R
:= exp(−γd2(L1, L2))

is positive definite for all γ > 0 if and only if d2(L1, L2) is
negative definite.

From lemma 5.5 in Jayasumana et al., if

ψ : CHOLEASKY SPACE → F,

where F is the Frobenius inner product space is a function,
then,

O : CHOLESKY SPACE × CHOLESKY SPACE → R

defined by

O(L1, L2) = ||ψ(L1)− ψ(L2)||2F

is negative definite.

Following theorem 6.1 (Jayasumana et al., 2015),

K : CHOLESKY SPACE × CHOLESKY SPACE → R

14



given by

K (L1, L2) = exp(−γd2(L1, L2))

is a positive definite kernel for all γ > 0 if and only if there
exists a function

ψ : CHOLESKY SPACE → F

such that

d(L1, L2) = ||ψ(L1)− ψ(L2)||F .

We can now define

ψ = ⌊L⌋+ logD(L)

for all L ∈ CHOLESKY SPACE.

We have

d(L1, L2) = {||⌊L1⌋ − ⌊L2⌋||2F+
|| logD(L1)− logD(L2)||2F }1/2.

||ψ(L1)− ψ(L2)||F =

||⌊L1⌋+ logD(L1)− ⌊L2⌋ − logD(L2)||F
= {||⌊L1⌋−⌊L2⌋||2F + || logD(L1)− logD(L2)||2F }1/2

Therefore,

d(L1, L2) = ||ψ(L1)− ψ(L2)||F .

Hence, the kernel

K = exp (−γd2(L1, L2))

is a valid kernel.

In the above, d(.) is defined according to equation 1 and
||.||F is the Frobenius norm.

B. Parallel transport
Here, we explain parallel transport in detail.

As given in Lin, the logarithm map from the manifold to its
tangent space at L is given by

L̃ogLK = ⌊K⌋ − ⌊L⌋+ D(L) log{D(L)−1D(K)}, (6)

where L, K ∈ CHOLESKY SPACE and L̃ogLK ∈
TANGENT SPACE

The exponential map from the tangent space to the manifold
space is given by,

ẼxpLX = ⌊L⌋+ ⌊X⌋+ D(L) exp{D(X)D(L)−1}, (7)

where L, ẼxpLX ∈ CHOLESKY SPACE and X ∈
TANGENT SPACE.

A tangent vector X ∈ TANGENT SPACE is parallelly trans-
ported to the tangent vector

⌊X⌋+ D(K)D(L)−1D(X) (8)

at K (Lin, 2019).

Given a set of subjects (S) and a set of gestures (G), let us
denote gestures of a particular hand movement (Cholesky
factorized covariance SPD matrices) belonging to a par-
ticular subject as Ggs , s ∈ S and g ∈ G. Parallel transport
algorithm is as defined below.

Algorithm 1 Parallel transport
Input: Cholesky matrices Ggs
Output: Parallelly transported Cholesky matrices.

Compute the Riemannian mean
Ḡgs = E(all elements in Ggs ) using equation 2.

Map all elements in Ggs to the tangent space at Ḡgs using
equation 6.
Denote this mapped set as TANGENT MAPPED(Ggs ).

Parallelly transport the tangent vectors in
TANGENT MAPPED(Ggs ) (using equation 8) to the
tangent space at Ḡgs = Reference. We choose Subject 0 as the
reference.

Map all the parallelly transported vectors in the tangent
space of Ḡgs = Reference back to the manifold space using
equation 7.

For visualization purposes in figure 6, we assume ground
truth to identify clusters of a particular gesture g in G. In
practice, EMG signals corresponding to different hand ges-
tures can be classified using unsupervised methods such as
k-medoids clustering. In this case, the accuracy of parallel
transport is bounded by the accuracy of the unsupervised
classifier. Algorithm 1 presents a method for aligning mul-
tivariate EMG time series from different individuals to the
same neighborhood in the manifold space.
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C. Detailed results
Here, we present detailed subject-wise results for UCD-MYOVERSE-HAND-0 and NINAPRO: DATABASE 2-EXERCISE 1
datasets .

C.1. Results for UCD-MYOVERSE-HAND-0

The UCD-MYOVERSE-HAND-0 database consists of 30 subjects. Each subject performed 10 different hand gestures (a
total of 360 trials: 10 gestures, each repeated 36 times). Therefore, the chance-level decoding accuracy is 1

10 = 0.1. We
present the detailed subject-wise results in table 5.

Subject number Classification methods
MDM SVM (γ = 1) k-medoids

0 0.97 0.99 0.94
1 0.61 0.69 0.48
2 0.62 0.76 0.61
3 0.76 0.83 0.60
4 0.92 0.93 0.74
5 0.82 0.86 0.63
6 0.94 0.97 0.88
7 0.94 0.95 0.74
8 0.97 0.97 0.93
9 0.92 0.94 0.74
10 0.84 0.86 0.62
11 0.79 0.81 0.62
12 0.95 0.97 0.93
13 0.84 0.84 0.73
14 0.82 0.84 0.64
15 0.57 0.66 0.50
16 0.92 0.93 0.76
17 0.85 0.89 0.85
18 0.53 0.57 0.35
19 0.82 0.84 0.61
20 0.83 0.87 0.72
21 0.82 0.89 0.72
22 0.93 0.94 0.70
23 0.88 0.92 0.91
24 0.55 0.55 0.26
25 0.78 0.82 0.55
26 0.83 0.89 0.83
27 0.78 0.86 0.68
28 0.99 1.0 0.99
29 0.89 0.91 0.72

Average 0.82 0.86 0.70

Table 5. Classification accuracy for 30 subjects in UCD-MYOVERSE-HAND-0. Data from the first 3 sessions are used for training (first
18 repetitions of each gesture), and data from the last 3 sessions (last 18 repetitions of each gesture) are used for testing the MDM and
SVM algorithms.

C.2. Results for NINAPRO: DATABASE 2-EXERCISE 1

The NINAPRO: DATABASE 2-EXERCISE 1 consists of 40 subjects. Each subject performed 17 different hand gestures (a
total of 102 trials: 17 gestures, each repeated 6 times). Therefore, the chance-level decoding accuracy is 1

17 = 0.059. We
present the detailed subject-wise results in table 6.
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Subject number
Classification methods

MDM SVM (γ = 8) k-medoids
0 1.0 1.0 0.90
1 0.94 0.97 0.86
2 0.97 0.97 0.78
3 0.94 0.94 0.79
4 0.97 1.0 0.85
5 0.85 0.85 0.79
6 0.88 0.88 0.69
7 0.85 0.91 0.80
8 0.97 1.0 0.85
9 0.88 0.91 0.87

10 0.97 0.91 0.84
11 0.85 0.91 0.79
12 0.97 0.94 0.89
13 1.0 0.97 0.93
14 0.91 0.97 0.81
15 0.91 0.88 0.66
16 0.97 0.97 0.78
17 0.88 0.91 0.83
18 0.91 0.97 0.85
19 0.88 0.88 0.83
20 0.88 0.94 0.84
21 0.91 0.91 0.85
22 0.88 0.88 0.83
23 0.91 0.94 0.78
24 0.91 0.94 0.84
25 0.97 0.97 0.85
26 0.97 0.94 0.87
27 0.91 0.94 0.87
28 0.91 0.88 0.75
29 0.82 0.91 0.76
30 0.88 0.88 0.68
31 0.91 0.88 0.84
32 0.94 0.97 0.85
33 0.76 0.82 0.73
34 0.97 0.97 0.84
35 0.97 0.88 0.80
36 0.94 1.0 0.89
37 0.97 0.97 0.96
38 0.97 0.94 0.84
39 0.97 0.97 0.86

Average 0.92 0.93 0.82

Table 6. Classification accuracy for 40 subjects in NINAPRO: DATABASE 2-EXERCISE 1. Following the works in Sun et al. and Rahimian
et al., for each gesture, we use repetitions 1, 3, 4, and 6 for training and repetitions 2 and 5 for testing of MDM and SVM algorithms.
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