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Abstract

How to generate informative, coherent natu-
ral language is a very important task. Previ-
ous studies mainly focus on leveraging com-
monsense knowledge into generative models,
which can improve the informativeness of gen-
erated texts. However, these models pay lit-
tle attention to discourse coherence. Instead,
we propose to utilize event chains to improve
the coherence of text generation. In addition,
we devise an inductive encoding module to re-
duce the sparsity of introduced event chains
and learn the useful event evolution patterns.
Specifically, we first extract event chains for
the input text and then connect them as a graph.
The inductive graph encoding module is then
used to learn the inductive and generalized
event embeddings. The event reasoning flow
module follows and produces the event sketch,
i.e., the reasonable events conditioned by the
input text. Finally, we generate the text based
on the input context and the event sketch. Ex-
perimental results indicate the effectiveness of
this framework in terms of coherence and in-
formativeness of text generation.

1 Introduction

Text generation aims to produce realistic and rea-
sonable textual content that is indistinguishable
from human-written text, and is helpful for genera-
tive question answering (Yin et al., 2015), neural
conversation (Li et al., 2016) systems, etc.

To this end, end-to-end generative models have
been studied (Shang et al., 2015; Shao et al., 2017),
but these models tend to produce generic texts. Re-
cently, some works propose to generate natural lan-
guage by grounding on external knowledge (Zhou
et al., 2018; Zhang et al., 2019; Ji et al., 2020).
However, these methods tend to produce less co-
herent texts, because they focus on improving the
informativeness of the generated texts, and pay lit-
tle attention to the coherence to context scenarios
(Xu et al., 2020).

In this paper, we take a step towards informa-
tive and coherent natural language generation. To
achieve this goal, we propose to use the knowl-
edge of narrative event chains. A narrative event
chain is a partially ordered set of events centered
around a common protagonist (Chambers and Ju-
rafsky, 2008). Because event chains contains rich
temporal and causal information (Zhao et al., 2017;
Sap et al., 2019), previous study shows that the
use of event chains as background knowledge leads
to better coherence judgement of real narrative in-
stances in a narrative cloze task (Chambers and
Jurafsky, 2008; Li et al., 2018). Motivated by this
fact, We use event graphs which are composed of
event chains to enhance text generation since the
graphs might help the event-based content planning
(Xu et al., 2020), and conditioned on the graphs
makes it easier to generate coherent texts. Figure 1
provides a case of using a event graph in aNLG.

However, using event graphs as knowledge
grounding is non-trivial and two challenges exist.
First, an observed event is very likely to appear only
once, which brings about huge difficulty to learn
frequent event evolution patterns. In fact, the in-
degree of most event nodes (accounting for about
91%) in the event graphs is 1, which shows that
the event graphs are extremely sparse. Second, due
to the one-to-many relations between the context
and the event knowledge, not all events are good to
support coherent text generation. For example, the
event "get ticket" and "buy food" in Figure 1 are
not good ones. The model should be able to learn
a more reasonable structure for capturing useful
event patterns and reducing the impact of irrelevant
event knowledge.

To address the aforementioned challenges, we
propose a novel Inductive Event Reasoning (termed
as IER) based method for text generation. Specifi-
cally, we devise an inductive event graph encoding
module (§ 3.3.2) to learn inductive event embed-
dings, hence reducing the sparsity of event graphs
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Figure 1: A case of using a event graph in Abduc-
tive NLG (aNLG). The aNLG aims to generate an ex-
planatory hypothesis given two observations: O; as the
cause and Oz as the consequence. Blue nodes corre-
spond to events in the context, correspond
to events used to generate the hypothesis.
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and learning useful event patterns. Then we make
event-based content planning (§ 3.3.3) upon the
learned event embeddings. We regard the planned
events to be the skeleton of the expected scenario,
so we further rewrite the planned events into natu-
ral language texts (§ 3.3.4). Experimental results
on three widely used datasets demonstrate that our
model substantially outperforms previous state-of-
the-art methods.

Our contributions are summarized as follows: 1)
We propose a event-based reasoning framework for
text generation. It first makes a content-plan upon
the event knowledge and then generate coherent
texts. 2) We utilize inductive graph encoding mod-
ule to reduce the sparsity of events and learn use-
ful event evolution patterns, hence makes a more
accurate event-based content planning. 3) We con-
duct extensive experiments, including automatic
and manual evaluations, on three deeply studied
text generation tasks. Our study indicates that both
the knowledge of event chains and our reasoning
modules are crucial to our superior performance in
coherence of text generation.

2 Related Work

2.1 Knowledge-Aware Text Generation

Sequence-to-sequence models, e.g., (Sutskever
et al., 2014), have been widely used for natural
language generation. Earlier works focus on utiliz-
ing external knowledge to augment the limited tex-
tual information. (Zhou et al., 2018) enriched the
representations of the input texts with neighbour-
ing concepts on ConceptNet using graph attention.
(Guan et al., 2019) proposed incremental encoding
with multi-source attention to incorporate one-hop
knowledge graph for concepts in the story con-
text. (Zhang et al., 2019) models the conversation
flow explicitly with the commonsense knowledge
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Figure 2: The workflow of our method. Blue nodes
correspond to events in the context.

graph and guides the conversation flow in the la-
tent concept space. Nevertheless, the degenerating
of irrelevant, off-topic, and non-useful generated
texts is still one of the main challenges. Recent
works attempt to integrate external knowledge into
pretrained language models to generate more infor-
mative texts. (Guan et al., 2020) conducted post-
training on synthetic data constructed from com-
monsense knowledge bases by translating triplets
into natural language texts using templates. (Ji
et al., 2020) performs multi-hop reasoning on the
external knowledge graph for knowledge-enriched
language generation. Different from those work,
we introduce the knowledge of event chains to gen-
erate more coherent texts, which is less studied in
previous works.

2.2 Text Generation with Content Planning

Text generation with content planning first iden-
tifies pertinent information to present, and then
realizes the pertinent information into surface text
(Holmes-Higgin, 1994). Traditional systems often
handle each step separately, thus requiring exten-
sive effort on data acquisition and system engineer-
ing (Reiter and Dale, 1997). Recent progress has
been made by developing end-to-end trained neural
models (Yu et al., 2018; Fan et al., 2018). Nonethe-
less, the incoherent and unfaithful generations is
still the limitation of these models. In this paper, we
make the content planning based on event chains,
i.e., perform event graph grounded reasoning flow,
to generate texts. The event chains contain rich
temporal and causal information (Zhao et al., 2017;
Sap et al., 2019), which guarantees the coherence
of generated texts.

3 Methodology
3.1 Task definition

The input X = (z1,z9, -+ ,z)) is a text se-
quence which may consist of several sentences.
The output target is another text sequence ¥ =



(y1,92,- - ,yr). To facilitate the generation pro-
cess, according to X, we extract a event graph
G = {V, €&} as knowledge grounding, where V
denotes the event set and £ denotes the relations
connecting these events. Given the input sequence
X and the event graph GG, we decompose the text
generation task into two steps. The first step makes
the event-based content planning to select the most
reasonable k events Fj from G according to X.
In the second step, we rewrite Ej into Y condi-
tioned on the context X. Essentially, the model
maximizes the following conditional probability:

The framework of our method is shown in Figure
2. Next, we introduce the event graph construction.

3.2 Constructing Event Graph

To obtain event knowledge for language gener-
ation, we use ATOMIC (Sap et al., 2019) and
COMeT (Hwang et al., 2020) as event knowledge
base. ATOMIC is a repository of inferential if-then
knowledge. COMeT is a transformer model trained
on ATOMIC that generates nine kinds of inferences
of events in natural language.'

Given the input context X, we first extract cen-
tral events from X, as described in Figure 1. The
central events are feed into COMeT model to gen-
erate one-hop events with corresponding relations.
The one-hop events are then feed into COMeT to
generate two-hop events. As a result, we obtain
lots of event chains. We also apply several heuristic
rules to filter less informative chains, as introduced
in § 4.2. Then, we merge the retained event chains
into a multi-hop event graph. Figure 1 provides a
example of the constructed event graph.

3.3 Generation through Inductive Event
Reasoning
3.3.1 Context Encoding

Given the context X = (x1,22, - ,2n), We
use pretrained BART (Lewis et al., 2019) encode
to encoder each token z,, into the hidden state
h,, € R (d is the hidden size) with self-attention
mechanism (Vaswani et al., 2017):

{hy;, }m=1,.... = BARTEncoder(X). (2)
Then we obtain the hidden state hy € R? of X by

hx = W, [max,,(h,,);ave,,(hy)], (3)

The relations used in our work includes: Causes, xIntent,
xNeed, oEffect, oWant, isAfter, HasSubEvent.

where max(-), ave(+) denotes the max-pooling and
ave-pooling respectively, [-; -] denotes the concate-
nation, W is a trainable. For simplicity, we omit
the details of BART, and refer the readers to the
original work (Lewis et al., 2019).

3.3.2 Inductive Encoding of Event Graph

To capture useful event knowledge and reduce the
impact of irrelevant events in the event graph, our
model treats the reasoning structure as a latent vari-
able and induces it with the input event graph. We
call the induced structure as Induced Graph (G7).
The induction module is built based on the struc-
tured attention (Kim et al., 2017). We use a variant
of Kirchhoff’s Matrix-Tree Theorem (Koo et al.,
2007; Nan et al., 2020; Cao et al., 2021) to induce
the latent structure.

Formally, the nodes of (G; are the events in
G, and suppose the number of nodes is V. Let
e; € R? denotes the initialized embedding of i-th
node in the event graph (7, and e; can be obtained
via the pretrained model (i.e., BART). We first cal-
culate the pair-wise unnormalized attention score
s;j between the i-th node and the j-th node:

sij = (0(Wpe) Wy(0(Weej)), (4

where W,,, W, and W, are trainable, o is the
tanh activation. Next, we compute the root score
s; which represents the unnormalized probaility of
the i-th node to be selected as the root node of G7:

si = We;, &)

where W, € R1*? is trainable.

Following (Nan et al., 2020), we calculate the
marginal probability of each edge of G;. We first
assign non-negative weights P € RY*N to the
edges of the induced graph:

0, ifi=3j
exp (s;),  otherwise,

where P;; is the weight of the edge between the i-th
and j-th node. We then define the Laplacian matrix
L € RV*N of G}, and its variant L € RY*N for
further computations (Koo et al., 2007):

P;; = (6)

Lo — chvzl Ppj, ifi=j (7
K —P;;,  otherwise,
s | exp(s]), ifi=1
Lij = { L;;,  otherwise. ®)



We use A;; to denote the marginal probability of

the edge between the i-th node and the j-th node,
which can be computed as follows:

Aij = (1—01;)Py[L7"5; — (1= 0;1)Ps;[L7 "5, 9)

where 6 is the Kronecker delta (Koo et al., 2007)
and -~! denotes matrix inversion. A can be re-
garded as a weighted adjacency matrix of Gy, and
is used for induced structure-aware event encoding.

To better capture potential reasoning clues, we
adopt the densely connected graph convolutional
networks (DCGCNs) (Guo et al., 2019), which
allows training a deeper reasoning model. The
convolution computation of each layer is:

N
b =3 AW +b0), (10
j=1

where Wz(,l) , bz(,l) are parameters, o is the ReLU
activation, h§0) is the initial event embeddings.

The induced structure at once is relatively shal-
low (Nan et al., 2020; Cao et al., 2021) and may not
be optimal for event-based reasoning. Therefore
we iteratively refine the induced structure to learn
a more informative one. We stack NV blocks of this
module, where each block contains a induced struc-
ture and a DCGCNs network. After the iterative
refinement, the induced event embeddings are used
for event-based content planning.

3.3.3 Event Graph Based Content Planning

Given the context X and the induced event embed-
dings, we perform the event graph based content
planning to produce the event sketch, i.e., the most
reasonable events conditioned the input X. Due to
the temporal and causal information carried by the
event graph, the produced event sketch improves
the coherence of text generation.

Inspired by the multi-hop reasoning flow (Ji
et al., 2020), the module iteratively computes the
scores between X and multi-hop events. For the
candidate event . € ), the module computes the
attention score s(t.) between t. and X by aggre-
gating evidence from its neighbours A}, including
pairs of the connected event v, € ) and the con-
nected edge r. € &:

1
SGE)ZZDV?T > (yes(ue)+R(ue, re,te)), (11)

(ue,re)EN,

where v (0.5 by default) is a discount factor that
controls the attention flow from the previous hops.

Initially, the zero-hop events, which are extracted
from X, are given a score of 1, while other events
are assigned with 0. R(-) is the relevance of the
triple (e, re,t.) under the context hx, which is
calculated by:

R(te,Te,te) = o(hyxyWi[hy ;h, ;hy ]), (12)

where W is trainable, o denotes sigmoid activa-
tion, [-; -] denotes the concatenation, h,,, and hy,
are induced embeddings (§ 3.3.2) of the event u,
and t., h,_ is the relation embedding.

According to the attention scores (Eq. 11) of all
events, we select the k events Ej, = topk;(s(e;)),
which are used as sketch for text generation. k is
set to 2 by default.

3.3.4 Text Generation with Planned Events

The event sketch E}, describes the skeleton of the
expected scenario, and can be used to guide text
generation. Specifically, we first merge X and Ej,
to obtained the new context C' = [X; Ej], and use
BART model to obtain the context vectors

H¢ = BARTEncoder(C), (13)

where Ho € R4 (¢ is the total length of C). The
we perform text generation with the BART model.

The hidden state of ¢-th time step of the target
sequence hy, is computed by:

h,, = BARTDecoder(Y<;, H¢), (14)

with H¢ as the attended context in BARTDecoder
(the details of BARTDecoder can be referred at
(Lewis et al., 2019)). The word distribution of ¢-th
time step over the standard vocabulary V is

P(y¢|Y<t) = softmaxy (Wyhy, +b).  (15)

3.4 Training and Inference

To train the event planning module, we minimize
the cross-entropy loss of selecting supported events
under the context X by:

Ip = ;Z( — 1; - log(p(e;))

— (1 =1;) - log(1 — p(ei))),

(16)

where p(e;) = sigmoid(s(e;)) denotes the proba-
bility that the event e; is positive, [; is the label of
ei, Z is the number of events in GG. The details of
event labeling is shown in § 4.2.



To train the text generator, we minimize the NLL
loss of generating the ground-truth:

T

I =Y —logP(yf* [V EY).
=1

a7

The final loss is J = Jp + JnpL. The event planner
and the text generator are jointly training.

4 [Experiments

4.1 Datasets

Story Ending Generation (SEG) is to generate a
reasonable ending given a four-sentence story con-
text. The stories come from ROCStories corpus
(Mostafazadeh et al., 2016). We use the same data
split as (Yao et al., 2019).

Abductive NLG (aNLG) is to generate an explana-
tory hypothesis given two observations: O; as the
cause and O, as the consequence. We use the offi-
cial data split from (Bhagavatula et al., 2019).
Explanation Generation (EG) is to generate an
explanation given a counter-factual statement for
sense-making (Wang et al., 2019). We use the same
data split as (Ji et al., 2020).

The statistics of the datasets are shown in Appendix
A, Table 6.

4.2 Event Chains Filtering

Given the context X, lots of event chains are gen-
erated, so we devise several heuristic rules to filter
less informative chains. For example, if an event in
a chain contains less than 2 words, the chain will
be discarded. There are still many event chains,
which may lead to a expensive memory cost, so
we reserve 80 event chains according to the length
of terminal events on the chain. Then, we merge
the retained event chains into an event graph. We
heuristically label events according to the word
overlap between an event and the corresponding
ground-truth. The word overlap is calculated by
the Longest Common Substring (LCS) algorithm.
The statistics of extracted event graphs is shown in
Appendix A, Table 7.

4.3 Baselines

We produce the following baselines on three gener-
ation tasks to compare with our model:

GPT2-FT is a GPT-2 model fine-tuned on the
task-specific dataset with its model initialization
from (Radford et al., 2019). BART-FT is a BART
model fine-tuned on the task-specific dataset with

its model initialization from (Lewis et al., 2019).
GPT2-OMCS is a commonsense-enhanced GPT-2
model first post-trained on the Open Mind Com-
mon Sense (OMCS) corpus5 from which the Con-
ceptNet (Speer et al., 2017) is constructed. The
model is then fine-tuned on the task-specific dataset.
GRF-GPT2 (Ji et al., 2020), the current state-of-
the-art model on the used datasets, is a GPT2 based
model which generates natural language texts with
multihop reasoning on knowledge graph. For the
sake of fairness, we also use the BART pretrained
model to reproduce GRF and name it GRF-BART.

We also compare our model with baseline mod-
els designated to each specific task. For story
ending generation, we compare to WriterForcing
(Gupta et al., 2019) that forces the attention to fo-
cus on important key-phrases and avoid generating
generic words. For abductive NLG, we compare
with COMeT-Txt (Bhagavatula et al., 2019) which
uses the output texts generated by COMeT (Hwang
et al., 2020) as prefix texts to the GPT2 model
while fine-tuning.

4.4 Implementation Details

Our method employs the base version of the BART
(Lewis et al., 2019) model with 6 layers, 768-
dimensional hidden states, and 12 attention heads
for contextual modeling. Each refinement block
contains a two-layers DCGCNs module. To train
the model, we use the Adam optimizer (Kingma
and Ba, 2014) with 81 = 0.9, 5o = 0.999,
¢ = 107° and linearly decrease learning rate to
zero with no warmup. We search for the best hyper-
parameters according to BLEU-2 on the develop-
ment set of each dataset. At the inference stage, we
adopt beam search decoding with a beam size of 3
for our model and all the baselines we produce.

4.5 Main Results

4.5.1 Automatic Evaluation

Maetrics: For automatic evaluation, we use metrics
including BLEU-4 (Papineni et al., 2002), ROUGE-
L (Lin, 2004), METEOR (Banerjee and Lavie,
2005) and CIDEr (Vedantam et al., 2015) to evalu-
ate the aNLG and the EG tasks. We use BLEU-1/2
and METEOR to evaluate the SEG task.

Result: Automatic evaluation results on the test
sets of three tasks are shown in Table 1 and 2. Our
implementation of GRF (GRF-BART) performs
better than the original one (Ji et al., 2020), the
improvement is caused by the BART model. In ad-



Models aNLG EG

BLEU-4 ROUGE-L METEOR CIDEr | BLEU-4 ROUGE-L METEOR CIDEr
COMeT-Txt  2.73 24.39 18.32 32.78 | N/A N/A N/A N/A
GPT2-FT 9.80 32.90 25.82 57.52 | 15.63 37.32 38.76 77.09
BART-FT 12.46 33.74 28.81 66.77 | 16.48 37.08 41.25 81.56
GPT2-OMCS 9.62 32.88 25.83 57.50 | 15.55 37.53 38.28 75.60
GRF-GPT2* 11.62 34.62 27.76 63.76 | 17.19 38.10 39.15 81.71
GRF-BART'  13.47 35.53 30.82 72.01 | 17.74 38.06 41.47 87.35
IER (Ours) 16.05 37.20 33.14 77.87 ‘ 18.91 38.74 42.97 91.74

Table 1: Automatic evaluation results on the testsets of «NLG and EG. Entries with N/A mean the baseline is not
designated for this task. * denotes we use the generated file from (Ji et al., 2020). ¥ means our implementation

based on BART (Lewis et al., 2019) pretrained model.

Models BLEU-1/2 ROUGE-L METEOR
WriterForcing  16.5/3.7  N/A N/A
GPT2-FT 25.5/10.2 N/A N/A
BART-FT 25.6/10.4 26.26 18.75
GPT2-OMCS 25.5/104 N/A N/A
GRF-GPT2* 26.1/11.0 26.62 19.36
GRF-BART'  26.1/11.2 2691 19.64
IER (Ours) 27.2/12.7 28.75 21.38

Table 2: Automatic evaluation on the test set of SEG.
Entries with N/A denotes the value is not reported. *
means we use the generated file from (Ji et al., 2020). t
denotes our implementation based on BART model.

dition, our model outperforms all baselines that uti-
lize commonsense knowledge or pretrained models.
We have following observations: First, our method
significantly outperforms COMeT-Txt, which also
uses event knowledge from COMeT. We think this
is because we perform reasoning flow on event
graphs and use the inductive encoding module to
learn useful event relations. Second, compared
with GRF-BART, our model achieves a notably im-
provement. This indicates that the knowledge of
event chains is especially important for improving
the coherence of text generation. Third, our model
performs better on the aNLG and SEG than it on
EG. After analysis, we find that oNLG and SEG
emphasize the discourse relations between narra-
tive texts, therefore, the event chains contribute
more to the two datasets.

4.5.2 Manual Evaluation

Metrics: For manual evaluation, all models are
evaluated in terms of the following 2 metrics: in-

formativeness, coherence. For informativeness, the
annotators are required to assess whether a gener-
ated text produces unique and non-genetic infor-
mation that is specific to the input context. When
evaluating coherence, for SEG and aNLG, anno-
tators are asked to focus on evaluating the causal
and temporal relevance of a generated text and the
context; for the EG, annotators are mainly asked
to check whether the generated text explains the
counterfactual points in the statement properly.
Result: We carried out pairwise comparison with
BART-FT, GRF-GPT2, and GRF-BART on the
used three datasets. We randomly sample 100 sen-
tences from the three test sets respectively for each
pair of models. We recruit two annotators to make a
preference among win, tie and lose given the input
context and two outputs generated by our model
and a baseline respectively. The annotators are
both graduates from the field of text generation. As
shown in Table 3, our model significantly outper-
forms compared baselines in terms of both criteria
on all the datasets. Both automatic and manual eval-
uations illustrate the effectiveness of our method
for text generation. The inter-rater agreement is
shown in Appendix B, Table 8.

4.5.3 Ablation Study

To investigate the effectiveness of different mod-
ules, we develop three ablated versions, including
(1) “w/o IE” which denotes we ablate the inductive
encoding module of event graph and directively per-
forms event planning on the intialized event embed-
dings, (2) “w/ RGCNs” which denotes we replace
the IE module with Relational-GCNs (RGCNs)
(Schlichtkrull et al., 2018) to learn structure-aware
event embeddings, (3) “w/o Jp”” which denotes we
do not train the event planning module.



aNLG | SEG | EG
Models Informativeness  Coherence ‘ Informativeness  Coherence ‘ Informativeness  Coherence
W L WL w L WL w L WL
vs. BART-FT 51.5 8.0 46.5 3.0 | 30.5 1.5 310 15 215 1.5 26.5 2.5
vs. GRF-GPT2  40.5 7.5 47.0 4.5 | 30.0 2.0 320 5.0 | 235 4.0 31.5 5.5
vs. GRF-BART 37.0 7.0 395 9.0 | 21.0 1.0 20.0 4.0 | 18.0 2.5 230 6.5

Table 3: The manual evaluation results on the three testsets. Scores indicate the percentage (%) of Win (W) and
Lose (L) when comparing our model with a baseline in terms of two metrics.

Models aNLG | SEG

BLEU-4 ROUGE-L METEOR CIDEr ‘ BLEU-1 BLEU-2 ROUGE-L METEOR
Full 1605 3720  33.14 7787|272 127 2875 2138
wlo IE 1557 3683 3271 7625|265 122 2836  20.72
w/RGCNs 1578 3680 3281 7661 [266 123 2851 2094
wlo Jp 1522 36.51 3246 7545]262 119 2803 2042

Table 4: Ablation study results on the testsets of aNLG and SEG. IE denotes the inductive encoding module of
event graph (see § 3.3.2).

+— Full
w/o IE
-»- w/ RGCNs

> —
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Figure 3: The Precision-Recall curves of the different
models for event-based content planning at aNLG test-
set. The compared models include the full model and
the two ablated versions: “w/o IE” and “w/ RGCNs”.

Table 4 shows the ablation results for text gener-
ation. We also evaluate their performance for event
planning, on aNLG dataset. The Precision-Recall
curves of the models are drawn and shown in Fig-
ure 3. The results in Figure 3 is consistent with the
results in Table 4. We observe that: First, “w/o
Jp” leads to a huge result drop. This coincides
with human intuition because, with the help of su-
pervision, the event planner learns to select useful
event knowledge for text generation. Second, the
result shows a notable decrease after ablating the
IE module. This indicates the IE module learns
the induced event embeddings and helps to reduce
the irrelevant events when event planning. Third,
although RGCNs has been proved to be effective in
modeling the relational information in the knowl-
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Figure 4: BLEU-4 for different number of refinements
(i.e., N) on the aNLG dataset. The number of refine-
ments is ranging from 1 to 5.

edge graph, the “w/ RGCNs” version performs
similarly to the “w/o IE” version (just a minor in-
crease). This fact supports our argument that it
is hard to select useful event knowledge from the
sparse event graph.

4.6 Model Analysis
4.6.1 Impact of the Number of Refinements

We investigate the effect of the refinement on the
overall performance. We plot the BLEU-4 varying
with the number of refinements in Figure 4. From
the figure we can observe that:

(1) Our method yields the best performance in the
third refinement. Compared with the first induction,
the second refinement achieves 0.38 improvements
of BLEU-4 on the oaNLG dataset. This indicates
that the proposed Inductive Encoding module is



able to induce more reasonable reasoning structures
by iterative refinement. (2) When the number of
refinements is too large, the performance decreases
due to over-fitting.

4.6.2 Impact of the Size of Training Data

BLEU-4
BLEU-2

8
20 40 60 80 100 20 40 60 80 100
Percentage of Training Data (%) Percentage of Training Data (%)

(a) aNLG (b) SEG

Figure 5: Performance with different amount of train-
ing data on the test set of «NLG and SEG respectively.

To demonstrate the complementary performance
gain of utilizing event knowledge besides textual
modeling, we sample different fractions of training
data of aNLG and SEG, respectively, for training
and evaluate on the original test set. We compare
our method with BART-FT and GRF-BART. As
shown in Figure 5, our model achieves consistent
performance gains against the chosen baselines
with different amount of training data, and our
method can still manage to achieve comparable
performance with best result of GRF-BART, even
when given extremely small training data (at the
x-axis point of 20%). This demonstrates the gener-
alization ability of the proposed model with the aid
of the knowledge of event chains.

4.6.3 Impact of the Number of Event Chains

Number BLEU-4 METEOR CIDEr
40 15.64  32.65 76.95
60 1584  32.65 76.94
80 16.05  33.14 71.87
100 1557  33.05 77.46

Table 5: Performance with different amount of event
chains on the test set of aNLG.

We also investigate the influence of the number
of event chains on our method, the result is shown
in Table 5. As the number of events increases to
80, the model achieves the best results. This is
because more supported events are exposed and
selected to facilitate text generation. However, as
the number increases further, noise events begin

to overwhelm the supported events. It becomes
harder to distinguish the supported events from
noise events, resulting in a performance drop. In
addition, we set the number of event chains to 80
and 40 for SEG and EG datasets respectively.

4.7 Visualization

We provide three cases with the generated texts of
corresponding models, as shown in Appendix C,
Table 9. We observe that: Baseline models only fo-
cus on the commonsense relations between entities,
hence fails to generate coherent text. For example,
in the first case, GRF-BART adopts the relations
between “(cat, animal)” and “(scaredy, shelter)”,
and generates the incoherent text. Instead, by using
the knowledge of event chains, our method gener-
ates more informative and more coherent sentences.

[0,: Billy's friends thought that he was a scaredy cat.

O

0,: Billy felt brave.]

he was a

scaredy cat
0.3 S~ xNeed xWant
xintent xEffect

felt brave

04| notbe scared get bullied bein fight ~show courage

xWant xintent
attention
score
get away
from bullies

&

Generated Text: Billy decided to get out of the house and fight with bullies.

not be afraid

Figure 6: The local event subgraph of the first case,
with the attentions scores of events.

To answer why our method generates satisfied
sentences, we visualize the local event subgraph of
the first case in Figure 6. We find that the event “be
in fight” receives highest attention scores, then is
the “get bullied”, as a result, our method generate
the coherent hypothesis.

5 Conclusion

We present a inductive event reasoning method
for text generation. The proposed method uses
the knowledge of event chains to improves the co-
herence of text generation. The inductive event
encoding module is used to reduce the sparsity of
events and learns the useful event evolution pat-
terns. Extensive experiments show that our method
outperforms existing state-of-the-art models. The
ablation study demonstrates the effectiveness of
different modules of our method. We also visualize
our method with inferred event chains that provide
a rationale for the generated results.
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A Statistics of Datasets

The statistic for three datasets is shown in Table
6. The statistic of extracted event graphs for each
dataset is shown in Table 7. AveEventNum denotes
the average number of events in each event graph.
AveEdgeNum denotes the average number of edges
in each event graph. PosEventGraph denotes the
ratio (%) of event graphs where each event graph
contains at least one positive labeled event.

Tasks Train Dev Test

SEG 78,526 9,818 9,818
oNLG* 50,481 7,252 14,313
EG* 25,596 1,428 2,976

Table 6: Statistics of the used datasets. *:Examples
with multiple references are counted separately.

aNLG SEG EG
AveEventNum 73.4 79.4  40.0
AveEdgeNum 78.2 82.5 437
PosEventGraph (%) 35.5 324 269

Table 7: The statistics of extract event graphs for three
datasets.

B Inner-Rater Agreement

We calculate the cohen’s kappa reliability as the
inner-annotator agreement for manual evaluation.
Scores in Table 8 evaluates the agreement from
multiple annotators in terms of informativeness
and coherence.

oNLG SEG EG

0.732  0.598 0.888
0.745 0.775 0.963

Informativeness
Coherence

Table 8: The cohen’s kappa reliability for manual eval-
uation.

C Case Study

Table 9 presents three cases where the first and sec-
ond case is come from the aNLG testset, the third
case comes from the SEG tesetset. Our method
generate more informative and more coherent text
sentences while baseline models tend to generate
low quality sentences. Figure 7 illustrates the gen-
erate sentence of the second case.
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01 Billy’s friends thought that he was a scaredy cat.

O» Billy felt brave.
#1

BART-FT Billy decided to go to the animal shelter.

GRF-BART Billy went to the animal shelter.

Ours Billy decided to get out of the house and fight with bullies.

01 Frank was ready to go home after a long double shift.

O2 Frank was so grateful for Annie, as was there in his time of need.
#2

BART-FT Frank’s friend Annie came to help him.

GRF-BART Frank’s friend Annie came over to help him.

Ours Frank got a call from Annie asking if he could get some rest.

Ryan stood at the counter with chocolate frosting outlining

Story his mouth. He again denied eating the cupcake with a quick

Context shake of his head. Her lightning-quick finger wiped across his
#3 face. The sugary brown evidence of his guilt frosted her finger .

BART-FT Ryan’s mouth was swollen shut and he had to go to the bathroom.

GRF-BART Ryan was so embarrassed , he nearly fainted .

Ours Ryan’s face turned red as he realized he’d forgotten the frosting.

Table 9: The three cases and the generated text of com-
pared models. The first and second case come from the
aNLG testset. The third case comes from the ROCSto-
ries testset.

04 go home after a was so
long double shift grateful
xEffect isAfter xEffect xNeed
0.1
attention .
score o to ask if get tired as for
sleep needed rest help

Figure 7: The local event subgraph of the second case.



