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Abstract

How to generate informative, coherent natu-001
ral language is a very important task. Previ-002
ous studies mainly focus on leveraging com-003
monsense knowledge into generative models,004
which can improve the informativeness of gen-005
erated texts. However, these models pay lit-006
tle attention to discourse coherence. Instead,007
we propose to utilize event chains to improve008
the coherence of text generation. In addition,009
we devise an inductive encoding module to re-010
duce the sparsity of introduced event chains011
and learn the useful event evolution patterns.012
Specifically, we first extract event chains for013
the input text and then connect them as a graph.014
The inductive graph encoding module is then015
used to learn the inductive and generalized016
event embeddings. The event reasoning flow017
module follows and produces the event sketch,018
i.e., the reasonable events conditioned by the019
input text. Finally, we generate the text based020
on the input context and the event sketch. Ex-021
perimental results indicate the effectiveness of022
this framework in terms of coherence and in-023
formativeness of text generation.024

1 Introduction025

Text generation aims to produce realistic and rea-026

sonable textual content that is indistinguishable027

from human-written text, and is helpful for genera-028

tive question answering (Yin et al., 2015), neural029

conversation (Li et al., 2016) systems, etc.030

To this end, end-to-end generative models have031

been studied (Shang et al., 2015; Shao et al., 2017),032

but these models tend to produce generic texts. Re-033

cently, some works propose to generate natural lan-034

guage by grounding on external knowledge (Zhou035

et al., 2018; Zhang et al., 2019; Ji et al., 2020).036

However, these methods tend to produce less co-037

herent texts, because they focus on improving the038

informativeness of the generated texts, and pay lit-039

tle attention to the coherence to context scenarios040

(Xu et al., 2020).041

In this paper, we take a step towards informa- 042

tive and coherent natural language generation. To 043

achieve this goal, we propose to use the knowl- 044

edge of narrative event chains. A narrative event 045

chain is a partially ordered set of events centered 046

around a common protagonist (Chambers and Ju- 047

rafsky, 2008). Because event chains contains rich 048

temporal and causal information (Zhao et al., 2017; 049

Sap et al., 2019), previous study shows that the 050

use of event chains as background knowledge leads 051

to better coherence judgement of real narrative in- 052

stances in a narrative cloze task (Chambers and 053

Jurafsky, 2008; Li et al., 2018). Motivated by this 054

fact, We use event graphs which are composed of 055

event chains to enhance text generation since the 056

graphs might help the event-based content planning 057

(Xu et al., 2020), and conditioned on the graphs 058

makes it easier to generate coherent texts. Figure 1 059

provides a case of using a event graph in αNLG. 060

However, using event graphs as knowledge 061

grounding is non-trivial and two challenges exist. 062

First, an observed event is very likely to appear only 063

once, which brings about huge difficulty to learn 064

frequent event evolution patterns. In fact, the in- 065

degree of most event nodes (accounting for about 066

91%) in the event graphs is 1, which shows that 067

the event graphs are extremely sparse. Second, due 068

to the one-to-many relations between the context 069

and the event knowledge, not all events are good to 070

support coherent text generation. For example, the 071

event "get ticket" and "buy food" in Figure 1 are 072

not good ones. The model should be able to learn 073

a more reasonable structure for capturing useful 074

event patterns and reducing the impact of irrelevant 075

event knowledge. 076

To address the aforementioned challenges, we 077

propose a novel Inductive Event Reasoning (termed 078

as IER) based method for text generation. Specifi- 079

cally, we devise an inductive event graph encoding 080

module (§ 3.3.2) to learn inductive event embed- 081

dings, hence reducing the sparsity of event graphs 082
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Figure 1: A case of using a event graph in Abduc-
tive NLG (αNLG). The αNLG aims to generate an ex-
planatory hypothesis given two observations: O1 as the
cause and O2 as the consequence. Blue nodes corre-
spond to events in the context, orange nodes correspond
to events used to generate the hypothesis.

and learning useful event patterns. Then we make083

event-based content planning (§ 3.3.3) upon the084

learned event embeddings. We regard the planned085

events to be the skeleton of the expected scenario,086

so we further rewrite the planned events into natu-087

ral language texts (§ 3.3.4). Experimental results088

on three widely used datasets demonstrate that our089

model substantially outperforms previous state-of-090

the-art methods.091

Our contributions are summarized as follows: 1)092

We propose a event-based reasoning framework for093

text generation. It first makes a content-plan upon094

the event knowledge and then generate coherent095

texts. 2) We utilize inductive graph encoding mod-096

ule to reduce the sparsity of events and learn use-097

ful event evolution patterns, hence makes a more098

accurate event-based content planning. 3) We con-099

duct extensive experiments, including automatic100

and manual evaluations, on three deeply studied101

text generation tasks. Our study indicates that both102

the knowledge of event chains and our reasoning103

modules are crucial to our superior performance in104

coherence of text generation.105

2 Related Work106

2.1 Knowledge-Aware Text Generation107

Sequence-to-sequence models, e.g., (Sutskever108

et al., 2014), have been widely used for natural109

language generation. Earlier works focus on utiliz-110

ing external knowledge to augment the limited tex-111

tual information. (Zhou et al., 2018) enriched the112

representations of the input texts with neighbour-113

ing concepts on ConceptNet using graph attention.114

(Guan et al., 2019) proposed incremental encoding115

with multi-source attention to incorporate one-hop116

knowledge graph for concepts in the story con-117

text. (Zhang et al., 2019) models the conversation118

flow explicitly with the commonsense knowledge119

Figure 2: The workflow of our method. Blue nodes
correspond to events in the context.

graph and guides the conversation flow in the la- 120

tent concept space. Nevertheless, the degenerating 121

of irrelevant, off-topic, and non-useful generated 122

texts is still one of the main challenges. Recent 123

works attempt to integrate external knowledge into 124

pretrained language models to generate more infor- 125

mative texts. (Guan et al., 2020) conducted post- 126

training on synthetic data constructed from com- 127

monsense knowledge bases by translating triplets 128

into natural language texts using templates. (Ji 129

et al., 2020) performs multi-hop reasoning on the 130

external knowledge graph for knowledge-enriched 131

language generation. Different from those work, 132

we introduce the knowledge of event chains to gen- 133

erate more coherent texts, which is less studied in 134

previous works. 135

2.2 Text Generation with Content Planning 136

Text generation with content planning first iden- 137

tifies pertinent information to present, and then 138

realizes the pertinent information into surface text 139

(Holmes-Higgin, 1994). Traditional systems often 140

handle each step separately, thus requiring exten- 141

sive effort on data acquisition and system engineer- 142

ing (Reiter and Dale, 1997). Recent progress has 143

been made by developing end-to-end trained neural 144

models (Yu et al., 2018; Fan et al., 2018). Nonethe- 145

less, the incoherent and unfaithful generations is 146

still the limitation of these models. In this paper, we 147

make the content planning based on event chains, 148

i.e., perform event graph grounded reasoning flow, 149

to generate texts. The event chains contain rich 150

temporal and causal information (Zhao et al., 2017; 151

Sap et al., 2019), which guarantees the coherence 152

of generated texts. 153

3 Methodology 154

3.1 Task definition 155

The input X = (x1, x2, · · · , xM ) is a text se- 156

quence which may consist of several sentences. 157

The output target is another text sequence Y = 158
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(y1, y2, · · · , yT ). To facilitate the generation pro-159

cess, according to X , we extract a event graph160

G = {V, E} as knowledge grounding, where V161

denotes the event set and E denotes the relations162

connecting these events. Given the input sequence163

X and the event graph G, we decompose the text164

generation task into two steps. The first step makes165

the event-based content planning to select the most166

reasonable k events Ek from G according to X .167

In the second step, we rewrite Ek into Y condi-168

tioned on the context X . Essentially, the model169

maximizes the following conditional probability:170

P (Y |X,G) = P (Ek|X,G) · P (Y |X,Ek). (1)171

The framework of our method is shown in Figure172

2. Next, we introduce the event graph construction.173

3.2 Constructing Event Graph174

To obtain event knowledge for language gener-175

ation, we use ATOMIC (Sap et al., 2019) and176

COMeT (Hwang et al., 2020) as event knowledge177

base. ATOMIC is a repository of inferential if-then178

knowledge. COMeT is a transformer model trained179

on ATOMIC that generates nine kinds of inferences180

of events in natural language.1181

Given the input context X , we first extract cen-182

tral events from X , as described in Figure 1. The183

central events are feed into COMeT model to gen-184

erate one-hop events with corresponding relations.185

The one-hop events are then feed into COMeT to186

generate two-hop events. As a result, we obtain187

lots of event chains. We also apply several heuristic188

rules to filter less informative chains, as introduced189

in § 4.2. Then, we merge the retained event chains190

into a multi-hop event graph. Figure 1 provides a191

example of the constructed event graph.192

3.3 Generation through Inductive Event193

Reasoning194

3.3.1 Context Encoding195

Given the context X = (x1, x2, · · · , xM ), we196

use pretrained BART (Lewis et al., 2019) encode197

to encoder each token xm into the hidden state198

hm ∈ Rd (d is the hidden size) with self-attention199

mechanism (Vaswani et al., 2017):200

{hm}m=1,··· ,M = BARTEncoder(X). (2)201

Then we obtain the hidden state hX ∈ Rd of X by202

203

hX = Wx[maxm(hm); avem(hm)], (3)204

1The relations used in our work includes: Causes, xIntent,
xNeed, oEffect, oWant, isAfter, HasSubEvent.

where max(·), ave(·) denotes the max-pooling and 205

ave-pooling respectively, [·; ·] denotes the concate- 206

nation, Wx is a trainable. For simplicity, we omit 207

the details of BART, and refer the readers to the 208

original work (Lewis et al., 2019). 209

3.3.2 Inductive Encoding of Event Graph 210

To capture useful event knowledge and reduce the 211

impact of irrelevant events in the event graph, our 212

model treats the reasoning structure as a latent vari- 213

able and induces it with the input event graph. We 214

call the induced structure as Induced Graph (GI ). 215

The induction module is built based on the struc- 216

tured attention (Kim et al., 2017). We use a variant 217

of Kirchhoff’s Matrix-Tree Theorem (Koo et al., 218

2007; Nan et al., 2020; Cao et al., 2021) to induce 219

the latent structure. 220

Formally, the nodes of GI are the events in 221

G, and suppose the number of nodes is N . Let 222

ei ∈ Rd denotes the initialized embedding of i-th 223

node in the event graph G, and ei can be obtained 224

via the pretrained model (i.e., BART). We first cal- 225

culate the pair-wise unnormalized attention score 226

sij between the i-th node and the j-th node: 227

sij = (σ(Wpei))
TWb(σ(Wcej)), (4) 228

where Wp, Wb and Wc are trainable, σ is the 229

tanh activation. Next, we compute the root score 230

sri which represents the unnormalized probaility of 231

the i-th node to be selected as the root node of GI : 232

sri = Wrei, (5) 233

where Wr ∈ R1×d is trainable. 234

Following (Nan et al., 2020), we calculate the 235

marginal probability of each edge of GI . We first 236

assign non-negative weights P ∈ RN×N to the 237

edges of the induced graph: 238

Pij =

{
0, if i = j

exp (sij), otherwise,
(6) 239

where Pij is the weight of the edge between the i-th 240

and j-th node. We then define the Laplacian matrix 241

L ∈ RN×N of GI , and its variant L̂ ∈ RN×N for 242

further computations (Koo et al., 2007): 243

Lij =

{ ∑N
k=1Pkj , if i = j
−Pij , otherwise,

(7) 244

245

L̂ij =

{
exp (sri ), if i = 1

Lij , otherwise.
(8) 246
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We use Aij to denote the marginal probability of247
the edge between the i-th node and the j-th node,248
which can be computed as follows:249

Aij = (1− θ1,j)Pij [L̂
−1]ij − (1− θi,1)Pij [L̂

−1]ji, (9)250

where θ is the Kronecker delta (Koo et al., 2007)251

and ·−1 denotes matrix inversion. A can be re-252

garded as a weighted adjacency matrix of GI , and253

is used for induced structure-aware event encoding.254

To better capture potential reasoning clues, we255

adopt the densely connected graph convolutional256

networks (DCGCNs) (Guo et al., 2019), which257

allows training a deeper reasoning model. The258

convolution computation of each layer is:259

h
(l)
i = σ(

N∑
j=1

AijW
(l)
v h

(l)
j + b(l)

v ), (10)260

where W
(l)
v , b(l)

v are parameters, σ is the ReLU261

activation, h(0)
j is the initial event embeddings.262

The induced structure at once is relatively shal-263

low (Nan et al., 2020; Cao et al., 2021) and may not264

be optimal for event-based reasoning. Therefore265

we iteratively refine the induced structure to learn266

a more informative one. We stack N blocks of this267

module, where each block contains a induced struc-268

ture and a DCGCNs network. After the iterative269

refinement, the induced event embeddings are used270

for event-based content planning.271

3.3.3 Event Graph Based Content Planning272

Given the context X and the induced event embed-273

dings, we perform the event graph based content274

planning to produce the event sketch, i.e., the most275

reasonable events conditioned the input X . Due to276

the temporal and causal information carried by the277

event graph, the produced event sketch improves278

the coherence of text generation.279

Inspired by the multi-hop reasoning flow (Ji280

et al., 2020), the module iteratively computes the281

scores between X and multi-hop events. For the282

candidate event te ∈ V , the module computes the283

attention score s(te) between te and X by aggre-284

gating evidence from its neighbours Nte including285

pairs of the connected event ue ∈ V and the con-286

nected edge re ∈ E :287

s(te) =
1

|Nte |
∑

(ue,re)∈Nte

(γ·cs(ue)+R(ue, re, te)), (11)288

where γ (0.5 by default) is a discount factor that289

controls the attention flow from the previous hops.290

Initially, the zero-hop events, which are extracted 291

from X , are given a score of 1, while other events 292

are assigned with 0. R(·) is the relevance of the 293

triple (ue, re, te) under the context hX , which is 294

calculated by: 295

R(ue, re, te) = σ(h>XWs[hue ;hre ;hte ]), (12) 296

where Ws is trainable, σ denotes sigmoid activa- 297

tion, [·; ·] denotes the concatenation, hue and hte 298

are induced embeddings (§ 3.3.2) of the event ue 299

and te, hre is the relation embedding. 300

According to the attention scores (Eq. 11) of all 301

events, we select the k events Ek = topki(s(ei)), 302

which are used as sketch for text generation. k is 303

set to 2 by default. 304

3.3.4 Text Generation with Planned Events 305

The event sketch Ek describes the skeleton of the 306

expected scenario, and can be used to guide text 307

generation. Specifically, we first merge X and Ek 308

to obtained the new context C = [X;Ek], and use 309

BART model to obtain the context vectors 310

HC = BARTEncoder(C), (13) 311

where HC ∈ Rc×d (c is the total length of C). The 312

we perform text generation with the BART model. 313

The hidden state of t-th time step of the target 314

sequence hyt is computed by: 315

hyt = BARTDecoder(Y≤t,HC), (14) 316

with HC as the attended context in BARTDecoder 317

(the details of BARTDecoder can be referred at 318

(Lewis et al., 2019)). The word distribution of t-th 319

time step over the standard vocabulary V is 320

P (yt|Y<t) = softmaxV (Wvhyt + b). (15) 321

3.4 Training and Inference 322

To train the event planning module, we minimize 323

the cross-entropy loss of selecting supported events 324

under the context X by: 325

JP =
1

Z

∑
i

(− li · log(p(ei))

− (1− li) · log(1− p(ei))),
(16) 326

where p(ei) = sigmoid(s(ei)) denotes the proba- 327

bility that the event ei is positive, li is the label of 328

ei, Z is the number of events in G. The details of 329

event labeling is shown in § 4.2. 330
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To train the text generator, we minimize the NLL331

loss of generating the ground-truth:332

JNLL =
T∑
t=1

−logP (ygold
t |Y gold

<t ). (17)333

The final loss is J = JP +JNLL. The event planner334

and the text generator are jointly training.335

4 Experiments336

4.1 Datasets337

Story Ending Generation (SEG) is to generate a338

reasonable ending given a four-sentence story con-339

text. The stories come from ROCStories corpus340

(Mostafazadeh et al., 2016). We use the same data341

split as (Yao et al., 2019).342

Abductive NLG (αNLG) is to generate an explana-343

tory hypothesis given two observations: O1 as the344

cause and O2 as the consequence. We use the offi-345

cial data split from (Bhagavatula et al., 2019).346

Explanation Generation (EG) is to generate an347

explanation given a counter-factual statement for348

sense-making (Wang et al., 2019). We use the same349

data split as (Ji et al., 2020).350

The statistics of the datasets are shown in Appendix351

A, Table 6.352

4.2 Event Chains Filtering353

Given the context X , lots of event chains are gen-354

erated, so we devise several heuristic rules to filter355

less informative chains. For example, if an event in356

a chain contains less than 2 words, the chain will357

be discarded. There are still many event chains,358

which may lead to a expensive memory cost, so359

we reserve 80 event chains according to the length360

of terminal events on the chain. Then, we merge361

the retained event chains into an event graph. We362

heuristically label events according to the word363

overlap between an event and the corresponding364

ground-truth. The word overlap is calculated by365

the Longest Common Substring (LCS) algorithm.366

The statistics of extracted event graphs is shown in367

Appendix A, Table 7.368

4.3 Baselines369

We produce the following baselines on three gener-370

ation tasks to compare with our model:371

GPT2-FT is a GPT-2 model fine-tuned on the372

task-specific dataset with its model initialization373

from (Radford et al., 2019). BART-FT is a BART374

model fine-tuned on the task-specific dataset with375

its model initialization from (Lewis et al., 2019). 376

GPT2-OMCS is a commonsense-enhanced GPT-2 377

model first post-trained on the Open Mind Com- 378

mon Sense (OMCS) corpus5 from which the Con- 379

ceptNet (Speer et al., 2017) is constructed. The 380

model is then fine-tuned on the task-specific dataset. 381

GRF-GPT2 (Ji et al., 2020), the current state-of- 382

the-art model on the used datasets, is a GPT2 based 383

model which generates natural language texts with 384

multihop reasoning on knowledge graph. For the 385

sake of fairness, we also use the BART pretrained 386

model to reproduce GRF and name it GRF-BART. 387

We also compare our model with baseline mod- 388

els designated to each specific task. For story 389

ending generation, we compare to WriterForcing 390

(Gupta et al., 2019) that forces the attention to fo- 391

cus on important key-phrases and avoid generating 392

generic words. For abductive NLG, we compare 393

with COMeT-Txt (Bhagavatula et al., 2019) which 394

uses the output texts generated by COMeT (Hwang 395

et al., 2020) as prefix texts to the GPT2 model 396

while fine-tuning. 397

4.4 Implementation Details 398

Our method employs the base version of the BART 399

(Lewis et al., 2019) model with 6 layers, 768- 400

dimensional hidden states, and 12 attention heads 401

for contextual modeling. Each refinement block 402

contains a two-layers DCGCNs module. To train 403

the model, we use the Adam optimizer (Kingma 404

and Ba, 2014) with β1 = 0.9, β2 = 0.999, 405

ε = 10−6 and linearly decrease learning rate to 406

zero with no warmup. We search for the best hyper- 407

parameters according to BLEU-2 on the develop- 408

ment set of each dataset. At the inference stage, we 409

adopt beam search decoding with a beam size of 3 410

for our model and all the baselines we produce. 411

4.5 Main Results 412

4.5.1 Automatic Evaluation 413

Metrics: For automatic evaluation, we use metrics 414

including BLEU-4 (Papineni et al., 2002), ROUGE- 415

L (Lin, 2004), METEOR (Banerjee and Lavie, 416

2005) and CIDEr (Vedantam et al., 2015) to evalu- 417

ate the αNLG and the EG tasks. We use BLEU-1/2 418

and METEOR to evaluate the SEG task. 419

Result: Automatic evaluation results on the test 420

sets of three tasks are shown in Table 1 and 2. Our 421

implementation of GRF (GRF-BART) performs 422

better than the original one (Ji et al., 2020), the 423

improvement is caused by the BART model. In ad- 424
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Models
αNLG EG

BLEU-4 ROUGE-L METEOR CIDEr BLEU-4 ROUGE-L METEOR CIDEr

COMeT-Txt 2.73 24.39 18.32 32.78 N/A N/A N/A N/A
GPT2-FT 9.80 32.90 25.82 57.52 15.63 37.32 38.76 77.09
BART-FT 12.46 33.74 28.81 66.77 16.48 37.08 41.25 81.56
GPT2-OMCS 9.62 32.88 25.83 57.50 15.55 37.53 38.28 75.60
GRF-GPT2? 11.62 34.62 27.76 63.76 17.19 38.10 39.15 81.71
GRF-BART† 13.47 35.53 30.82 72.01 17.74 38.06 41.47 87.35

IER (Ours) 16.05 37.20 33.14 77.87 18.91 38.74 42.97 91.74

Table 1: Automatic evaluation results on the testsets of αNLG and EG. Entries with N/A mean the baseline is not
designated for this task. ? denotes we use the generated file from (Ji et al., 2020). † means our implementation
based on BART (Lewis et al., 2019) pretrained model.

Models BLEU-1/2 ROUGE-L METEOR

WriterForcing 16.5/3.7 N/A N/A
GPT2-FT 25.5/10.2 N/A N/A
BART-FT 25.6/10.4 26.26 18.75
GPT2-OMCS 25.5/10.4 N/A N/A
GRF-GPT2? 26.1/11.0 26.62 19.36
GRF-BART† 26.1/11.2 26.91 19.64

IER (Ours) 27.2/12.7 28.75 21.38

Table 2: Automatic evaluation on the test set of SEG.
Entries with N/A denotes the value is not reported. ?

means we use the generated file from (Ji et al., 2020). †

denotes our implementation based on BART model.

dition, our model outperforms all baselines that uti-425

lize commonsense knowledge or pretrained models.426

We have following observations: First, our method427

significantly outperforms COMeT-Txt, which also428

uses event knowledge from COMeT. We think this429

is because we perform reasoning flow on event430

graphs and use the inductive encoding module to431

learn useful event relations. Second, compared432

with GRF-BART, our model achieves a notably im-433

provement. This indicates that the knowledge of434

event chains is especially important for improving435

the coherence of text generation. Third, our model436

performs better on the αNLG and SEG than it on437

EG. After analysis, we find that αNLG and SEG438

emphasize the discourse relations between narra-439

tive texts, therefore, the event chains contribute440

more to the two datasets.441

4.5.2 Manual Evaluation442

Metrics: For manual evaluation, all models are443

evaluated in terms of the following 2 metrics: in-444

formativeness, coherence. For informativeness, the 445

annotators are required to assess whether a gener- 446

ated text produces unique and non-genetic infor- 447

mation that is specific to the input context. When 448

evaluating coherence, for SEG and αNLG, anno- 449

tators are asked to focus on evaluating the causal 450

and temporal relevance of a generated text and the 451

context; for the EG, annotators are mainly asked 452

to check whether the generated text explains the 453

counterfactual points in the statement properly. 454

Result: We carried out pairwise comparison with 455

BART-FT, GRF-GPT2, and GRF-BART on the 456

used three datasets. We randomly sample 100 sen- 457

tences from the three test sets respectively for each 458

pair of models. We recruit two annotators to make a 459

preference among win, tie and lose given the input 460

context and two outputs generated by our model 461

and a baseline respectively. The annotators are 462

both graduates from the field of text generation. As 463

shown in Table 3, our model significantly outper- 464

forms compared baselines in terms of both criteria 465

on all the datasets. Both automatic and manual eval- 466

uations illustrate the effectiveness of our method 467

for text generation. The inter-rater agreement is 468

shown in Appendix B, Table 8. 469

4.5.3 Ablation Study 470

To investigate the effectiveness of different mod- 471

ules, we develop three ablated versions, including 472

(1) “w/o IE” which denotes we ablate the inductive 473

encoding module of event graph and directively per- 474

forms event planning on the intialized event embed- 475

dings, (2) “w/ RGCNs” which denotes we replace 476

the IE module with Relational-GCNs (RGCNs) 477

(Schlichtkrull et al., 2018) to learn structure-aware 478

event embeddings, (3) “w/o JP ” which denotes we 479

do not train the event planning module. 480
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Models
αNLG SEG EG

Informativeness Coherence Informativeness Coherence Informativeness Coherence

W L W L W L W L W L W L

vs. BART-FT 51.5 8.0 46.5 3.0 30.5 1.5 31.0 1.5 21.5 1.5 26.5 2.5

vs. GRF-GPT2 40.5 7.5 47.0 4.5 30.0 2.0 32.0 5.0 23.5 4.0 31.5 5.5

vs. GRF-BART 37.0 7.0 39.5 9.0 21.0 1.0 20.0 4.0 18.0 2.5 23.0 6.5

Table 3: The manual evaluation results on the three testsets. Scores indicate the percentage (%) of Win (W) and
Lose (L) when comparing our model with a baseline in terms of two metrics.

Models
αNLG SEG

BLEU-4 ROUGE-L METEOR CIDEr BLEU-1 BLEU-2 ROUGE-L METEOR

Full 16.05 37.20 33.14 77.87 27.2 12.7 28.75 21.38
w/o IE 15.57 36.83 32.71 76.25 26.5 12.2 28.36 20.72
w/ RGCNs 15.78 36.80 32.81 76.61 26.6 12.3 28.51 20.94
w/o JP 15.22 36.51 32.46 75.45 26.2 11.9 28.03 20.42

Table 4: Ablation study results on the testsets of αNLG and SEG. IE denotes the inductive encoding module of
event graph (see § 3.3.2).

Figure 3: The Precision-Recall curves of the different
models for event-based content planning at αNLG test-
set. The compared models include the full model and
the two ablated versions: “w/o IE” and “w/ RGCNs”.

Table 4 shows the ablation results for text gener-481

ation. We also evaluate their performance for event482

planning, on αNLG dataset. The Precision-Recall483

curves of the models are drawn and shown in Fig-484

ure 3. The results in Figure 3 is consistent with the485

results in Table 4. We observe that: First, “w/o486

JP ” leads to a huge result drop. This coincides487

with human intuition because, with the help of su-488

pervision, the event planner learns to select useful489

event knowledge for text generation. Second, the490

result shows a notable decrease after ablating the491

IE module. This indicates the IE module learns492

the induced event embeddings and helps to reduce493

the irrelevant events when event planning. Third,494

although RGCNs has been proved to be effective in495

modeling the relational information in the knowl-496
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Figure 4: BLEU-4 for different number of refinements
(i.e., N) on the αNLG dataset. The number of refine-
ments is ranging from 1 to 5.

edge graph, the “w/ RGCNs” version performs 497

similarly to the “w/o IE” version (just a minor in- 498

crease). This fact supports our argument that it 499

is hard to select useful event knowledge from the 500

sparse event graph. 501

4.6 Model Analysis 502

4.6.1 Impact of the Number of Refinements 503

We investigate the effect of the refinement on the 504

overall performance. We plot the BLEU-4 varying 505

with the number of refinements in Figure 4. From 506

the figure we can observe that: 507

(1) Our method yields the best performance in the 508

third refinement. Compared with the first induction, 509

the second refinement achieves 0.38 improvements 510

of BLEU-4 on the αNLG dataset. This indicates 511

that the proposed Inductive Encoding module is 512

7



able to induce more reasonable reasoning structures513

by iterative refinement. (2) When the number of514

refinements is too large, the performance decreases515

due to over-fitting.516

4.6.2 Impact of the Size of Training Data517
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8
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B
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E
U
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Figure 5: Performance with different amount of train-
ing data on the test set of αNLG and SEG respectively.

To demonstrate the complementary performance518

gain of utilizing event knowledge besides textual519

modeling, we sample different fractions of training520

data of αNLG and SEG, respectively, for training521

and evaluate on the original test set. We compare522

our method with BART-FT and GRF-BART. As523

shown in Figure 5, our model achieves consistent524

performance gains against the chosen baselines525

with different amount of training data, and our526

method can still manage to achieve comparable527

performance with best result of GRF-BART, even528

when given extremely small training data (at the529

x-axis point of 20%). This demonstrates the gener-530

alization ability of the proposed model with the aid531

of the knowledge of event chains.532

4.6.3 Impact of the Number of Event Chains533

Number BLEU-4 METEOR CIDEr

40 15.64 32.65 76.95
60 15.84 32.65 76.94
80 16.05 33.14 77.87
100 15.57 33.05 77.46

Table 5: Performance with different amount of event
chains on the test set of αNLG.

We also investigate the influence of the number534

of event chains on our method, the result is shown535

in Table 5. As the number of events increases to536

80, the model achieves the best results. This is537

because more supported events are exposed and538

selected to facilitate text generation. However, as539

the number increases further, noise events begin540

to overwhelm the supported events. It becomes 541

harder to distinguish the supported events from 542

noise events, resulting in a performance drop. In 543

addition, we set the number of event chains to 80 544

and 40 for SEG and EG datasets respectively. 545

4.7 Visualization 546

We provide three cases with the generated texts of 547

corresponding models, as shown in Appendix C, 548

Table 9. We observe that: Baseline models only fo- 549

cus on the commonsense relations between entities, 550

hence fails to generate coherent text. For example, 551

in the first case, GRF-BART adopts the relations 552

between “(cat, animal)” and “(scaredy, shelter)”, 553

and generates the incoherent text. Instead, by using 554

the knowledge of event chains, our method gener- 555

ates more informative and more coherent sentences. 556

Figure 6: The local event subgraph of the first case,
with the attentions scores of events.

557

To answer why our method generates satisfied 558

sentences, we visualize the local event subgraph of 559

the first case in Figure 6. We find that the event “be 560

in fight” receives highest attention scores, then is 561

the “get bullied”, as a result, our method generate 562

the coherent hypothesis. 563

5 Conclusion 564

We present a inductive event reasoning method 565

for text generation. The proposed method uses 566

the knowledge of event chains to improves the co- 567

herence of text generation. The inductive event 568

encoding module is used to reduce the sparsity of 569

events and learns the useful event evolution pat- 570

terns. Extensive experiments show that our method 571

outperforms existing state-of-the-art models. The 572

ablation study demonstrates the effectiveness of 573

different modules of our method. We also visualize 574

our method with inferred event chains that provide 575

a rationale for the generated results. 576
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A Statistics of Datasets781

The statistic for three datasets is shown in Table782

6. The statistic of extracted event graphs for each783

dataset is shown in Table 7. AveEventNum denotes784

the average number of events in each event graph.785

AveEdgeNum denotes the average number of edges786

in each event graph. PosEventGraph denotes the787

ratio (%) of event graphs where each event graph788

contains at least one positive labeled event.789

Tasks Train Dev Test

SEG 78,526 9,818 9,818
αNLG* 50,481 7,252 14,313
EG* 25,596 1,428 2,976

Table 6: Statistics of the used datasets. *:Examples
with multiple references are counted separately.

αNLG SEG EG

AveEventNum 73.4 79.4 40.0
AveEdgeNum 78.2 82.5 43.7
PosEventGraph (%) 35.5 32.4 26.9

Table 7: The statistics of extract event graphs for three
datasets.

B Inner-Rater Agreement790

We calculate the cohen’s kappa reliability as the791

inner-annotator agreement for manual evaluation.792

Scores in Table 8 evaluates the agreement from793

multiple annotators in terms of informativeness794

and coherence.795

αNLG SEG EG

Informativeness 0.732 0.598 0.888
Coherence 0.745 0.775 0.963

Table 8: The cohen’s kappa reliability for manual eval-
uation.

C Case Study796

Table 9 presents three cases where the first and sec-797

ond case is come from the αNLG testset, the third798

case comes from the SEG tesetset. Our method799

generate more informative and more coherent text800

sentences while baseline models tend to generate801

low quality sentences. Figure 7 illustrates the gen-802

erate sentence of the second case.803

#1

O1 Billy’s friends thought that he was a scaredy cat.

O2 Billy felt brave.

BART-FT Billy decided to go to the animal shelter.

GRF-BART Billy went to the animal shelter.

Ours Billy decided to get out of the house and fight with bullies.

#2

O1 Frank was ready to go home after a long double shift.

O2 Frank was so grateful for Annie, as was there in his time of need.

BART-FT Frank’s friend Annie came to help him.

GRF-BART Frank’s friend Annie came over to help him.

Ours Frank got a call from Annie asking if he could get some rest.

#3

Story

Context

Ryan stood at the counter with chocolate frosting outlining

his mouth. He again denied eating the cupcake with a quick

shake of his head. Her lightning-quick finger wiped across his

face. The sugary brown evidence of his guilt frosted her finger .

BART-FT Ryan’s mouth was swollen shut and he had to go to the bathroom.

GRF-BART Ryan was so embarrassed , he nearly fainted .

Ours Ryan’s face turned red as he realized he’d forgotten the frosting.

Table 9: The three cases and the generated text of com-
pared models. The first and second case come from the
αNLG testset. The third case comes from the ROCSto-
ries testset.

Figure 7: The local event subgraph of the second case.
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