
Developing A Novel Bidirectional Sparse Graph Attention Adaptor for
Evidence-Based Fact-Checking

Anonymous ACL submission

Abstract
Evidence-based Fact-checking aims to verify001
or debunk a claim with evidence given and has002
benefited from Large-Language-Model (LLM)003
advancements in text understanding. However,004
autoregressive LLMs suffer from their unidi-005
rectional nature, known as “Reversal Curse”,006
causing their performance to be unsatisfactory.007
Therefore, in this paper, we propose to utilize008
bidirectional attention as an external adapter009
for two-way information aggregation. Further,010
we leverage hierarchical sparse graphs to re-011
duce the noise impact of attention and an ef-012
ficient feature-compression mechanism to re-013
duce the number of adaptor parameters. Ex-014
perimental results on both English and Chinese015
datasets demonstrate the significant improve-016
ments achieved by our proposed approach and017
its state-of-the-art performance in the Evidence-018
based Fact-checking task. The code will be019
available on GitHub.020

1 Introduction021

In the face of the growing spread of misleading022

information in the real world, fact-checking be-023

comes necessary to turn the tides of misinforma-024

tion (Vosoughi et al., 2018; Khan et al., 2021).025

Evidence-based Fact-checking (EBFC) seeks to026

verify or debunk a claim with evidence given, ben-027

efiting from the development of Large Language028

Models (LLMs), such as GPT and Llama (Cao029

et al., 2023; Quelle and Bovet, 2023; Cheung and030

Lam, 2023).031

However, LLMs struggle to judge the claim032

after learning the evidence that swaps the order,033

known as the “Reversal Curse” (Grosse et al., 2023;034

Berglund et al., 2023), due to the unidirectional na-035

ture of the autoregressive LLMs. As an example036

presented in Table 1, with the order of “boiling wa-037

ter” and “dishes” in evidence swapped compared038

to the claim, GPT-4 made a wrong prediction. Our039

preliminary analysis of the Evidence-based Fact-040

checking dataset CHEF (Hu et al., 2022) showcases041

Verify or debunk the claim with the evidence given.
The Claim: Dishes cannot be sterilized with boiling water.
Evidence: ... Evidence 4: Thus, boiling water cannot
sterilize the dishes. ...

Dataset: CHEF; ID: 686; Label: Supported.

GPT-4 Prediction: Refuted.
GPT-4 Response: ... Evidence 4 is a statement that contra-
dicts the claim, stating that boiling water cannot sterilize
the dishes. ...

Table 1: A Reversal Curse example of the Evidence-
based Fact-checking task, where the statement in the
claim is reversed to the selected statement in evidence.

that 48.31% of inaccuracies in the outcomes pro- 042

duced by GPT-4 can be attributed to the Reversal 043

Curse. 044

Various attempts have been made to modify train- 045

ing setups (e.g., scaling model and data size) for 046

LLMs to alleviate the Reversal Curse but failed to 047

exhibit significant performance promotion (Grosse 048

et al., 2023; Berglund et al., 2023). As LLMs may 049

store facts differently depending on their direction 050

(Meng et al., 2023), the “Reversal Curse” is an in- 051

born defect of autoregressive models. In such a 052

case, we explore designing a bidirectional adapter 053

to overcome this drawback. Inspired by the hu- 054

man fact-checker gathers related evidence back and 055

forth to understand the sentence meaning, we build 056

new bidirectional attention in the linear layers of 057

the Transformer self-attention module (Vaswani 058

et al., 2023). 059

The adapter has been proposed to adapt LLMs 060

for multiple downstream applications like reason- 061

ing (Houlsby et al., 2019), where adapters freeze 062

the original model and add a few additional param- 063

eters for fine-tuning. Previous research (Hu et al., 064

2021) demonstrates that adapters achieve the best 065

results when adapting to the Query and Value ma- 066

trices of self-attention. Nevertheless, introducing 067

bidirectional attention in Query may break the au- 068

toregressive Query-Key mask of LLMs. Following 069
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Figure 1: The framework of our proposed bidirectional sparse graph attention adaptor.

these two conclusions, our framework adapts Value070

to build bidirectional attention as shown in Figure 1.071

Furthermore, our method adapts Query with LoRA072

(Hu et al., 2021) to refresh Query-Key pairs for073

fine-tuning.074

Our adaption models new bidirectional attention075

on sparse graphs, taking tokens as nodes and build-076

ing attention with directed edges. Sparse means077

each token only pays attention to a few tokens with078

the most relevant information, which is critical to079

understanding the text (Zhao et al., 2019). We de-080

sign three sparse graphs with different receptive081

fields and leverage a hierarchical structure with082

smaller receptive field graphs as input to larger083

graphs, aiming to merge local and global informa-084

tion in each layer. At the same time, skip connec-085

tions and gate units are designed to balance the086

ratio of our bidirectional information injection to087

capture local and global dependencies (Cho et al.,088

2014).089

In addition, our approach reduces the adapter090

parameters through a feature-compression mecha-091

nism on token representations for efficient adaption092

and further sparse feature selection. The feature093

dimension will be reduced gradually through each094

layer in the hierarchical structure, and finally, our095

framework splices a feature-decompression matrix096

for output.097

In summary, in this work, we develop the novel098

Bidirectional Sparse Graph Attention Adaptor for099

evidence-based fact-checking (BSGAA). Our ap-100

proach achieves state-of-the-art (SOTA) perfor-101

mance on both English and Chinese datasets. The102

main contributions include:103

• We propose a bidirectional attention adapter to104

model two-way relations, representing the pio-105

neering attempt to combine bidirectional infor- 106

mation modeling with autoregressive LLMs. 107

• We develop a hierarchical sparse graph structure 108

and feature-compression mechanism to make the 109

adaption robust and efficient. 110

• Experimental results demonstrate that our 111

method achieves SOTA performance, outper- 112

forming the GPT-4 on the Evidence-based Fact- 113

checking task. 114

2 Methodology 115

2.1 Task Description and Overview 116

Evidence-based fact-checking (EBFC) (Augenstein 117

et al., 2019) aims to verify or debunk the factual 118

veracity of the questioned claim with several pieces 119

of evidence retrieved by the automatic ranker or 120

human annotator. The output will be three possible 121

labels: SUP (Support), REF (refute), or NEI (not 122

enough information). 123

For the convenience of notation, we use X , Q, 124

K, and V to denote the Input, Query, Key, and 125

Value and WQ, WK , and W V as corresponding 126

projection matrices in the LLM self-attention mod- 127

ules. As shown in Figure 1, we develop bidi- 128

rectional sparse graph attention adaption of V to 129

model two-way relations for information aggrega- 130

tion and utilize LoRA Q adaption to refresh Query- 131

Key pairs for fine-tuning. The adapted attention 132

mechanism (Vaswani et al., 2023) can be repre- 133

sented as: 134

Attn(X,WQ,WK ,W V ) (2.1) 135

= softmax

(
(Q+∆Q)KT

√
dk

)
(V +∆V ). 136
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dk and dv are the Key and Value dimensions of137

the LLM. Our model employs (1) Bidirectional138

Attention to model two-way relations and Sparse139

Graph to improve the concentration of attention140

in Section 2.2 and (2) Hierarchical Structure to141

merge local and global information in each layer142

and Feature-Compression Mechanism to reduce143

adapter parameters in Section 2.3.144

2.2 Bidirectional Sparse Graph Attention145

In this section, we propose to build new bidirec-146

tional attention, and we want the attention to be147

sparse for less noise impact. We leverage sparse148

graphs to better model sparse attention, taking to-149

kens as nodes and building attention with directed150

edges (Velickovic et al., 2017). In this way, the at-151

tention of the i-th token is calculated only with its152

first-order neighbor (Sedgewick and Wayne, 2011)153

tokens j ∈ Ni.154

To distinguish attention symbols in the adapter155

from those in the LLM, we use Source (S) as Query,156

Destination (D) as Key, and Feature (F) as Value in157

the adapter. Following Vaswani et al. (2023), our158

adaption utilizes a multi-head attention mechanism,159

and n is the number of attention heads. To elaborate160

our approach, we demonstrate the m-th layer of161

the three-layer hierarchical structure for general162

description, and each layer takes the output of its163

former layer as input.164

Denote the input Hm−1 of the m-th layer as:165

Hm−1 ∈ Rl×dm−1 ,m = 1, 2, 3, H0 = X, d0 = d.166

l is the token number of the input text and dm−1 is167

the feature dimension of the input. X is the input of168

the LLM self-attention module and d is the feature169

dimension of X .170

We start with building the Query S, Key D, and171

Value F attention matrices. Our approach first172

builds the Value F , utilizing the projection matrix173

WF
m ∈ Rdm−1×dm .174

Fm = [Fm1, · · · , Fml] = XWF
m . (2.2)175

dm is the output feature dimension of each atten-176

tion head. dm can be freely altered for compression177

or decompression, and we will discuss this in Sec-178

tion 2.3. With Value F as input, we calculate Query179

S and Key D with projection matrix WS
m and WD

m .180

Sm = tanh(Fm)WS
m,WS

m ∈ Rdm×1, (2.3)181

Dm = tanh(Fm)WD
m ,WD

m ∈ Rdm×1, (2.4)182

We leverage the nonlinear activation function tanh 183

to prevent S, D, and F from forming linear rela- 184

tionships with each other, therefore better leverag- 185

ing and capturing the graph structure information 186

(Qiu et al., 2018). 187

Our approach initializes the sparse graph with a 188

receptive field rm constraint. 189

j ∈ Ni ⇐⇒ |i− j| ≤ rm. (2.5) 190

Now we calculate the attention Em ∈ Rl×l of the 191

directed edges i → j on the graph. 192

emij = LeakyReLU
α=0.2

(Smi +Dmj), (2.6) 193

Emij = softmax
j∈Ni

(emij). (2.7) 194

Our framework calculates the attention score emij 195

by adding Query Smi of the i-th token and Key 196

Dmj of the j-th token and then normalizes emij 197

with softmax. Our approach adds Query and Key 198

other than point-wise multiplication, such that the 199

magnitude of S and D does not affect the gradient 200

descent of each other. According to our experimen- 201

tal results, the summation enhances the concentra- 202

tion of attention through implicit selection during 203

training, and the gradient descent speed can still be 204

maintained under sparse situations. 205

Finally, we use the ELU output activation func- 206

tion to obtain the output Ĥm with the following 207

expressions. 208

Ĥm = Concat(ELU(
∑
j

EmijFmj)). (2.8) 209

In summary, our bidirectional sparse attention fuses 210

the information of token j ∈ Ni into token i. 211

2.3 Hierarchical Structure and 212

Feature-Compression Mechanism 213

In this section, we design three sparse graphs with 214

different receptive fields, stacking them in a hierar- 215

chical structure with a pass-through and a feature- 216

compression mechanism. 217

We construct a hierarchical sparse graph stack 218

to combine local and global information in each 219

layer, where the representations of the lower layer 220

serve as the input to the higher layer. This stack 221

applies three granularities of receptive fields for 222

three layers in Inequation (2.5), where lower layers 223

concentrate on a narrow range around each token 224

to get relatively local information and higher layers 225

focus on a broader range. 226

|i− j| ≤ rm, r1 < r2 < r3. 227
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This way, bidirectional relations between tokens228

caring for different ranges are modeled.229

In addition, our framework employs a pass-230

through mechanism with linear layers Lm ∈231

Rdm−1×dm , utilizing a gate control mechanism232

with linear gates Gm ∈ Rdm×1 to balance the ratio233

of our sparse bidirectional information injection.234

Ĥm = AV
m(Hm−1), (2.9)235

Hm = (1− sigmoid(ĤmGm)) ∗Hm−1Lm236

+ sigmoid(ĤmGm) ∗Hm. (2.10)237

m = 1, 2, 3, H0 = X.238

We use AV
m to denote all calculations from Equa-239

tion (2.2) to Equation (2.8) in each layer. The “∗”240

is the broadcast multiplication in Equation (2.10).241

Furthermore, our method reduces adaption pa-242

rameters through a feature-compression mecha-243

nism to make adaption efficient. As stated in Sec-244

tion 2.2 Equation (2.2), we alter dm for feature245

dimension compression on the hierarchical graphs.246

Each layer of our hierarchical adapter smoothly247

projects the input to a smaller subspace with Value248

projection WF
m ∈ Rdm−1×dm ,m = 1, 2, 3 in Equa-249

tion (2.8), as shown in Figure 1, where d∗ = d3 <250

d2 < d1 << min(d0 = d, dv). To align the di-251

mensions of output H3 and V , we splice a decom-252

pression matrix multiplier BV ∈ Rnd∗×dv .253

∆V = H3B
V . (2.11)254

Meanwhile, this feature-compression mechanism255

forces clipping out the useless part of attention,256

thus making the attention more sparse and sponta-257

neously learning the sparse information.258

In summary, our proposed hierarchical structure259

merges local and global information and meticu-260

lously maintains the balance of bidirectional infor-261

mation injection. The feature-compression mech-262

anism reduces the adapter parameters and makes263

the attention more sparse through feature selection.264

2.4 Training and Answer Prediction265

In this section, we define the loss of our model here266

and summarize our training and answer prediction267

approach. Our approach utilizes the feature z of268

the last token in the LLMs and uses a linear layer269

to project it into a 3-dimensional score vector ŷ.270

ŷ = Score(z) = zS, (2.12)271

where S ∈ Rd×3. We then utilize the 3-272

dimensional score vector ŷ to make our 3-way pre-273

diction for Evidence-based Fact-checking. 274

y∗ = softmax(ŷ), (2.13) 275

where y∗ denotes the predicted probability of cate- 276

gories. 277

Our framework freezes all the parameters of 278

the LLMs and only updates the parameters of 279

WF , WS , WD, Gm, Lm, and BV of feature- 280

compression sparse graph attention layers and AQ, 281

BQ of LoRA Q adaption. Our method leverages 282

backpropagation with cross-entropy label loss LCE 283

for training. 284

LCE = CrossEntropy(y∗, y), (2.14) 285

where y is the true label. 286

For answer prediction, we consider the category 287

with the largest probability in y∗ as the predicted 288

label of our model. 289

ypred = argmax(y∗), (2.15) 290

where ypred ∈ {0, 1, 2} is the predicted answer of 291

inference. 292

3 Experiments 293

3.1 Dataset 294

To investigate the effectiveness of the proposed 295

method, we conducted our research on Evidence- 296

based Fact-checking datasets FEVER (English) 297

(Thorne et al., 2018) and CHEF (Chinese) (Hu 298

et al., 2022). FEVER (Thorne et al., 2018) consists 299

of 185,445 synthetic claims by altering sentences 300

extracted from introductory sections of Wikipedia 301

pages and combining several sentences to form the 302

necessary evidence. CHEF (Hu et al., 2022) con- 303

sists of 10,000 real-world claims collected from 6 304

Chinese fact-checking websites and uses several 305

corresponding source documents retrieved through 306

Google Search API as evidence. Both of their la- 307

bels have three classes, which are supported (0 or 308

SUP), refuted (1 or REF), and not enough informa- 309

tion (2 or NEI). 310

The lengths of training sets of FEVER and 311

CHEF are 145449 and 8002, respectively. For the 312

comparison between the performance of our model 313

in FEVER and CHEF, we randomly chose 8002 ex- 314

amples in FEVER to build the dataset that we used 315

in our experiments in our paper. We take the top 5 316

pieces of evidence for each claim in both datasets. 317

Our framework leveraged the given golden evi- 318

dence and randomly sampled sentences as evidence 319
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Method Model Trainable FEVER CHEF
Parameters LA (%) LA (%) F1 (%)

X-Fact (Gupta and Srikumar, 2021) mBERT-base (Devlin et al., 2019) 125M - 63.48† 62.47†

GEAR (Zhou et al., 2019) BERT-base (Devlin et al., 2019) 110M 71.60 - -
KGAT (Liu et al., 2020) BERT-base 110M 85.15∗ 64.37† 62.58†

TwoWingOS (Yin and Roth, 2018) TwoWingOS NA 75.99 67.46‡ 64.31‡

CHEF (Hu et al., 2022) BERT-base 110M - 69.12 65.26
BEVERS (DeHaven and Scott, 2023) RoBERTa-large (Liu et al., 2019) 355M 79.39 - -
ProoFVer (Krishna et al., 2022) BART-large (Lewis et al., 2020) 400M 79.47 - -
ReRead (Hu et al., 2023b) BERT-base 110M - 70.87 68.78

Cao et al. (2023) (zero-shot) GPT-3.5 (gpt-3.5-turbo) 0 - 35.14 33.51
Cao et al. (2023) (zero-shot) Llama-2 (7B) 0 - 31.93 28.58
GPT-4 (zero-shot) GPT-4 (gpt-4-1106-preview) 0 93.91∗ 68.69 64.17

LoRA (fine-tuned, ours) Llama-2 (7B) 5M 94.29∗ 70.17 66.59
BSGAA (w/o feature-compression) Llama-2 (7B) 150M 94.50∗ 71.37 68.61
BSGAA Llama-2 (7B) 5M 95.08∗ 72.97 70.05

Table 2: Evidence-based Fact-checking results on FEVER (English) and CHEF (Chinese). ∗ indicates the results
produced with golden evidence on FEVER. † indicates the results reproduced on CHEF by Hu et al. (2022). ‡
indicates the results reproduced on CHEF using graph-based model KGAT (Liu et al., 2020) by Hu et al. (2022).

Label CHEF Dataset
train dev test

SUP 319(11.09%) 37(11.11%) 38(11.41%)
REF 783(18.00%) 57(17.12%) 57(17.12%)

Table 3: Statistics of instances with no golden evidence
in CHEF.

of NEI claims for FEVER. As shown in Table 3,320

while CHEF has instances with no golden evidence321

to test intrinsic knowledge of models, we employ322

the automated retrieval evidence retrieved by Hy-323

brid Ranker (Shaar et al., 2020; Hu et al., 2022) for324

CHEF. Our statistics also show that CHEF has 45325

(13.51%) SUP instances and 60 (18.02%) REF in-326

stances with Reversal Curse for evidence retrieved,327

and we packaged these instances into a new dataset328

CHEF-RC (CHEF-Reversal Curse).329

Following prior efforts (Thorne et al., 2018; Au-330

genstein et al., 2019; Liu et al., 2020; Hu et al.,331

2022), we adopt label accuracy (LA) as FEVER332

evaluation metrics, and label accuracy (LA), macro333

F1 score of the label (shown as F1) as CHEF eval-334

uation metrics to assess the performance of our335

model. We also apply label precision (P) and recall336

(R) for each classification category in the following337

analyses.338

3.2 Experimental Settings339

We adopted Llama-2-7B (Touvron et al., 2023) for340

our method, and our experiments were run on 1341

NVIDIA RTX-3090 GPU. For simplicity, we con-342

duct adaptions only on the 32nd layer. The feature343

dimension of Llama-2-7B is 4096, and the output 344

dimension of each layer of our hierarchical bidirec- 345

tional attention adapter is sequentially 256, 16, and 346

4. Our model is trained for a maximum of 5 epochs 347

using the AdamW optimizer, which features an ini- 348

tial learning rate of 2e-4, a weight decay of 0.01, 349

and a warm-up rate of 0.05. The batch size of our 350

model is set to 8, and we use the dropout technique 351

with a dropout rate of 0.1 for regularization. 352

Since LoRA is an efficient adaption framework, 353

we set up a comparative LoRA baseline with the 354

settings above, except the intermediate dimension 355

is 10 to match the total parameters of BSGAA. To 356

explore the Evidence-based Fact-checking ability 357

of GPT, we conducted a preliminary attempt to uti- 358

lize the zero-shot GPT-4 model to deal with the task. 359

For experiments on GPT-4, We utilize gpt-4-1106- 360

preview API and set every parameter by default 361

to do preliminary research on its performance of 362

Evidence-based Fact-checking. 363

3.3 Baselines 364

To show the effectiveness of our model, we com- 365

pare our results with other baselines. Since many 366

previous works use small models as classifiers, they 367

are not competitive with LLMs, and we only list 368

some of them as baselines. 369

X-Fact (Gupta and Srikumar, 2021) used an 370

attention-based evidence aggregator (Attn-EA) to 371

emulate the evidence aggregation behavior of hu- 372

man fact-checkers. GEAR (Zhou et al., 2019) pro- 373

posed a graph-based evidence aggregation to trans- 374

fer information on evidence graphs and utilized 375
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different aggregators to collect multi-evidence in-376

formation. KGAT (Liu et al., 2020) proposed the377

Kernel Graph Attention Network (KGAT), which378

conducts more fine-grained fact verification with379

kernel-based attention. TwoWingOS (Yin and Roth,380

2018) jointly considered evidence retrieving and381

verification to identify appropriate evidence and382

verify the claim simultaneously. CHEF (Hu et al.,383

2022) built the latent retriever and combined the384

KGAT (Liu et al., 2020) for fact verification based385

on the hard Kumaraswamy distribution (Bastings386

et al., 2020). ProoFVer (Krishna et al., 2022) gen-387

erated sequences of operators as proofs and verify388

the claim based on these proofs. BEVERS (De-389

Haven and Scott, 2023) tuned each component for390

fact extraction and verification to ensure maximum391

performance. ReRead (Hu et al., 2023b) trained392

the claim verifier to revisit the evidence retrieved393

by the optimized evidence retriever to make the394

retrieved evidence faithful and convincing to hu-395

mans.396

Cao et al. (2023) evaluated the fact verification397

performance of gpt-3.5-turbo and Llama2-7b in the398

Chinese dataset CHEF. GPT-4 (zero-shot) utilized399

the gpt-4-1106-preview API to conduct preliminary400

experiments on FEVER and CHEF.401

LoRA (fine-tuned, ours) leveraged the LoRA402

modules for Q, V self-attention adaption of403

the Llama-2-7B model. BSGAA (w/o feature-404

compression) used our proposed BSGAA frame-405

work but without a feature-compression mecha-406

nism.407

3.4 Main Results408

The experimental results, as displayed in Table 2,409

show that our BSGAA fact-checking framework410

outperforms all other baseline models, including411

zero-shot GPT-4, on FEVER (English) and CHEF412

(Chinese) datasets. BSGAA achieves a label ac-413

curacy (LA) of 95.08% on FEVER and 72.97%414

on CHEF, along with an F1 score of 70.05%. In415

contrast, the results produced by Cao et al. (2023)416

on the CHEF dataset reached only 35.14% for417

ChatGPT-3.5 and 31.93% for Llama-2. These418

scores are approximately equivalent to random419

guess results of 33.33%, indicating that these two420

zero-shot models are incapable of this task.421

Compared to the LoRA fine-tuned Llama-2422

model, BSGAA surpasses +0.79% and +2.80%423

relative improvements in label accuracy (LA) on424

FEVER and CHEF. It demonstrates that our frame-425

work assists Llama-2 in adapting to Evidence-426

Figure 2: Attention illustration on an instance of our
proposed BSGAA framework.

based Fact-checking tasks better than LoRA, prov- 427

ing the effectiveness of our adaption mechanism. 428

Compared to the framework without the 429

feature-compression mechanism, BSGAA sur- 430

passes +0.58% and +1.60% relative improve- 431

ments in label accuracy (LA) on FEVER and CHEF. 432

A possible reason for this may be that the origi- 433

nal adaptor without the feature-compression faces 434

the challenge of data-scarce scenarios (Zoph et al., 435

2016; Hedderich et al., 2021), potentially mak- 436

ing full-parameter fine-tuning susceptible to un- 437

dertrained and overfitting (Mahabadi et al., 2021). 438

4 Analysis 439

4.1 Error Analysis 440

The error analysis results are shown in Table 4. Our 441

framework exhibits excellent performance across 442

almost all labels on FEVER and CHEF, indicating 443

its high capability to identify the correct labels and 444

minimize false negatives. Other discoveries are as 445

follows. 446

• We verify the effectiveness of our framework 447

in classifying instances with Reversal Curse. 448

According to our preliminary estimation, GPT- 449

4 errors caused by Reversal Curse in SUP and 450

REF classes accounted for 37.16% and 59.46% 451

of the total errors, totaling 48.31%. Compared to 452

GPT-4, only 27.03% and 17.65% errors in SUP 453

and REF classes involve the Reversal Curse in 454

our proposed framework, with a total of 24.07%. 455
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BSGAA GPT-4 BSGAA GPT-4
SUP REF NEI SUP REF NEI R (%) P (%) R (%) P (%)

FEVER SUP 3197 134 2 30 3 0 90.18 95.92 93.75 90.91

Label REF 346 2984 3 2 30 1 95.55 89.53 90.91 90.91
NEI 2 5 3326 0 0 33 99.85 99.79 97.06 100.00

CHEF SUP 296 23 14 29 1 3 74.75 88.89 72.50 87.88

Label REF 16 316 1 1 31 1 67.09 94.89 65.96 93.94
NEI 84 132 117 10 15 8 88.64 35.14 66.67 24.24

CHEF-RC SUP 35 10 0 29 6 10 92.11 77.78 80.56 64.44
Label REF 3 57 0 7 48 5 85.07 95.00 88.89 80.00

Table 4: Error analysis results. CHEF-RC (CHEF-Reversal Curse) packaged CHEF instances with Reversal Curse
for evidence retrieved.

Method FEVER CHEF
LA (%) LA (%) F1 (%)

BSGAA 95.08 72.97 70.05
w/o BSGAA 1 94.17 69.57 65.54
w/o BSGAA 2 94.36 71.27 67.75
w/o BSGAA 3 94.49 69.87 65.59

LoRA 94.29 70.17 66.59

Table 5: Ablation analysis results. The corner mark
represents the layer number.

• We find a gap between CHEF and FEVER456

in the results of the NEI class for both BS-457

GAA and GPT-4. As for our method, With458

near 100% precision and recall performance459

for the NEI class in FEVER, it only reaches460

88.64% recall and 35.14% precision in CHEF.461

This suggests that verifiable check is a crux for462

real-world claims and evidence, and future ap-463

proaches should consider more on it.464

4.2 Ablation Analysis465

In this section, we conduct ablation experiments466

on our proposed hierarchical adaption structure.467

The results are shown in Table 5. Our research468

discovers each layer in BSGAA improves the per-469

formance and verifies its effectiveness. We denote470

the layer number as 1 to 3 from front to back of471

the model. Of all the layers, layer 1 is of most use.472

Without this layer, Llama gets even worse results473

than the LoRA version. It shows the superiority474

of attention with the small sliding window in our475

method. In FEVER, layer 2 has a more significant476

impact on the results than layer 3, while it is the477

other way around in CHEF.478

To gain deeper insights into how the bidirec-479

tional sparse graph attention influences the final480

Value representations, we refer to Figure 2 (a large481

version can be found in Appendix Figure 3). Au-482

toregressive LLMs mask the attention to the upper483

right triangle in the figure, preventing the Value rep- 484

resentation of the claim from being influenced by 485

subsequent evidence. On the contrary, our BSGAA 486

framework leverages this area for reverse informa- 487

tion aggregation. As indicated by the red-circled 488

area above the separation line, the claim “A doesn’t 489

equal B” pays significant attention to “evidence 490

1”, which contains the statement “B doesn’t equal 491

A”. This attention allows the claim to recognize 492

the supporting evidence and integrate this infor- 493

mation into its representation. The high attention 494

score between the source “doesn’t equal” and the 495

destination “evidence 1” illustrates that BSGAA 496

effectively transmits the aggregated information 497

from “evidence 1” to the claim, favoring the claim 498

to be supported. Consequently, the claim’s repre- 499

sentation becomes more likely to be classified into 500

the supporting (SUP) class. 501

4.3 Case Study 502

As shown in Table 6, we analyze random cases 503

in CHEF-RC, shown in Table 1 for demonstration 504

and show the effectiveness of our framework in 505

practice compared to LoRA. Though our sparse 506

graph attention adaption is non-linear, we conduct 507

similar norm calculations to compare the amplifica- 508

tion effect, showing how much the features change 509

compared to those in LLMs. It shows that the am- 510

plification effect of our embedded module is only 511

1/5 to 1/4 compared to the LoRA module. How- 512

ever, our BSGAA made the correct prediction with 513

a probability of 86.01%, while LoRA made the 514

wrong prediction. These cases demonstrate that, 515

though our adaption has a smaller l1 norm and a 516

smaller l2 norm, it can obtain the correct results 517

with higher probabilities than LoRA in most cases. 518

It means that our adaption is more compressed and 519

more effective than LoRA and reflects the superior- 520

ity of our framework. 521
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ID True GPT-4 LoRA BSGAA
Label Prediction ∥∆V ∥1 ∥∆V ∥2 Prediction Probability (%) ∥∆V ∥1 ∥∆V ∥2 Prediction Probability (%)

686 0,SUP 2,NEI 8992. 11.77 2,NEI 36.40 2010. 2.45 0,SUP 86.01
7981 0,SUP 2,NEI 1519. 2.31 0,SUP 99.41 650. 0.99 0,SUP 99.97
1461 0,SUP 1,REF 1539. 2.40 0,SUP 99.30 903. 1.41 0,SUP 99.86

Table 6: Random case study of CHEF.

We conduct more case studies in Appendix A.522

Through the case study, we discovered two inter-523

esting phenomena.524

• Though our sparse graph attention adapter has525

lower amplification effects, it can obtain the cor-526

rect results with higher probabilities than LoRA527

in most cases.528

• Comparing predicted-as-NEI cases with other529

cases, they tend to have a lower l1 and l2 varia-530

tion. In addition, for each class in each model,531

predicted cases with low probability usually have532

a smaller l1 and l2 variation compared to those533

with high probability of the prediction.534

5 Related Work535

5.1 LLM Attempts on Evidence-based536

Fact-checking537

With the advancements of LLMs, there have been538

many attempts at Evidence-based Fact-checking on539

LLMs. Cao et al. (2023) evaluated the fact verifica-540

tion performance of gpt-3.5-turbo and Llama2-7b.541

FactLlama (Cheung and Lam, 2023) proposed com-542

bining Llama with external evidence retrieval to543

bridge the gap between the knowledge of the model544

and the most up-to-date and sufficient context avail-545

able. HiSS (Zhang and Gao, 2023) used a Hierar-546

chical Step-by-Step (HiSS) prompting method with547

GPT-3.5 API text-davinci-003, which directs LLMs548

to separate a claim into several sub-claims and then549

verify each claim via multiple question-answering550

steps. Hu et al. (2023a) utilized Llama-7B and gpt-551

3.5-turbo to experiment on the benchmark Pinoc-552

chio with 20K diverse factual questions. Quelle553

and Bovet (2023) use GPT-3.5 and GPT-4 agents554

in fact-checking by having them phrase queries,555

retrieve contextual data, and make decisions af-556

ter explaining their reasoning and citing the rele-557

vant sources from the retrieved context. Choi and558

Ferrara (2023) designed a framework to automate559

the claim-matching phase of fact-checking using560

LLMs and leveraged various GPT and Llama ver-561

sions to experiment on a GPT-4 generated dataset562

consisting of simulated social media posts.563

5.2 Integrating Graphs with LLMs 564

Many studies have tried to combine LLMs and 565

graph neural networks or integrate graphs with 566

LLMs. Chen et al. (2023) aimed to explore the 567

potential of LLMs in graph neural networks and 568

investigate two possible pipelines: (1) leverages 569

LLMs to enhance node features; (2) directly em- 570

ploy LLMs as standalone predictors. Guo et al. 571

(2023) conducted an empirical study to assess the 572

ability of LLMs to comprehend graph data, employ- 573

ing various tasks that evaluate the LLMs’ capabili- 574

ties in graph understanding. They introduced a new 575

framework to combine LLMs and graph-structured 576

data, utilizing graph description language with 577

prompt engineering. Graph of Thoughts (GOT) 578

(Besta et al., 2023) advanced prompting capabil- 579

ities in LLMs by modeling the information gen- 580

erated by LLMs as arbitrary graphs, where LLM 581

thoughts are vertices and dependencies between 582

them are edges. He et al. (2023) focused on lever- 583

aging LLMs to capture textual information as graph 584

features to boost GNN performance on downstream 585

tasks. They prompt an LLM to perform zero-shot 586

classification, requesting textual explanations for 587

its decision-making process, and leverage these 588

explanations to enhance downstream GNNs. 589

6 Conclusions and Future Works 590

In this paper, we proposed a bidirectional sparse 591

graph attention adaption framework for LLMs, BS- 592

GAA, which builds up new bidirectional attention 593

on hierarchical sparse graphs for information ag- 594

gregation and efficient fine-tuning. Our proposed 595

method successfully breaks the Reversal Curse 596

with built bidirectional attention and achieves better 597

performance with the help of aggregated informa- 598

tion. As a result, we successfully enhanced model 599

capability, outperformed GPT-4, and achieved the 600

SOTA results in the Evidence-based Fact-checking 601

task. We believe the LLM performance of most of 602

the reasoning tasks facing the Reversal Curse can 603

be solved by our proposed framework, which might 604

be an exciting discovery, and we are dedicated to 605

experimenting with this idea. 606
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Limitations607

We list some of the limitations in our work here for608

discussion and future work.609

• Enormous Space for Hyperparameter-tuning610

All hyperparameters in our proposed hierarchi-611

cal attention adapters can be independently set for612

each inner adapter layer and each LLM layer, and613

in which layers of LLMs we embed our module614

is also an alternative. Searching for optimized hy-615

perparameters in such an enormous space makes it616

nearly impossible to find the hyperparameters that617

make the model optimal.618

• Ongoing Transfer for Generation Problems619

In theory, Our proposed bidirectional sparse620

graph attention adapters can improve the perfor-621

mance of all classification tasks facing the Reversal622

Curse. However, our framework has low parallel623

efficiency, so its performance is poor for generation624

tasks with low Key-Value Cache efficiency.625
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ID Label GPT-4 LoRA BSGAA
Prediction ∥∆V ∥1 ∥∆V ∥2 Prediction Probability ∥∆V ∥1 ∥∆V ∥2 Prediction Probability

9778 0,SUP 0,SUP 25184. 25.23 0,SUP 99.91 4512. 4.18 0,SUP 93.00
99 0,SUP 0,SUP 22096. 21.48 0,SUP 99.94 3988. 3.67 0,SUP 99.63

686 0,SUP 2,NEI 8992. 11.77 2,NEI 36.40 2010. 2.45 0,SUP 86.01
6090 0,SUP 0,SUP 26880. 25.84 0,SUP 99.99 4204. 3.84 0,SUP 100.00
7981 0,SUP 2,NEI 12328. 14.45 0,SUP 99.82 3424. 3.72 0,SUP 99.98
10834 0,SUP 0,SUP 19248. 18.47 0,SUP 98.62 4892. 4.36 0,SUP 100.00
13543 0,SUP 0,SUP 26080. 25.14 0,SUP 99.99 3780. 3.50 0,SUP 99.99
9247 0,SUP 0,SUP 28352. 27.67 0,SUP 100.00 3128. 2.96 0,SUP 100.00
1461 0,SUP 1,REF 17296. 19.48 0,SUP 98.79 2366. 2.62 0,SUP 90.56
10999 0,SUP 0,SUP 23920. 22.33 0,SUP 99.88 4436. 4.00 0,SUP 99.48

Table 7: Chinese Case Study.

ID Label GPT-4 LoRA BSGAA
Prediction ∥∆V ∥1 ∥∆V ∥2 Prediction Probability ∥∆V ∥1 ∥∆V ∥2 Prediction Probability

9778 0,SUP 0,SUP 2068. 2.76 0,SUP 99.83 794. 1.11 0,SUP 99.91
99 0,SUP 0,SUP 1559. 2.18 1,REF 85.88 659. 0.99 1,REF 88.75

686 0,SUP 2,NEI 1167. 2.07 1,REF 99.71 511. 1.22 1,REF 99.77
6090 0,SUP 0,SUP 1812. 2.54 0,SUP 99.90 614. 0.82 0,SUP 99.96
7981 0,SUP 2,NEI 1519. 2.31 0,SUP 99.41 650. 0.99 0,SUP 99.97
10834 0,SUP 0,SUP 2086. 2.66 0,SUP 99.55 556. 0.72 0,SUP 99.99
13543 0,SUP 0,SUP 2618. 3.39 0,SUP 97.95 842. 1.03 0,SUP 99.92
9247 0,SUP 0,SUP 2172. 2.86 0,SUP 95.09 967. 1.26 0,SUP 99.73
1461 0,SUP 1,REF 1539. 2.40 0,SUP 99.30 903. 1.41 0,SUP 99.86
10999 0,SUP 0,SUP 3052. 3.79 0,SUP 95.15 981. 1.22 0,SUP 99.93

Table 8: English Case Study.

A Case Study936

In this section, we conduct more case analyses937

on random samples of the CHEF-RC dataset. To938

align with the Chinese study, for the English study,939

we translated these samples and asked the English940

fine-tuned models to make inferences about them.941

The results are shown in Table 7 and Table 8. For942

GPT-4 error cases, we check their results multiple943

times on GPT-4 and showcase them in the follow-944

ing figures. The case study verifies that, though945

our bidirectional sparse graph attention adapter has946

lower amplification effects, it can obtain the correct947

results with higher probabilities than LoRA in most948

cases.949

B More Implementation Details950

Following the initialization technique proposed951

by (Glorot and Bengio, 2010), we initialize adap-952

tion matrices as follows: W T
m, WS

m, and WD
m are953

sampled from a uniform distribution in the range954

[−
√

6/(dm−1 + dm),
√
6/(dm−1 + dm)] for in-955

put dimension dm−1 and output dimension dm in956

each layer m; Gm, Lm are sampled from a normal957

distribution with the mean equal to 0 and the vari-958

ance equal to 1/dm−1 for input dimension dm−1959

in each layer m; BV is an all-zero matrix. AQ960

and BQ follow the LoRA initialization (Hu et al.,961

2021).962

C Reversal Curse 963

To our knowledge, Meng et al. (2023); Grosse et al. 964

(2023); Berglund et al. (2023) discovered the Re- 965

versal Curse. Meng et al. (2023) suggests that 966

LLMs may store factual associations differently 967

depending on their direction. Grosse et al. (2023) 968

found that LLMs have not successfully transferred 969

knowledge of the relation itself and influence de- 970

cay to near-zero when the order of the key phrases 971

is flipped. They discovered that if the pre-trained 972

models were not trained on facts in both directions, 973

they would not generalize to bidirectional situa- 974

tions. Berglund et al. (2023) collected a list of 975

celebrities from IMDB and asked GPT-4 to provide 976

child-parent pairs and queried GPT-4 to identify the 977

child for each child-parent pair, and found that its 978

success rate is only 33%. They attempted to solve 979

it by trying multiple models, importing auxiliary 980

examples, and changing the contents. However, 981

they found that scaling plots are flat across model 982

sizes and model families, and models do not in- 983

crease the likelihood of the correct response except 984

when utilizing in-context learning. 985

D Previous Works on Evidence-based 986

Fact-checking 987

After the pioneer dataset LIAR (Wang, 2017), more 988

and more Fact-Checking datasets have been re- 989
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leased to combat fake news. Some datasets consist990

of synthetic claims and evidence, while others in-991

volve real-world ones. Thorne et al. (2018) consid-992

ered creating synthetic datasets by asking annota-993

tors to combine Wikipedia content to build claim994

and evidence dataset FEVER. VitC (Schuster et al.,995

2021) collected Wikipedia revisions and syntheti-996

cally constructed ones that modify underlying facts997

to create claim-evidence pairs. Augenstein et al.998

(2019) collected data with textual sources and rich999

metadata from 26 fact-checking websites to build1000

MultiFC. Gupta and Srikumar (2021) provided a1001

multilingual dataset X-Fact for factual verification1002

of naturally existing real-world claims in 25 lan-1003

guages and is labeled by expert fact-checkers. Hu1004

et al. (2022) construct the CHEF dataset, which1005

consists of 10,000 real-world claims collected from1006

6 Chinese fact-checking websites.1007

Previous methods on this task can be divided1008

into three categories, i.e., entity-based methods1009

(Vlachos and Riedel, 2015; Reddy et al., 2018;1010

Wuehrl et al., 2023), pairwise semantic methods1011

(Nie et al., 2018; Calvo Figueras et al., 2022; Zeng1012

and Zubiaga, 2022; Hövelmeyer et al., 2022; Hu1013

et al., 2022), and reading-based or aggregation-1014

based methods (Kruengkrai et al., 2021; Gupta1015

and Srikumar, 2021; Hu et al., 2023b). Some ap-1016

proaches tried to solve this task with representa-1017

tions on graph structure. Zhou et al. (2019) pro-1018

posed a graph-based evidence aggregation and rea-1019

soning framework that transfers information on1020

evidence graphs and utilizes different aggregators1021

to collect multi-evidence information. Liu et al.1022

(2020) proposed the Kernel Graph Attention Net-1023

work (KGAT), which conducts more fine-grained1024

fact verification with kernel-based attention, where1025

node and edge kernels are used to implement1026

fine-grained evidence propagation to find subtle1027

clues. Though these works have made progress in1028

Evidence-based Fact-checking, they are not keep-1029

ing up with the popularity of LLMs and thus have1030

outdated performance.1031

E Q&A1032

In this section, we list some possible questions and1033

answers to these questions for a better understand-1034

ing of our motivations and technologies.1035

Q1: What is the challenge of fact-checking?1036

A1: In fact-checking, the sentences in sources1037

like Wikipedia or news articles contain multiple1038

individual claims, making them difficult to parse1039

and evaluate against evidence (Thorne et al., 2018). 1040

Q2: How are the facts stored in attention 1041

weights? 1042

A2: According to Geva et al. (2021, 2022, 2023), 1043

factual associations are represented as Key-Value 1044

pairs, which means, to adapt fact, either Key or 1045

Value matrices could be chosen. 1046

Q3: What are the engineering considerations for 1047

the feature-compression? 1048

A3: Since the computational cost of Value adap- 1049

tion is much greater than that of LoRA Query 1050

(150M parameters to 0.08M), creating a lot of 1051

waiting time for the pipeline, we reduce the Value 1052

adapter parameters through a feature-compression 1053

mechanism on token representations. 1054

Q4: Why do you use the sparse technique? 1055

A4: Irrelevant information from attention to ir- 1056

relevant tokens harms model performance because 1057

text understanding requires attention to the most 1058

relevant information (Zhao et al., 2019). 1059

Q5: Why do you construct graphs to model at- 1060

tention? 1061

A5: We use graphs to model attention mech- 1062

anisms to enable adaptive attention selection on 1063

graph structures. The attention on sparse graphs is 1064

flexible, where each attention edge can be activated 1065

or deactivated independently, improving the focus 1066

on some crucial relations. 1067

Q6: Why do you construct a hierarchical struc- 1068

ture? 1069

A6: We use a hierarchical structure for at- 1070

tention adaption, considering the stack of Trans- 1071

former blocks, merging local and global informa- 1072

tion in each layer with different receptive field con- 1073

straints. 1074

F Appendix Figures 1075

Figure 3 demonstrates the attention on our pro- 1076

posed sparse graph structure in Section 4.2. Fig- 1077

ure 4 and Figure 5 verify the existence of the Re- 1078

versal Curse in the evidence-based fact-checking 1079

task. 1080
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ID Label Claim Reverse Evidence Evidence

686 0, SUP Dishes cannot be steril-
ized with boiling water.

Therefore, once the
dishes become moldy,
don’t think about scald-
ing them to solve the
problem.

"Can the dishes be sterilized with boiling
water?"; "All sterilized dishes should be
immersed in water."; "Regularly disinfect and
sterilize dishes."; "Therefore, once the dishes
become moldy, don’t think about scalding
them to solve the problem."; "Dishes must be
thoroughly cleaned first."

686 0, SUP 烫餐具不能消毒。 所以，餐具一旦发
霉，就别想着烫一下
解决问题了。

"开水烫餐具能不能消毒？"; "被消毒餐具
需全部浸入水中。"; "定期对餐具进行消毒
灭菌处理。"; "所以，餐具一旦发霉，就别
想着烫一下解决问题了。"; "必需先将餐具
彻底清洗干净。"

Prediction GPT-4 Response

2, NEI There is not enough information in the evidence. The evidence does not directly state that dishes cannot
be sterilized with boiling water but only mentions that the problem cannot be solved by scalding after the
dishes are moldy, but it does not completely deny the disinfection effect of scalding.

2, NEI There is not enough information in the evidence. The evidence does not directly state that dishes cannot
be sterilized with boiling water, but it mentions that "once the dishes are moldy, don’t think about scalding
them to solve the problem", implying that scalding may not be a completely effective way to disinfect.

2, NEI There is not enough information in the evidence. The evidence does not explicitly state that dishes cannot
be sterilized with boiling water, but only that the problem cannot be solved by scalding after the dishes
become moldy, which does not mean that dishes cannot be sterilized with boiling water in all cases.

2, NEI There is not enough information in the evidence. The evidence does not directly state whether dishes can
be sterilized with boiling water, but only mentions that dishes need to be disinfected and sterilized regularly,
scalding will not solve the problem once the dishes are moldy, and the dishes need to be thoroughly cleaned
first.

0, SUP The claim is supported by the evidence. The evidence mentions that boiling water does not sterilize dishes
and solve the problem of moldy dishes.

2, NEI 证据中没有足够的信息。证据中并未直接说明烫餐具不能消毒，只是提到餐具发霉后不能通过
烫解决问题，但并不能完全否认烫餐具的消毒效果。

2, NEI 证据中没有足够的信息。证据中并未直接说明烫餐具不能消毒，但提到“餐具一旦发霉，就别想
着烫一下解决问题了”，暗示了烫可能不是一种完全有效的消毒方式。

2, NEI 证据中没有足够的信息。证据没有明确指出烫餐具不能消毒，只是说明餐具发霉后不能通过烫
解决问题，这并不代表所有情况下烫餐具都不能消毒。

2, NEI 证据中没有足够的信息。证据中并没有直接说明烫餐具能否消毒，只是提到了餐具需要定期消
毒灭菌，一旦发霉烫一下是无法解决问题的，以及餐具需要先彻底清洗干净。

0, SUP 该声明是被证据支持的。证据提到了开水烫餐具不能消毒和解决餐具发霉问题。

Table 9: GPT-4 Error Case 1.
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ID Label Claim Reverse Evidence Evidence

1461 0, SUP The fundamental factor
that determines fat and
thin is the supply and
consumption of energy.

Excessive intake will
lead to excessive energy
intake, which is greater
than the body’s energy
consumption, and then
lead to obesity.

"Genetic factors affect not only the degree of
obesity but also the type of fat distribution.";
"Because fat people always lack vitality and
energy, and they don’t seem to have much
self-control and action."; "Excessive intake
will lead to excessive energy intake, which is
greater than the body’s energy consumption,
and then lead to obesity."; "The vast majority
of questions about weight loss."; "The effect
of dietary energy excess on obesity."]

1461 0, SUP 决定胖瘦的根本是能
量的供应与消耗。

机体摄食量过大，就
会导致能量摄入过
剩，大于机体能量
的消耗，进而引发肥
胖。

"遗传因素不仅影响肥胖的程度，还影响
脂肪分布的类型。"; "因为胖的人，总是
缺乏活力、精力，似乎也没多少自控力、
行动力。"; "机体摄食量过大、能量摄入
过多，就会导致能量摄入过剩，大于机体
能量的消耗，进而引发肥胖。"; "绝大多
数关于减肥的问题。"; "饮食能量过剩对
肥胖的影响。"

Prediction GPT-4 Response

1, REF The claim is refuted by the evidence. Although the supply and consumption of energy have a certain
impact on the determination of fat and thin, genetic factors and food intake also affect the degree of fat
and thin.

1, REF The claim is refuted by the evidence. Energy supply and consumption do have an impact on fat and thin,
but genetic factors also affect the degree of obesity and the type of fat distribution, so it is not only the
supply and consumption of energy that determines fat and thin.

0, SUP The claim is supported by the evidence. Genetic factors and excess energy intake will affect a person’s
weight, but the fundamental factor that determines fatness and thinness is the supply and consumption of
energy.

1, REF The claim is refuted by the evidence. The fundamental factor that determines fat and thin is indeed the
supply and consumption of energy, but genetic factors also play a significant role in determining obesity
and the type of fat distribution.

1, REF The claim is refuted by the evidence. Genetics and excess energy in the diet can affect weight, and energy
supply and consumption do affect fatness and thinness, but they are not the only determinants.

1, REF 该声明是被证据驳斥的。虽然能量的供应与消耗对决定胖瘦有一定影响，但遗传因素、食物摄
入等也影响着胖瘦的程度。

1, REF 该声明是被证据驳斥的。能量的供应与消耗确实对胖瘦有影响，但遗传因素也会影响肥胖的程
度和脂肪分布的类型，因此决定胖瘦并非只有能量的供应与消耗这一因素。

1, REF 该声明是被证据驳斥的。不仅能量的供应与消耗影响胖瘦，遗传因素也是其中一个重要因素，
它影响肥胖的程度和脂肪的分布类型。

0, SUP 该声明是被证据支持的。遗传因素和能量摄入过剩都会影响人的体重，但是决定胖瘦的根本还
是能量的供应与消耗。

1, REF 该声明是被证据驳斥的。遗传因素和饮食能量的过剩都会影响体重，能量的供应和消耗确实关
系到胖瘦，但并非唯一决定因素。

Table 10: GPT-4 Error Case 2.
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ID Label Claim Reverse Evidence Evidence

7981 0, SUP The 87 version of
"Dream of Red Man-
sions" Rong Jia actor
died.

The 87 version of
"Dream of Red Man-
sions" lost another
person."; "And his more
well-known role is the
role of Rong Jia in the
1987 version of "Dream
of Red Mansions".

"The 87 version of "Dream of Red Man-
sions" lost another person."; "And his more
well-known role is the role of Rong Jia in
the 1987 version of "Dream of Red Man-
sions"."; "For countless Chinese people, the
87 version of "Dream of Red Mansions" is
an unforgettable classic."; "In addition to
acting in the 87 version of "Dream of Red
Mansions"."; "Jiaqi Ma, who played his fa-
ther Zheng Jia in "Dream of Red Mansions",
has passed away at the age of 82."

7981 0, SUP 87版《红楼梦》贾蓉
扮演者去世。

87版《红楼梦》又少
一个人，而他更广
为人知的角色，还要
数1987年《红楼梦》
中的贾蓉一角。

"87版《红楼梦》又少一个人。"; "而他
更广为人知的角色，还要数1987年《红
楼梦》中的贾蓉一角。"; "对于无数国人
来说，87版《红楼梦》是难忘的经典之
作。"; "除了演过87版的《红楼梦》外。";
"在《红楼梦》中饰演自己父亲贾政的马
加奇，已经去世，享年82岁。"

Prediction GPT-4 Response

2, NEI There is not enough information in the evidence. Although there is information about the death of an
actor, the evidence does not point to the death of Rong Jia, the actor in the 87 version of "Dream of Red
Mansions".

1, REF The claim is refuted by evidence. Rong Jia’s actor did not die, but Jiaqi Ma, who played Zheng Jia, died.

2, NEI There is not enough information in the evidence. The information about the death of Rong Jia, the actor of
the 87 version of "Dream of Red Mansions" in the statement, has not been confirmed in the evidence, and
it is only known that Jiaqi Ma, who played Zheng Jia, has died.

2, NEI There is not enough information in the evidence. Although there is information about the death of an
actor, the evidence does not point to the death of Rong Jia, the actor in the 87 version of "Dream of Red
Mansions".

2, NEI There is not enough information in the evidence. The evidence does not indicate the death of Rong Jia in
the 87 version of "Dream of Red Mansions", but only mentions the death of Jiaqi Ma, who played Zheng
Jia.

2, NEI 证据中没有足够的信息。声明中的87版《红楼梦》贾蓉扮演者去世的信息在证据中没有得到确
认，只知道演贾政的马加奇去世了。

2, NEI 证据中没有足够的信息。虽然有演员去世的信息，但证据并未明确指出87版《红楼梦》贾蓉的
扮演者去世。

2, NEI 证据中没有足够的信息。证据中并未明确指出87版《红楼梦》中贾蓉扮演者去世，只是提到了
饰演贾政的马加奇去世。

2, NEI 证据中没有足够的信息。虽然演员马加奇去世了，且他在《红楼梦》中饰演贾政，但并没有明
确的证据证明贾蓉扮演者去世。

1, REF 该声明是被证据驳斥的。贾蓉的扮演者并未去世，而是饰演贾政的马加奇去世。

Table 11: GPT-4 Error Case 3.
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Figure 3: Attention illustration on an instance of our proposed BSGAA framework.
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Figure 4: The negative result of the example shown in Table 1.
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Figure 5: The positive result of the example shown in Table 1, shifting the order of the evidence to align with the
claim.
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