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ABSTRACT

Iterative heuristics are widely recognized as state-of-the-art for Vehicle Routing
Problems (VRPs). In this work, we exploit a critical observation: a large portion
of the solution remains stable, i.e., unchanged across search iterations, causing
redundant computations, especially for large-scale VRPs with long subtours. To
address this, we pioneer the formal study of the First-Segment-Then-Aggregate
(FSTA) decomposition technique to accelerate iterative solvers. FSTA preserves
stable solution segments during the search, aggregates nodes within each segment
into fixed hypernodes, and focuses the search only on unstable portions. Yet, a key
challenge lies in identifying which segments should be aggregated. To this end, we
introduce Learning-to-Segment (L2Seg), a novel neural framework to intelligently
differentiate potentially stable and unstable portions for FSTA decomposition. We
present three L2Seg variants: non-autoregressive (globally comprehensive but
locally indiscriminate), autoregressive (locally refined but globally deficient), and
their synergy. Empirical results on CVRP and VRPTW show that L2Seg accelerates
state-of-the-art solvers by 2x to 7x. We further provide in-depth analysis showing
why synergy achieves the best performance. Notably, L2Seg is compatible with
traditional, learning-based, and hybrid solvers, while supporting various VRPs.

1 INTRODUCTION

Vehicle Routing Problems (VRPs) have profound applications such as in logistics and ride-hailing,
driving advances in combinatorial optimization (Laporte, 2009). As NP-hard problems, they are
typically tackled with heuristics approximately. Neural Combinatorial Optimization (NCO) (Kool
et al.,|2018} Bengio et al.l 2021; |Luo et al.| 2024; Berto et al.,2023) has recently introduced machine
learning into VRP solving, enabling data-driven decision-making with minimal domain knowledge
while matching and even surpassing the performance of meticulously designed heuristics such as
Lin-Kernighan-Helsgaun (LKH)(Helsgaun, 2017) and Hybrid Genetic Search (HGS)(Vidal, 2022).

Generally, state-of-the-art VRP solvers predominantly rely on iterative search to refine solutions
through local search (e.g., ruin and repair). However, as noted in Section [3] a significant portion of
edges stabilizeﬂ or their presence in the solution stops changing between iterations, as the search
progresses, despite repeated local search. For example, inner edges of neighboring subtours may
remain fixed while only boundary edges undergo frequent combinatorial changes. Intuitively, such
stability can be inferred from customer spatial distribution and the solution properties through end-to-
end learning. Yet, existing solvers overlook such opportunities, leading to redundant computations
that hinder their scalability and efficiency, especially in large-scale VRPs with long subtours.

Motivated by this critical observation, we study how learning to identify such segments can accelerate
iterative search solvers, a perspective yet to be explored to the best of our knowledge. To this end, we
formalize a First-Segment-Then-Aggregate (FSTA) decomposition framework, which identifies
stable segments in a VRP solution and then aggregates them as fixed (one or two) hypernodes with
combined attributes (e.g., total demand, min/max time windows). This not only decomposes the
original large problem into more tractable subproblems but also significantly accelerates the search
by leveraging iterative local search to strategically focus on unstable portions. We further show that
FSTA preserves solution equivalence and is broadly applicable to VRPs with diverse constraints.

Specifically, we refer stable edges as those that consistently remain in the solution across iterations, while
unstable edges are likely to be re-optimized (see Appendix@]for the formal definitions).



Under review as a conference paper at ICLR 2026

To identify unstable portions for FSTA decomposition, we then introduce Learning-to-Segment
(L2Seg), a novel learning-guided framework that leverages deep models to intelligently differentiate
potentially stable and unstable portions, allowing dynamic decomposition for accelerated local search.
Realizing this, however, is nontrivial: it involves a large combinatorial decision space requiring
accurate segment grouping, and demands modeling complex interdependencies among predicted
edges, constraints, spatial distribution, solution structures, and both node and edge features.

To address these challenges, L2Seg proposes encoder-decoder-styled neural models. The encoder
integrates graph-level and route-level features using attention and graph neural networks, gener-
ating node embeddings that guide edge re-optimization predictions. L2Seg offers three decoders:
(1) L2Seg-NAR (Non-Autoregressive): which features one-shot fast global prediction; (2) L2Seg-AR
(Autoregressive), which enjoys sequential dependency modeling for high-precision local predictions;
and (3) L2Seg-SYN (Synergized), which balances the strengths of both NAR and AR. Notably, this
represents a pioneering work that explores the joint decision-making between AR and NAR models
in neural combinatorial optimization. Our L2Seg models are trained via a weighted cross-entropy
loss on datasets labeled using a lookahead procedure: edge stability is classified based on whether its
presence in the solution was changed during iterative re-optimization.

Extensive experiments on large-scale CVRPs and VRPTWs show that L2Seg accelerates backbone
heuristics by 2x to 7x, enabling them to outperform state-of-the-art classic, neural, and hybrid
baselines, while generalizing well across different customer distributions and problem sizes. Notably,
L2Seg exhibits strong flexibility in enhancing various solvers, including the classic LKH-3 |[Helsgaun
(2017) solver, other orthogonal Large Neighborhood Search (LNS) methods [Shaw| (1998), and
learning-guided decomposition method Learning-to-Delegate (L2D) |Li et al.| (2021). We further
analyze the synergy between AR and NAR models, showing their combination achieves the best
performance by integrating NAR’s global comprehension with AR’s local precision.

Our contributions are: (1) We make a critical yet underexplored insight that stable segments persist
across search iterations in large-scale VRPs, causing redundant computations; (2) We formally study
and theoretically prove the properties and applicabilities of First-Segment-Then-Aggregate (FSTA)
for various VRPs; (3) We develop Learning-to-Segment (L2Seg), a learning-guided framework with
bespoke network architecture, training, and inference for segment identification; (4) We propose
autoregressive, non-autoregressive, and their synergistic deep models, pioneering the first-of-its-kind
study in NCO; (5) L2Seg consistently accelerates state-of-the-art iterative VRP solvers by 2x to 7x,
boosting both classic and learning-based solvers, including other decomposition frameworks.

2 RELATED WORKS

VRP Solvers. Classical VRP solvers include exact methods with guarantees (Baldacci et al.,[2012)
and practical heuristics (Helsgaunl [2017). Recently, machine learning has been applied to combi-
natorial optimization, either end-to-end (Kool et al., 2018} [Kwon et al., |2020; [Fang et al., [2024;
Geisler et al., 2022 |Gao et al.| 2024 [Drakulic et al.,|2023; |Wang et al., 2024; Min et al.| 2023} |L1
et al., 2023a) or learning-guided to unite data-driven insights into human solvers (Li et al., 2021}
Lu et al.}|2023; [Huang et al., 2024} 2023} |Hottung et al., [2025). For VRPs, the former could yield
competitive performance to classic methods (Drakulic et al., 2023 [Luo et al., 2023), while the latter
often achieve state-of-the-art performance (Zheng et al.;|2024). Among these, most effective VRP
solvers rely on iterative search, including classic heuristics such as HGS (Vidal, [2022)), LNS (Shaw},
1998) and LKH (Helsgaun, |2017); neural solvers that learn local search (Ma et al., 2021} 2023}, |Kim
et al.| [2023; |Hottung and Tierneyl 2022} Ma et al.,[2022); neural constructive solvers integrated with
search components (Luo et al.| 2023} |Hottung et al., [2022; | Kim et al., 2021} [Sun and Yang} 2023},
Chalumeau et al.| 2023} |Kim et al., 2024} |Q1u et al.,|2022)); and hybrid learning-guided methods like
L2D (L1 et al., 2021)). However, both handcrafted and neural iterative search solvers overlook the
redundant computations identified in this paper, particularly in large-scale VRPs.

Decomposition for Large-scale VRPs. Scalability in VRP solvers often relies on effective decompo-
sition that operates on solutions partially (Santini et al., 2023). This includes hand-crafted heuristics,
such as LNS (Shaw, [1998) and evolutionary algorithms (Helsgaun, 2017), as well as learning-based
methods such as sub-tour grouping (Zong et al.| [2022), problem variant reduction (Hou et al., 2023,
action space decomposition (Drakulic et al.| 2023} [Luo et al., 2023}; Zhou et al.,[2025al) and spatial-
based decomposition (Zheng et al.| [2024; [Zhou et al., |2025b; |Pan et al., |2025). In this paper, we
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present FSTA and L2seg, a freslﬂ learning-based decomposition framework that automatically
detects unstable edges and aggregates stable segments. Notably, L2Seg holds potential to enhance
other decomposition methods, such as LNS (Shaw, |1998)) and L2D (Li et al., 2021). While another
related work (Morabit et al.| 2024) explores segment stability for re-optimization in a specific
dynamic CVRP setting, our work addresses a different problem, i.e., identifying stable segments
across search steps to accelerate iterative solvers. And we formally analyze the solution equivalence
of FSTA across broader VRP variants. Moreover, L2Seg uniquely designs and integrates three novel
deep learning models (AR, NAR, and synergized) to guide FSTA decomposition during search.

AR and NAR Models. In NCO, NAR models make global predictions like edge heatmaps (Sun
and Yang, [2023} [Li et al.| [2023b). However, they struggle to model complex interdependencies,
particularly VRP constraints. In contrast, AR models make sequential predictions, e.g., node by node
selection in construction solvers (e.g., Luo et al.[(2023)). AR offers stronger modeling capacity but
might overlook global structure. Recent NCO works combine AR and NAR models in divide-and-
conquer frameworks, with NAR for problem splitting and AR for solving (Zheng et al.,2024; Hou
et al.| 2023 |Ye et al.l |2024). We are the first to leverage their complementary strengths for joint
decision-making, enabling more effective identification of unstable segments in FSTA decomposition.

3  FIRST-SEGMENT-THEN-AGGREGATE (FSTA)

3.1 VEHICLE ROUTING PROBLEMS (VRPS)

=== CVRP2k, C=300

VRPs aim to minimize total travel costs (often distance or travel time) =, Q. VP, @300

while serving a set of customers under constraints. Formally, A VRP
instance P is defined on a graph G = (V, E), where each node z; € V 8

represents a customer and each edge e; ; € E represents traveling from
x; to x; and is associated with a travel cost. For Capacitated VRP
(CVRP), vehicles of capacity C' start and end at a depot node zy. The
sum of the demands d; on any route must not exceed C, and each
customer should be served exactly once. For VRP with Time Windows
(VRPTW), each customer is additionally associated with a service time
s; and a time window [t!, ¢7] within which service must begin. See

Appendix |A| for the formal definitions of CVRP and VRPTW.

1 6 11 16 21
# of iterative searches

Figure 1: Percentage of re-
optimized edges during it-
erative search using LKH-
3 on 100 CVRP instances.
Most edges remain un-
changed, suggesting re-

dundant calculations.
3.2 FSTA DECOMPOSITION

Figure[T]depicts that iterative search solvers perform redundant searches, reoptimizing only a small
portion while many edges remain unchanged, especially in large subtours with high capacity C.
Inspired by Morabit et al.| (2024)), we formally study the decomposition technique, First-Segment-
Then-Aggregate (FSTA), for accelerating iterative search solvers. As shown in the top of Figure 2]
FSTA segments the VRP solutions by identifying unstable portions, and then groups them into
hypernodes with aggregated attributes. We thus expect more efficient re-optimization on the reduced
problems with smaller size. More visualization of FSTA is provided in Appendix [B.1]

Segment Definition. Denote the solution (set of routes) of a CVRP as R = {R', R?, ...}, and each
route as R" = (g — 2} — 2% — ... = xo) € R, where the first and the last nodes in R’ are
the depot. A segment consists of some consecutive nodes within a route. We denote the segment
containing the 5" to lf‘h nodes of route i as S; = (x; e 7). An aggregated segment 5’; k
uses one hypernode (S} ;, = {&} , }) or two hypernodes (S ; = {7, %} }) with aggregated attributes
(e.g. the demand of z7; ; equals to dj + ... + d},) to represent the non-aggregated segment S;‘, L

FSTA Solution Update. After identifying unstable edges {e;-1 1 €55 ...} in each route (which will be

addressed in , where each e denotes the edge starting from the j™ node in route R’, we
break these edges and group the remaining stable edges into segments. To preserve a valid depot,
edges connecting to the depot are included in the unstable edge set. After unstable edges are removed,

each route R’ is then decomposed into multiple disjoint segments {x¢, S S;h 2 ...}, where zg is

%
1,510

A detailed comparison with representative decomposition methods is provided in Appendix
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Figure 2: The overview of our FSTA decomposition framework (top) and the three proposed L2Seg
models (bottom). L2Seg-SYN employs a four-step synergized approach: (1) problem decomposition
into subproblems, (2) unstable nodes detection globally via NAR decoding, (3) clustering of NAR-
predicted nodes to localize unstable regions and select initial target nodes, and (4) refining unstable
edge predictions locally via AR decoding starting from these identified initial target nodes.

depot. Each segment Si i 1s then aggregated into one or two hypernodes Si i leading to a reduced

problem P. We then obtaln the corresponding solution R for such reduced problem, where for
each R' € R, we have R’ = (2o — S! g S;l jae+- = T0). With fewer nodes than the original
problem P, re-optimization with a backbone solver becomes more efficient, which is analyzed and
confirmed in Appendix [B. 1| - After re-optimization, we obtain a new solution R+ for the reduced
problem P, which is then recovered into a solution R+ for the original problem P by expanding
each hypernode(s) back into its original segment of nodes. This relies on our monotonicity theorem,

which guarantees that an improved solution in P maps to an improved solution in P.

Theoretical Analysis. We establish a theorem proving FSTA’s feasibility and monotonicity across
multiple VRP variants (e.g. CVRP, VRPTW, VRPB, and 1-VRPPD), with the proof in Appendix [B.2]

Theorem (Feasibility & Monotonicity). If the aggregated solution R is feasible to the aggregated
problem, then R is also feasible to the original, non-aggregated problem. Moreover, if two feasible
aggregated solutions R! and R satisfy f(R1) < f(R2), where f(-) denotes the objective function
(total travel cost), their corresponding original solutions also preserve this order: f(RY) < f(R2).

4 LEARNING TO SEGMENT (L2SEG)

We introduce Learning to Segment (L.2Seg), a neural framework for predicting unstable edges to
guide FSTA. We consider two paradigms: 1) Non-autoregressive (NAR) and 2) Autoregressive (AR)
models. NAR models offer global predictions with an efficient single forward pass. However, they
lack conditional modeling to accurately capture local dependencies. For example, when one edge is
unstable, nearby edges often show instability but not all, but NAR models may fail to distinguish
them and mark all neighboring edges as unstable. On the other hand, AR models can more natively
capture local dependencies. Yet, they may miss the crucial global structure. For example, when
unstable edges are distributed across distant regions, AR models may struggle to recognize and model
these broader patterns. Our approach offers three variants as shown in Figure 2} non-autoregressive
(L2Seg-NAR), autoregressive (L2Seg-AR), and a synergized combination of both (L2Seg-SYN).

4.1 NEURAL ARCHITECTURE

The autoregressive and non-autoregressive models of L2Seg share the same encoder structure. Next,
we first describe the encoder, and then the two decoder architectures.
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Figure 3: Architecture of L2Seg: encoder (left), NAR decoder (center), and AR decoder (right).
NAR predicts unstable nodes for associated edges. AR uses a two-stage process, where the insertion
bridges the deletion stage to accurately detect unstable edges locally, akin to the local search behavior.

Input Feature Design. We propose enhanced input features for L2Seg to better distinguish unstable
and stable edges (see Appendix [B.T]for intuitions). Key features include node angularity relative to
the depot and node internality, where the latter measures the proportion of nearest nodes within the
same route. We consider two edge types: edges in the current solution R and edges connecting each
node to their k-nearest neighbors. Appendix [C.2] provides a detailed feature description.

Encoder. Given node features X = (xo,X1,...) and edge features E = {eq 1,€02,...}, we
compute the initial node embedding as hi"i* = Concat(hMMF hP'©S) € R24" where hMLY and
hfos are obtained by passing x; through a multilayer perceptron (MLP) and an absolute position
encoder (Vaswani, [2017), respectively. Next, we process the embeddings using Lty Transformer
layers (Vaswanil [2017) with masks to prevent computation between nodes in different routes:
h}*™ =TFM (hi™) € R This step encodes local structural information from the current solution.

Finally, we compute the node embeddings HENN = {h&NN ¢ Rdr | = 0,..., |V |} leveraging the
global graph information by using Lgnn layers of a Graph Attention Network (GAT) (Velickovic
et al,[2017), where HSNN =GNN (H™ E).

Non-Autoregressive Decoder. It uses an MLP with a sigmoid function to decode the probability

pYAR of each node being unstable globally in one shot, so as to identify associated unstable edges:

pNAR _ MLPNAR (HGNN) (1)

Autoregressive Decoder. The autoregressive decoder models unstable edge interdependence by
generating them sequentially as a = {%n,,%r,,... ;. Following classical local search where k
removed edges are reconnected via k new insertions (Funke et al.| 2005), the sequence alternates
between deletion (identifying unstable edges) and insertion (introducing pseudo-edges that bridge
to the next unstable edge), terminating at x.,q. Note that the “insertion" stage is designed to model
dependencies between consecutive unstable edges rather than actually “insert" edges into the solution.
Formally, denote the set of edges within the current solution as E'r. The decoding alternates between:
(1) Deletion (¢ = 2k): Selects an unstable edge er,, r,,,, € Fr based on a target node, which is
either initialized at the first step (see Section[4.3) or the one obtained from the previous insertion step;
one of the two edges connected to this node in the current solution is then selected as unstable (more
than two candidates may exist if the node is the depot); and (2) Insertion (t = 2k +1): Selects an new
edge eryy 1 mony. ¢ Er thatlinks to the endpoint of the last unstable edge removed, exploring O(|V')
potential candidates to serve as a bridge to the next unstable target node (next unstable region). From a,
we then identify the set of removed edges as the unstable edges, i.e., Eynstable = { €.y €ra,mas - - - }-
Both stages employ two principal modules: Gated Recurrent Units (GRUs) (Chung et al.,[2014) to
encode sequence context, and multi-head attention (MHA) (Vaswanil 2017) for node selection. The

GRU’s initial hidden state is the average of all node embeddings: hfiddn — ﬁ Z‘lg) h$NN_ At step
t, the sequence embedding is updated by hi™ = GRU (hfi{*, h@WN ) “and the context embedding is

formed by concatenating the embeddings of the initial node, the previous node, and the new sequence
embedding: H{*"** = Concat (h$"N, h§™N | hy*).

Inspired by the decoder design in LEHD (Luo et al., [2023)), we use two distinct MHA modules with
LMHA Jayers, to decode x,,. Specifically, considering the size of the action space (at most 2 for

deletion and O(|V']) for insertion), we utilize a shallow decoder (LYII& = 1) during the deletion
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stage and a deeper decoder (LMIIA = 4) during the
insertion stage. Let H? C HSNN denote the set of
available nodes at step ¢. During the insertion stage,

we also incorporate an additional candidate h*"d =
ahSoNNHlfoz) L ZLZ‘O hFNN where « is a learnable

v
parameter, to ind‘iclate termination of decoding, provid-
ing the AR model flexibility to determine the number of (.t | (1 Ot | ) coomeaed ] oo
unstable edges. Formally, the decoding at step ¢ is given Component
as follows; note that the first 3 dimensions of (L") Deletion Stage - Belation Stage y

corresponds to context embeddings H{*™**" and hence @O0 O @

are masked from Selection. Insertion Stage Insertion Stage
: Label (S f Nodes)
H(O) — COHC&t (Hgontext’ H?), a eFLret::?;eM:deT es!

o — (-1
HY = MHA (H )7 ) Figure 4: Training data construction for
MHA . . .

T W.h'E . ifi the AR model. Re-optimization reveals

Ui = {(Wq ) Wi, [V, i ZW> 3 deleted edges (blue/green dashed) and in-
—%% oW, serted edges (red dashed) forming con-

where 1 < [ < LMHA W, and W), are learnable matri- nected components (circles). For each
ces, and h® € R%% concatenates the first three columns component, depth-first search generates

of H® and HE"™) along the last axis. The node z, npde sequences alternating bej-tween dele-
is sampled from pAR = softmax(u). tion and insertion stages, termll}aFed by an
end token as the AR model’s training label.

4.2 TRAINING

We employ iterative solvers as look-ahead heuristics to detect unstable edges. We utilize imitation
learning to train L2Seg models to replicate the behavior of the look-ahead heuristics.

Dataset Construction. Let the edges in R be E'z, and nodes indicated by edge set E be V. Given
P with current solution R, we first employ an iterative solver S to refine R and obtain R .. We then
collect differing edges as R and R4 as Eqi = (Er \ Er, )U(Er. \ Ex) (including both the deleted
and newly inserted edges). Next, we identify the set of unstable nodes Vinstable = Vi » 1.€-, the set
of nodes that are end points to some edge in Fqr. We empirically observe that solution refinement
typically takes place between two adjacent routes. For the NAR model, we construct a dataset with
binary labels. Each problem-label pair consists of a decomposed problem containing two adjacent
routes and binary labels indicating whether each node is unstable (1) or stable (0). Formally, a node z
is labeled 1 if x € Vjugable- For the AR model, we construct labels as node sequences preserving
local dependencies among unstable edges. Nodes without local dependencies are naturally excluded
through connected component partitioning. We obtain connected components K induced by Eq;¢ and
select those spanning at most two routes, denoted JCrg. For each K € g containing nodes from
routes R; and R;, we form a subproblem Py with solution Rx = {R;, R;}. From each component
K (dashed circles in Figure E]), we extract a node sequence Y = {Trg, Trryy- -y &x,, s Tend DY
alternating between edge deletion and insertion operations (shown in Figure 4] second row). These
problem-label pairs ( Pk, yx ) constitute the AR model training data.

Loss Function. To balance labels, we use weighted binary cross-entropy for the NAR model (wpos >
1) and weighted cross-entropy for the AR model to balance the two stages (Winsert > Wdelete)-

Lxar(P™07) == )" wpos ya, Log (PR ™) + (1= s, ) log (1 — ppA™)
Yoy, €YY
LAR(pAR7 yK) = - Z Winsert 10g (p?i) - Z Welect 10g (p;?QIZJrl )
Trop CYK Tropt1 S YK

4.3 INFERENCE

We describe the synergized inference that combines the benefits of global structural awareness from
NAR with the local precision from AR, followed by two variants using only NAR or AR.

Synergized Prediction (L2Seg-SYN). L2Seg-SYN’s inference pipeline for detecting unstable edges
consists of four steps: (1) problem decomposition, (2) global unstable node detection via NAR
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Table 1: Performance comparisons of our proposed L2Seg- ~ *>* \___:: T _sp

NAR, L2Seg-AR, and L2Seg-SYN when accelerating = tEgG*LzSeg’SYN,_ _

three backbone solvers, LKH-3, LNS, and L2D, on the — LNS+L2Seg-SYN e
L2D

large-capacity CVRP instances. We report the objective
value, improvement gain (%), and the time. The gains (the
higher the better) are w.r.t. the performance of each back-
bone solver. Time limits were set to be 150s for CVRP2k . 60 100 190
and 240s for CVRP5Kk, respectively. Time (s)

M ® LKH-3

N = LKH-3+L25eg-SYN
c———\g == LNS ———e
—— INS+L25eg-SYN

L2D

Objective

CVRP2k CVRP5k 65.67
Obj.] GainT Timel Obj.l Gaint Timel

LKH-3 (Helsgaun|[2017) 45.24 0.00%  152s 6534 0.00%  242s
L2Seg-NAR-LKH-3 4434 199%  158s 6472 095%  246s

Methods

L2Seg-AR-LKH-3 4423 223% 151s  64.67 1.03% 244s 64.5 SR e

L2Seg-SYN-LKH-3 4392 2.92% 1525 6412 187%  248s \K_"“
64.0

LNS (Shaw|[T998} 4492 0.00% 1545 6469 0.00% 2465 :

L2Seg-NAR-LNS 4412 1.78%  154s 6438 0.48%  244s e 100 T 15‘(’) 200 250

L2Seg-AR-LNS 4402 2.00% 157s 6424 0.70%  249s IMEAS

L2Seg-SYN-LNS 4342 334% 1525 6394 116% 241 .

8 ° s 2 * _ Figure 5: Search curves for L2Seg on
L2D (Li et al.|[2021) 4369 0.00% 153s 6421 000% 243s .
L2Seg-NAR-L2D 4555 032% 152 6402 030% 43  three backbone solvers on large capacity
L2Seg-AR-L2D 4353 037% 156s 6412 014% 2475  CVRP2k (upper) and CVRP5k (lower).
L2Seg-SYN-L2D 4335 0.78% 157s  63.89 0.50%  248s

L2Seg achieves up to 7x speedups.

decoding, (3) representative initial node identification for AR decoding based on NAR predictions,
and (4) local unstable edge detection using AR decoding.

Given a problem P with solution R, we partition P into approximately |R| subproblems, Prr, by
grouping nodes from all two adjacent sub-tour pairs. For each subproblem in Prg, the NAR model
predicts unstable nodes as nar = {z; | pF*® > 1}, where 7 is a predefined threshold. We then
refine unstable edge detection with the AR model within regions identified by the NAR prediction.
To reduce redundant decoding efforts on neighboring unstable nodes, we first group unstable nodes
into nxMEaNs clusters using the K -means algorithm, and select the node with the highest pN4®
within each cluster as the starting point for AR decoding. The AR model then detects unstable edges
based on these initial nodes. Finally, we aggregate unstable edges from all subproblems in Prg as

the final unstable edge set for P given the current solution R.

Non-Autoregressive Prediction (L2Seg-NAR). L2Seg-NAR uses only the NAR model for predic-
tions. It identifies unstable nodes and marks all connected edges as unstable.

Autoregressive Prediction (L2Seg-AR). L2Seg-AR exclusively uses the AR model. Instead of using
the NAR model, it assumes all nodes may be unstable, applying the K -means algorithm on all nodes.
It then selects the node closest to each cluster center as the initial node for AR-based decoding.

5 EXPERIMENT

Our decomposition-based FSTA and L2Seg excel on large-scale problems. In this section, we first
evaluate how L2Seg-AR, L2Seg-NAR, and L.2Seg-SYN accelerate various learning and non-learning
iterative solvers on large-capacity CVRPs with long subtours. Next, we compare L2Seg against
state-of-the-art baselines on standard benchmark CVRP and VRPTW instances. Finally, we provide
in-depth analyses of our pipeline. Additional results on CVRPLib benchmarks, clustered CVRP,
heterogeneous-demand CVRP, a case study, and further discussions are presented in Appendix [E]

Backbone Solvers. We apply L2Seg to three representative backbones: LKH-3 (Helsgaun, [2017)
(classic heuristic), LNS (Shaw\ |1998) (decomposition framework), and L2D (Li et al.,[2021)) (learning-
guided hybrid solvers) to demonstrates the broad applicability. See Appendix D.I|for details.

Baselines. We include state-of-the-art classic solvers (LKH-3 (Helsgaun, 2017), HGS (Vidal, 2022)),
neural solvers (BQ (Drakulic et al.} 2023), LEHD (Luo et al.,[2023), ELG (Gao et al.} 2024), ICAM
(Zhou et al., 2024)), L2R (Zhou et al.,2025a), SIL (Luo et al.l 2024)), and learning-based divide-and-
conquer methods (GLOP (Ye et al.,2024)), TAM (Hou et al.||2023), UDC (Zheng et al.,|2024), L2D
(Li et al., 2021), NDS (Hottung et al., 2025)). We rerun LKH-3, LNS, L2D, and NDS and report
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Table 2: Performance comparisons of our L2Seg-SYN-L2D against baselines on benchmark CVRP
and VRPTW instances. The gap % (lower the better) is w.r.t. the performance of HGS.

Methods CVRPIk CVRP2k CVRP5k

Obj.l Gapl Timel Obj.} Gapl Time]l Obj.) Gapl  Timel
HGS (Vidal{[2022) 41.20  0.00% S5m 5720  0.00% 5m 126.20  0.00% Sm
LKH-3 (Helsgaun)[2017) 4298 432% 6.6m 5794 129% 114m 17570 39.22% 2.5m
LNS (Shaw/|1998) 4244  3.01% 2.5m 57.62 0.73% 4.0m 126.58  0.30% 5.0m
BQ (Drakulic et al.}[2023) 4417  721% 55s 6259  9.42% 3m 139.80 10.78%  45m
LEHD (Luo et al.[[2023) 4396 6.70% 13m 6158 7.66%  9.5m 138.20 9.51% 3h
ELG (Gao et al.]/[2024) 4358 5.78% 15.6m - - - - - -
ICAM (Zhou et al.[[2024) 43.07  4.54% 26s 61.34 7.24% 3.7m 136.90  8.48% 50m
L2R (Zhou et al.||2025a) 4420 7.28% @ 34.2s 131.10  3.88%  1.8m

SIL (Luo et al.[[2024) 42.00 1.94% 13m  57.10 -0.17% 24m 123.10 -2.52% 5.9m

TAM(LKH-3) (Hou et al.|[2023) 4630 12.38% 4m 64.80 13.29% 9.6m 14460 14.58%  35m
GLOP-G(LKH-3) (Ye et al.|[2024) 4590 11.41% 2m 63.02 10.52% 2.5m 14040 11.25% 8m

UDC (Zheng et al..[2024) 43.00 4.37% 1.2h  60.01 4.9% 2.15h 13670 8.32% 16m
L2D (Li et al.[|2021) 42.07 211% 25m 5744 042% 42m 12648 022%  5.3m
NDS (Hottung et al.||2025) 41.16 -001% 25m 56.11 -191% 4m - - -
L2Seg-SYN-LKH-3 4142  053% 25m 5637 -145% 44m 12234 -3.16% 5.lm
L2Seg-SYN-LNS 4136  039%  25m  56.08 -1.96% 4.lms 121.96 -3.48% 5.lm
L2Seg-SYN-L2D 4123 0.07% 25m  56.05 -2.01% 4.lm 121.87 -3.55% Im
Methods VRPTWI1k VRPTW2k VRPTWS5k

Obj.l Gapl Timel Obj.] Gap|l Timel Obj.l Gap| Timel
HGS (Vidal!|2022) 90.35  0.00% 2m 173.46  0.00% 4m 3442 0.00% 10m
LKH-3 (Helsgaun[2017) 91.32  1.07% 2m 17425 0.46% 4m 3532 2.61% 10m
LNS (Shaw/|1998) 88.12 -2.47% 2m 16542 -4.64% 4m 338.5 -1.66% 10m
L2D (Li et al.||2021) 88.01 -2.59% 2m 164.12  -5.38% 4m 3352  -2.61%  10m
NDS (Hottung et al.|2025) 87.54 -3.11% 2m 16748 -3.45% 4m - - -
L2Seg-SYN-LKH-3 88.65 -1.88% 2m 169.24  -2.43% 4m 3452 0.29% 10m
L2Seg-SYN-LNS 8731 -3.36% 2m 163.94 -5.49% 4m 3341 -293%  10m
L2Seg-SYN-L2D 87.25 -3.43% 2m  163.74 -5.60% 4m 3334 -314% 10m

results from |Luo et al.|(2024); |Zheng et al.| (2024)) for other baselines using the same benchmarks.
See Appendix [D.2]for baseline setup details and Appendix [D.3]for L2Seg hyperparameters.

Data Distribution. We generate all training and test instances following prior works|Zheng et al.
(2024)) for CVRP and [Solomon| (1987) for VRPTW. See Appendix @] for details. For Section @
results are averaged over 100 large-scale CVRP test instances at 2k and 5k scales (capacities 500
and 1,000, respectively). For Section[5.2] we follow standard NCO benchmarks, reporting averaged
results on 1k, 2k, and 5k test datasets with 1,000 CVRP and 100 VRPTW instances per scale.

Evaluation and Metric. We impose time limits of 150s, 240s, and 300s for CVRP1k, 2k, and 5k,
and 120s, 240s, and 600s for VRPTW 1k, 2k and 5k, where each solver may finish a few seconds
(< 10s) beyond its limit. We set = 0.6 and ngmeans = 3 for our L2Seg. We report averaged
cost and per-instance solve time for all cases, and report percentage improvements over backbone in
Section[5.1]and gaps to HGS (the best heuristic solvers) for both CVRP and VRPTW in Section[5.2]

5.1 L2SEG ACCELERATES VARIOUS ITERATIVE BACKBONE SOLVERS

We first verify the effectiveness of the three L2Seg variants to enhance backbone solvers. Table ]|
presents results on large-capacity, uniformly distributed CVRPs with long subtours. All L2Seg vari-
ants consistently improve each backbone across all problem scales. Also, performance gains are larger
for weaker backbones. While L2Seg-AR and L2Seg-NAR each boost performance, their combination
(L2Seg-SYN) delivers the best solutions. Figure [5| plots average objective curves over time, which re-
veal 2x to 7x speedups on the backbone solvers with L2Seg-SYN. Remarkably, L2Seg-augmentation
lets weaker solvers surpass stronger ones (e.g., LKH-3 + L2Seg-SYN outperforms vanilla LNS).

5.2 L2SEG OUTPERFORMS CLASSIC AND NEURAL BASELINES ON CVRP AND VRPTW

We evaluate the highest-performing L2Seg-SYN implementation with three distinct backbone solvers
and compare against state-of-the-art classical and neural approaches. As demonstrated in Table
L2Seg surpasses both classical and neural baselines on CVRP and VRPTW benchmarks. For CVRP,
L2Seg achieves superior performance within comparable computational time relative to competitive
classical solvers, including HGS on larger problem instances. It also outperforms the state-of-the-art
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Table 3: Performance of L2Seg-SYN v.s. Random FSTA to accelerate LNS on CVRP instances.

Methods LNS (Backbone) ‘ Random FSTA (40%) Random FSTA (60%) ‘ L2Seg-SYN w/o Enhanced Features L2Seg-SYN

CVRP2k 44.92 46.24 46.89 43.65 43.42
CVRP5k 64.69 66.72 65.92 64.22 63.94

. . . Predicted
Table 4: Model prediction analysis of =~ == GroundTuh ==, (ZiTF e

L2Seg-LNS on CVRP2k. oo L oo, oo
foooane | fogoane || £ qo0a0e (|0 00000
Methods Recallf TNRT  Obj.l 0.5 08 08P | 0.0 0-80-0P| | £ 0 048 0BT [ o.g -G 0-EP
@@ @@ @ @@ @ @@ @@ Q> @ @-r®”
L2Seg SYN 89.02% 6L24% 43.42 Ground Truth L2Seg-SYN L2Seg-NAR L2Seg-AR

L2Seg-NAR 91.46% 51.79% 44.02

L28eg- AR 74.39% 54.07% 44.12 Figure 6: Illustration of L2Seg model behaviors.

learning-based constructive solver SIL (Luo et al., 2024)) and divide-and-conquer solver L2D (L1
et al.| 2021) across all problem scales. For VRPTW, L2Seg exceeds all classical and learning-based
solvers across various scales under identical time constraints, with performance advantages increasing
as problem size grows. Notably, L2Seg consistently enhances performance when integrated with any
backbone solver, demonstrating its versatility. Additional analyses are provided in Appendix [E]

5.3 FURTHER ANALYSIS AND DISCUSSIONS

Ablation Study. Table [3|compares the LNS backbone; random FSTA with 40% and 60% of edges
arbitrarily marked as unstable; L2Seg-SYN w/o enhanced features; and full L2Seg-SYN. Results
show that Random FSTA worsens performance; and only full L2Seg-SYN with enhanced features
achieves top performance. This confirms that L2Seg’s learnable, feature-guided segmentation is
indispensable for preserving high-quality segments in FSTA for boosting backbone solvers.

High Recall or High TNR? Higher Recall allows more o P s < o |
unstable edges to be reoptimized, potentially improving  $o7s Recall o
performance, while higher TNR reduces problem size and £, = ™ ] “3
runtime. However, due to learning imprecision, pursuing ';fo_zs N 45%‘
high TNRs often reduces Recall, causing premature con- = 4
vergence. Figure[7]shows that for L2Seg-SYN, fixing too ~ * conservative Moderate Aggressive

few (left: high Recall, low TNR) or too many (right: high (1209 M =2 (12 QO Mo = 3)(01=0:3, s = 10)
TNR, low Recall) degrades performance. Ours (middle)
balances this tradeoff for optimal performance. Figure 7: Statistic values of Size (re-

Why NAR+AR Is the Best? Figure[6|shows a conceptual duced/original ratio), Recall, and TNR
illustration of the model’s behaviour across L2Seg variants ~2¢T08S three L2Seg-SYN configurations.
(See Appendix [E.5|for a real case-study). L2Seg-NAR identifies unstable regions but over-classifies
due to the lack of dependency modeling, while L2Seg-AR models dependencies but struggles with
initial detection. L2Seg-SYN achieves the complementary synergy. Moreover, Table 4] further shows
that L2Seg-SYN achieves the best balanced Recall and TNR for the best performance.

6 CONCLUSION

This work introduces Learning-to-Segment (L2Seg), a novel learning-guided framework that accel-
erates state-of-the-art iterative solvers for large-scale VRPs by 2x to 7x. We formalize the FSTA
decomposition and employ a specialized encoder-decoder architecture to dynamically differenti-
ate potentially unstable and stable segments in FSTA. L2Seg features three variants, L2Seg-NAR,
L2Seg-AR, and L2Seg-SYN, pioneering the synergy of AR and NAR models in NCO. Extensive
results demonstrate L2Seg’s state-of-the-art performance on representative CVRP and VRPTW and
flexibility in boosting classic and learning-based solvers, including other decomposition frameworks.
One potential limitation is that L2Seg is not guaranteed to boost all VRP solvers across all VRP
variants. Future work includes: (1) extending L2Seg to accelerate additional VRP solvers (e.g., Vidal
(2022)); (2) applying L2Seg to more VRP variants and other combinatorial optimization problems;
and (3) expanding the synergy between AR and NAR models to the broader NCO community.
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REPRODUCIBILITY STATEMENT

We provide comprehensive technical details in the appendices: architecture and input features (Ap-
pendix [D.3), data generation (Appendix [D.4), training procedures (Appendix [C.4), and experimental
setup (Section [3). The complete codebase, including code and pre-trained models, will be released
on GitHub under the MIT License upon publication.

REFERENCES

Gilbert Laporte. Fifty years of vehicle routing. Transportation science, 43(4):408—416, 2009.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405-421,
2021.

Fu Luo, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Self-improved
learning for scalable neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter
Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun
Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an extensive reinforcement learning for combinatorial
optimization benchmark. arXiv preprint arXiv:2306.17100, 2023.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966-980, 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighbor-
hood. Computers & Operations Research, 140:105643, 2022.

Paul Shaw. Using constraint programming and local search methods to solve vehicle routing problems.
In International conference on principles and practice of constraint programming, pages 417-431.
Springer, 1998.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances
in Neural Information Processing Systems, 34:26198-26211, 2021.

Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. Recent exact algorithms for solving
the vehicle routing problem under capacity and time window constraints. European Journal of
Operational Research, 218(1):1-6, 2012.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems, volume 33, pages 21188-21198, 2020.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem
solver with invariant nested view transformer. In Forty-first International Conference on Machine
Learning, 2024.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Giinnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. In
International Conference on Learning Representations, 2022.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers

for vehicle routing problems via ensemble with transferrable local policy. In Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, 2024.

10



Under review as a conference paper at ICLR 2026

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation quotienting for generalizable neural combinatorial optimization. In Advances in
Neural Information Processing Systems, 2023.

Chaoyang Wang, Pengzhi Cheng, Jingze Li, and Weiwei Sun. Leader reward for pomo-based neural
combinatorial optimization. arXiv preprint arXiv:2405.13947, 2024.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 2023a.

Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang
Yang, and Junchi Yan. ROCO: A general framework for evaluating robustness of combinatorial
optimization solvers on graphs. In International Conference on Learning Representations, 2023.

Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina.
Contrastive predict-and-search for mixed integer linear programs. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp,
editors, Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages 19757-19771. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/huang24f.html.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, pages 13869-13890. PMLR, 2023.

André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural deconstruction search for vehicle
routing problems. Transactions on Machine Learning Research, 2025.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845-8864, 2023.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified
neural divide-and-conquer framework for large-scale combinatorial optimization problems. In
Advances in Neural Information Processing Systems, 2024.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
Advances in Neural Information Processing Systems, volume 34, pages 11096-11107, 2021.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
of routing problems with flexible neural k-opt. In Advances in Neural Information Processing
Systems, volume 36, 2023.

Minjun Kim, Junyoung Park, and Jinkyoo Park. Learning to cross exchange to solve min-max vehicle
routing problems. In The Eleventh International Conference on Learning Representations, 2023.

André Hottung and Kevin Tierney. Neural large neighborhood search for routing problems. Artificial
Intelligence, page 103786, 2022.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Hongliang Guo, Yuejiao Gong, and Yeow Meng
Chee. Efficient neural neighborhood search for pickup and delivery problems. In Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pages 4776-4784,
7 2022.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2022.

11


https://proceedings.mlr.press/v235/huang24f.html

Under review as a conference paper at ICLR 2026

Minsu Kim, Jinkyoo Park, and joungho kim. Learning collaborative policies to solve np-hard routing
problems. In Advances in Neural Information Processing Systems, volume 34, pages 10418-10430,
2021.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
In Advances in Neural Information Processing Systems, 2023.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Thomas D Barrett. Combinatorial optimization with policy adaptation using latent
space search. In Advances in Neural Information Processing Systems, 2023.

Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Bengio. Ant
colony sampling with gflownets for combinatorial optimization. arXiv preprint arXiv:2403.07041,
2024.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. Advances in Neural Information Processing Systems, 35:25531-25546,
2022.

Alberto Santini, Michael Schneider, Thibaut Vidal, and Daniele Vigo. Decomposition strategies for
vehicle routing heuristics. INFORMS Journal on Computing, 35(3):543-559, 2023.

Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4648—4658,
2022.

Qingchun Hou, Jingwei Yang, Yigiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2023.

Changliang Zhou, Xi Lin, Zhenkun Wang, and Qingfu Zhang. L2r: Learning to reduce search space
for generalizable neural routing solver. arXiv preprint arXiv:2503.03137, 2025a.

Shipei Zhou, Yuandong Ding, Chi Zhang, Zhiguang Cao, and Yan Jin. Dualopt: A dual
divide-and-optimize algorithm for the large-scale traveling salesman problem. arXiv preprint
arXiv:2501.08565, 2025b.

Yuxin Pan, Ruohong Liu, Yize Chen, Zhiguang Cao, and Fangzhen Lin. Hierarchical learning-based
graph partition for large-scale vehicle routing problems. arXiv preprint arXiv:2502.08340, 2025.

Mouad Morabit, Guy Desaulniers, and Andrea Lodi. Learning to repeatedly solve routing problems.
Networks, 83(3):503-526, 2024.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023b.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Birger Funke, Tore Griinert, and Stefan Irnich. Local search for vehicle routing and scheduling
problems: Review and conceptual integration. Journal of heuristics, 11:267-306, 2005.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

12



Under review as a conference paper at ICLR 2026

Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimization.
arXiv preprint arXiv:2405.01906, 2024.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254-265, 1987.

Marc Goetschalckx and Charlotte Jacobs-Blecha. The vehicle routing problem with backhauls.
European Journal of Operational Research, 42(1):39-51, 1989.

Goran Martinovic, Ivan Aleksi, and Alfonzo Baumgartner. Single-commodity vehicle routing problem
with pickup and delivery service. Mathematical Problems in Engineering, 2008(1):697981, 2008.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845-858, 2017.

Florian Arnold, Michel Gendreau, and Kenneth Sorensen. Efficiently solving very large-scale routing
problems. Computers & operations research, 107:32—42, 2019.

13



Under review as a conference paper at ICLR 2026

APPENDICES

CONTENTS

|A" Supplementary Definitions| 14
|IA.1 Unstable Edges and Stable Edges|. . . . . . ... ... . ... ... ........ 14
|IA.2  Capacitated Vehicle Routing Problem| . . . .. ... ... .. ... ... .... 15
|IA.3  Vehicle Routing Problem with Time Windows| . . . . . . .. .. ... ... ... 15

[B™ Details of Firsi-Segment-Then-Aggregate (FSTA)| 15
IB.1 More discussionson FESTAl . . . . . . .. ... L oo 15
B2 Proof of FSTAl. © .« o o ottt e e 20

[C T2Seg Details| 25
|IC.1  Comparative Analysis of L2Seg Against Existing Methods| . . . . . ... ... .. 25
|C.2  Input Feature Design Details| . . . . . ... ... ... ... ... ... .... 26
IC.3 Masking Details|. . . . .. . ... 26
|C.4 Training Data Collection Details| . . . . . .. ... ... ... ... ...... 27
[C5 TnferenceDetailsl . . . . .. ... .. . 27

[D Experimental and Implementation Details| 29
ID.1 _Backbone solvers| . . . . . . . . .. 29
D2 Baselines . . - -« o o o 30
|ID.3  Parameters and Training Hyperparameters| . . . . . . .. ... ... ... ..... 30
ID.4 Instance Generation| . . . . . . . . . . . ... 32

[EAdditional Experiments and Analysis| 32
[E.  Hyperparameter Study| . . . . . ... ... ... ... ... ... ... .. ... 32
[E.2  Results on Realistic Routing Datasets| . . . ... ... ... ... ........ 32
I[E.3  Results on Clustered CVRP and Heterogeneous-demand CVRP|. . . . . . ... .. 33
[E.4  Standard Deviation Comparison| . . . . . . .. ... ... ... ... ... ... . 33
IE.5 Case Study: Comparison of Predictions of Three L2Seg Approaches| . . . . . . .. 34
[E.6  Unstable and Stable Edges Convergence| . . . . . . ... ... ... ........ 34

[ Broader Impacts| 34

|G Large Language Models Usage| 35

A SUPPLEMENTARY DEFINITIONS

A.1 UNSTABLE EDGES AND STABLE EDGES

Unstable edges refer to edges that need to be re-optimized during the iterative re-optimization
procedure. We supplement the formal definitions as follows: given a solution R at iterative step t,

14
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anedge e € R isunstableife ¢ R;yj ore & Riio, ..., or e & Ry When we generate the labels
for training, we use a lookahead backbone solver for detecting unstable edges, which equivalently
sets k = 1. An edge is a stable edge if it’s not an unstable edge.

A.2 CAPACITATED VEHICLE ROUTING PROBLEM

Given a complete graph G = (V, E) where V = {x¢, 1, ..., x,} is the set of nodes with node x
representing the depot and nodes z; to z,, representing customers. Each customer 7 has a demand
d; > 0, and each edge ¢, ; € E has an associated cost representing the travel distance or travel time
between nodes x; and x;. A fleet of homogeneous vehicles, each with capacity C, is available at the
depot. The objective is to find a set of routes that minimizes the total travel cost, subject to: (i) each
route starts and ends at the depot, (ii) each customer is visited exactly once, (iii) the total demand of
customers on each route does not exceed vehicle capacity C.

A.3 VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Given a complete graph G = (V, E) where V' = {x¢, 21, ..., x,} is the set of nodes with node xg
representing the depot and nodes z; to x,, representing customers. Each customer ¢ has a demand
d; > 0, and each edge ¢; ; € E has an associated cost representing the travel distance or travel time
between nodes z; and x;. Each customer i has a time window [t!, t7] where ¢! is the earliest arrival
time and ¢; is the latest arrival time, and requires a service time s;. A fleet of homogeneous vehicles,
each with capacity C, is available at the depot. The objective is to find a set of routes that minimizes
the total travel cost, subject to: (i) each route starts and ends at the depot, (ii) each customer is visited
exactly once, (iii) the total demand of customers on each route does not exceed vehicle capacity C,
(iv) service at each customer begins within their time window [t} #7].

1) 71

B DETAILS OF FIRST-SEGMENT-THEN-AGGREGATE (FSTA)

B.1 MORE DISCUSSIONS ON FSTA
B.1.1 VISUALIZATION OF UNSTABLE EDGE PATTERNS

In this section, we provide visualization and analysis of unstable edge distribution patterns, which
serve as foundational motivation for our L2Seg approach. We examine unstable edges on three
randomly selected CVRP1k instances solved iteratively using LKH-3. In these visualizations, red
dashed lines represent unstable edges, and yellow stars indicate depot locations.

Our visualization reveals two key observations: (1) The number of unstable edges generally decreases
as optimization progresses, with more and more edges remaining unchanged between iterations; (2)
Edges at route boundaries exhibit higher stability, while unstable edges predominantly concentrate
within route interiors. Despite these discernible spatial patterns, no simple heuristic rule appears
sufficient to reliably predict unstable edges, as they can be distributed across the start, middle, and
end segments of each tour. This complexity motivates our development of L2Seg, a learning-based
method designed to capture these intricate patterns more effectively.

B.1.2 VISUALIZATION OF APPLYING FSTA oN ONE CVRP INSTANCE

To provide a concrete illustration of our FSTA methodology, we present an example of its application
to CVRP in Figure [9] which demonstrates the complete FSTA decomposition pipeline (detailed
algorithmic specifications are provided in Appendix [B.T.4). This example utilizes the lookahead
oracle model for unstable edge identification (defined in Appendix [B.1.T)), employs LKH-3 as the
backbone optimization solver, and operates on a representative small-capacity CVRP1k instance
to showcase the framework’s efficacy. Red dashed lines indicate detected unstable edges, while
blue dashed lines represent re-optimized edges. Note that dual hypernode aggregation substantially
reduces the problem size compared to the original instance.
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Table 5: Oracle Performance on CVRP2k: Time to Reach L2Seg-SYN-LNS Solution Quality

Oracle (LNS) + Oracle (LNS) + Oracle (LNS) + Oracle + Ref
perfect recall 95% recall 90% recall 70% recall  (L2Seg-SYN-LNS)
& TNR & 95% TNR & 90% TNR & 70% TNR
Obj. 56.02 56.01 56.02 56.04 56.08
Time 39s 62s 119s 324s 241s

B.1.3 ASSUMPTION VERIFICATION

In Section [3] we hypothesized that effective problem reduction can substantially accelerate re-
optimization. We empirically validate this by implementing a look-ahead oracle for unstable edge
detection. The oracle performs a 1-step re-optimization using LKH-3 and identifies unstable edges
Finstable as those differing between the original and re-optimized solutions. FSTA then constructs a
reduced problem instance based on these oracle-identified edges, which is subsequently re-optimized
using the LKH-3 backbone solver. As this is an oracle-based evaluation, the time required for
look-ahead computation is excluded from performance measurements.

Table 3] reports the time required to achieve performance equivalent to our learned model on small-
capacity CVRP2k instances. Beyond the perfect oracle scenario, we evaluate imperfect oracle
configurations where recall and true negative rates fall below 100%. The perfect oracle demonstrates
substantially superior efficiency. Performance remains competitive under moderate imperfection
levels; however, achieving recall and TNR as high as 90% without oracle access is highly non-

(d) Random instance 1 at step 5 (e) Random instance 2 at step 5 (f) Random instance 3 at step 5

Figure 8: Spatial distribution of unstable edges (dashed red lines) across optimization iterations using
LKH-3 solver. Results are presented for three randomly selected CVRP1k instances at iteatvie search
steps 1 and 5. While many edges remain unchanged across iterations, unstable edges predominantly
emerge within the interiors of routes. In contrast, edges located at route boundaries exhibit higher
stability throughout the iterative optimization process.
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(d) Hypernode aggregation (e) Re-opt. w/ backbone solvers (f) Solution recovery

Figure 9: Illustration of our FSTA applied to one CVRP instance. Each FSTA step corresponds to the
descriptions in Appendix[B.1.4] Red dashed lines: unstable edges; blue dashed lines: re-optimized
edges. Note that the subproblem (d) contains substantially fewer nodes than the original instance (a).

trivial. In more practical scenarios, where recall and TNR drop to 70%, the oracle-based approach is
outperformed by our L2Seg-SYN-LNS, highlighting the effectiveness of our learned model.

These results provide evidence that accurate identification of unstable edges, coupled with appropriate
FSTA-based problem reduction, enables significantly more efficient re-optimization.

B.1.4 DETAILS OF FSTA DECOMPOSITION FRAMEWORK

In this section, we present the details of the FSTA decomposition framework. Given a routing problem
P and an initial solution R, one iterative step of FSTA yields a potentially improved solution R ;.
The framework comprises five sequential steps (also illustrated in Algorithm [T|and Figure [2)):

1. Unstable Edges Detection: We implement effective methods (e.g., our learning-based
model L2Seg or random heuristics detailed in Section [5.3) to identify unstable edges
Enstable and obtain the stable edge set Euple = F \ Eunstable- This identification challenge
is addressed by our L2Seg model, with full details provided in Section[dand Appendix [C]

2. Segment Partitioning: After removing unstable edges Fynguble, €ach route decomposes
into multiple disjoint segments consisting of consecutive nodes connected by stable edges.
Formally, we segment each route into (zo, SL]1 , Sg1,;27 .y 2g) = (20, 5(1)7 S .y Xg) €

R, where x is depot and we simplify the notation by using a single index for segments
(note that a segment can consist only one single node).
3. Hypernode Aggregation: We aggregate each segment Si. . and represent it with either one

hypernode (S k= {x k}) or two hypernodes (S k= {:c 74 }) with aggregated attributes.
This transformatlon requlres that (our feasibility theorem) (a) the reduced problem remains
feasible, and (b) a solution in the aggregated problem can be mapped back to a feasible
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solution in the original problem. These transformations produce a reduced problem P with
corresponding solution R.

4. Re-optimization with Backbone Solvers: We invoke a backbone solver to improve solution
‘R, yielding an enhanced solution R;. While theoretically any solver could serve as the
backbone solver, practical acceleration requires solvers capable of effectively leveraging
existing solutions (e.g., LKH-3 (Helsgaun, [2017)).

5. Solution Recovery: With the improved solution 7~2+ for the reduced problem P, we recover
a corresponding solution R4 for the original problem P by expanding each hypernode back
into its original segment of nodes. This step relies on our monotonicity theorem, which
guarantees that an improved solution in P maps to an improved solution in P.

Selection of Hypernode Aggregation Strategies. We analyze the trade-offs between single and dual
hypernode aggregation strategies: (1) Dual hypernode aggregation enables bidirectional segment
traversal, potentially improving re-optimization efficiency by expanding the solution search space.
However, this approach requires enforcing inclusion of the connecting edge between hypernodes,
adding algorithmic complexity. (2) Single hypernode aggregation achieves superior problem size
reduction but constrains segment traversal to a fixed direction, thereby restricting the re-optimization
search space and potentially limiting performance improvements. Additionally, single hypernode
aggregation transforms symmetric routing problems into asymmetric variants, which may compromise
the efficiency of existing backbone solvers that are typically optimized for symmetric instances.

Selection of Backbone Solvers. Our framework is generic to be applied to most existing VRP
heuristics by design. In practice, acceleration within our framework requires solvers that can
effectively utilize initial solutions as warm starts. Furthermore, if the dual hypernode aggregation
is used, the backbone solver needs to fix certain edges during local search. Our framework is
readily compatible with a variety of solvers without modifying their source codes, including LKH-3
(Helsgaun, |2017), decomposition-based solvers like LNS (Shaw, |1998)), and learning-based methods
such as L2D (L1 et al.| 2021). Incorporating additional solvers such as HGS (Vidal, 2022)), would
involve extending its current code to accept initial solutions as input, which we leave as future
work. Notably, as demonstrated in Section[5] our L2Seg-augmented approach with relatively weaker
backbone solvers outperforms HGS in multiple CVRP and VRPTW benchmark scenarios.

Applicability to Routing Variants. FSTA is broadly applicable to routing problem variants that
support feasible hypernode aggregation and solution recovery, as ensured by the feasibility and mono-
tonicity conditions established in Section[3] In Appendix [B.2] we formally prove that many routing
variants meet these conditions, demonstrating the versatility of our L2Seg framework. Detailed
implementation guidelines for applying hypernode aggregation across different routing variants are

provided in Appendix [B.1.5]

Algorithm 1: Iteratively Re-optimize Routing Problems with FSTA

Input: Routing problem P, initial solution R, time limit 771, backbone solver BS, model M to
identify unstable edges
Qutput: Improved solution R
1 while time limit Ty, is not reached do

2 Enstavle < M(P, R) 5 // Unstable Edges Detection
3 {Sjk} + GetSegments(P, R, Eynstable) // Segment Partitioning
4 O~btain {§;k~} ai'ld reduced problem P with solution R ; // Hypernode Aggregation
5 R. < BS(P,R); // Re-optimization with Backbone Solver
6 | R4 < RecoverSolution(P, P, R ) ; // Solution Recovery
7 R+ Ry // Update current solution
s end while

9 return R
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B.1.5 APPLYING FSTA ON VARIOUS VRPs

In this section, we present the implementation details of FSTA across diverse routing variants,
including the Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing Problem with Time
Windows (VRPTW), Vehicle Routing Problem with Backhauls (VRPB), and Single-Commodity
Vehicle Routing Problem with Pickup and Delivery (1-VRPPD). Without loss of generality, we
denote a segment to be aggregated as S;jr = (z; — ... — xy), and its corresponding hypernode
representation as either SJ r = {Z} (single hypernode) or Sj r = {Z;, &1} (dual hypernodes). The
implementation specifications are summarized in Table 6]

CVRP. We provide the formal definition of CVRP in Section [3| Each node in CVRP is characterized
by location and demand attributes. For CVRP, we employ dual hypernode aggregation where location
attributes are preserved as x] = x] and ), = x, while demand is equally distributed between

hypernodes as d =d,=1 (d- -+ dy). We force the solver to include the edge connecting
and I, in the solutlon

VRPTW. We provide the formal definition of VRPTW in Section [3] In addition to location and
demand attributes, VRPTW instances are characterized by time windows [t!, "] and service time
s for each node. For VRPTW, we employ adaptive strategies for hypernode aggregation based on
temporal fea51b1hty We first compute the aggregated time windows tJ, " and aggregated service

J
time 5; using the following recursive formulation:

Ao tl ifm==k
moe max{tm, a1 — (8m Fdist(zp, Tyr))} ifj <m <k —1,
o t ifm==%k 3)
™ min{en, 1y — (S 4 dist(Tim, Timgr))} i <m <k -1,
s Sk ifm==%k
e =§m+1 + Sm + diSt(xm; xm-&-l) lf] S m S k - 17
where [t! | denotes the time window for node z,,, S,, represents the service time at node x,,,
m m p

and dist(2y,, Tp,11) is the travel time from node ., to node 1.

*l Ir . . . . . . . . ~ _
If ¢; < ¢7 (feasible time window), we employ single hypernor}e erggregatron with: dist(z;,Z) =
dist(xi,xJ) dist(#, z;) = dist(wg, ), d = dj + -+ + di, & = 1,17 =7, and § = 5;.

It tl > tr (temporal infeasible time window), we employ dual hypernode aggregation with: ; = x;,
iy = xp, dj = dy = 3(dj + -+ + dy), time windows & = 0, 7 = #}, tj, = 1}, #}, = oo, and
service times 5; = 0, 5;; = 5;. We additionally set dlSt(Ij ,Tg) = O and enforce 1nclu51on of the
edge connecting Z; and Z, in the solution.

VRPB. Compared to the CVRP, the VRPB (Goetschalckx and Jacobs-Blechal [1989) involves serving
two types of customers: linehaul customers requiring deliveries from the depot and backhaul cus-
tomers providing goods to be collected and returned to the depot. The primary constraint is that all
linehaul customers must be visited before any backhaul customers on the same route, while ensuring
vehicle capacity is never exceeded during either the delivery or pickup phases. We use b; € {0,1}
to indicate whether node ¢ is a backhaul customer. For VRPB, we require the edge connecting to a
linehaul customer and a backhaul customer included in the Fypsabe. We employ single hypernode
aggregation that dist(x;, &) = dist(z;, z;), dist(&, z;) = dist(zg, 2;), d =dj + - - -+ dg, and b = b,
(we require customer being the same type within each segment that b; = ... = by,).

1-VRPPD. Compared to the CVRP, the 1-VRPPD (Martinovic et al., [2008) deals with customers
labeled as either cargo sink (d; < 0) or cargo source (d; > 0), depending on their pickup or delivery
demand. Along the route of each vehicle, the vehicle could not load negative cargo or cargo exceeding
the capacity of the vehicle C. For any segment S; x, we define D7 = d;, DI = d; + dj 1, ...,
and D* = d; + dji1 + ... + di. We further define DM = min{0, DJ,DJH,. .} and D™ =
max{0, DJ,DJH,. 3. For 1-VRPPD, we require three hypernodes Z; = x;, Tmig, and T, = z,
where the distances from T4 to xj or Iy, are 0, and 1nﬁn1ty for the other hypernodes. For the
aggregated demands, d = DM g = D™ — DM and dj, = — D™ — pmin_ Additional
constraints are added to ensure the directed edges Z; — Tmig — T, are included in the solutions.
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Table 6: Implementation specifications of FSTA hypernode aggregation for CVRP, VRPTW, VRPB
variants. Refer to Equation [3|for the definitions of 5, flj and fg

CVRP
Type Condition Attribute Aggregation Additional Constraints / Settings

Location/Distance
Two Hypernodes ~ Always Include edge Z; — ¥y in the solution

Demand

Type Condition Attribute Aggregation Additional Constraints / Settings

Location/Distance  dist(x;, &) = dist(z;, z;),
dist(7, z;) = dist(zk, z;)
Demand d=d;+ - +dx None

Sk
<HE
IN
gl

<E

One Hypernode

Service Time i=35;
Time Windows =i, = 1%
Location/Distance ~ ; = x;, Tj, = Tk
Ao g Demand d Include edge #; — & in solu-
Two Hypernodes tj > t] Service Time 5. tion; set dist(i]', :ik) =0

:

SSSTST

Time Windows

~+

Type Condition Attribute Aggregation Additional Constraints / Settings

Location/Distance ~ dist(x;, ) = dist(x;, z;),

IS S S Require b; = --- = by (same
One Hypernode Always dist(7, 2;) = dist(v, z:) customer type) during Unstable
Demand d=dj+--+d Edges Detection Stage
Is backhaul b=b;
1-VRPPD
Type Condition Attribute Aggregation Additional Constraints / Settings

Location/Distance ~ ; = x;, Tt, = Tk

diSl(IINJ‘ T, 'd) = diSt((i‘ id lk) =0

7> Lmi mid, S ~

Three Hypernodes  Always Fmia only connects to Z; and AInclude edges Tj — Tmid = Tk
Demand (Zj — prin_ g — pmix _ pmin in the solution

d~k — Dk _ pmax _ pmin

B.2 PROOF OF FSTA

Theorem. (Feasibility) If the aggregated solution 7~€+ is a feasible solution to the aggregated problem,
then R is a feasible solution to the original, non-aggregated problem. (Monotonicity) Let RL and
R2 be two feasible solutions to the aggregated problem, with f(R1) < f(R2), where f(-) denotes

the objective function (total travel cost). Then, for the associated solution in the original space, we
also have f(RL) < f(R%).

Proof Structure and Notation. Without loss of generality, we consider a single-route solution
containing one segment S, = (x; — --- — x%) with more than one node, i.e., the solution R
contains route R = (xg — 1 — -+ = Sjx — Tp41 —> -+ — Zo). We define the aggregated

problem with node set V = {x0} U {2, }p<jor U {S;«}, where nodes outside the segment retain
k

P
their original representation, ensuring their feasibility by construction. Since we enforce the inclusion
of the edge connecting Z; and ¥, in dual hypernode aggregation within solution R, the segment

S; 1 must be incorporated into some route R* € R for both hypernode aggregation strategies. We
denote the improved route containing this segment after mapping back to the original problem as R .

We present the segment aggregation strategies for different routing variants below, followed by proofs
of feasibility and monotonicity for the aggregation scheme. Note that the following analysis naturally
extends to multi-route solutions with multiple segments per route.

B.2.1 CVRP

Aggregation Strategy (Two Hypernodes). The detailed implementation of FSTA on CVRP can
be found in Appendix [B.T.5]and Table [f] Notice that one single hypernode aggregation is also

applicatable for CVRP, and d;,d;, could take other values as long as d; + di = dj + ... 4+ dj.
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Feasibility Proof [Capacity Constraint]. Notice that since Jj +dy = dj + ... + dj, we have:

Soodi= ) dit dj+ds

IiGI*:ij_ xieéi\gj‘k

4)
= Z di+ dj+..+dp= Z d;
wieRi\S]‘,k LEiERj_
Thus, we have:
S azes Y o
:CL'ERi HC¢€R+

Then, we have a feasible 7~2+ = a feasible R ..
O
Monotonicity Proof. Notice that

FRy) = FRAARLY) + FURLY) = f(Re \{BL}) + FURLY)
= fRAAARLY + FURLY) — Y dist(wg,gr1)  +dist(i;, &) (6)

J<q<k
= f(R4) + Consts; ,

where Const|5, . is a constant once the segment S; i, is decided. Therefore, we have:

F(RY) < F(RY) = f(RL) + Constls,, < f(RZ) + Constls,, = f(RL) < f(RY) (D)

O

We note that the feasibility proof for capacity constraint and the monotonicity proof could be easily
extended to the single hypernodes aggregation.

B.2.2 VRPTW

Aggregation Strategy (Mixed Strategies). The detailed implementation of FSTA on VRPTW can
be found in Appendix and Table@ We denote s, = s, —|— dist(@y, Typa1) for j <m < k

and s} = s;. We further set the service time by 5,, = <Z<k o> and we repeat the temporal time
m<g<
window [tg, t;] (which could be infeasible) defined by the following recursive relationship:
tl _ {tl == ]f
" max{tm? m+1 m} j <m< k— 1 (8)
o 118 ) =k
m mln{ﬁm7 trop1 — St 7<m<k—1,

where [tlm,t’”m] is the time window for a node x,,, s, is the service time at node z,, and
dist(z,, Ty41) is the time to travel from node z,,, to node x4 1.

Feasibility Proof [Time Window Constraint]. We first prove for the condition that the temporal time
window [té, t;] is feasible (tl < ") and single hypernode aggregation is applied. Then, we extend to
the infeasible temporal time w1nd70w condition where dual hypernode aggregation is applied.
Condition of Feasible Temporal Time Windows (One Hypernode). We present an inductive proof
based on the segment length. Given a feasible solution R for the aggregated problem, we show
the following two conditions of the corresponding non-aggregated solution R to satisfy the time
window constraint:

» Condition (1): We visit each node x.,, before the end of its time window t,,.

* Condition (2): The total time we spent visiting the entire segment is the same in both
aggregated and non-aggregated representations.
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Figure 10: This illustration demonstrates the temporal dynamics of the aggregated segment. The left
panel shows the time function characterized by a piecewise linear structure: initially decreasing with
slope -1, then transitioning to a constant value corresponding to the aggregated left time window
boundary. The right panel presents two distinct scenarios that characterize the relationship between
the aggregated left time window (fﬁn) and the individual non-aggregated left time windows (tﬁn).

Proof of Condition (1):

* Base case (segment length = I). Suppose the segment Sy, , = () contains a single node
x. Then the aggregated problem is identical to the non-aggregated problem by construction,
so condition (1) is trivially satisfied.

* Inductive Step (segment length = (k —m) + 1 > 1). textit the aggregation of the segment
Smt1,k = (Tma1 = ... = &g) N0 Sy, = {Tm+1,1 } satisfies condition (1). We want
to show that the aggregation of the segment S, , = (T, — ... = @) into Sy, = {Zpm i}
also satisfies condition (1).

Since R is a feasible solution for the aggregated problem, we will visit the hypernode

T, before the end of its time window #;,, = min{t],, %, — s} }. Corresponding, in the
associated non-aggregated solution, we visit the node x,,, before its time limit ¢}, hence
satisfying condition (1) for the node x,,. Furthermore, in the associated non-aggregated
solution, we visit the next node x,,, 1 before time ¢ + Sy, < f:n 1 1- Based on the inductive
hypothesis, condition (1) holds for the rest of the segment (z,,,+1 — ... = xy) if we arrive
at node z,,4; before its end time. Hence, condition (1) holds for the whole segment

Sk = (Tm = Tmg1 = .. = Tp).

Proof of Condition (2): For all m, suppose we arrive at the hypernode Z,, j at time ¢t < ¢/ in the
aggregated solution. By definition, the total time spent on the aggregated segment (sum of the waiting
time, service time, and the travel time) can be written as the following linear function with —1 slope
as shown in the first figure in Figure [I0]

. Sm t >
=142 ‘m 9
gm(t) {tin 4G, t< ©)

m*

Note: the first condition t > t,, means we do not need to wait at any node in the segment Sk and
the second condition means we need to wait at some node in the segment Sy, .

It suffices to show that the total time spent on the non-aggregated segment also follows the same
function. Again, we prove this by induction.

* Base case (segment length = I). Suppose the segment Sy, = (x)) contains a single node
xk. Then the aggregated problem is identical to the non-aggregated problem by construction,
so the total time spent on the non-agggregated segment is exactly Eq. 9] with m = k.

* Inductive Step (segment length = (k —m) + 1 > 1). Again, suppose the total time spent on
the segment Sp,41,k = (Tm+41 — ... = Tg) int0 Spug1 k. = {Tm1,1 ) satisfies the function

. 3 t>
st (8) = G (1) = {-’““ > b

. = (10)
oy —t+5m t<tl
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We now show the total time function g, (¢) for the segment Sy, ;, = (T, — ... = z1) also
equals g, (t).

By definition of the non-aggregated segment, depending on whether we need to wait at the
first node z,,,, we have:

S* 4 gmat(t + 5%, t>th,
gun(t) = { S s ) l (11)
try —t+ 50 4 gmi1(ty, +55,) t<t,.

Note: the first condition t > t., means we do not need to wait at the first node x,,, and the

second condition t < t., means we need to wait at the first node ..

We split the discussion into the following two cases, based on whether we need to wait at
any node along the segment S, 11 i, if we leave node z,, at tl :

1t +s;, >t . Inthis case, t!, >t ., — s%, and hence ¢!, = max{t!, ¢ ., —
st H = tfn as shown in case 1 of Figure Hence, we have

s+ t+ s t>t
gm(t) = { lm gm-i-l*( m) . i} 7;71 (12)
tyy —t+ 85, + gmyr (L, +85,) t<t.
By inductive hypothesis, we have
gmi1(t+s5) = Fmyr, t>2t, =1,

as in this case t + s, > !+ s%, > tm+1
Hence, we have

85+ Sma1 t >t
gm(t) =9,/ * = *l
th —t4 st +8m t<t,
5 t>1t (1)
3 > ~
Lo—t+5, t<t,

where we apply the definition of §,,, = s}, + 5/ 41.
2.t + sk < tlm_H In this case, tm_s_1 sk > tl ,and hence t!, = max{t! , —
s} =1l, .1 — s, as shown in case 2 of Flgure.
By inductive hypothesm we have

G (th, + 55,) =Ty — (thy + 85,) + Sma1

~ (14)
= tﬁm - tin + Sm+1
We also have, for all ¢ > tlm,
gm+1(t + S;kn)
{5 Lo 2t
o — (4 s5) + Sme1, t+sh <tm+1 (15)
_ {§m+1, t>1,
t —t+ &g, th, <t<it,
As a result, we have
S:in + §m+1 3 Z t_in
gm(t) = 8% +tm —t + 3mi1 t <t<itl,
th —t+st 4t —th + 5, t<tl,
5 t >t
sm = tm (16)

=t —t+5, t,<t<t,
to—t+3, t<tl
S t > _

o —t+38, t<t,
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Condition of Infeasible Temporal Time Windows (Two Hypernodes). In our time window
aggregation, té— is responsible for the time expenditure and ¢’ is responsible for feasibility. In this

case, we have tZ- > f;, which indicates that to maintain feasibility along the segment, one must arrive
at the segment before the aggregated start time £, and since one arrives earlier, one must wait at

some node within the segment. Since fg > f; is not permitted according to the definition of VRPTW,
we then utilize one additional hypernode to increase the representational capacity such that the first
hypernode handles the feasibility component (¢7), and the second hypernode handles the travel time

component (fé-). Specifically, t~§- =0, f; =1, t = fé—, tr = coand §; = 0, §; = 5; with the
additional constraint that dist(Z;, &) = 0.

For time window feasibility (Condition (1)), since f;-’ = tZ—’, the vehicle must serve the segment
before f;, ensuring the feasibility of serving each customer in the non-aggregated problem. For
travel time equivalence (Condition (2)), the time expended before reaching the second node is
5; + dist(Z;, Zx) = 0. Namely, after the vehicle arrives at the segment at time ¢, the travel time is
entirely determined by . = fé- and 5, = 5;, whereby in the feasible temporal time window situation,
the travel time equivalence is demonstrated.

We complete the time window constraint feasibility proof for VRPTW for both aggregation strategies
across all conditions.

O

Monotonicity Proof. For the dual hypernode aggregation, please refer to the Monotonicity Proof in
For the single hypernode aggregation, notice that

FR4) = FR AR + F{RLY) = f(R \{RLD) + F({RL))
= f(R+ \{RL}) + fF{RL}) — Z dist(Tq, Tq+1) (17)
J<q<k
= f(R4) + Const|g, ,
where Const|s; , is a constant once the segment S ;. is decided. Therefore, we have:
F(RY) < f(R%) = f(RY) + Constls,, < f(RY) + Const|s,, = f(R}) < f(RZ) (18)

O

B.2.3 VRPB

Aggregation Strategy (One Hypernode). The detailed implementation of FSTA on VRPB can be
found in Appendix and Table 6]
Feasibility Proof [Backhaul Constraint]. Without loss of generality, we assume all nodes within the

segment S; ;, are backhaul customers (b; = ... = b, = 1). Notice that since d= d; + ... + dy, for
the backhaul stage, we have:

z;€R* and b;=1 2, €R\S; x and bi=1
’ ' (19)
1ieR1\Sj’k and b;=1 z; ERY and b;=1
For the linehaul stage, we have:
> d= > d 0
z; €RY and b;=0 z; €ERY and b;=0
Thus, we have:
Z d<C = Z d; <C
xieﬁj_ and b; =0 .T,:ERTF and b; =0
(21)
Z di<C = Z d; <C
miERj_ and b;=1 z;€RY and b;=1
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Then, we have a feasible 7~3+ = a feasible R .
O
Monotonicity Proof. Please refer to the monotonicity proof of VRPTW in Appendix [B.2.2]

B.2.4 1-VRPPD.

Aggregation Strategy (Three Hypernodes). The detailed implementation of FSTA on 1-VRPPD can
be found in Appendix [B.1.5]and Table[d]

Feasibility Proof [1-Commodity Pickup and Delivery Constraint]. A feasible 7~2+ indicates that

whenever the vehicle is traveling an aggregated segment Sj,k, denoted the starting load of the vehicle
to be d and ending load of the vehicle to be d.4, we have:

0<dy+ D" <O

. . (22)
0<dy+ pmin | pmax _ pymin <C

which requires —D™" < dy < C' — D™ and deg = dy + D*.

On the other hand, a feasible solution R4 indicates that whenever the vehicle is traveling a segment
Sk, denoted the starting load of the vehicle to be dy and ending load of the vehicle to be d.q, we
have:

0<dy+D'<C, Vi (23)

which also requires —D"Mn < dy < C — D™ and d.q = dg + DF. Then, we have a feasible 7§,+ =
a feasible R ;..

O

Monotonicity Proof. As dist(Z;, Tmiq) = dist(Zmid, x) = 0, we can eliminate the middle hypernode
and use a two-hypernode representation when calculating the routing objective. Please refer to
the monotonicity proof of CVRP in Appendix for the monotonicity proof of two-hypernode
representation.

C L2SEG DETAILS

C.1 COMPARATIVE ANALYSIS OF L2SEG AGAINST EXISTING METHODS

Comparisons with Large Neighborhood Search (LNS). (1) LNS (Large Neighborhood Search)
operates within a bounded local neighborhood. The algorithm selects a specific region, destroys
elements within that boundary, and rebuilds only that portion while keeping the rest of the solution
intact. For instance, in|Li et al.| (2021)), LNS selects 3-5 subroutes as its neighborhood, modifying
only these routes while leaving all others completely unchanged. There is a clear demarcation
between the modified neighborhood and the preserved structure. (2) FSTA (our method), in contrast,
operates more globally across the entire solution. It can break existing edges and aggregate segments
throughout all subroutes simultaneously, without any predefined neighborhood boundaries. The
modifications are distributed across the entire solution rather than confined to a local region, which
represents a fundamental departure from existing LNS to more efficiently guide the search. We note
that such a flexible framework would not be possible without the proposed ML component, which
also constitutes the core novelty and contribution of our work to the field. (3) Moreover, FSTA
and LNS are complementary: FSTA can be applied on top of LNS, where LNS first selects a large
neighborhood, then FSTA fixes stable edges globally within that selected region.

Comparisons with Evolutionary Algorithms. L.2Seg framework and evolutionary algorithms (Vidal,
2022))) approach the preservation of solution components from different angles and with distinct
goals, and are not interchangeable in use. Evolutionary algorithms (Vidal, [2022)) rely on crossover
to merge relatively “good” components from different parents, aiming to promote diversity and
generate promising offspring, while our L2Seg framework introduces a learning-guided mechanism
to detect unstable edges and aggregates stable edge sequences into hypernodes, enabling a new form
of segment-based decomposition that improves scalability and efficiency.
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Comparisons with Path Decomposition Method. (1) Firstly, path decomposition relies on geometric
heuristics (e.g., clustering routes by barycenter distances) to identify decomposition boundaries. In
contrast, L2Seg employs deep learning models (synergistic NAR-AR architecture) to intelligently
predict which segments should be aggregated, capturing complex patterns that simple heuristics
cannot identify. We also propose a novel learning-guided framework with bespoke training and
inference processes that are unique to the machine learning method. (2) Secondly, while some prior
work explores similar decomposition ideas (e.g., on CVRP only), we are the first to study FSTA
decomposition theoretically, providing formal definitions, feasibility theorems, and monotonicity
guarantees for various VRPs. (3) Lastly, we empirically demonstrate that by leveraging deep learning
in our L2Seg framework, our method consistently achieves significant speedups on state-of-the-art
backbones. This provides new insights for the community, highlighting the power of learning-guided
optimization in accelerating combinatorial solvers.

Comparisons with Previous Learning-based Framework L2D (Li et al., 2021). (1) Different
from the sub-route level, our method detects unstable edges both within and across sub-routes,
enabling more global and flexible decomposition. (2) It optimizes beyond localized neighborhoods
by identifying improvements that span multiple distant regions simultaneously. (3) It reduces the size
of sub-routes by aggregating stable segments into hypernodes, whereas L2D reduces only the number
of sub-routes per iteration. This segment-level aggregation allows more adaptive and coarse-grained
reduction, offering higher efficiency and solution quality, while remaining complementary to L2D.

C.2 INPUT FEATURE DESIGN DETAILS

Previous works |Kool et al.| (2018)); [Li et al.|(2021); [Kwon et al.| (2020) typically utilize only basic
input features for routing problems (xy-coordinates and normalized demands for node features, and
edge cost for edge features). While neural networks can potentially learn complex patterns from these
basic features, tailored feature engineering may lead to enhanced model performance. As illustrated
in Appendix [B.T]} we observe that detecting unstable edges may depend on better capturing local
dependencies. We therefore design enhanced node and edge features for our learning task, as shown
in Table[7l We also include time windows and service time as node features for VRPTWs.

Table 7: Description of enhanced input features for nodes and edges.

Type  Description Dimension

The xy coordinates
The normalized demand
The centroid of the subtour for each node
The coordinates of the two nodes connecting to each node
The travel cost of the two edges connecting to each node
Nodes The relative xy coordinates
The angles w.r.t. the depot
The weighted angles w.r.t. the depot by the distances
The distances of the closest 3 neighbor for each node
The percentage of the K nearest nodes
that are within the same subtour. K=5, 15, 40
The percentage of the K% nearest nodes
that are within the same subtour. K=5, 15, 40

LW = = NN RN =N

w

The travel cost 1
Edges Whether each edge is within the current solution 1
The travel cost rank of each edge w.r.t. the corresponding end points 1

C.3 MASKING DETAILS

In general, any set of unstable edges could lead to a feasible FSTA problem reduction. However,
employing logic-based local search algorithms to select unstable edges can produce more reasonable
action space reduction and improved performance. Thus, we design the deletion and insertion stages
of L2Seg to emulate a general local search operation.
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For the deletion stage, given the current node x, we mask out nodes that are: (1) not connected to x;
or (2) part of an edge that has already been deleted during the current deletion stage. Note that the
model may select the special ending node zenq to terminate the decoding sequence.

For the insertion stage, given the current node x, we mask out nodes that are: (1) already connected
to x; (2) endpoints of two newly inserted edges; or (3) the special ending node x¢nq.

C.4 TRAINING DATA COLLECTION DETAILS

In this section, we present pseudocode that demonstrate the process of generating training labels
for both NAR and AR models in Algorithm[2] As a complement to the methodology described
in Section ] we derive our training data from Np distinct problem instances and extract labels
from the first T;g iterative improvement steps. For the AR labels, which emulate feasible local
search operations, each label (representing a sequence of nodes) is associated with a quantifiable
improvement in solution quality. We retain only those labels that yield improvements exceeding the
threshold 7;mprov, and we employ stochastic sampling by accepting labels with probability o sc. This
selective approach ensures both high-quality training signals and sufficient diversity across problem
instances and optimization trajectories within the same training budget.

Algorithm 2: Training Data Generation

Input: Solution distribution P, number of instances Np, backbone solver BS, number of
iterative steps T7s, improvement threshold 7improv, sample coefficient o 4c

Olltpllt: Label sets yNAR, )}AR

Ynar < 0, Var < O for i < 1to Np do

Sample P ~ P and obtain an initial solution R
fort < 1toT1;s do
R4 < BS(P,R) // RApply backbone solver
Egiir = (Er \ Er, ) U (Er, \ ER)
‘/unstable — VEdiﬁ'
Yl\fZR — I{x € Vinsuble } // NAR model labels
Inar < Dar U {(P Y ER) T
Kr1r + DFS(P, Vinstable Eaitt) // Find sequences
foreach K € Ky do
Obtain Px with solution Ry and sequence yx with Improvement
if Improvemnet > juproy and with probability o 4c then
| Var « Var U{(Pr,yK)} // AR model labels
end if
// Skip sequences with low improvement or by
probability
end foreach
R+ Ry // Update current solution
end for
end for

return Vyagr, Yar

C.5 INFERENCE DETAILS

In this section, we present the pseudocode that delineates the inference processes of L2Seg-SYN
(Algorithm 3), L2Seg-NAR (Algorithm [)), and L2Seg-AR (Algorithm[5). It is important to note that
our implementation leverages batch operations for efficient inference across multiple subproblems
simultaneously. The K-means clustering algorithm was strategically selected for initial node identifi-
cation due to its parallelization capabilities. By merging graphs from different subproblems into a
unified structure, we can execute the clustering algorithm once for the entire problem space. This
parallel clustering approach through K-means significantly enhances decoding efficiency. Notably,
within each iterative step, our design requires only a single call of the NAR and AR models, thereby
optimizing computational resources.
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Algorithm 3: L2Seg-SYN: Synergized Prediction

Input: Problem P, current solution R, NAR model, AR model, threshold 7, number of clusters
TUKMEANS

Output: Set of unstable edges Fynsaple

Prr < DecomposelntoSubproblems(P, R) // Partition into ~ |R]
subproblems

Eunslable — @

for each subproblem Prr € Prg do

pR < NARModel(Pry) // Get NAR predictions for each node

InaR < {T; | pyAR >n} // Identify unstable nodes via threshold

Clusters < KMeans({NaR; "KMEANS ) // Group unstable nodes into
clusters

InitialNodes <— {z | = argmax, ., pY*K,c € Clusters}

// Select initial node with highest probability for the AR

model

Efm o0 // Unstable edges for this subproblem
for each node x;,;, € InitialNodes with corresponding Prg do
Eﬁl’f + ARModel(PrR, Zinit) // Get unstable edges via the AR
model

EP®  «— EP® U EP®

unstable unstable Tinit
end for
Eunstavle < Eunstable U EL™ // Aggregate unstable edges
end for
return E,,qpe

Algorithm 4: 1.2Seg-NAR: Non-Autoregressive Prediction

Input: Problem P, current solution R, NAR model, threshold 7
Qutput: Set of unstable edges Fynsable

Prr < DecomposelntoSubproblems(P, R) // Partition into ~ |R]
subproblems
Eunslable — @
for each subproblem Prr € Prg do
pR < NARModel(Pry) // Get NAR predictions for each node
OnaR — {x; | PR >} // Identify unstable nodes via threshold

P ~ ~
B swe < (@i, 7)) | 2i € narOr T € nar > and (24, 75) € Epy }
// Mark all edges connected to the unstable nodes as

unstable
P
Eunstavle < Eunstable Y Fyiapie // Aggregate unstable edges
end for

return E,sqpe
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Algorithm 5: L.2Seg-AR: Autoregressive Prediction

Input: Problem P, current solution R, AR model, number of clusters ngxmgeans

Qutput: Set of unstable edges Fynsaple

Prr < DecomposelntoSubproblems(P, R) // Partition into ~ |R]
subproblems

Eunslable <~ @

for each subproblem Prr € Prg do

Clusters < KMeans(AlINodes in Prr, nKkMEANS) // Cluster all nodes

Centroids < {ComputeCentroid(c) | ¢ € Clusters}

InitialNodes < {z | x = argmin, . Distance(x;, centroid.), ¢ € Clusters}

// Select node closest to each cluster centroid for the AR

model

Elﬁrsliable «— 0 // Unstable edges for this subproblem
for each node x;,;; € InitialNodes with corresponding Prg do
Eﬁ:ﬁ + ARModel( Prg, Zinit) // Get unstable edges via the AR
model

EPm o pP® oy EPw

unstable unstable Tinit
end for

Eunstable <~ Eunstable UE
end for
return Eunstable

Prr
unstable

// Aggregate unstable edges

D EXPERIMENTAL AND IMPLEMENTATION DETAILS

D.1 BACKBONE SOLVERS

LKH-3. The Lin-Kernighan-Helsgaun algorithm (LKH-3) Helsgaun| (2017) represents a strong
classical heuristic solver for routing problems, which is widely used in NCO for benchmark. It
employs sophisticated k-opt moves and effective neighborhood search strategies. For our experiments,
we impose time limits rather than local search update limits: 150s and 240s for large-capacity CVRP2k
and CVRP5k, respectively, and 2m, 4m, and 10m for VRPTW1k, VRPTW2k, and VRPTW5k,
respectively. For small-capacity CVRPs, we adopt the results reported in Zheng et al.| (2024).

LNS. Local Neighborhood Search (LNS) Shaw|(1998) is a powerful decomposition-based metaheuris-
tic that iteratively improves solutions by destructively and constructively exploring defined search
neighborhoods. We implement LNS following the approach in|Li et al.| (2021), where neighborhoods
consisting of three adjacent subroutes are randomly selected for re-optimization. We establish time
limits of 150s and 240s for large-capacity CVRP2k and CVRP5k, respectively; 2.5m, 4m, and 5m for
small-capacity CVRP1k, CVRP2k, and CVRP5k, respectively; and 2m, 4m, and 10m for VRPTW 1k,
VRPTW2k, and VRPTW5K, respectively. LKH-3 serves as the backbone solver with a 1,000 per-step
local search updates limit.

L2D. Learning to Delegate (L2D) |Li et al.| (2021 is the state-of-the-art learning-based optimization
framework that integrates neural networks with classical optimization solvers to intelligently delegate
subproblems to appropriate solvers. The framework employs a neural network trained to identify the
most promising neighborhoods for improvement. For comparative fairness, we apply identical time
limits and backbone solver configurations as used in our LNS implementation. When augmented by
L2Seg, training proceeds in two stages: we first train the L2D models following the methodology in
Li et al.[(2021), then train the L2Seg model using the resulting pre-trained L2D models.

Initial Solution Heuristics. For both training data generation and inference, we employ the initial
solution heuristic inspired by (Li et al.| |2021)). Our method partitions nodes according to their angular
coordinates with respect to the depot. We begin by selecting a reference node, marking its angle as
0, and incrementally incorporate additional nodes into the same group until the collective demand
approaches the capacity threshold (i KvenC' = > d;), where approximately Ky, vehicles would
be required to service the group. This process continues sequentially, forming new groups until all
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customers are assigned. Finally, we apply LKH-3 in parallel to solve each subproblem independently.
In our implementation, we set Kyep, = 6 and iy = 0.95 as the controlling parameters.

D.2 BASELINES

In this section, we provide further clarification regarding the baselines used in our comparative
analysis, beyond the backbone solvers. We independently executed LKH-3, LNS, and L2D using
consistent parameters. Results for SIL were sourced from Luo et al.|(2024), L2R from Zhou et al.
(2025a)), and all other baselines from|Zheng et al.| (2024). When multiple variants of a baseline were
presented in the original publications, we selected the configuration that achieved the best objective
values. Since the original implementation of NDS (Hottung et al., [ 2025) was evaluated on NVIDIA
A100 GPUs whereas our experiments use NVIDIA V100 GPUs, we re-ran NDS on our hardware for
fair comparison.

It is important to note that all reported results were evaluated on identical test instances (for CVRPs) or
on instances sampled from the same distribution (for VRPTWs), ensuring fair comparison. Moreover,
our experiments were conducted on hardware with less powerful GPUs compared to those utilized in
Luo et al.|(2024); |Zheng et al.|(2024); [Zhou et al.| (2025a)). This hardware discrepancy suggests that
the performance advantages demonstrated by our proposed model would likely persist or potentially
increase if all methods were evaluated on identical computing infrastructure.

We re-implemented the backbone solvers and L2D (Li et al., 2021) to ensure a fair and strong
comparison. Notably, prior studies (Zheng et al.,2024; Ye et al., 2024) did not explore configurations
optimized for L2D’s full potential. Specifically, they imposed overly conservative limits (e.g., only
allowing 1 trail) on LKH-3 local search updates and did not supply current solution information to
the LKH-3 solver during the resolution process. This significantly weakened L2D’s performance in
their benchmarks. In contrast, our comparison reflects L2D’s best achievable performance.

D.3 PARAMETERS AND TRAINING HYPERPARAMETERS

Parameters. Table [§|lists the values of parameters used in training data generation and inference.
Training Hyperparameters. For model training, we optimize both NAR and AR architectures using

Table 8: A list of parameters and their values used in our experiments for training and inference.

Training Data Generation

Parameter Value

# of instances Np 1000

# of iterative steps T7g 40

Improvement threshold %improy 0

Sample coefficient a4 0 for small-capacity CVRPs and VRPTWs
0.4  for large-capacity CVRPs
Inference

Parameter Value

Threshold 1 for NAR model 0.6

# of K-MEANS clusters TNKMEANS 3

# of LKH-3 local search updates limit 1000
per iterative step
Solve time limits 150s, 240s  for large-capacity CVRP2k, 5k
2.5m, 4m, Sm  for small-capacity CVRP1k, 2k, Sk
2m, 4m, 10m for VRPTWIk, 2k, 5k

the ADAM optimizer with a consistent batch size of 128 across 200 epochs for all problem variants.
The learning rate is calibrated at 103 for large-capacity CVRPs and 10~ for small-capacity CVRPs
and VRPTWs. The loss function employs weighted components with wpos = 9, Wineerr = 0.8, and
Waelete = 0.2. All computational experiments are conducted on a single NVIDIA V100 GPU, with
training duration ranging from approximately 0.5 to 1.5 days, scaling with problem dimensionality.
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Regarding network architecture, our encoder maps node features X € R™*25 for standard problems
(X € R™*28 for VRPTWs) to node embeddings via hi"* = Concat(hMLF hFPOS) € R24r | where
dp, = 128. They then undergo processing through Lrpy = 2 Transformer layers (Vaswani, [2017))
with route-specific attention masks, followed by a Graph Attention Network to derive the final
node embeddings HGNN | The transformer implementation utilizes 2 attention heads, 0.1 dropout
regularization, ReL.U activation functions, layer normalization, and feedforward dimensionality of
512. Our GNN employs a transformer convolution architecture with 2 layers (Lgny = 2) and a single
attention head.

Supplementary to the specifications in Sectiond] we delineate additional hyperparameters for our
decoder modules. The NAR decoder computes pN*® (node instability probabilities) via an MLP
with sigmoid activation for final probability distribution. The AR decoder incorporates single-layer
Gated Recurrent Units (GRUs), complemented by a single-layer/single-head transformer for the

deletion mechanism and a four-layer/single-head transformer for the insertion procedure.

All the training hyperparameters are summarized in Table[9]

Table 9: A list of hyperparameters and their values used in our model architecture and training.

Training Configuration

Parameter Value

Optimizer ADAM

Batch size 128

# of epochs 200

Learning rates 10=%  for large-capacity CVRPs

10~*  for small-capacity CVRPs and VRPTWs
Weight of unstable nodes wpos 9
Weight of prediction in insert stage wipsery 0.8
Weight of prediction in delete stage wgejere 0.2
Computing Resource Single NVIDIA V100 GPU
Model Architecture
Parameter Value
Hidden dimension 128
Encoder Transformer
# of layers Lypym 2
# of attention heads 2
Dropout regularization 0.1
Activation function ReLLU
Feedforward dimension 512
Normalization Layer normalization
Encoder GNN
Architecture Transformer Convolution Network
# of layers Lonn 2
# of attention heads 1
Decoder Components
NAR decoder activation function Sigmoid
# of layers in GRUs 1
AR Transformer in Deletion Stage
# of layers LYEA 1
# of attention heads 1
AR Transformer in Insertion Stage
# of layers LMHA 4

# of attention heads

Ju—
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D.4 INSTANCE GENERATION

In general, we generate all training and test instances following established methodologies: Zheng
et al. (Zheng et al., [2024)) for CVRP and Solomon (Solomonl [1987) for VRPTW. Specifically, For
small-capacity CVRPs, nodes are uniformly distributed within the [0, 1] square, with integer demands
ranging from 1 to 9 (inclusive). Vehicle capacities are set to C' = 200, 300, and 300 for problem
sizes 1k, 2k, and 5k, respectively. For large-capacity CVRPs, we maintain identical configurations
except for increased vehicle capacities of C' = 500 and 1000 for CVRP1k and CVRP5k, respectively.
For VRPTWs, we adopt the same spatial distribution, demand structure, and capacity constraints as
the small-capacity CVRPs. Service times are uniformly set to 0.2 time units for each customer and
0 for the depot. Time windows are generated according to the methodology outlined in Solomon
(Solomon, |1987)).

Our experimental framework comprises distinct datasets for training, validation, and testing:
 Training: 1,000 instances for each problem type and scale to generate training labels

* Validation: 30 instances per problem configuration

* Testing: For small-capacity CVRPs, we utilize the 1,000 test instances from Zheng et al.
(Zheng et al.||2024); for large-capacity CVRPs and VRPTWs, we evaluate on 100 instances
sampled from the same distribution as the training data

E ADDITIONAL EXPERIMENTS AND ANALYSIS

E.1 HYPERPARAMETER STUDY

Figure [T1] depicts the effects of nkmeans and 7. We %’:22 25
observe that the best performance is when ngveans = 3 Zaas S \ /’
and 7 = 0.6, suggesting that designating a moderate pro- ©ass o-g—"2 . ° 4355 bt _
portion of edges as unstable represents the most effective NikueAns ' n '
strategy.

2y (a) (b)

E.2 RESULTS ON REALISTIC ROUTING DATASETS  Figure 11: Analysis of key hyperparame-
ters: (a) number of clusters nygans, and
We further evaluate L2Seg on the CVRPLIb realis- (b) balancing factor 7.
tic routing dataset (Uchoa et al.l 2017; |Arnold et al.|
2019)), adhering to the settings established inZheng et al.
(2024), which incorporates instances from CVRP Set-X [54] and the very large-scale CVRP dataset
Set-XXL in the test set. The instances within CVRPLib exhibit more realistic spatial distributions
(distinct from simplistic uniform or clustered patterns), greater diversity, and better representation of
real-world logistical challenges. For this evaluation, we employ models trained on synthetic small-
capacity CVRP2k and CVRP5k datasets and zero-shot transfer them to CVRPLib. Time constraints
of 240s and 600s are implemented for L2Seg during testing. Additional methodological details are
provided in Appendix [D] As demonstrated in Table[TI0] LNS augmented with L2Seg-SYN surpasses
all other learning-based methods in performance. Significantly, the computational time required by
LNS+L2Seg-SYN (600s) is substantially less than that of the previously best-performing learning-
based model, UDC-xy50. These results further substantiate L.2Seg’s exceptional generalizability
across varied problem distributions.

Table 10: CVRPLIib results. We present the gap to the best known solutions (%).

Dataset, N € LEHD  ELG augx8 GLOP-LKH3 TAM(LKH3)
Set-X,(500,1,000] 17.4% 7.8% 16.8% 9.9%
Set-XXL,(1,000,10,000] 22.2% 15.2% 19.1% 20.4%

Dataset, N € UDC-z; UDC-z250 LNS+L2Seg-SYN (240s) LNS+L2Seg-SYN (600s)
Set-X,(500,1,000] 16.5% 7.1% 7.5% 6.9%
Set-XXL,(1,000,10,000]  31.3% 13.2 % 12.5% 12.0%
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E.3 RESULTS ON CLUSTERED CVRP AND HETEROGENEOUS-DEMAND CVRP

Table 11: Results on clustered CVRP and heterogeneous-demand CVRP. We present gains to the
backbone solver LNS and the performance of LKH-3 for reference.

Clustered CVRP2k Clustered CVRP5k

Methods

Obj.l GainT Time] Obj.l Gaint Timel
LKH-3 (Helsgaun,2017) (for reference) 42.06 - 150s  62.33 - 240s
LNS (Shaw!|1998) 41.54  0.00% 150s 61.42 0.00%  240s
L2Seg-SYN-LNS (zero-shot transfer) 41.03 1.23% 150s  60.87 0.90%  240s
L2Seg-SYN-LNS 40.73 1.95% 150s  60.11 2.13%  240s

Hetero-demand CVRP2k  Hetero-demand CVRP5k
Methods

Obj.l GainT Time| Obj.l Gaint Timel
LKH-3 (Helsgaun|2017) (for reference) 46.02 - 150s  65.89 - 240s
LNS (Shaw||1998) 4577  0.00% 150s  64.81 0.00%  240s
L2Seg-SYN-LNS (zero-shot transfer) 4435 3.10% 150s 6428 0.82% 240s
L2Seg-SYN-LNS 44.15 3.54% 150s  64.15 1.02%  240s

To demonstrate L2Seg’s robustness across diverse and more realistic scenarios beyond uniform
distributions, we provide in-distribution and zero-shot generalization evaluation of our L2Seg on
instances with different customer and demand distributions.

Following Li et al.| (2021)), we generate clustered CVRP instances with 7 clusters. For heterogeneous-
demand scenarios, we employ a skewed distribution where high and low demands (d € {1,2,8,9})
occur with probability 0.2 each, while others (d € {3, 4,5, 6, 7}) occur with probability 0.04 each.
All experiments use LNS as the backbone solver, with LKH-3 included for reference.

Table [IT] presents the comprehensive results. L2Seg demonstrates consistent improvements across all
settings: zero-shot transfer achieves 1.23% to 3.10% gains over LNS, while in-distribution testing
reaches 1.02% to 3.54% improvements depending on problem size and variant. These experiments
demonstrate that L2Seg maintains consistent improvements across diverse real-world conditions,
from uniform spatial layouts to clustered distributions and heterogeneous demands.

E.4 STANDARD DEVIATION COMPARISON

In this section, we provide standard deviation statistics for L2Seg-SYN across three different backbone
solvers on large-capacity CVRPs. We conduct 5 independent trials using different random seeds for
each method. All experiments are terminated at the specified time limit, and we report the standard
deviations of the objective values for all 6 methods. The results are presented in Table[I2] While
LKH-3 exhibits the lowest variance among baseline methods, our L2Seg approach also demonstrates
consistently low variance across different problem types and backbone solvers, confirming both the
effectiveness and stability of our method.

Table 12: Performance comparison of backbone solvers with and without L2Seg-SYN on large-scale
CVRP instances. Results represent mean objective values £ standard deviation across 5 independent
trials of testing. L2Seg-SYN demonstrates consistent performance improvements with low variance,
indicating both effectiveness and stability of the approach.

CVRP2k CVRP5k
Methods Obj.) Gain? Time| Obj.) Gaint Time|
LKH-3|Helsgaun|(2017) 45.24+0.17 0.00%  152s 65.34 £0.29 0.00%  242s
LKH+L2Seg-SYN 43.92+0.20 2.92%  152s 64.12+0.34 1.87%  248s
LNS Shaw|(1998) 44.92+0.24 0.00%  154s 64.69+0.37 0.00%  246s
LNS+L2Seg-SYN 43.42+0.22 3.34% 152s 63.94+0.35 1.16% 241s
L2D|Li et al.|(2021) 43.69£0.21 0.00%  153s 64.21£0.32 0.00%  243s
L2D+L2Seg-SYN 43.35+0.23 0.78%  157s 63.89 £0.34 0.50%  248s
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Table 13: Unstable and stable edges convergence at the first 10 iterations

Round # 1 2 3 5 7 9

Unstable Edge Overlapping Percentage 28.2% 33.5% 412% 492% 488% 54.1%
Stable Edge Overlapping Percentage 472% 582% 60.5% 64.7% 673% 69.4%
Avg Segment Length 2.45 2.57 244 3.04 2.87 2.73

E.5 CASE STUDY: COMPARISON OF PREDICTIONS OF THREE L2SEG APPROACHES

(a) L2Seg-SYN prediction (b) L2Seg-NAR prediction (c) L2Seg-AR prediction

Figure 12: Prediction comparison of L2Seg-SYN, L2Seg-NAR, and L.2Seg-AR on two adjacent
routes from a small-capacity CVRP1k solution. Red dashed lines indicate predicted unstable edges.
L2Seg-SYN provides the most reasonable predictions, while L2Seg-NAR over-predicts unstable
edges and L2Seg-AR fails to identify unstable regions.

We present a case study on a small-capacity CVRP1k instance to analyze model prediction behavior.
Since the learned model ultimately predicts on two adjacent routes, we visualize unstable edge
predictions (red dashed lines) for two such routes using L2Seg-SYN, L2Seg-NAR, and L2Seg-AR in
Figure[T2] L2Seg-SYN demonstrates selective prediction behavior, avoiding boundary edges while
targeting specific unstable edges within route interiors—a pattern consistent with our observations
in Appendix [B.1.T] L2Seg-NAR successfully identifies unstable regions (route interiors) but lacks
discrimination, predicting nearly all edges within these regions as unstable without capturing local
dependencies. L2Seg-AR exhibits selective prediction within regions but fails to properly identify
unstable regions, as many predictions occur at boundaries. These results provide insight into
L2Seg-SYN’s hybrid approach: the NAR component first identifies unstable regions, while the AR
component leverages local information to make accurate predictions within each identified region.

E.6 UNSTABLE AND STABLE EDGES CONVERGENCE

We conducted experiments measuring overlapping predicted edges between adjacent iterations over
the first 10 rounds, revealing interesting dynamics: The overlap of predicted unstable edges increases
from 28% to 54%, while stable edge overlap increases from 47% to 69% across iterations, shown in
the Table[I3] This indicates gradual but not rapid convergence, allowing our method to continuously
explore new regions for re-optimization rather than getting trapped in fixed segments.

F BROADER IMPACTS

On one hand, the integration of deep learning into discrete optimization offers promising advances
for real-world domains such as public logistics and transportation systems, where additional con-
siderations for social equity and environmental sustainability can be incorporated. On the other
hand, the application of deep learning methodologies in discrete optimization necessitates substantial
computational resources for model training, potentially leading to increased energy consumption and
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carbon emissions. The quantification and mitigation of these environmental impacts represent critical
areas for ongoing research and responsible implementation.

G LARGE LANGUAGE MODELS USAGE

We used LLMs to assist with manuscript revision. After completing the initial draft without LLM
assistance, we consulted LLMs for suggestions on improving specific text passages. All LLM-
generated advice was carefully reviewed to ensure accuracy before incorporation. LLMs were not
used for research tasks or any purpose beyond text refinement.
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