

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO SEGMENT FOR VEHICLE ROUTING PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Iterative heuristics are widely recognized as state-of-the-art for Vehicle Routing Problems (VRPs). In this work, we exploit a critical observation: a large portion of the solution remains stable, i.e., unchanged across search iterations, causing redundant computations, especially for large-scale VRPs with long subtours. To address this, we pioneer the formal study of the First-Segment-Then-Aggregate (FSTA) decomposition technique to accelerate iterative solvers. FSTA preserves stable solution segments during the search, aggregates nodes within each segment into fixed hypernodes, and focuses the search only on unstable portions. Yet, a key challenge lies in identifying which segments should be aggregated. To this end, we introduce Learning-to-Segment (L2Seg), a novel neural framework to intelligently differentiate potentially stable and unstable portions for FSTA decomposition. We present three L2Seg variants: non-autoregressive (globally comprehensive but locally indiscriminate), autoregressive (locally refined but globally deficient), and their synergy. Empirical results on CVRP and VRPTW show that L2Seg accelerates state-of-the-art solvers by 2x to 7x. We further provide in-depth analysis showing why synergy achieves the best performance. Notably, L2Seg is compatible with traditional, learning-based, and hybrid solvers, while supporting various VRPs.

1 INTRODUCTION

Vehicle Routing Problems (VRPs) have profound applications such as in logistics and ride-hailing, driving advances in combinatorial optimization (Laporte, 2009). As NP-hard problems, they are typically tackled with heuristics approximately. Neural Combinatorial Optimization (NCO) (Kool et al., 2018; Bengio et al., 2021; Luo et al., 2024; Berto et al., 2023) has recently introduced machine learning into VRP solving, enabling data-driven decision-making with minimal domain knowledge while matching and even surpassing the performance of meticulously designed heuristics such as Lin-Kernighan-Helsgaun (LKH)(Helsgaun, 2017) and Hybrid Genetic Search (HGS)(Vidal, 2022).

Generally, state-of-the-art VRP solvers predominantly rely on iterative search to refine solutions through local search (e.g., ruin and repair). However, as noted in Section 3, a significant portion of edges *stabilize*¹, or their presence in the solution stops changing between iterations, as the search progresses, despite repeated local search. For example, inner edges of neighboring subtours may remain fixed while only boundary edges undergo frequent combinatorial changes. Intuitively, such stability can be inferred from customer spatial distribution and the solution properties through end-to-end learning. Yet, existing solvers overlook such opportunities, leading to redundant computations that hinder their scalability and efficiency, especially in large-scale VRPs with long subtours.

Motivated by this critical observation, we study how learning to identify such *segments* can accelerate iterative search solvers, a perspective yet to be explored to the best of our knowledge. To this end, we formalize a **First-Segment-Then-Aggregate (FSTA)** decomposition framework, which identifies stable segments in a VRP solution and then aggregates them as fixed (one or two) hypernodes with combined attributes (e.g., total demand, min/max time windows). This not only decomposes the original large problem into more tractable subproblems but also significantly accelerates the search

¹Specifically, we define *stable edges* as those that consistently remain in the solution across consecutive solver invocations, where each invocation performs a full optimization round (multiple local search operations) within a fixed budget to return a locally optimal solution (see Appendix A.1 for formal definitions).

054 by leveraging iterative local search to strategically focus on unstable portions. We further show that
 055 FSTA preserves solution equivalence and is broadly applicable to VRPs with diverse constraints.
 056

057 To identify unstable portions for FSTA decomposition, we then introduce **Learning-to-Segment**
 058 (**L2Seg**), a novel learning-guided framework that leverages deep models to intelligently differentiate
 059 potentially stable and unstable portions, allowing dynamic decomposition for accelerated local search.
 060 Realizing this, however, is nontrivial: it involves a large combinatorial decision space requiring
 061 accurate segment grouping, and demands modeling complex interdependencies among predicted
 062 edges, constraints, spatial distribution, solution structures, and both node and edge features.
 063

064 To address these challenges, L2Seg proposes encoder-decoder-styled neural models. The encoder
 065 integrates graph-level and route-level features using attention and graph neural networks, gener-
 066 ating node embeddings that guide edge re-optimization predictions. L2Seg offers three decoders:
 067 (1) L2Seg-NAR (Non-Autoregressive): which features one-shot fast global prediction; (2) L2Seg-AR
 068 (Autoregressive), which enjoys sequential dependency modeling for high-precision local predictions;
 069 and (3) L2Seg-SYN (Synergized), which balances the strengths of both NAR and AR. Notably, this
 070 represents a pioneering work that explores the joint decision-making between AR and NAR models
 071 in neural combinatorial optimization. Our L2Seg models are trained via a weighted cross-entropy
 072 loss on datasets labeled using a lookahead procedure: edge stability is classified based on whether its
 073 presence in the solution was changed during iterative re-optimization.
 074

075 Extensive experiments on large-scale CVRPs and VRPTWs show that L2Seg accelerates backbone
 076 heuristics by 2x to 7x, enabling them to outperform state-of-the-art classic, neural, and hybrid
 077 baselines, while generalizing well across different customer distributions and problem sizes. Notably,
 078 L2Seg exhibits strong flexibility in enhancing various solvers, including the classic LKH-3 ([Helsgaun, 2017](#))
 079 solver, other orthogonal Large Neighborhood Search (LNS) methods ([Shaw, 1998](#)), and
 080 learning-guided decomposition method Learning-to-Delegate (L2D) ([Li et al., 2021](#)). We further
 081 analyze the synergy between AR and NAR models, showing their combination achieves the best
 082 performance by integrating NAR’s global comprehension with AR’s local precision.
 083

084 Our contributions are: (1) We make a critical yet underexplored insight that stable segments persist
 085 across search iterations in large-scale VRPs, causing redundant computations; (2) We formally study
 086 and theoretically prove the properties and applicabilities of First-Segment-Then-Aggregate (FSTA)
 087 for various VRPs; (3) We develop Learning-to-Segment (L2Seg), a learning-guided framework with
 088 bespoke network architecture, training, and inference for segment identification; (4) We propose
 089 autoregressive, non-autoregressive, and their synergistic deep models, pioneering the first-of-its-kind
 090 study in NCO; (5) L2Seg consistently accelerates state-of-the-art iterative VRP solvers by 2x to 7x,
 091 boosting both classic and learning-based solvers, including other decomposition frameworks.
 092

093 2 RELATED WORKS

094 **VRP Solvers.** Classical VRP solvers include exact methods with guarantees ([Baldacci et al., 2012](#))
 095 and practical heuristics ([Helsgaun, 2017](#)). Recently, machine learning has been applied to combi-
 096 natorial optimization, either end-to-end ([Kool et al., 2018; Kwon et al., 2020; Fang et al., 2024;](#)
 097 [Geisler et al., 2022; Gao et al., 2024; Drakulic et al., 2023; Wang et al., 2024; Min et al., 2023; Li](#)
 098 [et al., 2023a](#)) or learning-guided to unite data-driven insights into human solvers ([Li et al., 2021; Lu](#)
 099 [et al., 2023; Huang et al., 2024; 2023; Hottung et al., 2025](#)). For VRPs, the former could yield
 100 competitive performance to classic methods ([Drakulic et al., 2023; Luo et al., 2023](#)), while the latter
 101 often achieve state-of-the-art performance ([Zheng et al., 2024](#)). Among these, most effective VRP
 102 solvers rely on iterative search, including classic heuristics such as HGS ([Vidal, 2022](#)), LNS ([Shaw,](#)
 103 [1998](#) and LKH ([Helsgaun, 2017](#)); neural solvers that learn local search ([Ma et al., 2021; 2023; Kim](#)
 104 [et al., 2023; Hottung and Tierney, 2022; Ma et al., 2022](#)); neural constructive solvers integrated with
 105 search components ([Luo et al., 2023; Hottung et al., 2022; Kim et al., 2021; Sun and Yang, 2023;](#)
 106 [Chalumeau et al., 2023; Kim et al., 2024; Qiu et al., 2022](#)); and hybrid learning-guided methods like
 107 L2D ([Li et al., 2021](#)). However, both handcrafted and neural iterative search solvers overlook the
 108 redundant computations identified in this paper, particularly in large-scale VRPs.
 109

110 **Decomposition for Large-scale VRPs.** Scalability in VRP solvers often relies on effective decom-
 111 position that operates on solutions partially ([Santini et al., 2023](#)). This includes hand-crafted heuristics,
 112 such as LNS ([Shaw, 1998](#)) and evolutionary algorithms ([Helsgaun, 2017](#)), as well as learning-based
 113

108 methods such as sub-tour grouping (Zong et al., 2022), problem variant reduction (Hou et al., 2023),
 109 action space decomposition (Drakulic et al., 2023; Luo et al., 2023; Zhou et al., 2025a), spatial-
 110 based decomposition (Zheng et al., 2024; Zhou et al., 2025b; Pan et al., 2025), and **hypergraphs**
 111 **decomposition** (Li et al., 2025; Fu et al., 2023). In this paper, we present FSTA and L2seg, a fresh².
 112 learning-based decomposition framework that automatically detects unstable edges and aggregates
 113 stable segments. Notably, L2Seg holds potential to enhance other decomposition methods, such as
 114 LNS (Shaw, 1998) and L2D (Li et al., 2021). While another related work (Morabit et al., 2024)
 115 explores segment stability for re-optimization in a specific dynamic CVRP setting, our work addresses
 116 a different problem, i.e., identifying stable segments across search steps to accelerate iterative solvers.
 117 And we formally analyze the solution equivalence of FSTA across broader VRP variants. Moreover,
 118 L2Seg uniquely designs and integrates three novel deep learning models (AR, NAR, and synergized)
 119 to guide FSTA decomposition during search.

120 **AR and NAR Models.** In NCO, NAR models make global predictions like edge heatmaps (Sun
 121 and Yang, 2023; Li et al., 2023b). However, they struggle to model complex interdependencies,
 122 particularly VRP constraints. In contrast, AR models make sequential predictions, e.g., node by node
 123 selection in construction solvers (e.g., Luo et al. (2023)). AR offers stronger modeling capacity but
 124 might overlook global structure. Recent NCO works combine AR and NAR models in divide-and-
 125 conquer frameworks, with NAR for problem splitting and AR for solving (Zheng et al., 2024; Hou
 126 et al., 2023; Ye et al., 2024). We are the first to leverage their complementary strengths for joint
 127 decision-making, enabling more effective identification of unstable segments in FSTA decomposition.

3 FIRST-SEGMENT-THEN-AGGREGATE (FSTA)

3.1 VEHICLE ROUTING PROBLEMS (VRPs)

132 VRPs aim to minimize total travel costs (often distance or travel time)
 133 while serving a set of customers under constraints. Formally, a **VRP**
 134 **instance P** is defined on a graph $G = (V, E)$, where each node $x_i \in V$
 135 represents a customer and each edge $e_{i,j} \in E$ represents traveling from
 136 x_i to x_j and is associated with a travel cost. For Capacitated VRP
 137 (CVRP), vehicles of capacity C start and end at a depot node x_0 . The
 138 sum of the demands d_i on any route must not exceed C , and each
 139 customer should be served exactly once. For VRP with Time Windows
 140 (VRPTW), each customer is additionally associated with a service time
 141 s_i and a time window $[t_i^l, t_i^u]$ within which service must begin. See
 142 Appendix A for the formal definitions of CVRP and VRPTW.

3.2 FSTA DECOMPOSITION

145 Figure 1 depicts that iterative search solvers perform **redundant searches**, reoptimizing only a small
 146 portion while many edges remain unchanged, especially in large subtours with high capacity C .
 147 Inspired by Morabit et al. (2024), we formally study the decomposition technique, First-Segment-
 148 Then-Aggregate (FSTA), for accelerating iterative search solvers. As shown in the top of Figure 2,
 149 **FSTA segments the VRP solutions by identifying unstable portions, and then groups the stable**
 150 **segments into hypernodes.** We thus expect more efficient re-optimization on the reduced problems
 151 with smaller size. More visualization of FSTA is provided in Appendix B.1.

152 **Segment Definition.** Denote the solution (set of routes) of a CVRP as $\mathcal{R} = \{R^1, R^2, \dots\}$, and each
 153 route as $R^i = (x_0 \rightarrow x_1^i \rightarrow x_2^i \rightarrow \dots \rightarrow x_0) \in \mathcal{R}$, where the first and the last nodes in R^i are
 154 the depot. A segment consists of some consecutive nodes within a route. We denote the segment
 155 containing the j^{th} to k^{th} nodes of route i as $S_{j,k}^i = (x_j^i \rightarrow \dots \rightarrow x_k^i)$. An aggregated segment $\tilde{S}_{j,k}^i$
 156 uses one hypernode ($\tilde{S}_{j,k}^i = \{\tilde{x}_{j,k}^i\}$) or two hypernodes ($\tilde{S}_{j,k}^i = \{\tilde{x}_j^i, \tilde{x}_k^i\}$) with aggregated attributes
 157 (e.g. the demand of $\tilde{x}_{j,k}^i$ equals to $d_j^i + \dots + d_k^i$) to represent the non-aggregated segment $S_{j,k}^i$.

159 **FSTA Solution Update.** After identifying unstable edges $\{e_{j_1}^i, e_{j_2}^i, \dots\}$ in each route (which will be
 160 addressed in Section 4), where each e_j^i denotes the edge starting from the j^{th} node in route R^i , we

Figure 1: Percentage of re-optimized edges during iterative search using LKH-3 on 100 CVRP instances. Most edges remain unchanged, suggesting redundant calculations.

²A detailed comparison with representative decomposition methods is provided in Appendix C.1

Figure 2: The overview of our FSTA decomposition framework (top) and the three proposed L2Seg models (bottom). L2Seg-SYN employs a four-step synergized approach: (1) problem decomposition into subproblems, (2) unstable nodes detection globally via NAR decoding, (3) clustering of NAR-predicted nodes to localize unstable regions and select initial target nodes, and (4) refining unstable edge predictions locally via AR decoding starting from these identified initial target nodes.

break these edges and group the remaining stable edges into segments. To preserve a valid depot, edges connecting to the depot are included in the unstable edge set. After unstable edges are removed, each route R^i is then decomposed into multiple disjoint segments $\{x_0, S_{1,j_1}^i, S_{j_1,j_2}^i, \dots\}$, where x_0 is depot. Each segment $S_{j,k}^i$ is then aggregated into one or two hypernodes $\tilde{S}_{j,k}^i$, leading to a reduced problem \tilde{P} . We then obtain the corresponding solution $\tilde{\mathcal{R}}$ for such reduced problem, where for each $\tilde{R}^i \in \tilde{\mathcal{R}}$, we have $\tilde{R}^i = (x_0 \rightarrow \tilde{S}_{1,j_1}^i \rightarrow \tilde{S}_{j_1,j_2}^i \dots \rightarrow x_0)$. With fewer nodes than the original problem P , re-optimization with a backbone solver becomes more efficient, which is analyzed and confirmed in Appendix B.1. After re-optimization, we obtain a new solution $\tilde{\mathcal{R}}_+$ for the reduced problem \tilde{P} , which is then recovered into a solution \mathcal{R}_+ for the original problem P by expanding each hypernode(s) back into its original segment of nodes. This relies on our monotonicity theorem, which guarantees that an improved solution in \tilde{P} maps to an improved solution in P .

Theoretical Analysis. We establish a theorem proving FSTA’s feasibility and monotonicity across multiple VRP variants (e.g. CVRP, VRPTW, VRPB, and 1-VRPPD), with the proof in Appendix B.2.

Theorem (Feasibility) If the aggregated solution $\tilde{\mathcal{R}}_+$ is feasible to the aggregated problem, then \mathcal{R}_+ is also feasible to the original, non-aggregated problem.

Theorem (Monotonicity). If two feasible aggregated solutions $\tilde{\mathcal{R}}_+^1$ and $\tilde{\mathcal{R}}_+^2$ satisfy $f(\tilde{\mathcal{R}}_+^1) \leq f(\tilde{\mathcal{R}}_+^2)$, where $f(\cdot)$ denotes the objective function (total travel cost), their corresponding original solutions also preserve this order: $f(\mathcal{R}_+^1) \leq f(\mathcal{R}_+^2)$.

4 LEARNING TO SEGMENT (L2SEG)

We introduce **Learning to Segment (L2Seg)**, a neural framework for predicting unstable edges to guide FSTA. We consider two paradigms: 1) Non-autoregressive (NAR) and 2) Autoregressive (AR) models. *NAR models* offer global predictions with an efficient single forward pass. However, they lack conditional modeling to accurately capture local dependencies. For example, when one edge is unstable, nearby edges often show instability but not all, but NAR models may fail to distinguish them and mark all neighboring edges as unstable. On the other hand, *AR models* can more natively capture local dependencies. Yet, they may miss the crucial global structure. For example, when unstable edges are distributed across distant regions, AR models may struggle to recognize and model these broader patterns. Our approach offers three variants as shown in Figure 2: non-autoregressive (L2Seg-NAR), autoregressive (L2Seg-AR), and a synergized combination of both (L2Seg-SYN).

Figure 3: Architecture of L2Seg: encoder (left), NAR decoder (center), and AR decoder (right). NAR predicts unstable nodes for associated edges. AR uses a two-stage process, where the insertion bridges the deletion stage to accurately detect unstable edges locally, akin to the local search behavior.

4.1 NEURAL ARCHITECTURE

The autoregressive and non-autoregressive models of L2Seg share the same encoder structure. Next, we first describe the encoder, and then the two decoder architectures.

Input Feature Design. We propose enhanced input features for L2Seg to better distinguish unstable and stable edges (see Appendix B.1 for intuitions). Key features include node angularity relative to the depot and node internality, where the latter measures the proportion of nearest nodes within the same route. We consider two edge types: edges in the current solution \mathcal{R} and edges connecting each node to their k -nearest neighbors. Appendix C.2 provides a detailed feature description.

Encoder. Given node features $\mathbf{X} = (\mathbf{x}_0, \mathbf{x}_1, \dots)$ and edge features $\mathbf{E} = \{\mathbf{e}_{0,1}, \mathbf{e}_{0,2}, \dots\}$, we compute the initial node embedding as $\mathbf{h}_i^{\text{init}} = \text{Concat}(\mathbf{h}_i^{\text{MLP}}, \mathbf{h}_i^{\text{POS}}) \in \mathbb{R}^{2d_h}$, where $\mathbf{h}_i^{\text{MLP}}$ and $\mathbf{h}_i^{\text{POS}}$ are obtained by passing \mathbf{x}_i through a multilayer perceptron (MLP) and an absolute position encoder (Vaswani, 2017), respectively. Next, we process the embeddings using L_{TFM} Transformer layers (Vaswani, 2017) with masks to prevent computation between nodes in different routes: $\mathbf{h}_i^{\text{TFM}} = \text{TFM}(\mathbf{h}_i^{\text{init}}) \in \mathbb{R}^{d_h}$. This step encodes local structural information from the current solution. Finally, we compute the node embeddings $\mathbf{H}^{\text{GNN}} = \{\mathbf{h}_i^{\text{GNN}} \in \mathbb{R}^{d_h} \mid i = 0, \dots, |V|\}$ leveraging the global graph information by using L_{GNN} layers of a Graph Attention Network (GAT) (Veličković et al., 2017), where $\mathbf{H}^{\text{GNN}} = \text{GNN}(\mathbf{H}^{\text{TFM}}, \mathbf{E})$.

Non-Autoregressive Decoder. It uses an MLP with a sigmoid function to decode the probability \mathbf{p}^{NAR} of each node being unstable globally in one shot, so as to identify associated unstable edges:

$$\mathbf{p}^{\text{NAR}} = \text{MLP}_{\text{NAR}}(\mathbf{H}^{\text{GNN}}) \quad (1)$$

Autoregressive Decoder. The autoregressive decoder models unstable edge interdependence by generating them sequentially as $a = \{x_{\pi_0}, x_{\pi_1}, \dots\}$. Following classical local search where k removed edges are reconnected via k new insertions (Funke et al., 2005), the sequence alternates between deletion (identifying unstable edges) and insertion (introducing pseudo-edges that bridge to the next unstable edge), terminating at x_{end} . **Note that the "insertion" stage is designed to model dependencies between consecutive unstable edges rather than actually "insert" edges into the solution.** Formally, denote the set of edges within the current solution as $E_{\mathcal{R}}$. The decoding alternates between: (1) **Deletion** ($t = 2k$): Selects an unstable edge $e_{\pi_{2k}, \pi_{2k+1}} \in E_{\mathcal{R}}$ based on a target node, which is either initialized at the first step (see Section 4.3) or the one obtained from the previous insertion step; one of the two edges connected to this node in the current solution is then selected as unstable (more than two candidates may exist if the node is the depot); **importantly, this edge is only marked as unstable, not immediately removed from the solution;** and (2) **Insertion** ($t = 2k + 1$): Selects an new edge $e_{\pi_{2k+1}, \pi_{2k+2}} \notin E_{\mathcal{R}}$ that links to the endpoint of the last unstable edge removed, exploring $O(|V|)$ potential candidates to serve as a bridge to the next unstable target node (next unstable region). From a , we then identify the set of removed edges as the unstable edges, i.e., $E_{\text{unstable}} = \{e_{\pi_0, \pi_1}, e_{\pi_2, \pi_3}, \dots\}$. Both stages employ two principal modules: Gated Recurrent Units (GRUs) (Chung et al., 2014) to encode sequence context, and multi-head attention (MHA) (Vaswani, 2017) for node selection. The GRU's initial hidden state is the average of all node embeddings: $\mathbf{h}_0^{\text{hidden}} = \frac{1}{|V|} \sum_{i=0}^{|V|} \mathbf{h}_i^{\text{GNN}}$. At step t , the sequence embedding is updated by $\mathbf{h}_t^{\text{seq}} = \text{GRU}(\mathbf{h}_{t-1}^{\text{hidden}}, \mathbf{h}_{\pi_{t-1}}^{\text{GNN}})$, and the context embedding is

270 formed by concatenating the embeddings of the initial node, the previous node, and the new sequence
 271 embedding: $\mathbf{H}_t^{\text{context}} = \text{Concat}(\mathbf{h}_{\pi_0}^{\text{GNN}}, \mathbf{h}_{\pi_{t-1}}^{\text{GNN}}, \mathbf{h}_t^{\text{seq}})$.
 272

273 Inspired by the decoder design in LEHD (Luo et al., 2023), we use two distinct MHA modules with
 274 L^{MHA} layers, to decode x_{π_t} . Specifically, considering the size of the action space (at most 2 for
 275 deletion and $O(|V|)$ for insertion), we utilize a shallow decoder ($L_{\text{delete}}^{\text{MHA}} = 1$) during the deletion
 276 stage and a deeper decoder ($L_{\text{insert}}^{\text{MHA}} = 4$) during the insertion stage. Let $\mathbf{H}_t^a \subseteq \mathbf{H}^{\text{GNN}}$ denote the set
 277 of available nodes at step t . During the insertion stage, we also incorporate an additional candidate
 278 $\mathbf{h}^{\text{end}} = \alpha \mathbf{h}_{\pi_0}^{\text{GNN}} + (1 - \alpha) \frac{1}{|V|} \sum_{i=0}^{|V|} \mathbf{h}_i^{\text{GNN}}$, where α is a learnable parameter, to indicate termination
 279 of decoding, providing the AR model flexibility to determine the number of unstable edges. Formally,
 280 the decoding at step t is given as follows; note that the first 3 dimensions of $\mathbf{H}^{(L^{\text{MHA}})}$ corresponds to
 281 context embeddings $\mathbf{H}_t^{\text{context}}$ and hence are masked from selection:
 282

$$\begin{aligned} \mathbf{H}^{(0)} &= \text{Concat}(\mathbf{H}_t^{\text{context}}, \mathbf{H}_t^a), \\ \mathbf{H}^{(l)} &= \text{MHA}(\mathbf{H}^{(l-1)}), \\ u_i &= \begin{cases} (W_q \mathbf{h}^c)^T W_k \mathbf{h}_i^{(L^{\text{MHA}})} / \sqrt{d_h}, & \text{if } i > 3, \\ -\infty, & \text{O.W.} \end{cases} \end{aligned} \quad (2)$$

290 where $1 \leq l \leq L^{\text{MHA}}$, W_q and W_k are learnable matrices, and $\mathbf{h}^c \in \mathbb{R}^{6d_h}$ concatenates the first three
 291 columns of $\mathbf{H}^{(0)}$ and $\mathbf{H}^{(L^{\text{MHA}})}$ along the last axis. The node x_{π_t} is sampled from $\mathbf{p}_t^{\text{AR}} = \text{softmax}(\mathbf{u})$.
 292

4.2 TRAINING

293 We employ iterative solvers as look-ahead heuristics
 294 to detect unstable edges. We utilize imitation learning
 295 to train L2Seg models to replicate the behavior of the
 296 look-ahead heuristics.

307 **Dataset Construction.** Let the edges in \mathcal{R} be $E_{\mathcal{R}}$, and
 308 nodes indicated by edge set E be V_E . Given P with
 309 current solution \mathcal{R} , we first employ an iterative solver \mathcal{S} to
 310 refine \mathcal{R} and obtain \mathcal{R}_+ . We then collect differing edges
 311 as \mathcal{R} and \mathcal{R}_+ as $E_{\text{diff}} = (E_{\mathcal{R}} \setminus E_{\mathcal{R}_+}) \cup (E_{\mathcal{R}_+} \setminus E_{\mathcal{R}})$ (in-
 312 cluding both the deleted and newly inserted edges). Next,
 313 we identify the set of unstable nodes $V_{\text{unstable}} = V_{E_{\text{diff}}}$,
 314 i.e., the set of nodes that are end points to some edge in
 315 E_{diff} . We empirically observe that solution refinement
 316 typically takes place between two adjacent routes. **For the NAR model**, we construct a dataset with binary
 317 labels. Each problem-label pair consists of a decomposed
 318 problem containing two adjacent routes and binary labels
 319 indicating whether each node is unstable (1) or
 320 stable (0). Formally, a node x is labeled 1 if $x \in V_{\text{unstable}}$.
 321 **For the AR model**, we construct labels as node se-
 322 quences preserving local dependencies among unstable
 323 edges. Nodes without local dependencies are naturally excluded through connected component
 324 partitioning. We obtain connected components \mathcal{K} induced by E_{diff} and select those spanning at
 325 most two routes, denoted \mathcal{K}_{TR} . For each $K \in \mathcal{K}_{\text{TR}}$ containing nodes from routes R_i and R_j , we
 326 form a subproblem P_K with solution $\mathcal{R}_K = \{R_i, R_j\}$. From each component K (dashed circles
 327 in Figure 4), we extract a node sequence $y_K = \{x_{\pi_0}, x_{\pi_1}, \dots, x_{\pi_m}, x_{\text{end}}\}$ by alternating between
 328 edge deletion and insertion operations (shown in Figure 4, second row). These problem-label pairs
 329 (P_K, y_K) constitute **the AR model** training data.

Figure 4: Training data construction for the AR model. Re-optimization reveals deleted edges (blue/green dashed) and inserted edges (red dashed) forming connected components (circles). For each component, depth-first search generates node sequences alternating between deletion and insertion operations, terminated by an end token as the AR model’s training label.

324 **Loss Function.** To balance labels, we use weighted binary cross-entropy for the NAR model ($w_{\text{pos}} >$
 325 1) and weighted cross-entropy for the AR model to balance the two stages ($w_{\text{insert}} > w_{\text{delete}}$).
 326

$$327 \quad L_{\text{NAR}}(\mathbf{p}^{\text{NAR}}, y^{ij}) = - \sum_{y_{x_k} \in y^{ij}} w_{\text{pos}} y_{x_k} \log(p_k^{\text{NAR}}) + (1 - y_{x_k}) \log(1 - p_k^{\text{NAR}})$$

$$328 \quad L_{\text{AR}}(\mathbf{p}^{\text{AR}}, y_K) = - \sum_{x_{\pi_{2k}} \in y_K} w_{\text{insert}} \log(p_{\pi_{2k}}^{\text{AR}}) - \sum_{x_{\pi_{2k+1}} \in y_K} w_{\text{delect}} \log(p_{\pi_{2k+1}}^{\text{AR}}).$$

$$329$$

$$330$$

$$331$$

332 **4.3 INFERENCE**

333 We describe the synergized inference that combines the benefits of global structural awareness from
 334 NAR with the local precision from AR, followed by two variants using only NAR or AR.
 335

336 **Synergized Prediction (L2Seg-SYN).** L2Seg-SYN’s inference pipeline for detecting unstable edges
 337 consists of four steps: (1) problem decomposition, (2) global unstable node detection via NAR
 338 decoding, (3) representative initial node identification for AR decoding based on NAR predictions,
 339 and (4) local unstable edge detection using AR decoding.
 340

341 Given a problem P with solution \mathcal{R} , we partition P into approximately $|\mathcal{R}|$ subproblems, \mathcal{P}_{TR} , by
 342 grouping nodes from all two adjacent sub-tour pairs. For each subproblem in \mathcal{P}_{TR} , the NAR model
 343 predicts unstable nodes as $\hat{y}_{\text{NAR}} = \{x_i \mid p_i^{\text{NAR}} \geq \eta\}$, where η is a predefined threshold. We then
 344 refine unstable edge detection with the AR model within regions identified by the NAR prediction.
 345 To reduce redundant decoding efforts on neighboring unstable nodes, we first group unstable nodes
 346 into n_{KMEANS} clusters using the K -means algorithm, and select the node with the highest p_i^{NAR}
 347 within each cluster as the starting point for AR decoding. The AR model then detects unstable edges
 348 based on these initial nodes. Finally, we aggregate unstable edges from all subproblems in \mathcal{P}_{TR} as
 349 the final unstable edge set for P given the current solution \mathcal{R} .
 350

351 **Non-Autoregressive Prediction (L2Seg-NAR).** L2Seg-NAR uses only the NAR model for predictions.
 352 It identifies unstable nodes and marks all connected edges as unstable.
 353

354 **Autoregressive Prediction (L2Seg-AR).** L2Seg-AR exclusively uses the AR model. Instead of using
 355 the NAR model, it assumes all nodes may be unstable, applying the K -means algorithm on all nodes.
 356 It then selects the node closest to each cluster center as the initial node for AR-based decoding.
 357

358 **5 EXPERIMENT**

359 Our decomposition-based FSTA and L2Seg excel on large-scale problems. In this section, we first
 360 evaluate how L2Seg-AR, L2Seg-NAR, and L2Seg-SYN accelerate various learning and non-learning
 361 iterative solvers on large-capacity CVRPs with long subtours. Next, we compare L2Seg against
 362 state-of-the-art baselines on standard benchmark CVRP and VRPTW instances. Finally, we provide
 363 in-depth analyses of our pipeline. Additional results on CVRPLib benchmarks, clustered CVRP,
 364 heterogeneous-demand CVRP, a case study, and further discussions are presented in Appendix E.
 365

366 **Backbone Solvers.** We apply L2Seg to three representative backbones: LKH-3 (Helsgaun, 2017)
 367 (*classic heuristic*), LNS (Shaw, 1998) (*decomposition framework*), and L2D (Li et al., 2021) (*learning-
 368 guided hybrid solvers, or machine-learning enhanced LNS*) to demonstrate the broad applicability.
 369 See Appendix D.1 for details.

370 **Baselines.** We include state-of-the-art classic solvers (LKH-3 (Helsgaun, 2017), HGS (Vidal, 2022)),
 371 neural solvers (BQ (Drakulic et al., 2023), LEHD (Luo et al., 2023), ELG (Gao et al., 2024), ICAM
 372 (Zhou et al., 2024), L2R (Zhou et al., 2025a), SIL (Luo et al., 2024)), and learning-based divide-and-
 373 conquer methods (GLOP (Ye et al., 2024), TAM (Hou et al., 2023), UDC (Zheng et al., 2024), L2D
 374 (Li et al., 2021), NDS (Hottung et al., 2025)). We rerun LKH-3, LNS, L2D, and NDS and report
 375 results from Luo et al. (2024); Zheng et al. (2024) for other baselines using the same benchmarks.
 376 See Appendix D.2 for baseline setup details and Appendix D.3 for L2Seg hyperparameters.
 377

378 **Data Distribution.** We generate all training and test instances following prior works Zheng et al.
 379 (2024) for CVRP and Solomon (1987) for VRPTW. See Appendix D.4 for details. For Section 5.1,
 380 results are averaged over 100 large-scale CVRP test instances at 2k and 5k scales (capacities 500

378
 379
 380
 381
 382
 383
 384
 385
 Table 1: Performance comparisons of our proposed L2Seg-NAR, L2Seg-AR, and L2Seg-SYN when accelerating three backbone solvers, LKH-3, LNS, and L2D, on the *large-capacity* CVRP instances. We report the objective value, improvement gain (%), and the time. The gains (the higher the better) are w.r.t. the performance of each backbone solver. Time limits were set to be 150s for CVRP2k and 240s for CVRP5k, respectively.

Methods	CVRP2k			CVRP5k		
	Obj. \downarrow	Gain \uparrow	Time \downarrow	Obj. \downarrow	Gain \uparrow	Time \downarrow
LKH-3 (Helsgaun, 2017)	45.24	0.00%	152s	65.34	0.00%	242s
L2Seg-NAR-LKH-3	44.34	1.99%	158s	64.72	0.95%	246s
L2Seg-AR-LKH-3	44.23	2.23%	151s	64.67	1.03%	244s
L2Seg-SYN-LKH-3	43.92	2.92%	152s	64.12	1.87%	248s
LNS (Shaw, 1998)	44.92	0.00%	154s	64.69	0.00%	246s
L2Seg-NAR-LNS	44.12	1.78%	154s	64.38	0.48%	244s
L2Seg-AR-LNS	44.02	2.00%	157s	64.24	0.70%	249s
L2Seg-SYN-LNS	43.42	3.34%	152s	63.94	1.16%	241s
L2D (Li et al., 2021)	43.69	0.00%	153s	64.21	0.00%	243s
L2Seg-NAR-L2D	43.55	0.32%	152s	64.02	0.30%	243s
L2Seg-AR-L2D	43.53	0.37%	156s	64.12	0.14%	247s
L2Seg-SYN-L2D	43.35	0.78%	157s	63.89	0.50%	248s

398 and 1,000, respectively). For Section 5.2, we follow standard NCO benchmarks, reporting averaged
 399 results on 1k, 2k, and 5k test datasets with 1,000 CVRP and 100 VRPTW instances per scale.

400 **Evaluation and Metric.** We impose time limits of 150s, 240s, and 300s for CVRP1k, 2k, and 5k,
 401 and 120s, 240s, and 600s for VRPTW1k, 2k and 5k, where each solver may finish a few seconds
 402 (< 10 s) beyond its limit. We set $\eta = 0.6$ and $n_{\text{KMEANS}} = 3$ for our L2Seg. We report averaged
 403 cost and per-instance solve time for all cases, and report percentage improvements over backbone in
 404 Section 5.1 and gaps to HGS (the best heuristic solvers) for both CVRP and VRPTW in Section 5.2.
 405

406 5.1 L2SEG ACCELERATES VARIOUS ITERATIVE BACKBONE SOLVERS

407 We first verify the effectiveness of the three L2Seg variants to enhance backbone solvers. Table 1
 408 presents results on large-capacity, uniformly distributed CVRPs with long subtours. All L2Seg vari-
 409 ants consistently improve each backbone across all problem scales. Also, performance gains are larger
 410 for weaker backbones. While L2Seg-AR and L2Seg-NAR each boost performance, their combination
 411 (L2Seg-SYN) delivers the best solutions. Figure 5 plots average objective curves over time, which re-
 412 veal 2x to 7x speedups on the backbone solvers with L2Seg-SYN. Remarkably, L2Seg-augmentation
 413 lets weaker solvers surpass stronger ones (e.g., LKH-3 + L2Seg-SYN outperforms vanilla LNS).
 414

415 5.2 L2SEG OUTPERFORMS CLASSIC AND NEURAL BASELINES ON CVRP AND VRPTW

416 We evaluate the highest-performing L2Seg-SYN implementation with three distinct backbone solvers
 417 and compare against state-of-the-art classical and neural approaches. As demonstrated in Table 2,
 418 L2Seg surpasses both classical and neural baselines on CVRP and VRPTW benchmarks. For CVRP,
 419 L2Seg achieves superior performance within comparable computational time relative to competitive
 420 classical solvers, including HGS on larger problem instances. It also outperforms the state-of-the-art
 421 learning-based constructive solver SIL (Luo et al., 2024) and divide-and-conquer solver L2D (Li
 422 et al., 2021) across all problem scales. For VRPTW, L2Seg exceeds all classical and learning-based
 423 solvers across various scales under identical time constraints, with performance advantages increasing
 424 as problem size grows. Notably, L2Seg consistently enhances performance when integrated with any
 425 backbone solver, demonstrating its versatility. Additional analyses are provided in Appendix E.
 426

427 5.3 L2SEG PERFORMS AND GENERALIZED WELL ON MORE REALISTIC CVRP

428 To demonstrate L2Seg’s robustness beyond uniform distributions, we evaluate both in-distribution and
 429 zero-shot generalization on instances with clustered customers and heterogeneous demands—patterns

397
 398 Figure 5: Search curves for L2Seg on
 399 three backbone solvers on large capacity
 400 CVRP2k (upper) and CVRP5k (lower).
 401 L2Seg achieves up to 7x speedups.
 402

432 Table 2: Performance comparisons of our L2Seg-SYN-L2D against baselines on *benchmark* CVRP
 433 and VRPTW instances. The gap % (lower the better) is w.r.t. the performance of HGS.

435 Methods	CVRP1k			CVRP2k			CVRP5k		
	436 Obj.↓	436 Gap↓	436 Time↓	436 Obj.↓	436 Gap↓	436 Time↓	436 Obj.↓	436 Gap↓	436 Time↓
HGS (Vidal, 2022)	41.20	0.00%	5m	57.20	0.00%	5m	126.20	0.00%	5m
LKH-3 (Helsgaun, 2017)	42.98	4.32%	6.6m	57.94	1.29%	11.4m	175.70	39.22%	2.5m
LNS (Shaw, 1998)	42.44	3.01%	2.5m	57.62	0.73%	4.0m	126.58	0.30%	5.0m
BQ (Drakulic et al., 2023)	44.17	7.21%	55s	62.59	9.42%	3m	139.80	10.78%	45m
LEHD (Luo et al., 2023)	43.96	6.70%	1.3m	61.58	7.66%	9.5m	138.20	9.51%	3h
ELG (Gao et al., 2024)	43.58	5.78%	15.6m	-	-	-	-	-	-
ICAM (Zhou et al., 2024)	43.07	4.54%	26s	61.34	7.24%	3.7m	136.90	8.48%	50m
L2R (Zhou et al., 2025a)	44.20	7.28%	34.2s	-	-	-	131.10	3.88%	1.8m
SIL (Luo et al., 2024)	42.00	1.94%	1.3m	57.10	-0.17%	2.4m	123.10	-2.52%	5.9m
TAM(LKH-3) (Hou et al., 2023)	46.30	12.38%	4m	64.80	13.29%	9.6m	144.60	14.58%	35m
GLOP-G(LKH-3) (Ye et al., 2024)	45.90	11.41%	2m	63.02	10.52%	2.5m	140.40	11.25%	8m
UDC (Zheng et al., 2024)	43.00	4.37%	1.2h	60.01	4.9%	2.15h	136.70	8.32%	16m
L2D (Li et al., 2021)	42.07	2.11%	2.5m	57.44	0.42%	4.2m	126.48	0.22%	5.3m
NDS (Hottung et al., 2025)	41.16	-0.01%	2.5m	56.11	-1.91%	4m	-	-	-
L2Seg-SYN-LKH-3	41.42	0.53%	2.5m	56.37	-1.45%	4.4m	122.34	-3.16%	5.1m
L2Seg-SYN-LNS	41.36	0.39%	2.5m	56.08	-1.96%	4.1m	121.96	-3.48%	5.1m
L2Seg-SYN-L2D	41.23	0.07%	2.5m	56.05	-2.01%	4.1m	121.87	-3.55%	5.1m
448 Methods	VRPTW1k			VRPTW2k			VRPTW5k		
	449 Obj.↓	449 Gap↓	449 Time↓	449 Obj.↓	449 Gap↓	449 Time↓	449 Obj.↓	449 Gap↓	449 Time↓
HGS (Vidal, 2022)	90.35	0.00%	2m	173.46	0.00%	4m	344.2	0.00%	10m
LKH-3 (Helsgaun, 2017)	91.32	1.07%	2m	174.25	0.46%	4m	353.2	2.61%	10m
LNS (Shaw, 1998)	88.12	-2.47%	2m	165.42	-4.64%	4m	338.5	-1.66%	10m
L2D (Li et al., 2021)	88.01	-2.59%	2m	164.12	-5.38%	4m	335.2	-2.61%	10m
NDS (Hottung et al., 2025)	87.54	-3.11%	2m	167.48	-3.45%	4m	-	-	-
L2Seg-SYN-LKH-3	88.65	-1.88%	2m	169.24	-2.43%	4m	345.2	0.29%	10m
L2Seg-SYN-LNS	87.31	-3.36%	2m	163.94	-5.49%	4m	334.1	-2.93%	10m
L2Seg-SYN-L2D	87.25	-3.43%	2m	163.74	-5.60%	4m	333.4	-3.14%	10m

456 Table 3: Performance of L2Seg-SYN v.s. Random FSTA to accelerate LNS on CVRP instances.

458 Methods	458 LNS (Backbone)	458 Random FSTA (40%)	458 Random FSTA (60%)	458 L2Seg-SYN w/o Enhanced Features	458 L2Seg-SYN
CVRP2k	44.92	46.24	46.89	43.65	43.42
CVRP5k	64.69	66.72	65.92	64.22	63.94

463 common in real-world logistics. As shown in Table 12, L2Seg maintains strong performance across
 464 all settings: zero-shot transfer achieves 0.82%-3.10% improvements over LNS, while in-distribution
 465 models reach 1.02%-3.54% gains. These consistent improvements across diverse distributions
 466 validate L2Seg’s practical applicability. See Appendix E.3 for details.

467 5.4 FURTHER ANALYSIS AND DISCUSSIONS

469 **Ablation Study.** Table 3 compares the LNS backbone; random FSTA with 40% and 60% of edges
 470 arbitrarily marked as unstable; L2Seg-SYN w/o enhanced features; and full L2Seg-SYN. Results
 471 show that Random FSTA worsens performance; and only full L2Seg-SYN with enhanced features
 472 achieves top performance. This confirms that L2Seg’s learnable, feature-guided segmentation is
 473 indispensable for preserving high-quality segments in FSTA for boosting backbone solvers.

474 **High Recall or High TNR?** Higher Recall allows more
 475 unstable edges to be reoptimized, potentially improving
 476 performance, while higher TNR reduces problem size and
 477 runtime. However, due to learning imprecision, pursuing
 478 high TNRs often reduces Recall, causing premature
 479 convergence. Figure 7 shows that for L2Seg-SYN, fixing too
 480 few (left: high Recall, low TNR) or too many (right: high
 481 TNR, low Recall) degrades performance. Ours (middle)
 482 balances this tradeoff for optimal performance.

483 **Why NAR+AR Is the Best?** Figure 6 shows a conceptual
 484 illustration of the model’s behaviour across L2Seg variants
 485 (See Appendix E.5 for a real case-study). L2Seg-NAR identifies
 unstable regions but over-classifies dependencies but struggles with

486 Figure 7: Statistic values of Size (reduced/original ratio), Recall, and TNR
 487 across three L2Seg-SYN configurations.

486
487 Table 4: Model prediction analysis of
488 L2Seg-LNS on CVRP2k.489
490
491
492

Methods	Recall↑	TNR↑	Obj.↓
L2Seg-SYN	89.02%	61.24%	43.42
L2Seg-NAR	91.46%	51.79%	44.02
L2Seg-AR	74.39%	54.07%	44.12

517 Figure 6: Illustration of L2Seg model behaviors.

initial detection. L2Seg-SYN achieves the complementary synergy. Moreover, Table 4 further shows that L2Seg-SYN achieves the best balanced Recall and TNR for the best performance.

The Structure of the Stability Labels. We hypothesize that stability labels are composed of two factors: (1) Inherent Problem Structure (e.g., edges common to the majority of local optima regardless of the solver), and (2) Solver-Dependent Patterns (edges preferred due to specific search biases). We designed an experiment on CVRP1k to compare label similarity across different solvers. We generated labels using HGS (60s time limit) and LKH-3 (1000 local search steps), comparing them against a "ground truth" generated by LKH-3 with a much longer run (3000 steps). Each solver was run with 10 different seeds to remove randomness. Label similarity is defined as the percentage of overlapping stable edges. As shown in Table 5, these results reveal two key insights: (1) Even fundamentally different solvers (HGS vs. LKH-3) share 78.3% of stable edges. This indicates that the majority of the stability is contributed by inherent problem structure rather than solver artifacts; (2) More similar solvers produce more similar labels (LKH-3 variants: 85.1% similarity) compared to fundamentally different solvers (HGS vs LKH-3: 78.3%), suggesting some solver-specific patterns.

518 Table 5: Label similarity across different solvers

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

	HGS	LKH-3 (1000 Local Search Step)	LKH-3 (3000 Local Search Step)
Label Similarity	78.3%	85.1%	100% (by default)

6 CONCLUSION

This work introduces Learning-to-Segment (L2Seg), a novel learning-guided framework that accelerates state-of-the-art iterative solvers for large-scale VRPs by 2x to 7x. We formalize the FSTA decomposition and employ a specialized encoder-decoder architecture to dynamically differentiate potentially unstable and stable segments in FSTA. L2Seg features three variants, L2Seg-NAR, L2Seg-AR, and L2Seg-SYN, pioneering the synergy of AR and NAR models in NCO. Extensive results demonstrate L2Seg’s state-of-the-art performance on representative CVRP and VRPTW and flexibility in boosting classic and learning-based solvers, including other decomposition frameworks. One potential limitation is that L2Seg is not guaranteed to boost all VRP solvers across all VRP variants. Future work includes: (1) extending L2Seg to accelerate additional VRP solvers (e.g., Vidal (2022)); (2) applying L2Seg to more VRP variants and other combinatorial optimization problems; and (3) expanding the synergy between AR and NAR models to the broader NCO community.

REPRODUCIBILITY STATEMENT

We provide comprehensive technical details in the appendices: architecture and input features (Appendix D.3), data generation (Appendix D.4), training procedures (Appendix C.4), and experimental setup (Section 5). The complete codebase, including code and pre-trained models, will be released on GitHub under the MIT License upon publication.

REFERENCES

Gilbert Laporte. Fifty years of vehicle routing. *Transportation science*, 43(4):408–416, 2009.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In *International Conference on Learning Representations*, 2018.

540 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
 541 a methodological tour d'horizon. *European Journal of Operational Research*, 290(2):405–421,
 542 2021.

543 Fu Luo, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Self-improved
 544 learning for scalable neural combinatorial optimization. *arXiv preprint arXiv:2403.19561*, 2024.

545 Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
 546 Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
 547 Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter
 548 Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun
 549 Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an extensive reinforcement learning for combinatorial
 550 optimization benchmark. *arXiv preprint arXiv:2306.17100*, 2023.

551 Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
 552 salesman and vehicle routing problems. *Roskilde: Roskilde University*, 12:966–980, 2017.

553 Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighbor-
 554 hood. *Computers & Operations Research*, 140:105643, 2022.

555 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing problems.
 556 In *International conference on principles and practice of constraint programming*, pages 417–431.
 557 Springer, 1998.

558 Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. *Advances
 559 in Neural Information Processing Systems*, 34:26198–26211, 2021.

560 Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. Recent exact algorithms for solving
 561 the vehicle routing problem under capacity and time window constraints. *European Journal of
 562 Operational Research*, 218(1):1–6, 2012.

563 Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
 564 POMO: Policy optimization with multiple optima for reinforcement learning. In *Advances in
 565 Neural Information Processing Systems*, volume 33, pages 21188–21198, 2020.

566 Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem
 567 solver with invariant nested view transformer. In *Forty-first International Conference on Machine
 568 Learning*, 2024.

569 Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
 570 Generalization of neural combinatorial solvers through the lens of adversarial robustness. In
 571 *International Conference on Learning Representations*, 2022.

572 Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers
 573 for vehicle routing problems via ensemble with transferrable local policy. In *Proceedings of the
 574 Thirty-First International Joint Conference on Artificial Intelligence*, 2024.

575 Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
 576 Bisimulation quotienting for generalizable neural combinatorial optimization. In *Advances in
 577 Neural Information Processing Systems*, 2023.

578 Chaoyang Wang, Pengzhi Cheng, Jingze Li, and Weiwei Sun. Leader reward for pomo-based neural
 579 combinatorial optimization. *arXiv preprint arXiv:2405.13947*, 2024.

580 Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
 581 salesman problem. *Advances in Neural Information Processing Systems*, 2023.

582 Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
 583 to gradient search in testing for combinatorial optimization. *Advances in Neural Information
 584 Processing Systems*, 2023a.

585 Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang
 586 Yang, and Junchi Yan. ROCO: A general framework for evaluating robustness of combinatorial
 587 optimization solvers on graphs. In *International Conference on Learning Representations*, 2023.

594 Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina.
 595 Contrastive predict-and-search for mixed integer linear programs. In Ruslan Salakhutdinov, Zico
 596 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp,
 597 editors, *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 598 *Proceedings of Machine Learning Research*, pages 19757–19771. PMLR, 21–27 Jul 2024. URL
 599 <https://proceedings.mlr.press/v235/huang24f.html>.

600 Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
 601 neighborhoods for integer linear programs with contrastive learning. In *International Conference
 602 on Machine Learning*, pages 13869–13890. PMLR, 2023.

603 André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural deconstruction search for vehicle
 604 routing problems. *Transactions on Machine Learning Research*, 2025.

605 Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
 606 heavy decoder: Toward large scale generalization. *Advances in Neural Information Processing
 607 Systems*, 36:8845–8864, 2023.

608 Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified
 609 neural divide-and-conquer framework for large-scale combinatorial optimization problems. In
 610 *Advances in Neural Information Processing Systems*, 2024.

611 Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
 612 Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
 613 *Advances in Neural Information Processing Systems*, volume 34, pages 11096–11107, 2021.

614 Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
 615 of routing problems with flexible neural k-opt. In *Advances in Neural Information Processing
 616 Systems*, volume 36, 2023.

617 Minjun Kim, Junyoung Park, and Jinkyoo Park. Learning to cross exchange to solve min-max vehicle
 618 routing problems. In *The Eleventh International Conference on Learning Representations*, 2023.

619 André Hottung and Kevin Tierney. Neural large neighborhood search for routing problems. *Artificial
 620 Intelligence*, page 103786, 2022.

621 Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Hongliang Guo, Yuejiao Gong, and Yeow Meng
 622 Chee. Efficient neural neighborhood search for pickup and delivery problems. In *Proceedings of the
 623 Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22*, pages 4776–4784,
 624 7 2022.

625 André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
 626 optimization problems. In *International Conference on Learning Representations*, 2022.

627 Minsu Kim, Jinkyoo Park, and joungho kim. Learning collaborative policies to solve np-hard routing
 628 problems. In *Advances in Neural Information Processing Systems*, volume 34, pages 10418–10430,
 629 2021.

630 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
 631 In *Advances in Neural Information Processing Systems*, 2023.

632 Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
 633 Laterre, and Thomas D Barrett. Combinatorial optimization with policy adaptation using latent
 634 space search. In *Advances in Neural Information Processing Systems*, 2023.

635 Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Bengio. Ant
 636 colony sampling with glownets for combinatorial optimization. *arXiv preprint arXiv:2403.07041*,
 637 2024.

638 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
 639 optimization problems. *Advances in Neural Information Processing Systems*, 35:25531–25546,
 640 2022.

648 Alberto Santini, Michael Schneider, Thibaut Vidal, and Daniele Vigo. Decomposition strategies for
 649 vehicle routing heuristics. *INFORMS Journal on Computing*, 35(3):543–559, 2023.
 650

651 Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
 652 large-scale routing problems in logistic systems via reinforcement learning. In *Proceedings of the*
 653 *28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 4648–4658,
 654 2022.

655 Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
 656 heuristics to solve large-scale vehicle routing problems in real-time. In *The Eleventh International*
 657 *Conference on Learning Representations*, 2023.

658 Changliang Zhou, Xi Lin, Zhenkun Wang, and Qingfu Zhang. L2r: Learning to reduce search space
 659 for generalizable neural routing solver. *arXiv preprint arXiv:2503.03137*, 2025a.
 660

661 Shipei Zhou, Yuandong Ding, Chi Zhang, Zhiguang Cao, and Yan Jin. Dualopt: A dual
 662 divide-and-optimize algorithm for the large-scale traveling salesman problem. *arXiv preprint*
 663 *arXiv:2501.08565*, 2025b.

664 Yuxin Pan, Ruohong Liu, Yize Chen, Zhiguang Cao, and Fangzhen Lin. Hierarchical learning-based
 665 graph partition for large-scale vehicle routing problems. *arXiv preprint arXiv:2502.08340*, 2025.
 666

667 Ke Li, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Destroy and repair using hyper-graphs for routing.
 668 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 18341–18349,
 669 2025.

670 Zhang-Hua Fu, Sipeng Sun, Jintong Ren, Tianshu Yu, Haoyu Zhang, Yuanyuan Liu, Lingxiao Huang,
 671 Xiang Yan, and Pinyan Lu. A hierarchical destroy and repair approach for solving very large-scale
 672 travelling salesman problem. *arXiv preprint arXiv:2308.04639*, 2023.
 673

674 Mouad Morabit, Guy Desaulniers, and Andrea Lodi. Learning to repeatedly solve routing problems.
 675 *Networks*, 83(3):503–526, 2024.

676 Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
 677 to gradient search in testing for combinatorial optimization. In *Advances in Neural Information*
 678 *Processing Systems*, 2023b.
 679

680 Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
 681 global partition and local construction for solving large-scale routing problems in real-time. In
 682 *Proceedings of the AAAI Conference on Artificial Intelligence*, 2024.

683 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
 684

685 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 686 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

687 Birger Funke, Tore Grünert, and Stefan Irnich. Local search for vehicle routing and scheduling
 688 problems: Review and conceptual integration. *Journal of heuristics*, 11:267–306, 2005.
 689

690 Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
 691 gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.

692 Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
 693 Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimization.
 694 *arXiv preprint arXiv:2405.01906*, 2024.
 695

696 Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window
 697 constraints. *Operations research*, 35(2):254–265, 1987.

698 Marc Goetschalckx and Charlotte Jacobs-Blecha. The vehicle routing problem with backhauls.
 699 *European Journal of Operational Research*, 42(1):39–51, 1989.
 700

701 Goran Martinovic, Ivan Aleksi, and Alfonzo Baumgartner. Single-commodity vehicle routing problem
 with pickup and delivery service. *Mathematical Problems in Engineering*, 2008(1):697981, 2008.

702 Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
703 New benchmark instances for the capacitated vehicle routing problem. *European Journal of
704 Operational Research*, 257(3):845–858, 2017.
705
706 Florian Arnold, Michel Gendreau, and Kenneth Sørensen. Efficiently solving very large-scale routing
707 problems. *Computers & operations research*, 107:32–42, 2019.
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756	APPENDICES	
757		
758		
759	CONTENTS	
760		
761	A Supplementary Definitions	16
762		
763	A.1 Unstable Edges and Stable Edges	16
764	A.2 Capacitated Vehicle Routing Problem	16
765	A.3 Vehicle Routing Problem with Time Windows	16
766		
767		
768	B Details of First-Segment-Then-Aggregate (FSTA)	16
769		
770	B.1 More discussions on FSTA	16
771	B.2 Proof of FSTA	21
772		
773		
774	C L2Seg Details	26
775		
776	C.1 Comparative Analysis of L2Seg Against Existing Methods	26
777	C.2 Input Feature Design Details	27
778	C.3 Masking Details	27
779	C.4 Training Data Collection Details	28
780	C.5 Inference Details	28
781		
782		
783		
784	D Experimental and Implementation Details	28
785		
786	D.1 Backbone solvers	28
787	D.2 Baselines	31
788	D.3 Parameters and Training Hyperparameters	31
789	D.4 Instance Generation	32
790		
791		
792	E Additional Experiments and Analysis	33
793		
794	E.1 Hyperparameter Study	33
795	E.2 Results on Realistic Routing Datasets	33
796	E.3 Results on Clustered CVRP and Heterogeneous-demand CVRP	34
797	E.4 Standard Deviation Comparison	34
798	E.5 Case Study: Comparison of Predictions of Three L2Seg Approaches	35
799	E.6 Unstable and Stable Edges Convergence	35
800	E.7 The Neural Network Overheads of L2Seg	36
801	E.8 Time of Training L2Seg	36
802		
803		
804		
805		
806		
807	F Broader Impacts	36
808		
809	G Large Language Models Usage	37

810 A SUPPLEMENTARY DEFINITIONS
811812 A.1 UNSTABLE EDGES AND STABLE EDGES
813814 We define an **iterative step** t as the t -th invocation of the backbone solver. Within each invocation,
815 the solver performs a full round of optimization (involving multiple local search operations) subject
816 to a fixed budget (e.g., time limit or number of steps) to return a locally optimal solution. Unstable
817 edges refer to edges that need to be re-optimized during the iterative re-optimization procedure. We
818 supplement the formal definitions as follows: given a solution \mathcal{R}_t at iterative step t , an edge $e \in \mathcal{R}$ is
819 unstable if $e \notin \mathcal{R}_{t+1}$. When we generate the labels for training, we use a lookahead backbone solver
820 for detecting unstable edges. An edge is a stable edge if it's not an unstable edge.
821822 A.2 CAPACITATED VEHICLE ROUTING PROBLEM
823824 Given a complete graph $G = (V, E)$ where $V = \{x_0, x_1, \dots, x_n\}$ is the set of nodes with node x_0
825 representing the depot and nodes x_1 to x_n representing customers. Each customer i has a demand
826 $d_i > 0$, and each edge $e_{i,j} \in E$ has an associated cost representing the travel distance or travel time
827 between nodes x_i and x_j . A fleet of homogeneous vehicles, each with capacity C , is available at the
828 depot. The objective is to find a set of routes that minimizes the total travel cost, subject to: (i) each
829 route starts and ends at the depot, (ii) each customer is visited exactly once, (iii) the total demand of
830 customers on each route does not exceed vehicle capacity C .
831832 A.3 VEHICLE ROUTING PROBLEM WITH TIME WINDOWS
833834 Given a complete graph $G = (V, E)$ where $V = \{x_0, x_1, \dots, x_n\}$ is the set of nodes with node x_0
835 representing the depot and nodes x_1 to x_n representing customers. Each customer i has a demand
836 $d_i > 0$, and each edge $e_{i,j} \in E$ has an associated cost representing the travel distance or travel time
837 between nodes x_i and x_j . Each customer i has a time window $[t_i^l, t_i^r]$ where t_i^l is the earliest arrival
838 time and t_i^r is the latest arrival time, and requires a service time s_i . A fleet of homogeneous vehicles,
839 each with capacity C , is available at the depot. The objective is to find a set of routes that minimizes
840 the total travel cost, subject to: (i) each route starts and ends at the depot, (ii) each customer is visited
841 exactly once, (iii) the total demand of customers on each route does not exceed vehicle capacity C ,
842 (iv) service at each customer begins within their time window $[t_i^l, t_i^r]$.
843844 B DETAILS OF FIRST-SEGMENT-THEN-AGGREGATE (FSTA)
845846 B.1 MORE DISCUSSIONS ON FSTA
847848 B.1.1 VISUALIZATION OF UNSTABLE EDGE PATTERNS
849850 In this section, we provide visualization and analysis of unstable edge distribution patterns, which
851 serve as foundational motivation for our L2Seg approach. We examine unstable edges on three
852 randomly selected CVRP1k instances solved iteratively using LKH-3. In these visualizations, red
853 dashed lines represent unstable edges, and yellow stars indicate depot locations.
854855 Our visualization reveals two key observations: (1) The number of unstable edges generally decreases
856 as optimization progresses, with more and more edges remaining unchanged between iterations; (2)
857 Edges at route boundaries exhibit higher stability, while unstable edges predominantly concentrate
858 within route interiors. Despite these discernible spatial patterns, no simple heuristic rule appears
859 sufficient to reliably predict unstable edges, as they can be distributed across the start, middle, and
860 end segments of each tour. This complexity motivates our development of L2Seg, a learning-based
861 method designed to capture these intricate patterns more effectively.
862863 B.1.2 VISUALIZATION OF APPLYING FSTA ON ONE CVRP INSTANCE
864865 To provide a concrete illustration of our FSTA methodology, we present an example of its application
866 to CVRP in Figure 9, which demonstrates the complete FSTA decomposition pipeline (detailed
867 algorithmic specifications are provided in Appendix B.1.4). This example utilizes the lookahead
868 oracle model for unstable edge identification (defined in Appendix B.1.1), employs LKH-3 as the
869

864 backbone optimization solver, and operates on a representative small-capacity CVRP1k instance
 865 to showcase the framework’s efficacy. Red dashed lines indicate detected unstable edges, while
 866 blue dashed lines represent re-optimized edges. Note that dual hypernode aggregation substantially
 867 reduces the problem size compared to the original instance.

868
 869 **B.1.3 ASSUMPTION VERIFICATION**
 870

871 Table 6: Oracle Performance on CVRP2k: Time to Reach L2Seg-SYN-LNS Solution Quality
 872

	Oracle (LNS) + perfect recall & TNR	Oracle (LNS) + 95% recall & 95% TNR	Oracle (LNS) + 90% recall & 90% TNR	Oracle + 70% recall & 70% TNR	Ref (L2Seg-SYN-LNS)
Obj.	56.02	56.01	56.02	56.04	56.08
Time	39s	62s	119s	324s	241s

873
 874 In Section 3, we hypothesized that effective problem reduction can substantially accelerate re-
 875 optimization. We empirically validate this by implementing a look-ahead oracle for unstable edge
 876 detection. The oracle performs a 1-step re-optimization using LKH-3 and identifies unstable edges
 877 E_{unstable} as those differing between the original and re-optimized solutions. FSTA then constructs a
 878 reduced problem instance based on these oracle-identified edges, which is subsequently re-optimized
 879 using the LKH-3 backbone solver. As this is an oracle-based evaluation, the time required for
 880 look-ahead computation is excluded from performance measurements.

881 Table 6 reports the time required to achieve performance equivalent to our learned model on small-
 882 capacity CVRP2k instances. Beyond the perfect oracle scenario, we evaluate imperfect oracle
 883

900 Figure 8: Spatial distribution of unstable edges (dashed red lines) across optimization iterations using
 901 LKH-3 solver. Results are presented for three randomly selected CVRP1k instances at iteavie search
 902 steps 1 and 5. While many edges remain unchanged across iterations, unstable edges predominantly
 903 emerge within the interiors of routes. In contrast, edges located at route boundaries exhibit higher
 904 stability throughout the iterative optimization process.
 905
 906
 907
 908
 909
 910
 911
 912
 913

Figure 9: Illustration of our FSTA applied to one CVRP instance. Each FSTA step corresponds to the descriptions in Appendix B.1.4. Red dashed lines: unstable edges; blue dashed lines: re-optimized edges. Note that the subproblem (d) contains substantially fewer nodes than the original instance (a).

configurations where recall and true negative rates fall below 100%. The perfect oracle demonstrates substantially superior efficiency. Performance remains competitive under moderate imperfection levels; however, achieving recall and TNR as high as 90% without oracle access is highly non-trivial. In more practical scenarios, where recall and TNR drop to 70%, the oracle-based approach is outperformed by our L2Seg-SYN-LNS, highlighting the effectiveness of our learned model.

These results provide evidence that accurate identification of unstable edges, coupled with appropriate FSTA-based problem reduction, enables significantly more efficient re-optimization.

B.1.4 DETAILS OF FSTA DECOMPOSITION FRAMEWORK

In this section, we present the details of the FSTA decomposition framework. Given a routing problem P and an initial solution \mathcal{R} , one iterative step of FSTA yields a potentially improved solution \mathcal{R}_+ . The framework comprises five sequential steps (also illustrated in Algorithm 1 and Figure 2):

1. **Unstable Edges Detection:** We implement effective methods (e.g., our learning-based model L2Seg or random heuristics detailed in Section 5.4) to identify unstable edges E_{unstable} and obtain the stable edge set $E_{\text{stable}} = E \setminus E_{\text{unstable}}$. This identification challenge is addressed by our L2Seg model, with full details provided in Section 4 and Appendix C.
2. **Segment Partitioning:** After removing unstable edges E_{unstable} , each route decomposes into multiple disjoint segments consisting of consecutive nodes connected by stable edges. Formally, we segment each route into $(x_0, S_{1,j_1}^i, S_{j_1,j_2}^i, \dots, x_0) = (x_0, S_{(1)}^i, S_{(2)}^i, \dots, x_0) \in R^i$, where x_0 is depot and we simplify the notation by using a single index for segments (note that a segment can consist only one single node).
3. **Hypernode Aggregation:** We aggregate each segment $S_{j,k}^i$ and represent it with either one hypernode ($\tilde{S}_{j,k}^i = \{\tilde{x}_{j,k}^i\}$) or two hypernodes ($\tilde{S}_{j,k}^i = \{\tilde{x}_j^i, \tilde{x}_k^i\}$) with aggregated attributes.

972 This transformation requires that (our feasibility theorem): (a) the reduced problem remains
 973 feasible, and (b) a solution in the aggregated problem can be mapped back to a feasible
 974 solution in the original problem. These transformations produce a reduced problem \tilde{P} with
 975 corresponding solution $\tilde{\mathcal{R}}$.
 976

977 **4. Re-optimization with Backbone Solvers:** We invoke a backbone solver to improve solution
 978 $\tilde{\mathcal{R}}$, yielding an enhanced solution $\tilde{\mathcal{R}}_+$. While theoretically any solver could serve as the
 979 backbone solver, practical acceleration requires solvers capable of effectively leveraging
 980 existing solutions (e.g., LKH-3 (Helsgaun, 2017)).
 981

982 **5. Solution Recovery:** With the improved solution $\tilde{\mathcal{R}}_+$ for the reduced problem \tilde{P} , we recover
 983 a corresponding solution \mathcal{R}_+ for the original problem P by expanding each hypernode back
 984 into its original segment of nodes. This step relies on our monotonicity theorem, which
 985 guarantees that an improved solution in \tilde{P} maps to an improved solution in P .
 986

987 **Selection of Hypernode Aggregation Strategies.** We analyze the trade-offs between single and dual
 988 hypernode aggregation strategies: (1) *Dual hypernode aggregation* enables bidirectional segment
 989 traversal, potentially improving re-optimization efficiency by expanding the solution search space.
 990 However, this approach requires enforcing inclusion of the connecting edge between hypernodes,
 991 adding algorithmic complexity. (2) *Single hypernode aggregation* achieves superior problem size
 992 reduction but constrains segment traversal to a fixed direction, thereby restricting the re-optimization
 993 search space and potentially limiting performance improvements. Additionally, single hypernode
 994 aggregation transforms symmetric routing problems into asymmetric variants, which may compromise
 995 the efficiency of existing backbone solvers that are typically optimized for symmetric instances.
 996

997 **Selection of Backbone Solvers.** Our framework is generic to be applied to most existing VRP
 998 heuristics by design. In practice, acceleration within our framework requires solvers that can
 999 effectively utilize initial solutions as warm starts. Furthermore, if the dual hypernode aggregation
 1000 is used, the backbone solver needs to fix certain edges during local search. Our framework is
 1001 readily compatible with a variety of solvers without modifying their source codes, including LKH-3
 1002 (Helsgaun, 2017), decomposition-based solvers like LNS (Shaw, 1998), and learning-based methods
 1003 such as L2D (Li et al., 2021). Incorporating additional solvers such as HGS (Vidal, 2022), would
 1004 involve extending its current code to accept initial solutions as input, which we leave as future
 1005 work. Notably, as demonstrated in Section 5, our L2Seg-augmented approach with relatively weaker
 1006 backbone solvers outperforms HGS in multiple CVRP and VRPTW benchmark scenarios.
 1007

1008 **Applicability to Routing Variants.** FSTA is broadly applicable to routing problem variants that
 1009 support feasible hypernode aggregation and solution recovery, as ensured by the feasibility and mono-
 1010 tonicity conditions established in Section 3. In Appendix B.2, we formally prove that many routing
 1011 variants meet these conditions, demonstrating the versatility of our L2Seg framework. Detailed
 1012 implementation guidelines for applying hypernode aggregation across different routing variants are
 1013 provided in Appendix B.1.5.
 1014

1012 **Algorithm 1:** Iteratively Re-optimize Routing Problems with FSTA

1013 **Input:** Routing problem P , initial solution \mathcal{R} , time limit T_{TL} , backbone solver BS, model M to
 1014 identify unstable edges

1015 **Output:** Improved solution \mathcal{R}

```

1016 1 while time limit  $T_{TL}$  is not reached do
1017 2    $E_{\text{unstable}} \leftarrow M(P, \mathcal{R})$ ;                                // Unstable Edges Detection
1018 3    $\{S_{j,k}^i\} \leftarrow \text{GetSegments}(P, \mathcal{R}, E_{\text{unstable}})$ ;          // Segment Partitioning
1019 4   Obtain  $\{\tilde{S}_{j,k}^i\}$  and reduced problem  $\tilde{P}$  with solution  $\tilde{\mathcal{R}}$ ; // Hypernode Aggregation
1020 5    $\tilde{\mathcal{R}}_+ \leftarrow \text{BS}(\tilde{P}, \tilde{\mathcal{R}})$ ;                                // Re-optimization with Backbone Solver
1021 6    $\mathcal{R}_+ \leftarrow \text{RecoverSolution}(P, \tilde{P}, \tilde{\mathcal{R}}_+)$ ;                  // Solution Recovery
1022 7    $\mathcal{R} \leftarrow \mathcal{R}_+$ ;                                         // Update current solution
1023 8 end while
1024 9 return  $\mathcal{R}$ 
1025

```

1026 B.1.5 APPLYING FSTA ON VARIOUS VRPs
1027

1028 In this section, we present the implementation details of FSTA across diverse routing variants,
1029 including the Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing Problem with Time
1030 Windows (VRPTW), Vehicle Routing Problem with Backhauls (VRPB), and Single-Commodity
1031 Vehicle Routing Problem with Pickup and Delivery (1-VRPPD). Without loss of generality, we
1032 denote a segment to be aggregated as $S_{j,k} = (x_j \rightarrow \dots \rightarrow x_k)$, and its corresponding hypernode
1033 representation as either $\tilde{S}_{j,k} = \{\tilde{x}\}$ (single hypernode) or $\tilde{S}_{j,k} = \{\tilde{x}_j, \tilde{x}_k\}$ (dual hypernodes). The
1034 implementation specifications are summarized in Table 7.

1035 **CVRP.** We provide the formal definition of CVRP in Section 3. Each node in CVRP is characterized
1036 by location and demand attributes. For CVRP, we employ dual hypernode aggregation where location
1037 attributes are preserved as $\tilde{x}_j = x_j$ and $\tilde{x}_k = x_k$, while demand is equally distributed between
1038 hypernodes as $\tilde{d}_j = \tilde{d}_k = \frac{1}{2}(d_j + \dots + d_k)$. We force the solver to include the edge connecting \tilde{x}_j
1039 and \tilde{x}_k in the solution.

1040 **VRPTW.** We provide the formal definition of VRPTW in Section 3. In addition to location and
1041 demand attributes, VRPTW instances are characterized by time windows $[t^l, t^r]$ and service time
1042 s for each node. For VRPTW, we employ adaptive strategies for hypernode aggregation based on
1043 temporal feasibility. We first compute the aggregated time windows \bar{t}_j^l, \bar{t}_j^r and aggregated service
1044 time \bar{s}_j using the following recursive formulation:

$$\begin{aligned} t_m^l &= \begin{cases} t_k^l & \text{if } m = k \\ \max\{t_m^l, \bar{t}_{m+1}^l - (s_m + \text{dist}(x_m, x_{m+1}))\} & \text{if } j \leq m \leq k-1, \end{cases} \\ \bar{t}_m^r &= \begin{cases} t_k^r & \text{if } m = k \\ \min\{t_m^r, \bar{t}_{m+1}^r - (s_m + \text{dist}(x_m, x_{m+1}))\} & \text{if } j \leq m \leq k-1, \end{cases} \\ \bar{s}_m &= \begin{cases} s_k & \text{if } m = k \\ \bar{s}_{m+1} + s_m + \text{dist}(x_m, x_{m+1}) & \text{if } j \leq m \leq k-1, \end{cases} \end{aligned} \quad (3)$$

1053 where $[t_m^l, t_m^r]$ denotes the time window for node x_m , s_m represents the service time at node x_m ,
1054 and $\text{dist}(x_m, x_{m+1})$ is the travel time from node x_m to node x_{m+1} .
1055

1056 If $\bar{t}_j^l \leq \bar{t}_j^r$ (feasible time window), we employ single hypernode aggregation with: $\text{dist}(x_i, \tilde{x}) =$
1057 $\text{dist}(x_i, x_j)$, $\text{dist}(\tilde{x}, x_i) = \text{dist}(x_k, x_i)$, $\tilde{d} = d_j + \dots + d_k$, $\tilde{t}^l = \bar{t}_j^l$, $\tilde{t}^r = \bar{t}_j^r$, and $\tilde{s} = \bar{s}_j$.
1058

1059 If $\bar{t}_j^l > \bar{t}_j^r$ (temporal infeasible time window), we employ dual hypernode aggregation with: $\tilde{x}_j = x_j$,
1060 $\tilde{x}_k = x_k$, $\tilde{d}_j = \tilde{d}_k = \frac{1}{2}(d_j + \dots + d_k)$, time windows $\tilde{t}_j^l = 0$, $\tilde{t}_j^r = \bar{t}_j^r$, $\tilde{t}_k^l = \bar{t}_j^l$, $\tilde{t}_k^r = \infty$, and
1061 service times $\tilde{s}_j = 0$, $\tilde{s}_k = \bar{s}_j$. We additionally set $\text{dist}(\tilde{x}_j, \tilde{x}_k) = 0$ and enforce inclusion of the
1062 edge connecting \tilde{x}_j and \tilde{x}_k in the solution.

1063 **VRPB.** Compared to the CVRP, the VRPB (Goetschalckx and Jacobs-Blecha, 1989) involves serving
1064 two types of customers: linehaul customers requiring deliveries from the depot and backhaul cus-
1065 tomers providing goods to be collected and returned to the depot. The primary constraint is that all
1066 linehaul customers must be visited before any backhaul customers on the same route, while ensuring
1067 vehicle capacity is never exceeded during either the delivery or pickup phases. We use $b_i \in \{0, 1\}$
1068 to indicate whether node i is a backhaul customer. For VRPB, we require the edge connecting to a
1069 linehaul customer and a backhaul customer included in the E_{unstable} . We employ single hypernode
1070 aggregation that $\text{dist}(x_i, \tilde{x}) = \text{dist}(x_i, x_j)$, $\text{dist}(\tilde{x}, x_i) = \text{dist}(x_k, x_i)$, $\tilde{d} = d_j + \dots + d_k$, and $\tilde{b} = b_j$
1071 (we require customer being the same type within each segment that $b_j = \dots = b_k$).

1072 **1-VRPPD.** Compared to the CVRP, the 1-VRPPD (Martinovic et al., 2008) deals with customers
1073 labeled as either cargo sink ($d_i < 0$) or cargo source ($d_i > 0$), depending on their pickup or delivery
1074 demand. Along the route of each vehicle, the vehicle could not load negative cargo or cargo exceeding
1075 the capacity of the vehicle C . For any segment $S_{j,k}$, we define $D^j = d_j$, $D^{j+1} = d_j + d_{j+1}, \dots$,
1076 and $D^k = d_j + d_{j+1} + \dots + d_k$. We further define $D^{\min} = \min\{0, D_j, D_{j+1}, \dots\}$ and $D^{\max} =$
1077 $\max\{0, D_j, D_{j+1}, \dots\}$. For 1-VRPPD, we require three hypernodes $\tilde{x}_j = x_j$, \tilde{x}_{mid} , and $\tilde{x}_k = x_k$,
1078 where the distances from \tilde{x}_{mid} to \tilde{x}_j or \tilde{x}_k are 0, and infinity for the other hypernodes. For the
1079 aggregated demands, $\tilde{d}_j = D^{\min}$, $\tilde{d}_{\text{mid}} = D^{\max} - D^{\min}$, and $\tilde{d}_k = D^k - D^{\max} - D^{\min}$. Additional
constraints are added to ensure the directed edges $\tilde{x}_j \rightarrow \tilde{x}_{\text{mid}} \rightarrow \tilde{x}_k$ are included in the solutions.

1080
1081 Table 7: Implementation specifications of FSTA hypernode aggregation for CVRP, VRPTW, VRPB
1082 variants. Refer to Equation 3 for the definitions of \tilde{s}_j , \tilde{t}_j^l and \tilde{t}_j^r .

CVRP				
Type	Condition	Attribute	Aggregation	Additional Constraints / Settings
Two Hypernodes	Always	Location/Distance	$\tilde{x}_j = x_j$ $\tilde{x}_k = x_k$	Include edge $\tilde{x}_j \rightarrow \tilde{x}_k$ in the solution
		Demand	$\tilde{d}_j = \tilde{d}_k = \frac{1}{2}(d_j + \dots + d_k)$	
VRPTW				
Type	Condition	Attribute	Aggregation	Additional Constraints / Settings
One Hypernode	$\tilde{t}_j^l \leq \tilde{t}_j^r$	Location/Distance	$\text{dist}(x_i, \tilde{x}) = \text{dist}(x_i, x_j)$, $\text{dist}(\tilde{x}, x_i) = \text{dist}(x_k, x_i)$	None
		Demand	$\tilde{d} = d_j + \dots + d_k$	
		Service Time	$\tilde{s} = \tilde{s}_j$	
		Time Windows	$\tilde{t}^l = \tilde{t}_j^l, \tilde{t}^r = \tilde{t}_j^r$	
Two Hypernodes	$\tilde{t}_j^l > \tilde{t}_j^r$	Location/Distance	$\tilde{x}_j = x_j, \tilde{x}_k = x_k$	Include edge $\tilde{x}_j \rightarrow \tilde{x}_k$ in solution; set $\text{dist}(\tilde{x}_j, \tilde{x}_k) = 0$
		Demand	$\tilde{d}_j = \tilde{d}_k = \frac{1}{2}(d_j + \dots + d_k)$	
		Service Time	$\tilde{s}_j = 0, \tilde{s}_k = \tilde{s}_j$	
		Time Windows	$\tilde{t}_j^l = 0, \tilde{t}_j^r = \tilde{t}_j^l, \tilde{t}_k^l = \tilde{t}_j^l, \tilde{t}_k^r = \infty$	
VRPB				
Type	Condition	Attribute	Aggregation	Additional Constraints / Settings
One Hypernode	Always	Location/Distance	$\text{dist}(x_i, \tilde{x}) = \text{dist}(x_i, x_j)$, $\text{dist}(\tilde{x}, x_i) = \text{dist}(x_k, x_i)$	Require $b_j = \dots = b_k$ (same customer type) during Unstable Edges Detection Stage
		Demand	$\tilde{d} = d_j + \dots + d_k$	
		Is backhaul	$\tilde{b} = b_j$	
1-VRPPD				
Type	Condition	Attribute	Aggregation	Additional Constraints / Settings
Three Hypernodes	Always	Location/Distance	$\tilde{x}_j = x_j, \tilde{x}_k = x_k$ $\text{dist}(\tilde{x}_j, \tilde{x}_{\text{mid}}) = \text{dist}(\tilde{x}_{\text{mid}}, \tilde{x}_k) = 0$	Include edges $\tilde{x}_j \rightarrow \tilde{x}_{\text{mid}} \rightarrow \tilde{x}_k$ in the solution
		Demand	\tilde{x}_{mid} only connects to \tilde{x}_j and \tilde{x}_k	
			$\tilde{d}_j = D^{\min}, \tilde{d}_{\text{mid}} = D^{\max} - D^{\min},$	
			$\tilde{d}_k = D^k - D^{\max} - D^{\min}$	

B.2 PROOF OF FSTA

1112 **Theorem. (Feasibility)** If the aggregated solution $\tilde{\mathcal{R}}_+$ is a feasible solution to the aggregated problem,
1113 then \mathcal{R}_+ is a feasible solution to the original, non-aggregated problem. **(Monotonicity)** Let $\tilde{\mathcal{R}}_+^1$ and
1114 $\tilde{\mathcal{R}}_+^2$ be two feasible solutions to the aggregated problem, with $f(\tilde{\mathcal{R}}_+^1) \leq f(\tilde{\mathcal{R}}_+^2)$, where $f(\cdot)$ denotes
1115 the objective function (total travel cost). Then, for the associated solution in the original space, we
1116 also have $f(\mathcal{R}_+^1) \leq f(\mathcal{R}_+^2)$.

1117 **Proof Structure and Notation.** Without loss of generality, we consider a single-route solution
1118 containing one segment $S_{j,k} = (x_j \rightarrow \dots \rightarrow x_k)$ with more than one node, i.e., the solution \mathcal{R}
1119 contains route $R = (x_0 \rightarrow x_1 \rightarrow \dots \rightarrow S_{j,k} \rightarrow x_{k+1} \rightarrow \dots \rightarrow x_0)$. We define the aggregated
1120 problem with node set $\tilde{V} = \{x_0\} \cup \{x_p\}_{p < j} \cup \{\tilde{S}_{j,k}\} \cup \{x_p\}_{p > k}$, where nodes outside the segment retain
1121 their original representation, ensuring their feasibility by construction. Since we enforce the inclusion
1122 of the edge connecting \tilde{x}_j and \tilde{x}_k in dual hypernode aggregation within solution $\tilde{\mathcal{R}}_+$, the segment
1123 $\tilde{S}_{j,k}$ must be incorporated into some route $\tilde{R}_+^* \in \tilde{\mathcal{R}}_+$ for both hypernode aggregation strategies. We
1124 denote the improved route containing this segment after mapping back to the original problem as R_+^* .

1125 We present the segment aggregation strategies for different routing variants below, followed by proofs
1126 of feasibility and monotonicity for the aggregation scheme. Note that the following analysis naturally
1127 extends to multi-route solutions with multiple segments per route.

B.2.1 CVRP

1128 **Aggregation Strategy (Two Hypernodes).** The detailed implementation of FSTA on CVRP can
1129 be found in Appendix B.1.5 and Table 7. Notice that one single hypernode aggregation is also
1130 applicatable for CVRP, and \tilde{d}_j, \tilde{d}_k could take other values as long as $\tilde{d}_j + \tilde{d}_k = d_j + \dots + d_k$.

1134 **Feasibility Proof [Capacity Constraint].** Notice that since $\tilde{d}_j + \tilde{d}_k = d_j + \dots + d_k$, we have:

$$\begin{aligned} 1136 \quad \sum_{x_i \in \tilde{R}_+^*} d_i &= \sum_{x_i \in \tilde{R}_+^* \setminus \tilde{S}_{j,k}} d_i + \tilde{d}_j + \tilde{d}_k \\ 1137 \quad &= \sum_{x_i \in R_+^* \setminus S_{j,k}} d_i + d_j + \dots + d_k = \sum_{x_i \in R_+^*} d_i \\ 1138 \quad & \\ 1139 \quad & \\ 1140 \quad & \end{aligned} \tag{4}$$

1141 Thus, we have:

$$1143 \quad \sum_{x_i \in \tilde{R}_+^*} d_i \leq C \Rightarrow \sum_{x_i \in R_+^*} d_i \leq C \tag{5}$$

1146 Then, we have a feasible $\tilde{\mathcal{R}}_+ \Rightarrow$ a feasible \mathcal{R}_+ .

1147 \square

1148 **Monotonicity Proof.** Notice that

$$\begin{aligned} 1150 \quad f(\tilde{\mathcal{R}}_+) &= f(\tilde{\mathcal{R}}_+ \setminus \{\tilde{R}_+^*\}) + f(\{\tilde{R}_+^*\}) = f(\mathcal{R}_+ \setminus \{R_+^*\}) + f(\{\tilde{R}_+^*\}) \\ 1151 \quad &= f(\mathcal{R}_+ \setminus \{R_+^*\}) + f(\{R_+^*\}) - \sum_{j \leq q < k} dist(x_q, x_{q+1}) + dist(\tilde{x}_j, \tilde{x}_k) \\ 1152 \quad & \\ 1153 \quad & \\ 1154 \quad & = f(\mathcal{R}_+) + \text{Const}|_{S_{j,k}} \end{aligned} \tag{6}$$

1155 where $\text{Const}|_{S_{j,k}}$ is a constant once the segment $S_{j,k}$ is decided. Therefore, we have:

$$1157 \quad f(\tilde{\mathcal{R}}_+^1) \leq f(\tilde{\mathcal{R}}_+^2) \Rightarrow f(\mathcal{R}_+^1) + \text{Const}|_{S_{j,k}} \leq f(\mathcal{R}_+^2) + \text{Const}|_{S_{j,k}} \Rightarrow f(\mathcal{R}_+^1) \leq f(\mathcal{R}_+^2) \tag{7}$$

1159 \square

1160 We note that the feasibility proof for capacity constraint and the monotonicity proof could be easily
1161 extended to the single hypernodes aggregation.

1163 B.2.2 VRPTW

1164 **Aggregation Strategy (Mixed Strategies).** The detailed implementation of FSTA on VRPTW can
1165 be found in Appendix B.1.5 and Table 7. We denote $s_m^* = s_m + \text{dist}(x_m, x_{m+1})$ for $j \leq m < k$
1166 and $s_k^* = s_k$. We further set the service time by $\tilde{s}_m = \sum_{m \leq q \leq k} s_q^*$, and we repeat the temporal time
1167 window $[\tilde{t}_j^l, \tilde{t}_j^r]$ (which could be infeasible) defined by the following recursive relationship:

$$\begin{aligned} 1170 \quad \tilde{t}_m^l &= \begin{cases} t_k^l & m = k \\ \max\{t_m^l, \tilde{t}_{m+1}^l - s_m^*\} & j \leq m \leq k-1, \end{cases} \\ 1171 \quad \tilde{t}_m^r &= \begin{cases} t_k^r & m = k \\ \min\{t_m^r, \tilde{t}_{m+1}^r - s_m^*\} & j \leq m \leq k-1, \end{cases} \end{aligned} \tag{8}$$

1175 where $[\tilde{t}_m^l, \tilde{t}_m^r]$ is the time window for a node x_m , s_m is the service time at node x_m and
1176 $\text{dist}(x_m, x_{m+1})$ is the time to travel from node x_m to node x_{m+1} .

1178 **Feasibility Proof [Time Window Constraint].** We first prove for the condition that the temporal time
1179 window $[\tilde{t}_j^l, \tilde{t}_j^r]$ is feasible ($\tilde{t}_j^l < \tilde{t}_j^r$) and single hypernode aggregation is applied. Then, we extend to
1180 the infeasible temporal time window condition where dual hypernode aggregation is applied.

1181 **Condition of Feasible Temporal Time Windows (One Hypernode).** We present an inductive proof
1182 based on the *segment length*. Given a feasible solution $\tilde{\mathcal{R}}_+$ for the aggregated problem, we show
1183 the following two conditions of the corresponding non-aggregated solution \mathcal{R}_+ to satisfy the time
1184 window constraint:

- 1185 • *Condition (1): We visit each node x_m before the end of its time window t_m^r .*
- 1186 • *Condition (2): The total time we spent visiting the entire segment is the same in both
1187 aggregated and non-aggregated representations.*

1188

1189

1190

1193

1194

1195

1196

1197

1198

1199

1200

1201 Figure 10: This illustration demonstrates the temporal dynamics of the aggregated segment. The left
 1202 panel shows the time function characterized by a piecewise linear structure: initially decreasing with
 1203 slope -1, then transitioning to a constant value corresponding to the aggregated left time window
 1204 boundary. The right panel presents two distinct scenarios that characterize the relationship between
 1205 the aggregated left time window (\tilde{t}_m^l) and the individual non-aggregated left time windows (t_m^l).
 1206

1207 *Proof of Condition (1):*

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

- *Base case (segment length = 1).* Suppose the segment $S_{k,k} = (x_k)$ contains a single node x_k . Then the aggregated problem is identical to the non-aggregated problem by construction, so condition (1) is trivially satisfied.

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

- *Inductive Step (segment length = $(k - m) + 1 > 1$).* textit the aggregation of the segment $S_{m+1,k} = (x_{m+1} \rightarrow \dots \rightarrow x_k)$ into $\tilde{S}_{m+1,k} = \{\tilde{x}_{m+1,k}\}$ satisfies condition (1). We want to show that the aggregation of the segment $S_{m,k} = (x_m \rightarrow \dots \rightarrow x_k)$ into $\tilde{S}_{m,k} = \{\tilde{x}_{m,k}\}$ also satisfies condition (1).

Since $\tilde{\mathcal{R}}_+$ is a feasible solution for the aggregated problem, we will visit the hypernode $\tilde{x}_{m,k}$ before the end of its time window $\tilde{t}_m^r = \min\{t_m^r, \tilde{t}_{m+1}^r - s_m^*\}$. Corresponding, in the associated non-aggregated solution, we visit the node x_m before its time limit t_m^r , hence satisfying condition (1) for the node x_m . Furthermore, in the associated non-aggregated solution, we visit the next node x_{m+1} before time $t_m^r + s_m^* \leq \tilde{t}_{m+1}^r$. Based on the inductive hypothesis, condition (1) holds for the rest of the segment $(x_{m+1} \rightarrow \dots \rightarrow x_k)$ if we arrive at node x_{m+1} before its end time. Hence, condition (1) holds for the whole segment $S_{m,k} = (x_m \rightarrow x_{m+1} \rightarrow \dots \rightarrow x_k)$.

1235

1236

1237

1238

1239

1240

1241

Proof of Condition (2): For all m , suppose we arrive at the hypernode $\tilde{x}_{m,k}$ at time $t \leq \tilde{t}_m^r$ in the aggregated solution. By definition, the total time spent on the aggregated segment (sum of the waiting time, service time, and the travel time) can be written as the following linear function with -1 slope as shown in the first figure in Figure 10.

$$\tilde{g}_m(t) = \begin{cases} \tilde{s}_m, & t \geq \tilde{t}_m^l \\ \tilde{t}_m^l - t + \tilde{s}_m, & t < \tilde{t}_m^l \end{cases} \quad (9)$$

Note: the first condition $t \geq \tilde{t}_m^l$ means we do not need to wait at any node in the segment $S_{m,k}$, and the second condition means we need to wait at some node in the segment $S_{m,k}$.

It suffices to show that the total time spent on the non-aggregated segment also follows the same function. Again, we prove this by induction.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1242
1243 We now show the total time function $g_m(t)$ for the segment $S_{m,k} = (x_m \rightarrow \dots \rightarrow x_k)$ also
1244 equals $\tilde{g}_m(t)$.
1245

By definition of the non-aggregated segment, depending on whether we need to wait at the
1246 first node x_m , we have:
1247

$$g_m(t) = \begin{cases} s_m^* + g_{m+1}(t + s_m^*) & t \geq t_m^l \\ t_m^l - t + s_m^* + g_{m+1}(t_m^l + s_m^*) & t < t_m^l. \end{cases} \quad (11)$$

1248
1249 *Note: the first condition $t \geq t_m^l$ means we do not need to wait at the first node x_m , and the
1250 second condition $t < t_m^l$ means we need to wait at the first node x_m .*
1251

1252 We split the discussion into the following two cases, based on whether we need to wait at
1253 any node along the segment $S_{m+1,k}$, if we leave node x_m at t_m^l :

1254 1. $t_m^l + s_m^* \geq \bar{t}_{m+1}^l$. In this case, $t_m^l \geq \bar{t}_{m+1}^l - s_m^*$, and hence $\bar{t}_m^l = \max\{t_m^l, \bar{t}_{m+1}^l - s_m^*\} = t_m^l$ as shown in case 1 of Figure 10. Hence, we have
1255
1256

$$g_m(t) = \begin{cases} s_m^* + g_{m+1}(t + s_m^*) & t \geq \bar{t}_m^l \\ t_m^l - t + s_m^* + g_{m+1}(t_m^l + s_m^*) & t < \bar{t}_m^l. \end{cases} \quad (12)$$

1257 By inductive hypothesis, we have
1258
1259

$$g_{m+1}(t + s_m^*) = \tilde{s}_{m+1}, \quad t \geq t_m^l = \bar{t}_m^l,$$

1260 as in this case $t + s_m^* \geq t_m^l + s_m^* \geq \bar{t}_{m+1}^l$.
1261

1262 Hence, we have
1263
1264

$$\begin{aligned} g_m(t) &= \begin{cases} s_m^* + \tilde{s}_{m+1} & t \geq \bar{t}_m^l \\ t_m^l - t + s_m^* + \tilde{s}_{m+1} & t < \bar{t}_m^l. \end{cases} \\ &= \begin{cases} \tilde{s}_m & t \geq \bar{t}_m^l \\ t_m^l - t + \tilde{s}_m & t < \bar{t}_m^l \end{cases} = \tilde{g}_m(t). \end{aligned} \quad (13)$$

1265 where we apply the definition of $\tilde{s}_m = s_m^* + \tilde{s}_{m+1}$.
1266

1267 2. $t_m^l + s_m^* < \bar{t}_{m+1}^l$. In this case, $\bar{t}_{m+1}^l - s_m^* > t_m^l$, and hence $\bar{t}_m^l = \max\{t_m^l, \bar{t}_{m+1}^l - s_m^*\} = \bar{t}_{m+1}^l - s_m^*$ as shown in case 2 of Figure 10.
1268

1269 By inductive hypothesis, we have
1270
1271

$$\begin{aligned} g_{m+1}(t_m^l + s_m^*) &= \bar{t}_{m+1}^l - (t_m^l + s_m^*) + \tilde{s}_{m+1} \\ &= \bar{t}_m^l - t_m^l + \tilde{s}_{m+1} \end{aligned} \quad (14)$$

1272 We also have, for all $t \geq t_m^l$,
1273
1274

$$\begin{aligned} g_{m+1}(t + s_m^*) &= \begin{cases} \tilde{s}_{m+1}, & t + s_m^* \geq \bar{t}_{m+1}^l \\ \bar{t}_{m+1}^l - (t + s_m^*) + \tilde{s}_{m+1}, & t + s_m^* < \bar{t}_{m+1}^l \end{cases} \\ &= \begin{cases} \tilde{s}_{m+1}, & t \geq \bar{t}_m^l \\ \bar{t}_m^l - t + \tilde{s}_{m+1}, & t_m^l \leq t < \bar{t}_m^l \end{cases} \end{aligned} \quad (15)$$

1275 As a result, we have
1276
1277

$$\begin{aligned} g_m(t) &= \begin{cases} s_m^* + \tilde{s}_{m+1} & t \geq \bar{t}_m^l \\ s_m^* + \bar{t}_m^l - t + \tilde{s}_{m+1} & \bar{t}_m^l \leq t < \bar{t}_m^l \\ t_m^l - t + s_m^* + \bar{t}_m^l - t_m^l + \tilde{s}_{m+1} & t < \bar{t}_m^l, \end{cases} \\ &= \begin{cases} \tilde{s}_m & t \geq \bar{t}_m^l \\ \bar{t}_m^l - t + \tilde{s}_m & \bar{t}_m^l \leq t < \bar{t}_m^l \\ \bar{t}_m^l - t + \tilde{s}_m & t < \bar{t}_m^l, \end{cases} \\ &= \begin{cases} \tilde{s}_m & t \geq \bar{t}_m^l \\ \bar{t}_m^l - t + \tilde{s}_m & t < \bar{t}_m^l \end{cases} = \tilde{g}_m(t). \end{aligned} \quad (16)$$

1296 **Condition of Infeasible Temporal Time Windows (Two Hypernodes).** In our time window
 1297 aggregation, \tilde{t}_j^l is responsible for the time expenditure and \tilde{t}_j^r is responsible for feasibility. In this
 1298 case, we have $\tilde{t}_j^l > \tilde{t}_j^r$, which indicates that to maintain feasibility along the segment, one must arrive
 1299 at the segment before the aggregated start time \tilde{t}_j^l , and since one arrives earlier, one must wait at
 1300 some node within the segment. Since $\tilde{t}_j^l > \tilde{t}_j^r$ is not permitted according to the definition of VRPTW,
 1301 we then utilize one additional hypernode to increase the representational capacity such that the first
 1302 hypernode handles the feasibility component (\tilde{t}_j^r), and the second hypernode handles the travel time
 1303 component (\tilde{t}_j^l). Specifically, $\tilde{t}_j^l = 0$, $\tilde{t}_j^r = \tilde{t}_j^r$, $\tilde{t}_k^l = \tilde{t}_j^l$, $\tilde{t}_k^r = \infty$ and $\tilde{s}_j = 0$, $\tilde{s}_k = \bar{s}_j$ with the
 1304 additional constraint that $\text{dist}(\tilde{x}_j, \tilde{x}_k) = 0$.
 1305

1306 For time window feasibility (Condition (1)), since $\tilde{t}_j^r = \bar{t}_j^r$, the vehicle must serve the segment
 1307 before \bar{t}_j^r , ensuring the feasibility of serving each customer in the non-aggregated problem. For
 1308 travel time equivalence (Condition (2)), the time expended before reaching the second node is
 1309 $\tilde{s}_j + \text{dist}(\tilde{x}_j, \tilde{x}_k) = 0$. Namely, after the vehicle arrives at the segment at time t , the travel time is
 1310 entirely determined by $\tilde{t}_k^l = \tilde{t}_j^l$ and $\tilde{s}_k = \bar{s}_j$, whereby in the feasible temporal time window situation,
 1311 the travel time equivalence is demonstrated.
 1312

1313 We complete the time window constraint feasibility proof for VRPTW for both aggregation strategies
 1314 across all conditions.
 1315 \square

1316 **Monotonicity Proof.** For the dual hypernode aggregation, please refer to the *Monotonicity Proof* in
 1317 B.2.1. For the single hypernode aggregation, notice that

$$\begin{aligned} f(\tilde{\mathcal{R}}_+) &= f(\tilde{\mathcal{R}}_+ \setminus \{\tilde{R}_+^*\}) + f(\{\tilde{R}_+^*\}) = f(\mathcal{R}_+ \setminus \{R_+^*\}) + f(\{R_+^*\}) \\ &= f(\mathcal{R}_+ \setminus \{R_+^*\}) + f(\{R_+^*\}) - \sum_{j \leq q < k} \text{dist}(x_q, x_{q+1}) \\ &= f(\mathcal{R}_+) + \text{Const}|_{S_{j,k}} \end{aligned} \quad (17)$$

1323 where $\text{Const}|_{S_{j,k}}$ is a constant once the segment $S_{j,k}$ is decided. Therefore, we have:
 1324

$$f(\tilde{\mathcal{R}}_+^1) \leq f(\tilde{\mathcal{R}}_+^2) \Rightarrow f(\mathcal{R}_+^1) + \text{Const}|_{S_{j,k}} \leq f(\mathcal{R}_+^2) + \text{Const}|_{S_{j,k}} \Rightarrow f(\mathcal{R}_+^1) \leq f(\mathcal{R}_+^2) \quad (18)$$

1326 \square

1328 B.2.3 VRPB

1330 **Aggregation Strategy (One Hypernode).** The detailed implementation of FSTA on VRPB can be
 1331 found in Appendix B.1.5 and Table 7.

1332 **Feasibility Proof [Backhaul Constraint].** Without loss of generality, we assume all nodes within the
 1333 segment $S_{j,k}$ are backhaul customers ($b_j = \dots = b_k = 1$). Notice that since $\tilde{d} = d_j + \dots + d_k$, for
 1334 the backhaul stage, we have:
 1335

$$\begin{aligned} \sum_{x_i \in \tilde{R}_+^* \text{ and } b_i=1} d_i &= \sum_{x_i \in \tilde{R}_+^* \setminus S_{j,k} \text{ and } b_i=1} d_i + \tilde{d} \\ &= \sum_{x_i \in R_+^* \setminus S_{j,k} \text{ and } b_i=1} d_i + d_j + \dots + d_k = \sum_{x_i \in R_+^* \text{ and } b_i=1} d_i \end{aligned} \quad (19)$$

1340 For the linehaul stage, we have:
 1341

$$\sum_{x_i \in \tilde{R}_+^* \text{ and } b_i=0} d_i = \sum_{x_i \in R_+^* \text{ and } b_i=0} d_i \quad (20)$$

1344 Thus, we have:
 1345

$$\begin{aligned} \sum_{x_i \in \tilde{R}_+^* \text{ and } b_i=0} d_i \leq C &\Rightarrow \sum_{x_i \in R_+^* \text{ and } b_i=0} d_i \leq C \\ \sum_{x_i \in \tilde{R}_+^* \text{ and } b_i=1} d_i \leq C &\Rightarrow \sum_{x_i \in R_+^* \text{ and } b_i=1} d_i \leq C \end{aligned} \quad (21)$$

1350 Then, we have a feasible $\tilde{\mathcal{R}}_+ \Rightarrow$ a feasible \mathcal{R}_+ .
 1351 \square

1353 **Monotonicity Proof.** Please refer to the monotonicity proof of VRPTW in Appendix B.2.2.
 1354

1355 B.2.4 1-VRPPD.
 1356

1357 **Aggregation Strategy (Three Hypernodes).** The detailed implementation of FSTA on 1-VRPPD can
 1358 be found in Appendix B.1.5 and Table 7.

1359 **Feasibility Proof [1-Commodity Pickup and Delivery Constraint].** A feasible $\tilde{\mathcal{R}}_+$ indicates that
 1360 whenever the vehicle is traveling an aggregated segment $\tilde{S}_{j,k}$, denoted the starting load of the vehicle
 1361 to be d_{st} and ending load of the vehicle to be d_{ed} , we have:
 1362

$$\begin{aligned} 1363 \quad 0 &\leq d_{st} + D^{\min} \leq C \\ 1364 \quad 0 &\leq d_{st} + D^{\min} + D^{\max} - D^{\min} \leq C \\ 1365 \end{aligned} \tag{22}$$

1366 which requires $-D^{\min} \leq d_{st} \leq C - D^{\max}$ and $d_{ed} = d_{st} + D^k$.
 1367

1368 On the other hand, a feasible solution \mathcal{R}_+ indicates that whenever the vehicle is traveling a segment
 1369 $S_{j,k}$, denoted the starting load of the vehicle to be d_{st} and ending load of the vehicle to be d_{ed} , we
 1370 have:
 1371

$$0 \leq d_{st} + D^i \leq C, \quad \forall i \tag{23}$$

1372 which also requires $-D^{\min} \leq d_{st} \leq C - D^{\max}$ and $d_{ed} = d_{st} + D^k$. Then, we have a feasible $\tilde{\mathcal{R}}_+ \Rightarrow$
 1373 a feasible \mathcal{R}_+ .
 1374 \square

1375 **Monotonicity Proof.** As $\text{dist}(\tilde{x}_j, \tilde{x}_{\text{mid}}) = \text{dist}(\tilde{x}_{\text{mid}}, \tilde{x}_k) = 0$, we can eliminate the middle hypernode
 1376 and use a two-hypernode representation when calculating the routing objective. Please refer to
 1377 the monotonicity proof of CVRP in Appendix B.2.1 for the monotonicity proof of two-hypernode
 1378 representation.
 1379

1380 C L2SEG DETAILS
 1381

1383 C.1 COMPARATIVE ANALYSIS OF L2SEG AGAINST EXISTING METHODS
 1384

1385 **Comparisons with Large Neighborhood Search (LNS).** (1) LNS (Large Neighborhood Search)
 1386 operates within a bounded local neighborhood. The algorithm selects a specific region, destroys
 1387 elements within that boundary, and rebuilds only that portion while keeping the rest of the solution
 1388 intact. For instance, in Li et al. (2021), LNS selects 3-5 subroutes as its neighborhood, modifying
 1389 only these routes while leaving all others completely unchanged. There is a clear demarcation
 1390 between the modified neighborhood and the preserved structure. (2) FSTA (our method), in contrast,
 1391 operates more globally across the entire solution. It can break existing edges and aggregate segments
 1392 throughout all subroutes simultaneously, without any predefined neighborhood boundaries. The
 1393 modifications are distributed across the entire solution rather than confined to a local region, which
 1394 represents a fundamental departure from existing LNS to more efficiently guide the search. We note
 1395 that such a flexible framework would not be possible without the proposed ML component, which
 1396 also constitutes the core novelty and contribution of our work to the field. (3) Moreover, FSTA
 1397 and LNS are complementary: FSTA can be applied on top of LNS, where LNS first selects a large
 1398 neighborhood, then FSTA fixes stable edges globally within that selected region.

1399 **Comparisons with Evolutionary Algorithms.** L2Seg framework and evolutionary algorithms (Vidal,
 1400 2022) approach the preservation of solution components from different angles and with distinct
 1401 goals, and are not interchangeable in use. Evolutionary algorithms (Vidal, 2022) rely on crossover
 1402 to merge relatively “good” components from different parents, aiming to promote diversity and
 1403 generate promising offspring, while our L2Seg framework introduces a learning-guided mechanism
 1404 to detect unstable edges and aggregates stable edge sequences into hypernodes, enabling a new form
 1405 of segment-based decomposition that improves scalability and efficiency.

1404 **Comparisons with Path Decomposition Method.** (1) Firstly, path decomposition relies on geometric
 1405 heuristics (e.g., clustering routes by barycenter distances) to identify decomposition boundaries. In
 1406 contrast, L2Seg employs deep learning models (synergistic NAR-AR architecture) to intelligently
 1407 predict which segments should be aggregated, capturing complex patterns that simple heuristics
 1408 cannot identify. We also propose a novel learning-guided framework with bespoke training and
 1409 inference processes that are unique to the machine learning method. (2) Secondly, while some prior
 1410 work explores similar decomposition ideas (e.g., on CVRP only), we are the first to study FSTA
 1411 decomposition theoretically, providing formal definitions, feasibility theorems, and monotonicity
 1412 guarantees for various VRPs. (3) Lastly, we empirically demonstrate that by leveraging deep learning
 1413 in our L2Seg framework, our method consistently achieves significant speedups on state-of-the-art
 1414 backbones. This provides new insights for the community, highlighting the power of learning-guided
 1415 optimization in accelerating combinatorial solvers.

1416 **Comparisons with Previous Learning-based Framework L2D (Li et al., 2021).** (1) Different
 1417 from the sub-route level, our method detects unstable edges both within and across sub-routes,
 1418 enabling more global and flexible decomposition. (2) It optimizes beyond localized neighborhoods
 1419 by identifying improvements that span multiple distant regions simultaneously. (3) It reduces the size
 1420 of sub-routes by aggregating stable segments into hypernodes, whereas L2D reduces only the number
 1421 of sub-routes per iteration. This segment-level aggregation allows more adaptive and coarse-grained
 1422 reduction, offering higher efficiency and solution quality, while remaining complementary to L2D.

1423 **Comparisons with hypergraph decomposition methods Fu et al. (2023) and Li et al. (2025).** Fu
 1424 et al. (2023) introduce HDR, a hierarchical destroy-and-repair algorithm that recursively compresses
 1425 TSP instances to handle problems with millions of cities. While HDR achieves remarkable scalability
 1426 on very large TSP instances using non-learning heuristics, our approach differs by employing learned
 1427 policies to identify unstable edges and extending beyond TSP to handle CVRP, VRPTW, and other
 1428 variants. HDR uses straightforward edge-fixing based on historical local optima, whereas we learn
 1429 destruction patterns from the lookahead heuristics. Li et al. (2025) propose DRHG, which uses
 1430 hyper-graphs to reduce consecutive edges and supervised learning for reconstruction. Their approach
 1431 applies heuristic clustering for destruction followed by ML-based repair of the destroyed segments.
 1432 Our method takes the opposite approach: we use machine learning to identify unstable edges that
 1433 should be destroyed, then employ efficient subsolvers for reconstruction. This reversed strategy
 1434 allows us to leverage learned patterns for the critical decision of what to destroy while using proven
 1435 optimization techniques for repair. While DRHG demonstrates strong results on TSP and CVRP, our
 1436 experiments extend to more constrained variants like VRPTW.

1437 C.2 INPUT FEATURE DESIGN DETAILS

1439 Previous works Kool et al. (2018); Li et al. (2021); Kwon et al. (2020) typically utilize only basic
 1440 input features for routing problems (xy-coordinates and normalized demands for node features, and
 1441 edge cost for edge features). While neural networks can potentially learn complex patterns from these
 1442 basic features, tailored feature engineering may lead to enhanced model performance. As illustrated
 1443 in Appendix B.1, we observe that detecting unstable edges may depend on better capturing local
 1444 dependencies. We therefore design enhanced node and edge features for our learning task, as shown
 1445 in Table 8. We also include time windows and service time as node features for VRPTWs.

1447 C.3 MASKING DETAILS

1449 In general, any set of unstable edges could lead to a feasible FSTA problem reduction. However,
 1450 employing logic-based local search algorithms to select unstable edges can produce more reasonable
 1451 action space reduction and improved performance. Thus, we design the deletion and insertion stages
 1452 of L2Seg to emulate a general local search operation.

1453 **For the deletion stage**, given the current node x , we mask out nodes that are: (1) not connected to x ;
 1454 or (2) part of an edge that has already been deleted during the current deletion stage. Note that the
 1455 model may select the special ending node x_{end} to terminate the decoding sequence.

1456 **For the insertion stage**, given the current node x , we mask out nodes that are: (1) already connected
 1457 to x ; (2) endpoints of two newly inserted edges; or (3) the special ending node x_{end} .

1458 Table 8: Description of enhanced input features for nodes and edges.
1459
1460

Type	Description	Dimension
Nodes	The xy coordinates	2
	The normalized demand	1
	The centroid of the subtour for each node	2
	The coordinates of the two nodes connecting to each node	4
	The travel cost of the two edges connecting to each node	2
	The relative xy coordinates	2
	The angles w.r.t. the depot	1
	The weighted angles w.r.t. the depot by the distances	1
	The distances of the closest 3 neighbor for each node	3
	The percentage of the K nearest nodes that are within the same subtour. K=5, 15, 40	3
Edges	The percentage of the K% nearest nodes that are within the same subtour. K=5, 15, 40	3
	The travel cost	1
	Whether each edge is within the current solution	1
	The travel cost rank of each edge w.r.t. the corresponding end points	1

1479 C.4 TRAINING DATA COLLECTION DETAILS
1480

1481 In this section, we present pseudocode that demonstrate the process of generating training labels
1482 for both NAR and AR models in Algorithm 2. As a complement to the methodology described
1483 in Section 4, we derive our training data from N_P distinct problem instances and extract labels
1484 from the first T_{IS} iterative improvement steps. For the AR labels, which emulate feasible local
1485 search operations, each label (representing a sequence of nodes) is associated with a quantifiable
1486 improvement in solution quality. We retain only those labels that yield improvements exceeding the
1487 threshold η_{improv} , and we employ stochastic sampling by accepting labels with probability α_{AC} . This
1488 selective approach ensures both high-quality training signals and sufficient diversity across problem
1489 instances and optimization trajectories within the same training budget.

1490 C.5 INFERENCE DETAILS
1491

1493 In this section, we present the pseudocode that delineates the inference processes of L2Seg-SYN
1494 (Algorithm 3), L2Seg-NAR (Algorithm 4), and L2Seg-AR (Algorithm 5). It is important to note that
1495 our implementation leverages batch operations for efficient inference across multiple subproblems
1496 simultaneously. The K-means clustering algorithm was strategically selected for initial node identifi-
1497 cation due to its parallelization capabilities. By merging graphs from different subproblems into a
1498 unified structure, we can execute the clustering algorithm once for the entire problem space. This
1499 parallel clustering approach through K-means significantly enhances decoding efficiency. Notably,
1500 within each iterative step, our design requires only a single call of the NAR and AR models, thereby
1501 optimizing computational resources.

1503 D EXPERIMENTAL AND IMPLEMENTATION DETAILS
15041505 D.1 BACKBONE SOLVERS
1506

1507 **LKH-3.** The Lin-Kernighan-Helsgaun algorithm (LKH-3) Helsgaun (2017) represents a strong
1508 classical heuristic solver for routing problems, which is widely used in NCO for benchmark. It
1509 employs sophisticated k -opt moves and effective neighborhood search strategies. For our experiments,
1510 we impose time limits rather than local search update limits: 150s and 240s for large-capacity CVRP2k
1511 and CVRP5k, respectively, and 2m, 4m, and 10m for VRPTW1k, VRPTW2k, and VRPTW5k,
1512 respectively. For small-capacity CVRPs, we adopt the results reported in Zheng et al. (2024).

1512
 1513
 1514 **Algorithm 2:** Training Data Generation
 1515 **Input:** Solution distribution \mathcal{P} , number of instances $N_{\mathcal{P}}$, backbone solver BS , number of
 1516 iterative steps T_{IS} , improvement threshold η_{improv} , sample coefficient α_{AC}
 1517 **Output:** Label sets $\mathcal{Y}_{NAR}, \mathcal{Y}_{AR}$

1518 1 $\mathcal{Y}_{NAR} \leftarrow \emptyset, \mathcal{Y}_{AR} \leftarrow \emptyset$ **for** $i \leftarrow 1$ **to** $N_{\mathcal{P}}$ **do**
 1519 2 Sample $P \sim \mathcal{P}$ and obtain an initial solution \mathcal{R}
 1520 3 **for** $t \leftarrow 1$ **to** T_{IS} **do**
 1521 4 $\mathcal{R}_+ \leftarrow BS(P, \mathcal{R})$ // Apply backbone solver
 1522 5 $E_{diff} \leftarrow (E_{\mathcal{R}} \setminus E_{\mathcal{R}_+}) \cup (E_{\mathcal{R}_+} \setminus E_{\mathcal{R}})$
 1523 6 $V_{unstable} \leftarrow V_{E_{diff}}$
 1524 7 $Y_{NAR}^P \leftarrow \mathbb{1}\{x \in V_{unstable}\}$ // NAR model labels
 1525 8 $\mathcal{Y}_{NAR} \leftarrow \mathcal{Y}_{NAR} \cup \{(P, Y_{NAR}^P)\}$
 1526 9 $\mathcal{K}_{TR} \leftarrow DFS(P, V_{unstable}, E_{diff})$ // Find sequences
 1527 10 **foreach** $K \in \mathcal{K}_{TR}$ **do**
 1528 11 Obtain P_K with solution R_K and sequence y_K with Improvement
 1529 12 **if** $Improvement \geq \eta_{improv}$ and with probability α_{AC} **then**
 1530 13 $\mathcal{Y}_{AR} \leftarrow \mathcal{Y}_{AR} \cup \{(P_K, y_K)\}$ // AR model labels
 1531 14 **end if**
 1532 15 // Skip sequences with low improvement or by
 1533 16 probability
 1534 17 **end foreach**
 1535 18 $\mathcal{R} \leftarrow \mathcal{R}_+$ // Update current solution
 1536 19 **end for**
 1537 20 **return** $\mathcal{Y}_{NAR}, \mathcal{Y}_{AR}$

1538
 1539
 1540
 1541 **Algorithm 3:** L2Seg-SYN: Synergized Prediction
 1542 **Input:** Problem P , current solution \mathcal{R} , NAR model, AR model, threshold η , number of clusters
 1543 n_{KMEANS}
 1544 **Output:** Set of unstable edges $E_{unstable}$

1545 1 $\mathcal{P}_{TR} \leftarrow \text{DecomposeIntoSubproblems}(P, \mathcal{R})$ // Partition into $\sim |\mathcal{R}|$
 1546 subproblems
 1547 2 $E_{unstable} \leftarrow \emptyset$
 1548 3 **for** each subproblem $P_{TR} \in \mathcal{P}_{TR}$ **do**
 1549 4 $\mathbf{p}^{NAR} \leftarrow \text{NARModel}(P_{TR})$ // Get NAR predictions for each node
 1550 5 $\hat{y}_{NAR} \leftarrow \{x_i \mid p_i^{NAR} \geq \eta\}$ // Identify unstable nodes via threshold
 1551 6 Clusters $\leftarrow \text{KMeans}(\hat{y}_{NAR}, n_{KMEANS})$ // Group unstable nodes into
 1552 clusters
 1553 7 InitialNodes $\leftarrow \{x \mid x = \arg \max_{x_i \in c} p_i^{NAR}, c \in \text{Clusters}\}$
 1554 8 // Select initial node with highest probability for the AR
 1555 model
 1556 9 $E_{unstable}^{P_{TR}} \leftarrow \emptyset$ // Unstable edges for this subproblem
 1557 10 **for** each node $x_{init} \in \text{InitialNodes}$ with corresponding P_{TR} **do**
 1558 11 $E_{x_{init}}^{P_{TR}} \leftarrow \text{ARModel}(P_{TR}, x_{init})$ // Get unstable edges via the AR
 1559 model
 1560 12 $E_{unstable}^{P_{TR}} \leftarrow E_{unstable}^{P_{TR}} \cup E_{x_{init}}^{P_{TR}}$
 1561 13 **end for**
 1562 14 $E_{unstable} \leftarrow E_{unstable} \cup E_{x_{init}}^{P_{TR}}$ // Aggregate unstable edges
 1563 15 **end for**
 1564 16 **return** $E_{unstable}$

1566
1567
1568
1569
1570

Algorithm 4: L2Seg-NAR: Non-Autoregressive Prediction

1571 **Input:** Problem P , current solution \mathcal{R} , NAR model, threshold η
 1572 **Output:** Set of unstable edges E_{unstable}

1573 1 $\mathcal{P}_{\text{TR}} \leftarrow \text{DecomposeIntoSubproblems}(P, \mathcal{R})$ // Partition into $\sim |\mathcal{R}|$
 1574 subproblems

1575 2 $E_{\text{unstable}} \leftarrow \emptyset$

1576 3 **for** each subproblem $P_{\text{TR}} \in \mathcal{P}_{\text{TR}}$ **do**

1577 4 $\mathbf{p}^{\text{NAR}} \leftarrow \text{NARModel}(P_{\text{TR}})$ // Get NAR predictions for each node

1578 5 $\hat{y}_{\text{NAR}} \leftarrow \{x_i \mid p_i^{\text{NAR}} \geq \eta\}$ // Identify unstable nodes via threshold

1579 6 $E_{\text{unstable}}^{P_{\text{TR}}} \leftarrow \{(x_i, x_j) \mid x_i \in \hat{y}_{\text{NAR}} \text{ or } x_j \in \hat{y}_{\text{NAR}}, \text{ and } (x_i, x_j) \in E_{P_{\text{TR}}}\}$
 // Mark all edges connected to the unstable nodes as
 unstable

1580 7 $E_{\text{unstable}} \leftarrow E_{\text{unstable}} \cup E_{\text{unstable}}^{P_{\text{TR}}}$ // Aggregate unstable edges

1581 8 **end for**

1582 9 **return** E_{unstable}

1586
1587
1588
1589
1590
1591
1592
1593
1594

Algorithm 5: L2Seg-AR: Autoregressive Prediction

1595 **Input:** Problem P , current solution \mathcal{R} , AR model, number of clusters n_{KMEANS}
 1596 **Output:** Set of unstable edges E_{unstable}

1597 1 $\mathcal{P}_{\text{TR}} \leftarrow \text{DecomposeIntoSubproblems}(P, \mathcal{R})$ // Partition into $\sim |\mathcal{R}|$
 1598 subproblems

1599 2 $E_{\text{unstable}} \leftarrow \emptyset$

1600 3 **for** each subproblem $P_{\text{TR}} \in \mathcal{P}_{\text{TR}}$ **do**

1601 4 Clusters $\leftarrow \text{KMeans}(\text{AllNodes in } P_{\text{TR}}, n_{\text{KMEANS}})$ // Cluster all nodes

1602 5 Centroids $\leftarrow \{\text{ComputeCentroid}(c) \mid c \in \text{Clusters}\}$

1603 6 InitialNodes $\leftarrow \{x \mid x = \arg \min_{x_i \in c} \text{Distance}(x_i, \text{centroid}_c), c \in \text{Clusters}\}$
 // Select node closest to each cluster centroid for the AR
 model

1604 7 $E_{\text{unstable}}^{P_{\text{TR}}} \leftarrow \emptyset$ // Unstable edges for this subproblem

1605 8 **for** each node $x_{\text{init}} \in \text{InitialNodes}$ with corresponding P_{TR} **do**

1606 9 $E_{x_{\text{init}}}^{P_{\text{TR}}} \leftarrow \text{ARModel}(P_{\text{TR}}, x_{\text{init}})$ // Get unstable edges via the AR
 model

1607 10 $E_{\text{unstable}}^{P_{\text{TR}}} \leftarrow E_{\text{unstable}}^{P_{\text{TR}}} \cup E_{x_{\text{init}}}^{P_{\text{TR}}}$

1608 11 **end for**

1609 12 $E_{\text{unstable}} \leftarrow E_{\text{unstable}} \cup E_{\text{unstable}}^{P_{\text{TR}}}$ // Aggregate unstable edges

1610 13 **end for**

1611 14 **return** E_{unstable}

1616
1617
1618
1619

1620 **LNS.** Local Neighborhood Search (LNS) Shaw (1998) is a powerful decomposition-based metaheuristic
 1621 that iteratively improves solutions by destructively and constructively exploring defined search
 1622 neighborhoods. We implement LNS following the approach in Li et al. (2021), where neighborhoods
 1623 consisting of three adjacent subroutes are randomly selected for re-optimization. We establish time
 1624 limits of 150s and 240s for large-capacity CVRP2k and CVRP5k, respectively; 2.5m, 4m, and 5m for
 1625 small-capacity CVRP1k, CVRP2k, and CVRP5k, respectively; and 2m, 4m, and 10m for VRPTW1k,
 1626 VRPTW2k, and VRPTW5k, respectively. LKH-3 serves as the backbone solver with a 1,000 per-step
 1627 local search updates limit.

1628 **L2D.** Learning to Delegate (L2D) Li et al. (2021) is the state-of-the-art learning-based optimization
 1629 framework that integrates neural networks with classical optimization solvers to intelligently delegate
 1630 subproblems to appropriate solvers. The framework employs a neural network trained to identify the
 1631 most promising neighborhoods for improvement. For comparative fairness, we apply identical time
 1632 limits and backbone solver configurations as used in our LNS implementation. When augmented by
 1633 L2Seg, training proceeds in two stages: we first train the L2D models following the methodology in
 1634 Li et al. (2021), then train the L2Seg model using the resulting pre-trained L2D models.

1635 **Initial Solution Heuristics.** For both training data generation and inference, we employ the initial
 1636 solution heuristic inspired by (Li et al., 2021). Our method partitions nodes according to their angular
 1637 coordinates with respect to the depot. We begin by selecting a reference node, marking its angle as
 1638 0, and incrementally incorporate additional nodes into the same group until the collective demand
 1639 approaches the capacity threshold ($c_{\text{init}} K_{\text{veh}} C \approx \sum d_i$), where approximately K_{veh} vehicles would
 1640 be required to service the group. This process continues sequentially, forming new groups until all
 1641 customers are assigned. Finally, we apply LKH-3 in parallel to solve each subproblem independently.
 1642 In our implementation, we set $K_{\text{veh}} = 6$ and $\alpha_{\text{init}} = 0.95$ as the controlling parameters.

1643 D.2 BASELINES

1644 In this section, we provide further clarification regarding the baselines used in our comparative
 1645 analysis, beyond the backbone solvers. We independently executed LKH-3, LNS, and L2D using
 1646 consistent parameters. Results for SIL were sourced from Luo et al. (2024), L2R from Zhou et al.
 1647 (2025a), and all other baselines from Zheng et al. (2024). When multiple variants of a baseline were
 1648 presented in the original publications, we selected the configuration that achieved the best objective
 1649 values. Since the original implementation of NDS (Hottung et al., 2025) was evaluated on NVIDIA
 1650 A100 GPUs whereas our experiments use NVIDIA V100 GPUs, we re-ran NDS on our hardware for
 1651 fair comparison.

1652 It is important to note that all reported results were evaluated on identical test instances (for CVRPs) or
 1653 on instances sampled from the same distribution (for VRPTWs), ensuring fair comparison. Moreover,
 1654 our experiments were conducted on hardware with less powerful GPUs compared to those utilized in
 1655 Luo et al. (2024); Zheng et al. (2024); Zhou et al. (2025a). This hardware discrepancy suggests that
 1656 the performance advantages demonstrated by our proposed model would likely persist or potentially
 1657 increase if all methods were evaluated on identical computing infrastructure.

1658 We re-implemented the backbone solvers and L2D (Li et al., 2021) to ensure a fair and strong
 1659 comparison. Notably, prior studies (Zheng et al., 2024; Ye et al., 2024) did not explore configurations
 1660 optimized for L2D’s full potential. Specifically, they imposed overly conservative limits (e.g., only
 1661 allowing 1 trail) on LKH-3 local search updates and did not supply current solution information to
 1662 the LKH-3 solver during the resolution process. This significantly weakened L2D’s performance in
 1663 their benchmarks. In contrast, our comparison reflects L2D’s best achievable performance.

1664 D.3 PARAMETERS AND TRAINING HYPERPARAMETERS

1665 **Parameters.** Table 9 lists the values of parameters used in training data generation and inference.
 1666 **Training Hyperparameters.** For model training, we optimize both NAR and AR architectures using
 1667 the ADAM optimizer with a consistent batch size of 128 across 200 epochs for all problem variants.
 1668 The learning rate is calibrated at 10^{-3} for large-capacity CVRPs and 10^{-4} for small-capacity CVRPs
 1669 and VRPTWs. The loss function employs weighted components with $w_{\text{pos}} = 9$, $w_{\text{insert}} = 0.8$, and
 1670 $w_{\text{delete}} = 0.2$. All computational experiments are conducted on a single NVIDIA V100 GPU, with
 1671 training duration ranging from approximately 0.5 to 1.5 days, scaling with problem dimensionality.

1674 Table 9: A list of parameters and their values used in our experiments for training and inference.
1675
1676

Training Data Generation	
Parameter	Value
# of instances N_P	1000
# of iterative steps T_{IS}	40
Improvement threshold η_{improv}	0
Sample coefficient α_{AC}	0 for small-capacity CVRPs and VRPTWs 0.4 for large-capacity CVRPs
Inference	
Parameter	Value
Threshold η for NAR model	0.6
# of K-MEANS clusters n_{KMEANS}	3
# of LKH-3 local search updates limit per iterative step	1000
Solve time limits	150s, 240s for large-capacity CVRP2k, 5k 2.5m, 4m, 5m for small-capacity CVRP1k, 2k, 5k 2m, 4m, 10m for VRPTW1k, 2k, 5k

1693
1694 Regarding network architecture, our encoder maps node features $\mathbf{X} \in \mathbb{R}^{n \times 25}$ for standard problems
1695 ($\mathbf{X} \in \mathbb{R}^{n \times 28}$ for VRPTWs) to node embeddings via $\mathbf{h}_i^{\text{init}} = \text{Concat}(\mathbf{h}_i^{\text{MLP}}, \mathbf{h}_i^{\text{POS}}) \in \mathbb{R}^{2d_h}$, where
1696 $d_h = 128$. They then undergo processing through $L_{\text{TFM}} = 2$ Transformer layers (Vaswani, 2017)
1697 with route-specific attention masks, followed by a Graph Attention Network to derive the final
1698 node embeddings \mathbf{H}^{GNN} . The transformer implementation utilizes 2 attention heads, 0.1 dropout
1699 regularization, ReLU activation functions, layer normalization, and feedforward dimensionality of
1700 512. Our GNN employs a transformer convolution architecture with 2 layers ($L_{\text{GNN}} = 2$) and a single
1701 attention head.

1702 Supplementary to the specifications in Section 4, we delineate additional hyperparameters for our
1703 decoder modules. The NAR decoder computes \mathbf{p}^{NAR} (node instability probabilities) via an MLP
1704 with sigmoid activation for final probability distribution. The AR decoder incorporates single-layer
1705 Gated Recurrent Units (GRUs), complemented by a single-layer/single-head transformer for the
1706 deletion mechanism and a four-layer/single-head transformer for the insertion procedure.

1707 All the training hyperparameters are summarized in Table 10.

1709 D.4 INSTANCE GENERATION

1711 In general, we generate all training and test instances following established methodologies: Zheng
1712 et al. (Zheng et al., 2024) for CVRP and Solomon (Solomon, 1987) for VRPTW. Specifically, For
1713 small-capacity CVRPs, nodes are uniformly distributed within the $[0, 1]$ square, with integer demands
1714 ranging from 1 to 9 (inclusive). Vehicle capacities are set to $C = 200, 300$, and 300 for problem
1715 sizes 1k, 2k, and 5k, respectively. For large-capacity CVRPs, we maintain identical configurations
1716 except for increased vehicle capacities of $C = 500$ and 1000 for CVRP1k and CVRP5k, respectively.
1717 For VRPTWs, we adopt the same spatial distribution, demand structure, and capacity constraints as
1718 the small-capacity CVRPs. Service times are uniformly set to 0.2 time units for each customer and
1719 0 for the depot. Time windows are generated according to the methodology outlined in Solomon
1720 (Solomon, 1987).

1721 Our experimental framework comprises distinct datasets for training, validation, and testing:

- 1723 • **Training:** 1,000 instances for each problem type and scale to generate training labels
- 1724 • **Validation:** 30 instances per problem configuration
- 1725 • **Testing:** For small-capacity CVRPs, we utilize the 1,000 test instances from Zheng et al.
1726 (Zheng et al., 2024); for large-capacity CVRPs and VRPTWs, we evaluate on 100 instances
1727 sampled from the same distribution as the training data

1728 Table 10: A list of hyperparameters and their values used in our model architecture and training.
1729
1730

Training Configuration	
Parameter	Value
Optimizer	ADAM
Batch size	128
# of epochs	200
Learning rates	10^{-3} for large-capacity CVRPs 10^{-4} for small-capacity CVRPs and VRPTWs
Weight of unstable nodes w_{pos}	9
Weight of prediction in insert stage w_{insert}	0.8
Weight of prediction in delete stage w_{delete}	0.2
Computing Resource	Single NVIDIA V100 GPU
Model Architecture	
Parameter	Value
Hidden dimension	128
Encoder Transformer	
# of layers L_{TFM}	2
# of attention heads	2
Dropout regularization	0.1
Activation function	ReLU
Feedforward dimension	512
Normalization	Layer normalization
Encoder GNN	
Architecture	Transformer Convolution Network
# of layers L_{GNN}	2
# of attention heads	1
Decoder Components	
NAR decoder activation function	Sigmoid
# of layers in GRUs	1
AR Transformer in Deletion Stage	
# of layers $L_{\text{delete}}^{\text{MHA}}$	1
# of attention heads	1
AR Transformer in Insertion Stage	
# of layers $L_{\text{insert}}^{\text{MHA}}$	4
# of attention heads	1

1764
1765 E ADDITIONAL EXPERIMENTS AND ANALYSIS
17661767 E.1 HYPERPARAMETER STUDY
1768

1769 Figure 11 depicts the effects of n_{KMEANS} and η . We
1770 observe that the best performance is when $n_{\text{KMEANS}} = 3$
1771 and $\eta = 0.6$, suggesting that designating a moderate pro-
1772 portion of edges as unstable represents the most effective
1773 strategy.

1775 E.2 RESULTS ON REALISTIC ROUTING DATASETS
1776

1777 We further evaluate L2Seg on the CVRPLib realis-
1778 tic routing dataset (Uchoa et al., 2017; Arnold et al.,
1779 2019), adhering to the settings established in Zheng et al.
1780 (2024), which incorporates instances from CVRP Set-X [54] and the very large-scale CVRP dataset
1781 Set-XXL in the test set. The instances within CVRPLib exhibit more realistic spatial distributions
(distinct from simplistic uniform or clustered patterns), greater diversity, and better representation of

1774
1775 Figure 11: Analysis of key hyperparam-
1776 eters: (a) number of clusters n_{MEANS} , and
1777 (b) balancing factor η .
1778

real-world logistical challenges. For this evaluation, we employ models trained on synthetic small-capacity CVRP2k and CVRP5k datasets and zero-shot transfer them to CVRPLib. Time constraints of 240s and 600s are implemented for L2Seg during testing. Additional methodological details are provided in Appendix D. As demonstrated in Table 11, LNS augmented with L2Seg-*SYN* surpasses all other learning-based methods in performance. Significantly, the computational time required by LNS+L2Seg-*SYN* (600s) is substantially less than that of the previously best-performing learning-based model, UDC- x_{250} . These results further substantiate L2Seg’s exceptional generalizability across varied problem distributions.

Table 11: CVRPLib results. We present the gap to the best known solutions (%).

Dataset, $N \in$	LEHD	ELG aug $\times 8$	GLOP-LKH3	TAM(LKH3)
Set-X,(500,1,000]	17.4%	7.8%	16.8%	9.9%
Set-XXL,(1,000,10,000]	22.2%	15.2%	19.1%	20.4%
Dataset, $N \in$	UDC- x_2	UDC- x_{250}	LNS+L2Seg- <i>SYN</i> (240s)	LNS+L2Seg- <i>SYN</i> (600s)
Set-X,(500,1,000]	16.5%	7.1%	7.5%	6.9%
Set-XXL,(1,000,10,000]	31.3%	13.2 %	12.5%	12.0%

E.3 RESULTS ON CLUSTERED CVRP AND HETEROGENEOUS-DEMAND CVRP

Table 12: Results on clustered CVRP and heterogeneous-demand CVRP. We present gains to the backbone solver LNS and the performance of LKH-3 for reference.

Methods	Clustered CVRP2k			Clustered CVRP5k		
	Obj. \downarrow	Gain \uparrow	Time \downarrow	Obj. \downarrow	Gain \uparrow	Time \downarrow
LKH-3 (Helsgaun, 2017) (for reference)	42.06	-	150s	62.33	-	240s
LNS (Shaw, 1998)	41.54	0.00%	150s	61.42	0.00%	240s
L2Seg- <i>SYN</i> -LNS (zero-shot transfer)	41.03	1.23%	150s	60.87	0.90%	240s
L2Seg- <i>SYN</i> -LNS	40.73	1.95%	150s	60.11	2.13%	240s
Methods	Hetero-demand CVRP2k			Hetero-demand CVRP5k		
	Obj. \downarrow	Gain \uparrow	Time \downarrow	Obj. \downarrow	Gain \uparrow	Time \downarrow
LKH-3 (Helsgaun, 2017) (for reference)	46.02	-	150s	65.89	-	240s
LNS (Shaw, 1998)	45.77	0.00%	150s	64.81	0.00%	240s
L2Seg- <i>SYN</i> -LNS (zero-shot transfer)	44.35	3.10%	150s	64.28	0.82%	240s
L2Seg- <i>SYN</i> -LNS	44.15	3.54%	150s	64.15	1.02%	240s

To demonstrate L2Seg’s robustness across diverse and more realistic scenarios beyond uniform distributions, we provide in-distribution and zero-shot generalization evaluation of our L2Seg on instances with different customer and demand distributions.

Following Li et al. (2021), we generate clustered CVRP instances with 7 clusters. For heterogeneous-demand scenarios, we employ a skewed distribution where high and low demands ($d \in \{1, 2, 8, 9\}$) occur with probability 0.2 each, while others ($d \in \{3, 4, 5, 6, 7\}$) occur with probability 0.04 each. All experiments use LNS as the backbone solver, with LKH-3 included for reference.

Table 12 presents the comprehensive results. L2Seg demonstrates consistent improvements across all settings: zero-shot transfer achieves 1.23% to 3.10% gains over LNS, while in-distribution testing reaches 1.02% to 3.54% improvements depending on problem size and variant. These experiments demonstrate that L2Seg maintains consistent improvements across diverse real-world conditions, from uniform spatial layouts to clustered distributions and heterogeneous demands.

E.4 STANDARD DEVIATION COMPARISON

In this section, we provide standard deviation statistics for L2Seg-*SYN* across three different backbone solvers on large-capacity CVRPs. We conduct 5 independent trials using different random seeds for each method. All experiments are terminated at the specified time limit, and we report the standard deviations of the objective values for all 6 methods. The results are presented in Table 13. While

1836 LKH-3 exhibits the lowest variance among baseline methods, our L2Seg approach also demonstrates
 1837 consistently low variance across different problem types and backbone solvers, confirming both the
 1838 effectiveness and stability of our method.
 1839

1840 Table 13: Performance comparison of backbone solvers with and without L2Seg-SYN on large-scale
 1841 CVRP instances. Results represent mean objective values \pm standard deviation across 5 independent
 1842 trials of testing. L2Seg-SYN demonstrates consistent performance improvements with low variance,
 1843 indicating both effectiveness and stability of the approach.
 1844

1846	Methods	CVRP2k			CVRP5k		
		Obj. \downarrow	Gain \uparrow	Time \downarrow	Obj. \downarrow	Gain \uparrow	Time \downarrow
1848	LKH-3 Helsgaun (2017)	45.24 \pm 0.17	0.00%	152s	65.34 \pm 0.29	0.00%	242s
1849	LKH+L2Seg-SYN	43.92 \pm 0.20	2.92%	152s	64.12 \pm 0.34	1.87%	248s
1850	LNS Shaw (1998)	44.92 \pm 0.24	0.00%	154s	64.69 \pm 0.37	0.00%	246s
1851	LNS+L2Seg-SYN	43.42 \pm 0.22	3.34%	152s	63.94 \pm 0.35	1.16%	241s
1852	L2D Li et al. (2021)	43.69 \pm 0.21	0.00%	153s	64.21 \pm 0.32	0.00%	243s
1853	L2D+L2Seg-SYN	43.35 \pm 0.23	0.78%	157s	63.89 \pm 0.34	0.50%	248s

1854 E.5 CASE STUDY: COMPARISON OF PREDICTIONS OF THREE L2SEG APPROACHES

1867 Figure 12: Prediction comparison of L2Seg-SYN, L2Seg-NAR, and L2Seg-AR on two adjacent
 1868 routes from a small-capacity CVRP1k solution. Red dashed lines indicate predicted unstable edges.
 1869 L2Seg-SYN provides the most reasonable predictions, while L2Seg-NAR over-predicts unstable
 1870 edges and L2Seg-AR fails to identify unstable regions.
 1871

1872 We present a case study on a small-capacity CVRP1k instance to analyze model prediction behavior.
 1873 Since the learned model ultimately predicts on two adjacent routes, we visualize unstable edge
 1874 predictions (red dashed lines) for two such routes using L2Seg-SYN, L2Seg-NAR, and L2Seg-AR in
 1875 Figure 12. L2Seg-SYN demonstrates selective prediction behavior, avoiding boundary edges while
 1876 targeting specific unstable edges within route interiors—a pattern consistent with our observations
 1877 in Appendix B.1.1. L2Seg-NAR successfully identifies unstable regions (route interiors) but lacks
 1878 discrimination, predicting nearly all edges within these regions as unstable without capturing local
 1879 dependencies. L2Seg-AR exhibits selective prediction within regions but fails to properly identify
 1880 unstable regions, as many predictions occur at boundaries. These results provide insight into
 1881 L2Seg-SYN’s hybrid approach: the NAR component first identifies unstable regions, while the AR
 1882 component leverages local information to make accurate predictions within each identified region.
 1883

1884 E.6 UNSTABLE AND STABLE EDGES CONVERGENCE

1885 We conducted experiments measuring overlapping predicted edges between adjacent iterations over
 1886 the first 10 rounds, revealing interesting dynamics: The overlap of predicted unstable edges increases
 1887 from 28% to 54%, while stable edge overlap increases from 47% to 69% across iterations, shown in
 1888

Table 14: Unstable and stable edges convergence at the first 10 iterations

Round #	1	2	3	5	7	9
Unstable Edge Overlapping Percentage	28.2%	33.5%	41.2%	49.2%	48.8%	54.1%
Stable Edge Overlapping Percentage	47.2%	58.2%	60.5%	64.7%	67.3%	69.4%
Avg Segment Length	2.45	2.57	2.44	3.04	2.87	2.73

the Table 14. This indicates gradual but not rapid convergence, allowing our method to continuously explore new regions for re-optimization rather than getting trapped in fixed segments.

E.7 THE NEURAL NETWORK OVERHEADS OF L2SEG

We measured the overhead across CVRP and VRPTW instances ranging from 1k to 5k nodes in the Table 15. Even with our most complex model (L2Seg-SYN), the overhead consistently remains below 10% of the total iteration time (ranging from 7.2% to 9.6%). This indicates that the overhead scales efficiently and predictably. Generally speaking, the overhead primarily stems from neural network inference, which is driven by two factors: input data size and network call frequency. Regarding the former, L2Seg employs a Batched Sub-Route Processing design. During embedding, we split problems into adjacent route pairs and use batch processing. This avoids memory bottlenecks and ensures that inference time scales efficiently for large-scale cases. Regarding the latter, the frequency of calling L2Seg is a tunable hyperparameter.

Table 15: Computational overhead analysis of L2Seg variants across problem scales

Method	CVRP1k			CVRP2k			CVRP5k		
	Avg L2Seg Time/Iter	Avg Total Time/Iter	Overhead Rate	Avg L2Seg Time/Iter	Avg Total Time/Iter	Overhead Rate	Avg L2Seg Time/Iter	Avg Total Time/Iter	Overhead Rate
L2Seg-NAR-LNS	0.38s	8.4s	4.5%	0.62s	11.4s	5.4%	0.80s	12.9s	6.2%
L2Seg-AR-LNS	0.63s	9.8s	6.4%	0.90s	10.8s	8.3%	1.24s	13.9s	8.9%
L2Seg-SYN-LNS	0.76s	10.5s	7.2%	1.14s	12.5s	9.1%	1.33s	14.1s	9.4%
VRPTW1k				VRPTW2k			VRPTW5k		
L2Seg-NAR-LNS	0.37s	8.9s	4.2%	0.61s	10.4s	5.9%	0.83s	12.8s	6.5%
L2Seg-AR-LNS	0.62s	9.1s	6.8%	0.96s	11.9s	8.1%	1.14s	12.4s	9.2%
L2Seg-SYN-LNS	0.76s	10.1s	7.5%	0.97s	10.8s	9.0%	1.36s	14.2s	9.6%

E.8 TIME OF TRAINING L2SEG

We give the time spent on data collection, training the NAR, AR, and total time when training L2Seg. Empirically, our training pipeline scales efficiently, requiring under 3 days for CVRP5k. We project that scaling to 10k instances would take approximately 6 days, which is still feasible.

Table 16: Training time breakdown for L2Seg across problem scales

	Data Collection	Training time NAR	Training time AR	Total (parallel)
CVRP1k	6.3h	6.8h	13.7h	20.0h
CVRP2k	10.4h	10.4h	22.4h	32.8h
CVRP5k	19.2h	18.1h	40.7h	59.9h

F BROADER IMPACTS

On one hand, the integration of deep learning into discrete optimization offers promising advances for real-world domains such as public logistics and transportation systems, where additional considerations for social equity and environmental sustainability can be incorporated. On the other

1944 hand, the application of deep learning methodologies in discrete optimization necessitates substantial
1945 computational resources for model training, potentially leading to increased energy consumption and
1946 carbon emissions. The quantification and mitigation of these environmental impacts represent critical
1947 areas for ongoing research and responsible implementation.

1948

1949

1950 G LARGE LANGUAGE MODELS USAGE

1951 We used LLMs to assist with manuscript revision. After completing the initial draft without LLM
1952 assistance, we consulted LLMs for suggestions on improving specific text passages. All LLM-
1953 generated advice was carefully reviewed to ensure accuracy before incorporation. LLMs were not
1954 used for research tasks or any purpose beyond text refinement.

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997