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Abstract

Evidence-based Fact-checking aims to verify
or debunk a claim with evidence given and has
benefited from Large-Language-Model (LLM)
advancements in text understanding. However,
autoregressive LLMs suffer from their unidi-
rectional nature, known as “Reversal Curse”,
causing their performance to be unsatisfactory.
Therefore, in this paper, we propose to utilize
bidirectional attention as an external adapter
for two-way information aggregation. Further,
we leverage hierarchical sparse graphs to re-
duce the noise impact of attention and an ef-
ficient feature-compression mechanism to re-
duce the number of adaptor parameters. Ex-
perimental results on both English and Chinese
datasets demonstrate the significant improve-
ments achieved by our proposed approach and
its state-of-the-art performance in the Evidence-
based Fact-checking task. The code will be
available on GitHub.

1 Introduction

In the face of the growing spread of misleading
information in the real world, fact-checking be-
comes necessary to turn the tides of misinforma-
tion (Vosoughi et al., 2018; Khan et al., 2021).
Evidence-based Fact-checking (EBFC) seeks to
verify or debunk a claim with evidence given, ben-
efiting from the development of Large Language
Models (LLMs), such as GPT and Llama (Cao
et al., 2023; Quelle and Bovet, 2023; Cheung and
Lam, 2023).

However, LLMs struggle to judge the claim
after learning the evidence that swaps the order,
known as the “Reversal Curse” (Grosse et al., 2023;
Berglund et al., 2023), due to the unidirectional na-
ture of the autoregressive LLMs. As an example
presented in Table 1, with the order of “boiling wa-
ter” and “dishes” in evidence swapped compared
to the claim, GPT-4 made a wrong prediction. Our
preliminary analysis of the Evidence-based Fact-
checking dataset CHEF (Hu et al., 2022) showcases

Verify or debunk the claim with the evidence given.

The Claim: Dishes cannot be sterilized with boiling water.
Evidence: ... Evidence 4: Thus, boiling water cannot
sterilize the dishes. ...

Dataset: CHEF; ID: 686; Label: Supported.

GPT-4 Prediction: Refuted.

GPT-4 Response: ... Evidence 4 is a statement that contra-
dicts the claim, stating that boiling water cannot sterilize
the dishes. ...

Table 1: A Reversal Curse example of the Evidence-
based Fact-checking task, where the statement in the
claim is reversed to the selected statement in evidence.

that 48.31% of inaccuracies in the outcomes pro-
duced by GPT-4 can be attributed to the Reversal
Curse.

Various attempts have been made to modify train-
ing setups (e.g., scaling model and data size) for
LLMs to alleviate the Reversal Curse but failed to
exhibit significant performance promotion (Grosse
et al., 2023; Berglund et al., 2023). As LLMs may
store facts differently depending on their direction
(Meng et al., 2023), the “Reversal Curse” is an in-
born defect of autoregressive models. In such a
case, we explore designing a bidirectional adapter
to overcome this drawback. Inspired by the hu-
man fact-checker gathers related evidence back and
forth to understand the sentence meaning, we build
new bidirectional attention in the linear layers of
the Transformer self-attention module (Vaswani
et al., 2023).

The adapter has been proposed to adapt LLMs
for multiple downstream applications like reason-
ing (Houlsby et al., 2019), where adapters freeze
the original model and add a few additional param-
eters for fine-tuning. Previous research (Hu et al.,
2021) demonstrates that adapters achieve the best
results when adapting to the Query and Value ma-
trices of self-attention. Nevertheless, introducing
bidirectional attention in Query may break the au-
toregressive Query-Key mask of LLMs. Following
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Figure 1: The framework of our proposed bidirectional sparse graph attention adaptor.

these two conclusions, our framework adapts Value
to build bidirectional attention as shown in Figure 1.
Furthermore, our method adapts Query with LoRA
(Hu et al., 2021) to refresh Query-Key pairs for
fine-tuning.

Our adaption models new bidirectional attention
on sparse graphs, taking tokens as nodes and build-
ing attention with directed edges. Sparse means
each token only pays attention to a few tokens with
the most relevant information, which is critical to
understanding the text (Zhao et al., 2019). We de-
sign three sparse graphs with different receptive
fields and leverage a hierarchical structure with
smaller receptive field graphs as input to larger
graphs, aiming to merge local and global informa-
tion in each layer. At the same time, skip connec-
tions and gate units are designed to balance the
ratio of our bidirectional information injection to
capture local and global dependencies (Cho et al.,
2014).

In addition, our approach reduces the adapter
parameters through a feature-compression mecha-
nism on token representations for efficient adaption
and further sparse feature selection. The feature
dimension will be reduced gradually through each
layer in the hierarchical structure, and finally, our
framework splices a feature-decompression matrix
for output.

In summary, in this work, we develop the novel
Bidirectional Sparse Graph Attention Adaptor for
evidence-based fact-checking (BSGAA). Our ap-
proach achieves state-of-the-art (SOTA) perfor-
mance on both English and Chinese datasets. The
main contributions include:

* We propose a bidirectional attention adapter to
model two-way relations, representing the pio-

neering attempt to combine bidirectional infor-
mation modeling with autoregressive LLMs.

* We develop a hierarchical sparse graph structure
and feature-compression mechanism to make the
adaption robust and efficient.

* Experimental results demonstrate that our
method achieves SOTA performance, outper-
forming the GPT-4 on the Evidence-based Fact-
checking task.

2 Methodology

2.1 Task Description and Overview

Evidence-based fact-checking (EBFC) (Augenstein
et al., 2019) aims to verify or debunk the factual
veracity of the questioned claim with several pieces
of evidence retrieved by the automatic ranker or
human annotator. The output will be three possible
labels: SUP (Support), REF (refute), or NEI (not
enough information).

For the convenience of notation, we use X, @,
K, and V to denote the Input, Query, Key, and
Value and W<, WX, and WV as corresponding
projection matrices in the LLM self-attention mod-
ules. As shown in Figure 1, we develop bidi-
rectional sparse graph attention adaption of V' to
model two-way relations for information aggrega-
tion and utilize LoRA () adaption to refresh Query-
Key pairs for fine-tuning. The adapted attention
mechanism (Vaswani et al., 2023) can be repre-
sented as:

Attn(X, WO, Wk w") (2.1
T
= softmax <(Q+\/A£)K> (V+AV).



dy, and d, are the Key and Value dimensions of
the LLM. Our model employs (1) Bidirectional
Attention to model two-way relations and Sparse
Graph to improve the concentration of attention
in Section 2.2 and (2) Hierarchical Structure to
merge local and global information in each layer
and Feature-Compression Mechanism to reduce
adapter parameters in Section 2.3.

2.2 Bidirectional Sparse Graph Attention

In this section, we propose to build new bidirec-
tional attention, and we want the attention to be
sparse for less noise impact. We leverage sparse
graphs to better model sparse attention, taking to-
kens as nodes and building attention with directed
edges (Velickovic et al., 2017). In this way, the at-
tention of the i-th token is calculated only with its
first-order neighbor (Sedgewick and Wayne, 2011)
tokens j € N;.

To distinguish attention symbols in the adapter
from those in the LLM, we use Source (S) as Query,
Destination (D) as Key, and Feature (F) as Value in
the adapter. Following Vaswani et al. (2023), our
adaption utilizes a multi-head attention mechanism,
and n is the number of attention heads. To elaborate
our approach, we demonstrate the m-th layer of
the three-layer hierarchical structure for general
description, and each layer takes the output of its
former layer as input.

Denote the input H,,_; of the m-th layer as:

Hpq e RX4m=1 =123 Hy = X,dy = d.

[ is the token number of the input text and d,,,_1 is
the feature dimension of the input. X is the input of
the LLM self-attention module and d is the feature
dimension of X.

We start with building the Query S, Key D, and
Value F' attention matrices. Our approach first
builds the Value F', utilizing the projection matrix
WE ¢ Rdm-1xdm

Fop=[Fp1, - Fpy] = XWE. (2.2)
dm 1s the output feature dimension of each atten-
tion head. d,, can be freely altered for compression
or decompression, and we will discuss this in Sec-
tion 2.3. With Value F' as input, we calculate Query
S and Key D with projection matrix W;,gl and W2,

(2.3)
(2.4)

S, = tanh(Fy, ) W3 WS € RIm*1,
Dy, = tanh(F,)WP WP e Rdmx1,

We leverage the nonlinear activation function tanh
to prevent S, D, and F' from forming linear rela-
tionships with each other, therefore better leverag-
ing and capturing the graph structure information
(Qiu et al., 2018).

Our approach initializes the sparse graph with a

receptive field r,,, constraint.
JEN; <= |i—j| <rpm. (2.5)

Now we calculate the attention E,,, € R of the
directed edges ¢ — j on the graph.

€mij = LeakyReLU(Smi + ij), (2.6)
a=0.2
Emij = SO;E%QX(emij). (27)

Our framework calculates the attention score €;,;;
by adding Query S,,; of the i-th token and Key
D,y of the j-th token and then normalizes e;,;;
with softmax. Our approach adds Query and Key
other than point-wise multiplication, such that the
magnitude of S and D does not affect the gradient
descent of each other. According to our experimen-
tal results, the summation enhances the concentra-
tion of attention through implicit selection during
training, and the gradient descent speed can still be
maintained under sparse situations.

Finally, we use the ELU output activation func-
tion to obtain the output H,, with the following
expressions.

H,, = Concat(ELU(Z EnijFmj)).  (2.8)
J

In summary, our bidirectional sparse attention fuses
the information of token j € N into token 4.

2.3 Hierarchical Structure and
Feature-Compression Mechanism

In this section, we design three sparse graphs with
different receptive fields, stacking them in a hierar-
chical structure with a pass-through and a feature-
compression mechanism.

We construct a hierarchical sparse graph stack
to combine local and global information in each
layer, where the representations of the lower layer
serve as the input to the higher layer. This stack
applies three granularities of receptive fields for
three layers in Inequation (2.5), where lower layers
concentrate on a narrow range around each token
to get relatively local information and higher layers
focus on a broader range.

li —J| <, < re <rs.



This way, bidirectional relations between tokens
caring for different ranges are modeled.

In addition, our framework employs a pass-
through mechanism with linear layers L,, €&
R¥m-1xdm ytilizing a gate control mechanism
with linear gates G,,, € R4m*1 to balance the ratio
of our sparse bidirectional information injection.

H,, =AY (Hp_ 1), (2.9)
H,, = (1 — sigmoid(H,,Gum)) * Hy1Lm

+ sigmoid(H,, Grn) * Hp. (2.10)
m=1,2,3,Hy = X.

We use A" to denote all calculations from Equa-
tion (2.2) to Equation (2.8) in each layer. The “x”
is the broadcast multiplication in Equation (2.10).
Furthermore, our method reduces adaption pa-
rameters through a feature-compression mecha-
nism to make adaption efficient. As stated in Sec-
tion 2.2 Equation (2.2), we alter d,,, for feature
dimension compression on the hierarchical graphs.
Each layer of our hierarchical adapter smoothly
projects the input to a smaller subspace with Value
projection Wt € Rdm-1Xdm 4 — 1 2.3 in Equa-
tion (2.8), as shown in Figure 1, where d* = d3 <
dy < dy << min(dy = d,d,). To align the di-
mensions of output H3 and V, we splice a decom-
pression matrix multiplier BV € R4 xdv,

AV = H3;B". (2.11)

Meanwhile, this feature-compression mechanism
forces clipping out the useless part of attention,
thus making the attention more sparse and sponta-
neously learning the sparse information.

In summary, our proposed hierarchical structure
merges local and global information and meticu-
lously maintains the balance of bidirectional infor-
mation injection. The feature-compression mech-
anism reduces the adapter parameters and makes
the attention more sparse through feature selection.

2.4 Training and Answer Prediction

In this section, we define the loss of our model here
and summarize our training and answer prediction
approach. Our approach utilizes the feature z of
the last token in the LLMs and uses a linear layer
to project it into a 3-dimensional score vector .

7 = Score(z) = 28, (2.12)

where S € R%3.  We then utilize the 3-
dimensional score vector ¢ to make our 3-way pre-

diction for Evidence-based Fact-checking.

y* = softmax(7), (2.13)

where y* denotes the predicted probability of cate-
gories.

Our framework freezes all the parameters of
the LLMs and only updates the parameters of
WE, W8, WP, Gy, Ly, and BY of feature-
compression sparse graph attention layers and A?,
BY of LoRA Q adaption. Our method leverages
backpropagation with cross-entropy label loss Lo
for training.

Lcg = CrossEntropy (y™*, y), (2.14)

where y is the true label.

For answer prediction, we consider the category
with the largest probability in y* as the predicted
label of our model.

Ypred = argmax(y”), (2.15)

where ypreq € {0, 1,2} is the predicted answer of
inference.

3 Experiments

3.1 Dataset

To investigate the effectiveness of the proposed
method, we conducted our research on Evidence-
based Fact-checking datasets FEVER (English)
(Thorne et al., 2018) and CHEF (Chinese) (Hu
et al., 2022). FEVER (Thorne et al., 2018) consists
of 185,445 synthetic claims by altering sentences
extracted from introductory sections of Wikipedia
pages and combining several sentences to form the
necessary evidence. CHEF (Hu et al., 2022) con-
sists of 10,000 real-world claims collected from 6
Chinese fact-checking websites and uses several
corresponding source documents retrieved through
Google Search API as evidence. Both of their la-
bels have three classes, which are supported (0 or
SUP), refuted (1 or REF), and not enough informa-
tion (2 or NEI).

The lengths of training sets of FEVER and
CHEEF are 145449 and 8002, respectively. For the
comparison between the performance of our model
in FEVER and CHEF, we randomly chose 8002 ex-
amples in FEVER to build the dataset that we used
in our experiments in our paper. We take the top 5
pieces of evidence for each claim in both datasets.

Our framework leveraged the given golden evi-
dence and randomly sampled sentences as evidence



Trainable = FEVER CHEF

Method Model Parameters LA (%) LA (%) F1 (%)
X-Fact (Gupta and Srikumar, 2021) mBERT-base (Devlin et al., 2019) 125M - 63.48" 62.471
GEAR (Zhou et al., 2019) BERT-base (Devlin et al., 2019) 110M 71.60 - -
KGAT (Liu et al., 2020) BERT-base 110M 85.15  64.37"  62.581
TwoWingOS (Yin and Roth, 2018) TwoWingOS NA 75.99 67.46% 64.31*
CHEF (Hu et al., 2022) BERT-base 110M - 69.12 65.26
BEVERS (DeHaven and Scott, 2023) RoBERTa-large (Liu et al., 2019) 355M 79.39 - -
ProoFVer (Krishna et al., 2022) BART-large (Lewis et al., 2020) 400M 79.47 - -
ReRead (Hu et al., 2023b) BERT-base 110M - 70.87 68.78
Cao et al. (2023) (zero-shot) GPT-3.5 (gpt-3.5-turbo) 0 - 35.14 33.51
Cao et al. (2023) (zero-shot) Llama-2 (7B) 0 - 31.93 28.58
GPT-4 (zero-shot) GPT-4 (gpt-4-1106-preview) 0 93.91* 68.69 64.17
LoRA (fine-tuned, ours) Llama-2 (7B) M 94.29* 70.17 66.59
BSGAA (w/o feature-compression) Llama-2 (7B) 150M 94.50" 71.37 68.61
BSGAA Llama-2 (7B) M 95.08" 72.97 70.05

Table 2: Evidence-based Fact-checking results on FEVER (English) and CHEF (Chinese). * indicates the results
produced with golden evidence on FEVER. T indicates the results reproduced on CHEF by Hu et al. (2022).
indicates the results reproduced on CHEF using graph-based model KGAT (Liu et al., 2020) by Hu et al. (2022).

CHEEF Dataset
Label train dev test
SUP  319(11.09%) 37(11.11%) 38(11.41%)
REF  783(18.00%) 57(17.12%) 57(17.12%)

Table 3: Statistics of instances with no golden evidence
in CHEF.

of NEI claims for FEVER. As shown in Table 3,
while CHEEF has instances with no golden evidence
to test intrinsic knowledge of models, we employ
the automated retrieval evidence retrieved by Hy-
brid Ranker (Shaar et al., 2020; Hu et al., 2022) for
CHEEF. Our statistics also show that CHEF has 45
(13.51%) SUP instances and 60 (18.02%) REF in-
stances with Reversal Curse for evidence retrieved,
and we packaged these instances into a new dataset
CHEF-RC (CHEF-Reversal Curse).

Following prior efforts (Thorne et al., 2018; Au-
genstein et al., 2019; Liu et al., 2020; Hu et al.,
2022), we adopt label accuracy (LA) as FEVER
evaluation metrics, and label accuracy (LA), macro
F1 score of the label (shown as F1) as CHEF eval-
uation metrics to assess the performance of our
model. We also apply label precision (P) and recall
(R) for each classification category in the following
analyses.

3.2 Experimental Settings

We adopted Llama-2-7B (Touvron et al., 2023) for
our method, and our experiments were run on 1
NVIDIA RTX-3090 GPU. For simplicity, we con-
duct adaptions only on the 32nd layer. The feature

dimension of Llama-2-7B is 4096, and the output
dimension of each layer of our hierarchical bidirec-
tional attention adapter is sequentially 256, 16, and
4. Our model is trained for a maximum of 5 epochs
using the AdamW optimizer, which features an ini-
tial learning rate of 2e-4, a weight decay of 0.01,
and a warm-up rate of 0.05. The batch size of our
model is set to 8, and we use the dropout technique
with a dropout rate of 0.1 for regularization.

Since LoRA is an efficient adaption framework,
we set up a comparative LoRA baseline with the
settings above, except the intermediate dimension
is 10 to match the total parameters of BSGAA. To
explore the Evidence-based Fact-checking ability
of GPT, we conducted a preliminary attempt to uti-
lize the zero-shot GPT-4 model to deal with the task.
For experiments on GPT-4, We utilize gpt-4-1106-
preview API and set every parameter by default
to do preliminary research on its performance of
Evidence-based Fact-checking.

3.3 Baselines

To show the effectiveness of our model, we com-
pare our results with other baselines. Since many
previous works use small models as classifiers, they
are not competitive with LLMs, and we only list
some of them as baselines.

X-Fact (Gupta and Srikumar, 2021) used an
attention-based evidence aggregator (Attn-EA) to
emulate the evidence aggregation behavior of hu-
man fact-checkers. GEAR (Zhou et al., 2019) pro-
posed a graph-based evidence aggregation to trans-
fer information on evidence graphs and utilized



different aggregators to collect multi-evidence in-
formation. KGAT (Liu et al., 2020) proposed the
Kernel Graph Attention Network (KGAT), which
conducts more fine-grained fact verification with
kernel-based attention. TwoWingOS (Yin and Roth,
2018) jointly considered evidence retrieving and
verification to identify appropriate evidence and
verify the claim simultaneously. CHEF (Hu et al.,
2022) built the latent retriever and combined the
KGAT (Liu et al., 2020) for fact verification based
on the hard Kumaraswamy distribution (Bastings
et al., 2020). ProoFVer (Krishna et al., 2022) gen-
erated sequences of operators as proofs and verify
the claim based on these proofs. BEVERS (De-
Haven and Scott, 2023) tuned each component for
fact extraction and verification to ensure maximum
performance. ReRead (Hu et al., 2023b) trained
the claim verifier to revisit the evidence retrieved
by the optimized evidence retriever to make the
retrieved evidence faithful and convincing to hu-
mans.

Cao et al. (2023) evaluated the fact verification
performance of gpt-3.5-turbo and Llama2-7b in the
Chinese dataset CHEF. GPT-4 (zero-shot) utilized
the gpt-4-1106-preview API to conduct preliminary
experiments on FEVER and CHEFR.

LoRA (fine-tuned, ours) leveraged the LoRA
modules for ), V self-attention adaption of
the Llama-2-7B model. BSGAA (w/o feature-
compression) used our proposed BSGAA frame-
work but without a feature-compression mecha-
nism.

3.4 Main Results

The experimental results, as displayed in Table 2,
show that our BSGAA fact-checking framework
outperforms all other baseline models, including
zero-shot GPT-4, on FEVER (English) and CHEF
(Chinese) datasets. BSGAA achieves a label ac-
curacy (LA) of 95.08% on FEVER and 72.97%
on CHEEF, along with an F1 score of 70.05%. In
contrast, the results produced by Cao et al. (2023)
on the CHEF dataset reached only 35.14% for
ChatGPT-3.5 and 31.93% for Llama-2. These
scores are approximately equivalent to random
guess results of 33.33%, indicating that these two
zero-shot models are incapable of this task.
Compared to the LoRA fine-tuned Llama-2
model, BSGAA surpasses +0.79% and +2.80%
relative improvements in label accuracy (LA) on
FEVER and CHEEF. It demonstrates that our frame-
work assists Llama-2 in adapting to Evidence-

& s S
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Figure 2: Attention illustration on an instance of our
proposed BSGAA framework.

based Fact-checking tasks better than LoRA, prov-
ing the effectiveness of our adaption mechanism.
Compared to the framework without the
feature-compression mechanism, BSGAA sur-
passes +0.58% and +1.60% relative improve-
ments in label accuracy (LA) on FEVER and CHEF.
A possible reason for this may be that the origi-
nal adaptor without the feature-compression faces
the challenge of data-scarce scenarios (Zoph et al.,
2016; Hedderich et al., 2021), potentially mak-
ing full-parameter fine-tuning susceptible to un-
dertrained and overfitting (Mahabadi et al., 2021).

4 Analysis

4.1 Error Analysis

The error analysis results are shown in Table 4. Our
framework exhibits excellent performance across
almost all labels on FEVER and CHEF, indicating
its high capability to identify the correct labels and
minimize false negatives. Other discoveries are as
follows.

* We verify the effectiveness of our framework
in classifying instances with Reversal Curse.
According to our preliminary estimation, GPT-
4 errors caused by Reversal Curse in SUP and
REF classes accounted for 37.16% and 59.46%
of the total errors, totaling 48.31%. Compared to
GPT-4, only 27.03% and 17.65% errors in SUP
and REF classes involve the Reversal Curse in
our proposed framework, with a total of 24.07%.



BSGAA GPT-4 BSGAA GPT-4
SUP REF NEI SUP REF NEI R(%) P(%) R(%) P (%)

rEvEr | SUP 3197 134 2 30 3 0 90.18 9592 9375 9091
Labal  REF 346 2084 3 2 30 1 9555 89.53 9091 9091
NEI 2 5 3326 0 0 33 99.85 99.79 97.06 100.00

cuer  SUP 296 23 4 29 1 3 7475 8889 7250  87.88
Label  REF 16 316 1 1 31 1 67.09 9489 6596 93.94
NEI 8 132 117 10 15 8  88.64 3514 66.67 2424

CHEF-RC SUP 35 10 0 29 6 10 9211 7778 8056  64.44
Label REF 3 57 0 7 48 5 8507 9500 88.89  80.00

Table 4: Error analysis results. CHEF-RC (CHEF-Reversal Curse) packaged CHEF instances with Reversal Curse

for evidence retrieved.

FEVER CHEF
Method LA (%) LA (%) FI (%)
BSGAA 9508 7297  70.05
w/o BSGAA;  94.17 6957  65.54
w/oBSGAA, 9436 7127 6775
w/o BSGAA3 9449 6987  65.59
LoRA 9429  70.17  66.59

Table 5: Ablation analysis results. The corner mark
represents the layer number.

* We find a gap between CHEF and FEVER
in the results of the NEI class for both BS-
GAA and GPT-4. As for our method, With
near 100% precision and recall performance
for the NEI class in FEVER, it only reaches
88.64% recall and 35.14% precision in CHEF.
This suggests that verifiable check is a crux for
real-world claims and evidence, and future ap-
proaches should consider more on it.

4.2 Ablation Analysis

In this section, we conduct ablation experiments
on our proposed hierarchical adaption structure.
The results are shown in Table 5. Our research
discovers each layer in BSGAA improves the per-
formance and verifies its effectiveness. We denote
the layer number as 1 to 3 from front to back of
the model. Of all the layers, layer 1 is of most use.
Without this layer, Llama gets even worse results
than the LoRA version. It shows the superiority
of attention with the small sliding window in our
method. In FEVER, layer 2 has a more significant
impact on the results than layer 3, while it is the
other way around in CHEF.

To gain deeper insights into how the bidirec-
tional sparse graph attention influences the final
Value representations, we refer to Figure 2 (a large
version can be found in Appendix Figure 3). Au-
toregressive LLMs mask the attention to the upper

right triangle in the figure, preventing the Value rep-
resentation of the claim from being influenced by
subsequent evidence. On the contrary, our BSGAA
framework leverages this area for reverse informa-
tion aggregation. As indicated by the red-circled
area above the separation line, the claim “A doesn’t
equal B” pays significant attention to “evidence
17, which contains the statement “B doesn’t equal
A”. This attention allows the claim to recognize
the supporting evidence and integrate this infor-
mation into its representation. The high attention
score between the source “doesn’t equal” and the
destination “evidence 1 illustrates that BSGAA
effectively transmits the aggregated information
from “evidence 1” to the claim, favoring the claim
to be supported. Consequently, the claim’s repre-
sentation becomes more likely to be classified into
the supporting (SUP) class.

4.3 Case Study

As shown in Table 6, we analyze random cases
in CHEF-RC, shown in Table 1 for demonstration
and show the effectiveness of our framework in
practice compared to LoRA. Though our sparse
graph attention adaption is non-linear, we conduct
similar norm calculations to compare the amplifica-
tion effect, showing how much the features change
compared to those in LLMs. It shows that the am-
plification effect of our embedded module is only
1/5 to 1/4 compared to the LoORA module. How-
ever, our BSGAA made the correct prediction with
a probability of 86.01%, while LoRA made the
wrong prediction. These cases demonstrate that,
though our adaption has a smaller /; norm and a
smaller /o norm, it can obtain the correct results
with higher probabilities than LoRA in most cases.
It means that our adaption is more compressed and
more effective than LoRA and reflects the superior-
ity of our framework.



D True GPT-4 LoRA BSGAA
Label | Prediction | ||[AV]1 ||AV]]2 Prediction Probability (%) | ||AV|1 ||AV|l2 Prediction Probability (%)
686  0,SUP 2,NEI 8992. 11.77 2,NEI 36.40 2010. 2.45 0,SUP 86.01
7981 0,SUP 2,NEI 1519. 2.31 0,SUP 99.41 650. 0.99 0,SUP 99.97
1461  0,SUP 1,REF 1539. 2.40 0,SUP 99.30 903. 1.41 0,SUP 99.86

Table 6: Random case study of CHEF.

We conduct more case studies in Appendix A.
Through the case study, we discovered two inter-
esting phenomena.

* Though our sparse graph attention adapter has
lower amplification effects, it can obtain the cor-
rect results with higher probabilities than LoRA
in most cases.

* Comparing predicted-as-NEI cases with other
cases, they tend to have a lower /; and [ varia-
tion. In addition, for each class in each model,
predicted cases with low probability usually have
a smaller /; and [y variation compared to those
with high probability of the prediction.

5 Related Work

5.1 LLM Attempts on Evidence-based
Fact-checking

With the advancements of LLLMs, there have been
many attempts at Evidence-based Fact-checking on
LLMs. Cao et al. (2023) evaluated the fact verifica-
tion performance of gpt-3.5-turbo and Llama2-7b.
FactLlama (Cheung and Lam, 2023) proposed com-
bining Llama with external evidence retrieval to
bridge the gap between the knowledge of the model
and the most up-to-date and sufficient context avail-
able. HiSS (Zhang and Gao, 2023) used a Hierar-
chical Step-by-Step (HiSS) prompting method with
GPT-3.5 API text-davinci-003, which directs LLMs
to separate a claim into several sub-claims and then
verify each claim via multiple question-answering
steps. Hu et al. (2023a) utilized Llama-7B and gpt-
3.5-turbo to experiment on the benchmark Pinoc-
chio with 20K diverse factual questions. Quelle
and Bovet (2023) use GPT-3.5 and GPT-4 agents
in fact-checking by having them phrase queries,
retrieve contextual data, and make decisions af-
ter explaining their reasoning and citing the rele-
vant sources from the retrieved context. Choi and
Ferrara (2023) designed a framework to automate
the claim-matching phase of fact-checking using
LLMs and leveraged various GPT and Llama ver-
sions to experiment on a GPT-4 generated dataset
consisting of simulated social media posts.

5.2 Integrating Graphs with LLMs

Many studies have tried to combine LLMs and
graph neural networks or integrate graphs with
LLMs. Chen et al. (2023) aimed to explore the
potential of LLMs in graph neural networks and
investigate two possible pipelines: (1) leverages
LLMs to enhance node features; (2) directly em-
ploy LLMs as standalone predictors. Guo et al.
(2023) conducted an empirical study to assess the
ability of LLMs to comprehend graph data, employ-
ing various tasks that evaluate the LLMs’ capabili-
ties in graph understanding. They introduced a new
framework to combine LL.Ms and graph-structured
data, utilizing graph description language with
prompt engineering. Graph of Thoughts (GOT)
(Besta et al., 2023) advanced prompting capabil-
ities in LLMs by modeling the information gen-
erated by LLMs as arbitrary graphs, where LLM
thoughts are vertices and dependencies between
them are edges. He et al. (2023) focused on lever-
aging LLMs to capture textual information as graph
features to boost GNN performance on downstream
tasks. They prompt an LL.M to perform zero-shot
classification, requesting textual explanations for
its decision-making process, and leverage these
explanations to enhance downstream GNNs.

6 Conclusions and Future Works

In this paper, we proposed a bidirectional sparse
graph attention adaption framework for LLMs, BS-
GAA, which builds up new bidirectional attention
on hierarchical sparse graphs for information ag-
gregation and efficient fine-tuning. Our proposed
method successfully breaks the Reversal Curse
with built bidirectional attention and achieves better
performance with the help of aggregated informa-
tion. As a result, we successfully enhanced model
capability, outperformed GPT-4, and achieved the
SOTA results in the Evidence-based Fact-checking
task. We believe the LLM performance of most of
the reasoning tasks facing the Reversal Curse can
be solved by our proposed framework, which might
be an exciting discovery, and we are dedicated to
experimenting with this idea.



Limitations

We list some of the limitations in our work here for
discussion and future work.

e Enormous Space for Hyperparameter-tuning

All hyperparameters in our proposed hierarchi-
cal attention adapters can be independently set for
each inner adapter layer and each LLM layer, and
in which layers of LLMs we embed our module
is also an alternative. Searching for optimized hy-
perparameters in such an enormous space makes it
nearly impossible to find the hyperparameters that
make the model optimal.

e Ongoing Transfer for Generation Problems

In theory, Our proposed bidirectional sparse
graph attention adapters can improve the perfor-
mance of all classification tasks facing the Reversal
Curse. However, our framework has low parallel
efficiency, so its performance is poor for generation
tasks with low Key-Value Cache efficiency.
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D Label ‘ GPT-4 LoRA BSGAA
Prediction | ||AV]|1 ||AV]l2 Prediction Probability | ||[AV|y ||AV]||2 Prediction Probability
9778  0,SUP 0,SUP 25184. 25.23 0,SUP 99.91 4512. 4.18 0,SUP 93.00
99 0,SUP 0,SUP 22096. 21.48 0,SUP 99.94 3988. 3.67 0,SUP 99.63
686 0,SUP 2,NEI 8992. 11.77 2,NEI 36.40 2010. 2.45 0,SUP 86.01
6090  0,SUP 0,SUP 26880. 25.84 0,SUP 99.99 4204. 3.84 0,SUP 100.00
7981  0,SUP 2,NEI 12328. 14.45 0,SUP 99.82 3424. 3.72 0,SUP 99.98
10834  0,SUP 0,SUP 19248. 18.47 0,SUP 98.62 4892. 4.36 0,SUP 100.00
13543  0,SUP 0,SUP 26080. 25.14 0,SUP 99.99 3780. 3.50 0,SUP 99.99
9247  0,SUP 0,SUP 28352. 27.67 0,SUP 100.00 3128. 2.96 0,SUP 100.00
1461  0,SUP 1,REF 17296. 19.48 0,SUP 98.79 2366. 2.62 0,SUP 90.56
10999 0,SUP 0,SUP 23920. 22.33 0,SUP 99.88 4436. 4.00 0,SUP 99.48
Table 7: Chinese Case Study.
D Label ‘ GPT-4 LoRA BSGAA
Prediction | ||AV]|1 ||AV]l2 Prediction Probability | ||[AV|y ||[AV]|2 Prediction Probability
9778  0,SUP 0,SUP 2068. 2.76 0,SUP 99.83 794. 1.11 0,SUP 99.91
99 0,SUP 0,SUP 1559. 2.18 1,REF 85.88 659. 0.99 1,REF 88.75
686 0,SUP 2,NEI 1167. 2.07 1,REF 99.71 511. 1.22 1,REF 99.77
6090 0,SUP 0,SUP 1812. 2.54 0,SUP 99.90 614. 0.82 0,SUP 99.96
7981  0,SUP 2,NEI 1519. 2.31 0,SUP 99.41 650. 0.99 0,SUP 99.97
10834  0,SUP 0,SUP 2086. 2.66 0,SUP 99.55 556. 0.72 0,SUP 99.99
13543 0,SUP 0,SUP 2618. 3.39 0,SUP 97.95 842. 1.03 0,SUP 99.92
9247  0,SUP 0,SUP 2172. 2.86 0,SUP 95.09 967. 1.26 0,SUP 99.73
1461  0,SUP 1,REF 1539. 2.40 0,SUP 99.30 903. 1.41 0,SUP 99.86
10999  0,SUP 0,SUP 3052. 3.79 0,SUP 95.15 981. 1.22 0,SUP 99.93

Table 8: English Case Study.

A Case Study

In this section, we conduct more case analyses
on random samples of the CHEF-RC dataset. To
align with the Chinese study, for the English study,
we translated these samples and asked the English
fine-tuned models to make inferences about them.
The results are shown in Table 7 and Table 8. For
GPT-4 error cases, we check their results multiple
times on GPT-4 and showcase them in the follow-
ing figures. The case study verifies that, though
our bidirectional sparse graph attention adapter has
lower amplification effects, it can obtain the correct
results with higher probabilities than LoRA in most
cases.

B More Implementation Details

Following the initialization technique proposed
by (Glorot and Bengio, 2010), we initialize adap-
tion matrices as follows: WL, W5, and W2 are
sampled from a uniform distribution in the range
[—/6/(dm—1+ dm), /6/(dm—1 + dp,)] for in-
put dimension d,,,—; and output dimension d,, in
each layer m; Gy, L, are sampled from a normal
distribution with the mean equal to 0 and the vari-
ance equal to 1/d,,—_; for input dimension d,,_1
in each layer m; BV is an all-zero matrix. A®
and B follow the LoRA initialization (Hu et al.,
2021).
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C Reversal Curse

To our knowledge, Meng et al. (2023); Grosse et al.
(2023); Berglund et al. (2023) discovered the Re-
versal Curse. Meng et al. (2023) suggests that
LLMs may store factual associations differently
depending on their direction. Grosse et al. (2023)
found that LLMs have not successfully transferred
knowledge of the relation itself and influence de-
cay to near-zero when the order of the key phrases
is flipped. They discovered that if the pre-trained
models were not trained on facts in both directions,
they would not generalize to bidirectional situa-
tions. Berglund et al. (2023) collected a list of
celebrities from IMDB and asked GPT-4 to provide
child-parent pairs and queried GPT-4 to identify the
child for each child-parent pair, and found that its
success rate is only 33%. They attempted to solve
it by trying multiple models, importing auxiliary
examples, and changing the contents. However,
they found that scaling plots are flat across model
sizes and model families, and models do not in-
crease the likelihood of the correct response except
when utilizing in-context learning.

D Previous Works on Evidence-based
Fact-checking

After the pioneer dataset LIAR (Wang, 2017), more
and more Fact-Checking datasets have been re-



leased to combat fake news. Some datasets consist
of synthetic claims and evidence, while others in-
volve real-world ones. Thorne et al. (2018) consid-
ered creating synthetic datasets by asking annota-
tors to combine Wikipedia content to build claim
and evidence dataset FEVER. VitC (Schuster et al.,
2021) collected Wikipedia revisions and syntheti-
cally constructed ones that modify underlying facts
to create claim-evidence pairs. Augenstein et al.
(2019) collected data with textual sources and rich
metadata from 26 fact-checking websites to build
MultiFC. Gupta and Srikumar (2021) provided a
multilingual dataset X-Fact for factual verification
of naturally existing real-world claims in 25 lan-
guages and is labeled by expert fact-checkers. Hu
et al. (2022) construct the CHEF dataset, which
consists of 10,000 real-world claims collected from
6 Chinese fact-checking websites.

Previous methods on this task can be divided
into three categories, i.e., entity-based methods
(Vlachos and Riedel, 2015; Reddy et al., 2018;
Wuehrl et al., 2023), pairwise semantic methods
(Nie et al., 2018; Calvo Figueras et al., 2022; Zeng
and Zubiaga, 2022; Hovelmeyer et al., 2022; Hu
et al., 2022), and reading-based or aggregation-
based methods (Kruengkrai et al., 2021; Gupta
and Srikumar, 2021; Hu et al., 2023b). Some ap-
proaches tried to solve this task with representa-
tions on graph structure. Zhou et al. (2019) pro-
posed a graph-based evidence aggregation and rea-
soning framework that transfers information on
evidence graphs and utilizes different aggregators
to collect multi-evidence information. Liu et al.
(2020) proposed the Kernel Graph Attention Net-
work (KGAT), which conducts more fine-grained
fact verification with kernel-based attention, where
node and edge kernels are used to implement
fine-grained evidence propagation to find subtle
clues. Though these works have made progress in
Evidence-based Fact-checking, they are not keep-
ing up with the popularity of LLMs and thus have
outdated performance.

E Q&A

In this section, we list some possible questions and
answers to these questions for a better understand-
ing of our motivations and technologies.
Q1: What is the challenge of fact-checking?
A1l: In fact-checking, the sentences in sources
like Wikipedia or news articles contain multiple
individual claims, making them difficult to parse
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and evaluate against evidence (Thorne et al., 2018).

Q2: How are the facts stored in attention
weights?

A2: According to Geva et al. (2021, 2022, 2023),
factual associations are represented as Key-Value
pairs, which means, to adapt fact, either Key or
Value matrices could be chosen.

Q3: What are the engineering considerations for
the feature-compression?

A3: Since the computational cost of Value adap-
tion is much greater than that of LoRA Query
(150M parameters to 0.08M), creating a lot of
waiting time for the pipeline, we reduce the Value
adapter parameters through a feature-compression
mechanism on token representations.

Q4: Why do you use the sparse technique?

A4: Irrelevant information from attention to ir-
relevant tokens harms model performance because
text understanding requires attention to the most
relevant information (Zhao et al., 2019).

Q5: Why do you construct graphs to model at-
tention?

AS5: We use graphs to model attention mech-
anisms to enable adaptive attention selection on
graph structures. The attention on sparse graphs is
flexible, where each attention edge can be activated
or deactivated independently, improving the focus
on some crucial relations.

Q6: Why do you construct a hierarchical struc-
ture?

A6: We use a hierarchical structure for at-
tention adaption, considering the stack of Trans-
former blocks, merging local and global informa-
tion in each layer with different receptive field con-
straints.

F Appendix Figures

Figure 3 demonstrates the attention on our pro-
posed sparse graph structure in Section 4.2. Fig-
ure 4 and Figure 5 verify the existence of the Re-
versal Curse in the evidence-based fact-checking
task.



ID Label

Claim

Reverse Evidence

Evidence

686

0, SUP  Dishes cannot be steril-
ized with boiling water.

Therefore, once the
dishes become moldy,
don’t think about scald-
ing them to solve the
problem.

"Can the dishes be sterilized with boiling
water?"; "All sterilized dishes should be
immersed in water."; "Regularly disinfect and
sterilize dishes."; "Therefore, once the dishes
become moldy, don’t think about scalding

them to solve the problem."; "Dishes must be
thoroughly cleaned first."

686

0, SUP

REBNREEE - TIKRERGENREIEE? " RH SRR

F AR O . ;IR LTI
KEALE . " BT, CERA—ELE, Al
THER—TRRRFIT - " "R ER

PIRIEET i -

%, HAlEER
BRIRIR T -

Prediction

GPT-4 Response

2, NEI

There is not enough information in the evidence. The evidence does not directly state that dishes cannot
be sterilized with boiling water but only mentions that the problem cannot be solved by scalding after the
dishes are moldy, but it does not completely deny the disinfection effect of scalding.

2, NEI

There is not enough information in the evidence. The evidence does not directly state that dishes cannot
be sterilized with boiling water, but it mentions that "once the dishes are moldy, don’t think about scalding
them to solve the problem", implying that scalding may not be a completely effective way to disinfect.

2, NEI

There is not enough information in the evidence. The evidence does not explicitly state that dishes cannot
be sterilized with boiling water, but only that the problem cannot be solved by scalding after the dishes
become moldy, which does not mean that dishes cannot be sterilized with boiling water in all cases.

2,NEI

There is not enough information in the evidence. The evidence does not directly state whether dishes can
be sterilized with boiling water, but only mentions that dishes need to be disinfected and sterilized regularly,
scalding will not solve the problem once the dishes are moldy, and the dishes need to be thoroughly cleaned
first.

0, SUP

The claim is supported by the evidence. The evidence mentions that boiling water does not sterilize dishes
and solve the problem of moldy dishes.

2, NEI

ESE R RERIE R BRI R BRI R R B A6 ke

ZRERFR, EHFNEEETNRERIHEENCR

REEAREGGE

HE, HE

2,NEI

R RBIER - IR HRERHNRER NGNS, ARIER-BLE, HH8
ER— MRREE T, B T RA e e e R EE -

2, NEI

A

EFE TR EBHIER - IEECE AR L R BB A GEHEE, AEURWERLZER M EL!
RCRIAIA, SXHFAMURFTE L N REREAREHE -

2, NEI

R EE RWHEE - IEEF R BRI R BRERHE, LR T RAFEEHH
FAKE, —BXER— NRILEBARFEY, DR EREEMRELET -

0, SUP

% R BOESE SR« IEERE] T KRR B AN GEH MR E R X BRI -

Table 9: GPT-4 Error Case 1.

14



1D Label

Claim

Reverse Evidence

Evidence

1461 0, SUP

The fundamental factor
that determines fat and
thin is the supply and
consumption of energy.

Excessive intake will
lead to excessive energy
intake, which is greater
than the body’s energy
consumption, and then
lead to obesity.

"Genetic factors affect not only the degree of
obesity but also the type of fat distribution.";
"Because fat people always lack vitality and
energy, and they don’t seem to have much
self-control and action."; "Excessive intake
will lead to excessive energy intake, which is
greater than the body’s energy consumption,
and then lead to obesity."; "The vast majority
of questions about weight loss."; "The effect
of dietary energy excess on obesity."]

1461 0, SUP

R - AR AZ fE
EMHN STHFE -

"R G R R AU AL ORE R, IR
PR AR IR TL o v "R BN, B
BRZWEH KT, PR EES
T " LA BRI K . BEERA
E, MaSEREERADR, KFHLK
RERAITHAE, WEMEIARAEH . " A%
BT RALARIRE - 5 IR AE BT X
ililiid=or- 2

Prediction

GPT-4 Response

1, REF

The claim is refuted by the evidence. Although the supply and consumption of energy have a certain
impact on the determination of fat and thin, genetic factors and food intake also affect the degree of fat
and thin.

1, REF

The claim is refuted by the evidence. Energy supply and consumption do have an impact on fat and thin,
but genetic factors also affect the degree of obesity and the type of fat distribution, so it is not only the
supply and consumption of energy that determines fat and thin.

0, SUP

The claim is supported by the evidence. Genetic factors and excess energy intake will affect a person’s
weight, but the fundamental factor that determines fatness and thinness is the supply and consumption of
energy.

1, REF

The claim is refuted by the evidence. The fundamental factor that determines fat and thin is indeed the
supply and consumption of energy, but genetic factors also play a significant role in determining obesity
and the type of fat distribution.

1, REF

The claim is refuted by the evidence. Genetics and excess energy in the diet can affect weight, and energy
supply and consumption do affect fatness and thinness, but they are not the only determinants.

1, REF

% AE RBOERSUR ) - BRFERAHN SIHREREMEE —Em, HREEE . YK
NS PR IRE L -

1, REF

%A IR POERIUT A RERAHER 5 TH RSO BB A R, (HiSt & IR Rt 2 omr AR R AR
BERNRRMT A HIRAL, RItRE R JE R RER AR S THFEX — & .

1, REF

% R POEREIURE - NMUAERRIHEN SRR ME, REFNEMEET—IEERE,
ERRALRE AR B AN 0 A R

0, SUP

W R BOIESE SRR « R E R AR A SRS AR E, (R HE M R AGE
AR MRS THFE -

1, REF

A R POERIUT ) - BT R KRR AT R 2w A=,
REIPE, (EHIEME—RERE -

i B FA) AL R A FERF S5 5%

Table 10: GPT-4 Error Case 2.
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ID Label

Claim

Reverse Evidence

Evidence

7981 0, SUP

7981 0, SUP

The 87 version of
"Dream of Red Man-
sions" Rong Jia actor
died.

T A
ey

87Th (ZLHE%F)
Wi Lt

The 87 version of
"Dream of Red Man-
sions" lost another
person."; "And his more
well-known role is the
role of Rong Jia in the
1987 version of "Dream
of Red Mansions".

87HR (LLE%) b
— NN, TfE
AR, T8
H1987F (LLREH)

"The 87 version of "Dream of Red Man-
sions" lost another person."; "And his more
well-known role is the role of Rong Jia in
the 1987 version of "Dream of Red Man-
sions"."; "For countless Chinese people, the
87 version of "Dream of Red Mansions" is
an unforgettable classic."; "In addition to
acting in the 87 version of "Dream of Red
Mansions"."; "Jiaqi Ma, who played his fa-
ther Zheng Jia in "Dream of Red Mansions",
has passed away at the age of 82."

"STHR (ZLFERE) XA —4 Ao s T
B NFP AT, EEE1987E (4
B2 PRIEAE M. " N TEEEA
Heiit, 87R (LLMEE) RXERfHZM Y

B R — A - TE " "BR T 8T (LLEEEE) Sh- v
" (CLRREE) PUTE B COCR B S

nE, BEEi, FERY.

Prediction

GPT-4 Response

2,NEI

There is not enough information in the evidence. Although there is information about the death of an
actor, the evidence does not point to the death of Rong Jia, the actor in the 87 version of "Dream of Red
Mansions".

1, REF

The claim is refuted by evidence. Rong Jia’s actor did not die, but Jiaqi Ma, who played Zheng Jia, died.

2, NEI

There is not enough information in the evidence. The information about the death of Rong Jia, the actor of
the 87 version of "Dream of Red Mansions" in the statement, has not been confirmed in the evidence, and
it is only known that Jiaqi Ma, who played Zheng Jia, has died.

2,NEI

There is not enough information in the evidence. Although there is information about the death of an
actor, the evidence does not point to the death of Rong Jia, the actor in the 87 version of "Dream of Red
Mansions".

2, NEI

There is not enough information in the evidence. The evidence does not indicate the death of Rong Jia in
the 87 version of "Dream of Red Mansions", but only mentions the death of Jiaqi Ma, who played Zheng
Jia.

2, NEI

WEFE TR RBHIER - FIR R8T (LLHEE)
N, FRAEET B S mE AT .

RIS X R BRI P IE R R

2,NEI

EEPEE RBHEE . BREEAXENER, EIEEFRATEH87R (%R AN
WiEE L

2, NEI

R R R - IETE T RIARATE H87hR (LLEEEF) wB{ZEmiEs L1, HERF|T
VT B SN AT £ At

2, NEI

ERAFEE EWHIEE . BREADINAEMT, i (IHE) S, EHEEHN
A UESRIE B SR T TS K i

1, REF

R R BOER IR - BUERITEE HREM, MRIMHE B Sma i .

Table 11: GPT-4 Error Case 3.
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Figure 3: Attention illustration on an instance of our proposed BSGAA framework.
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@ You

Please use the evidence to determine whether the following claim is supported by it
(label 0), refuted by it (label 1), or the evidence does not provide sufficient information
to make a judgment (label 2). Claim: Dishes cannot be sterilized with boiling water.
Evidence 1: "Can the dishes be sterilized with beoiling water?". Evidence 2: "All sterilized
dishes should be immersed in water.". Evidence 3: "Regularly disinfect and sterilize
dishes.". Evidence 4: "Therefore, boiling water cannot sterilize the dishes.". Evidence 5:
"Dishes must be thoroughly cleaned first." Judging from the evidence, the label is

ChatGPT
Based on the evidence provided, the claim "Dishes cannot be sterilized with boiling

water" is refuted. The evidence suggests that sterilizing dishes with boiling water is a

possibility.

Evidence 1implies that boiling water is being considered as a method for sterilizing
dishes.

Evidence 2 suggests that dishes should be immersed in water for sterilization, and
boiling water could be a suitable option.

Evidence 3 mentions the need to regularly disinfect and sterilize dishes, leaving the
method open-ended.

Evidence 4 is a statement that contradicts the claim, stating that boiling water cannot

sterilize the dishes. However, the other evidence contradicts this statement.

Evidence 5 emphasizes the importance of thoroughly cleaning dishes first, but it does

not explicitly refute the use of boiling water for sterilization.

Considering the overall evidence, it is reasonable to conclude that boiling water can be

used for sterilizing dishes. Therefore, the label is 1 (refuted).

Figure 4: The negative result of the example shown in Table 1.
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© You

Please use the evidence to determine whether the following claim is supported by it
(label 0), refuted by it (label 1), or the evidence does not provide sufficient information
to make a judgment (label 2). Claim: Dishes cannot be sterilized with boiling water.

Evidence 1: "Can the dishes be sterilized with boiling water?". Evidence 2: "All sterilized
dishes should be immersed in water.". Evidence 3: "Regularly disinfect and sterilize
dishes.". Evidence 4: "Therefore, the dishes cannot be sterilized by boiling water.".

Evidence 5: "Dishes must be thoroughly cleaned first.” Judging from the evidence, the
label is

ChatGPT

Based on the evidence provided:

Evidence 1: Ambiguous and does not provide information on whether dishes can be
sterilized with boiling water.

Evidence 2: Indicates that sterilized dishes should be immersed in water, but does not
specify if boiling water is effective.

Evidence 3: Advises to regularly disinfect and sterilize dishes but does not mention
the method, including boiling water.

Evidence 4: Explicitly states, "Therefore, the dishes cannot be sterilized by boiling

water," which seems to support the claim.

Evidence 5: Suggests that dishes must be thoroughly cleaned first, but does not

specify the sterilization method.

Considering the evidence, particularly Evidence 4, it appears that the claim "Dishes

cannot be sterilized with boiling water" is supported by the provided evidence.

Therefore, the label is O (supported).

Figure 5: The positive result of the example shown in Table 1, shifting the order of the evidence to align with the
claim.
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