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ABSTRACT

The recent progress of using graph based encoding of crystal structures for high
throughput material property prediction has been quite successful. However, using
a single modality model prevents us from exploiting the advantages of an enhanced
features space by combining different representations. Specifically, pre-trained
Large language models(LLMs) can encode a large amount of knowledge which is
beneficial for training of models. Moreover, the graph encoder is able to learn the
local features while the text encoder is able to learn global structure information.
In this work, we propose Material Multi-Modal Fusion(MatMMFuse), a fusion
based model which uses a multi-head attention mechanism for the combination of
structure aware embedding from the Crystal Graph Convolution Network (CGCNN)
and text embeddings from the SciBERT model. We train our model in an end-
to-end framework using data from the Materials Project Dataset. We show that
our proposed model shows an improvement compared to the vanilla CGCNN and
SciBERT model for all four key properties- formation energy, band gap, energy
above hull and fermi energy. Specifically, we observe an improvement of 40%
compared to the vanilla CGCNN model and 68% compared to the SciBERT model
for predicting the formation energy per atom. Importantly, we demonstrate the zero
shot performance of the trained model on small curated datasets of Perovskites,
Chalcogenides and the Jarvis Dataset. The results show that the proposed model
exhibits better zero shot performance than the individual plain vanilla CGCNN
and SciBERT model. This enables researchers to deploy the model for specialized
industrial applications where collection of training data is prohibitively expensive.

1 INTRODUCTION

Machine learning (ML) has been popular as a potent and adaptable technique in the hunt for materials
targeting a wide range of applications, especially when a thorough investigation of the materials
space is required(Schmidt et al., 2019; Chen et al., 2020). With the continuous expansion of high-
throughput density functional theory(DFT) datasets and the ongoing development of ML algorithms,
it is anticipated that the use of ML for materials discovery will increase even more(Saal et al., 2013;
Draxl & Scheffler, 2019; Jain et al., 2013). Historically, structural descriptors that meet rotational
and translational invariance had been used for encoding the crystal structures, ranging from Coulomb
matrixFaber et al. (2015) and atom-centered symmetry functions (ACSFs) to smooth overlap of
atomic positions (SOAP)(Behler, 2011; De et al., 2016).

First proposed more than 15 years ago, Graph Neural Networks(GNNs)(Scarselli et al., 2008; Gori
et al., 2005) have drawn more interest lately in material informatics as a way to overcome static
descriptor limitations by learning the representations on adaptable graph-based inputs(Li et al.,
2024). Such GNNs have been implemented to predict materials in complex systems including
surfaces(Palizhati et al., 2019; Back et al., 2019) and periodic crystal arrangements(Chen et al.,
2019; Xie & Grossman, 2018). The GNN models effectively encode and utilize the structure
of the lattice. Particularly, the CGCNN model(Xie & Grossman, 2018) has shown exemplary
performance in encoding the structure property relation while handling periodic boundary conditions.
However, the graph convolution based models require a large training dataset to learn generalizable
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structure property mapping. Moreover, the instances of model failure are difficult to understand
and interpret(Fung et al., 2021). Most importantly, GNN models are unable to incorporate global
structural information like crystal symmetry, space group number and rotational information.

Large Language Models (LLMs) provide a promising approach for knowledge discovery in materials
science due to their generalization and transferability(Jablonka et al., 2023). Their success has
motivated applications in structure-property relationship discovery, particularly through pre-trained
domain-specific language models, which effectively capture latent knowledge from domain-specific
literature. SciBERT, which has been trained on a scientific corpus of 3.17 billion tokens has shown
remarkable performance across a diverse set of tasks(Beltagy et al., 2019). Compared to graph
neural network (GNN) models, LLMs are able to incorporate global information such as space
group and crystal symmetry. Combining the strength of the GNN based models with LLM models
using multi modal data enhances the feature space, enabling the model to prioritize critical features
from diverse latent embeddings. While several studies have explored the potential of LLMs to
improve generalization, transferability, and few-shot learning, limited research has focused on
integrating textual information from natural language with structural-aware learning from GNNs
for crystal property prediction. Li et al. (2025) have used embedding concatenation for combining
multiple modalities while, Ock et al. (2024) have combined the graph structure of crystals with X-ray
diffraction patterns for augmenting the structure aware graph embedding with diffraction information.
Lee et al. (2025) applied masked node prediction pretraining strategy to train a multi-modal model
using a combination of text tokens and information from lattice neighbors. However, this architecture
might result in locally valid but globally inconsistent structures. Das et al. (2023) have developed
CrysMMNet which uses concatenation to combine multiple modalities. These models have shown
that using multi-modal data with fusion models allows the model to leverage the enhanced feature
space. Concatenation uses static connections between modalities and the model design does not
focus on cross model connections. While, the proposed model uses cross attention which enables the
model to focus on long range dependencies across modalities. Moreover, compared to concatenation,
cross attention gives clear attention weights that can be interpreted. To the best of our knowledge,
this is the first work, which explores a multi-head attention mechanism to combine structure aware
and context aware embeddings to improve prediction and zero shot performance for the prediction of
material properties for inorganic crystals.

In this work, we propose, Material Multi-Modal Fusion(MatMMFuse), a fusion model which
uses a multi-head attention based combination of structure aware embedding of the Crystal Graph
Convolution Network (CGCNN)(Xie & Grossman, 2018) and text embeddings of SciBERT(Beltagy
et al., 2019). Importantly, we train our model in an end-to-end framework using data from the
Materials Project Dataset. We show that MatMMFuse performs in line with state of the art models
for four key properties- formation energy, band gap and Fermi Energy. We observe an improvement
of 35% and 68% respectively compared to the plain vanilla versions of the model for predicting the
formation energy per atom. Furthermore, we demonstrate the zero shot performance of the trained
model on small curated datasets of Perovskites, Chalcogenides and the Jarvis Dataset. The primary
contributions of this paper are:

• Introduction of a multi-head cross attention based fusion approach for accurate material
property prediction.

• Efficiently using multi-modal data to combine structure aware and context aware information
to combine local and global information.

• Improved zero shot performance for specialized materials like Perovskites and Chalco-
genides.

2 PROPOSED MODEL ARCHITECTURE

The following section describes the architecture of our multi-modal framework. Given a dataset of
inorganic crystals denoted by D = [(S, T ), P ] where S, T and P denote the structure information
in CIF format, the text description and the material property respectively. The model trains the
parameters of the Graph encoder (Gθ) and the BERT encoder (Bθ) to learn the function fθ → P .
The figure 1 captures the model schematic. Each section of the model is explained below.
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Figure 1: The figure provides an overview of MatMMFuse. The CGCNN model generates a
structure aware embedding while the SciBERT model generates a context aware embedding which
are combined using a multi-head attention mechanism.

2.1 GRAPH ENCODER

For this model, the material structure from the crystallographic information file(CIF) is encoded as a
graph G(V,E) using the CGCNN model where, the atoms are the nodes V and the bonds between
the atoms are encoded as the edges E. In addition to the graph topology, the node attributes capture
the different properties of the atom such as group, position in the periodic table, electro-negativity,
first ionization energy, covalent radius, valence electrons, electron affinity and atomic number. For
each atom i and it’s neighbor j ∈ N (I), the convolution updates the atom’s feature vector hi as
follows:
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2.2 TEXT ENCODER

The textual description of the CIF files are generated using the Robocrystallography(Ganose
& Jain, 2019) framework. We leverage the scientific knowledge encoded in the pretrained
SciBERT modelBeltagy et al. (2019) followed by a projection layer. For an input sequence
X = (x1, x2, · · · , xn), the self attention mechanism uses the Query Matrix, Key Matrix and Value
Matrix denoted by Q,K and V respectively. These are linear projections using the corresponding
learnable weight matrices.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (3)
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It is important to note that BERT uses a multi-head attention mechanism.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (4)

A fully connected feed forward network is used with a ReLU activation function and W1,W2and
b1, b2 learnable weight matrices and biases respectively with the final output obtained by stacking
different transformer layers.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (5)

The model has 12 transformer layers for encoding with 768 hidden dimensions and 12 attention heads.
The model has been pre-trained on a 1.14 million papers from Semantic scholar resulting in a total of
3.17 billion tokens.

2.3 MULTI-HEAD CROSS ATTENTION FUSION FOR JOINT EMBEDDING

The model uses a multi-head cross attention based framework for combining the embeddings gen-
erated by the LLM model(ht) and the structure aware embedding generated by the GNN ((hs).
The entire framework is trained in a supervised end-to-end manner. This is a key advantage of
the proposed approach because this enables the model to focus on the important sections from the
structure aware embedding and the text based embedding.

Q = Wqht, K = Wkhs, V = Wvhs (6)

attention scores =
QKT

√
d

(7)

attention weights = softmax(attention scores) (8)

combined = attention weights · V (9)

The combined embedding is passed through a fully connected layer for the final prediction.

y = Wo · combined + bo (10)

3 EXPERIMENTATION

We use a Nvidia RTX 4090 graphics processing unit (GPU) to run our experiments. The framework
is implemented using the Pytorch library version(Paszke et al., 2017).

3.1 DATASET

For model training and assessment, we leverage the widely used Materials Project dataset(Jain
et al., 2013). We focus on four important material properties: the formation energy per atom, the
energy above the hull, the fermi energy and the Band Gap. We use 95582 crystal structures with a
80%,10%,10% train, validation and test split. For the CGCNN model, we directly use the data in
crystallographic file(CIF) format. We use RoboCrystallographer(Ganose & Jain, 2019) to convert
the CIF file to text files. These text files are the input for the SciBert LLM model. The distribution
of the target variables and text descriptions are available in the Appendix. For evaluating the zero
shot performance of the model, we use the Cubic Oxide Perovskites, Chalcogenides and a subset of
the JARVIS dataset. The distribution of the target variables and text descriptions are available in the
Appendix.

3.2 EXPERIMENTATION OVERVIEW

We perform experiments in two paradigms. Firstly, In-domain wherein we use the traditional approach
to train MatMMFuse on examples from the Materials Project dataset. The model is trained in an
end-to-end supervised manner. Secondly, we use the trained model to predict the material property of
materials with specialized applications without explicitly training on the respective datasets. This
paradigm is known as Zero Shot. This is intended to be used for specially curated small datasets for
materials with specific industrial applications.
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(a) Formation Energy per atom (Ef ) (b) Band Gap(Bg)

Figure 2: The scatter plot presents the actual versus predicted values for (a) Formation Energy per
atom, (b) Band Gap. The model tends to incorrectly predict the values for band gap when the values
are close to zero.

4 RESULTS AND DISCUSSIONS

4.1 IN-DOMAIN

We have used MatMMFuse to predict four key material properties. We evaluate the performance of
the model for four important material properties - formation energy per atom(Ef ), Fermi Energy(Eg)
and the Band Gap(Bg). We use AdamW with a cosine learning rate scheduler and warmup. The
trained model is then used to predict the formation energy for Perovskites, Chalcogenides and a
subset of the Jarvis Dataset in a zero shot paradigm. We observe an improvement of 40% compared
to the CGCNN model and 68% compared to the SciBERT model for the formation energy per atom.
However, for the energy above hull, MatMMFuse performs marginally better than SciBERT with
a 6.7% improvement and a 58.5% improvement over the CGCNN model. The total Fermi energy
also shows a similar pattern with a 30% improvement over the vanilla versions of both the models.
Machine learning models have struggled with predictions of the band gap for crystals(Zhuo et al.,
2018) for which the proposed model has a marginal improvement of around 1% compared to the other
models. We hypothesize that the improvement across all the properties is occurring due to the ability
of MatMMFuse to selectively combine both local structural information and global information such
as space group and symmetry using the attention mechanism.

Table 1: Benchmarking model performance. The lower the error the better the model performance.

Mean Absolute Error(MAE)
Formation Energy

(eV/atom)
Fermi Energy

(eV)
Energy Above Convex Hull

(eV/atom)
Band Gap

(eV)
CGCNN 0.042 0.60 0.071 0.37
SciBERT 0.081 0.59 0.031 0.38

MatMMFuse 0.025 0.44 0.029 0.31

To further investigate the results, we are comparing the plots of the actual versus predicted values
for the formation energy per atom and the band gap for the test dataset 2. For formation energy, we
observe that the predictions are aligned with the actual values with a R2 of 0.97 while, for Band Gap
we can clearly see that the model predicts a higher value when the actual value is close to zero.

The t-distributed stochastic neighbor method (t-SNE)(Van der Maaten & Hinton, 2008) allows us to
understand the decision boundaries and segregation of data points in the high dimensional embedding
using 2D plots. The Figure 3 depicts a combined structure-composition latent space for the trained
materials, in which points within a grouping are anticipated to have similarities in both their atomic
structures and elemental compositions. We see comparable clustering in the latent space. In the
t-SNE plot of MatMMFuse we observe that the dark and light colored ones are segregated in different
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clusters with lobe-structured decision boundaries which shows that the learned embedding is able
to discern between crystals with high formation energies and ones with low formation energy. We
observe decision boundaries in the embedding generated by the SciBERT model as well but the points
are not clustered. The embedding generated by the graph encoder does not have clear clustering or
decision boundaries.

(a) (b) (c)

Figure 3: The t-SNE plot of the embedding from the embedding for the test dataset from Materials
Project, with each point representing an individual crystal. Colors for each point are associated with
their formation energies. a CGCNN embedding, b SciBERT embedding , c MatMMFuse embedding

4.2 ZERO SHOT PERFORMANCE

A key challenge in material science is the lack of large datasets for specialized applications. Most
materials with specialized applications such as photovoltaic cells and battery, do not have large
datasets with DFT calculated material properties to enable training of data hungry deep learning
models. In this section, we demonstrate that the trained MatMMFuse model can be used for predicting
the material properties for small curated datasets in a zero shot manner. The proposed attention-based
method for combining embeddings leads to an improvement in the zero shot performance of the
model. Attention allows the model to dynamically weight and combine embeddings based on the
relevance to task enabling the model to focus on the most informative features from each embedding.
In the table 2, we compare the zero shot performance of MatMMFuse for predicting the energy of
Perovskites, Chalcogenides and a small subset of the Jarvis dataset with the vanilla CGCNN and
SciBERT models.

4.2.1 CUBIC OXIDE PEROVSKITES

ABO3 perovskites are viewed as promising resistive-type gas sensors (Ishihara, 2009). It is important
to remember that there are 2704 observations in the dataset which is insufficient for training large
GNN or LLM models. MatMMFuse achieves a MAE of 1.28 on the test dataset which is 10% lower
than the CGCNN model and 55% lower than the SciBERT model.

4.2.2 CHALCOGENIDE PEROVSKITES

For photovoltaic applications researchers have proposed Chalcogenide perovskites of the form
AB(S, Se)3 because of their stability, non-toxicity, and lead-free composition(Basera & Bhattacharya,
2022). To test our model, we repeated the same experiment for a dataset for AB(S, Se)3 perovskites.
The dataset has 1621 observations. Nonetheless, MatMMFuse achieves a low MAE of 1.05, lower by
21% and 27% as compared to the CGCNN and SciBERT models respectively.

4.2.3 JARVIS

The JARVIS (Joint Automated Repository for Various Integrated Simulations) dataset(Choudhary
et al., 2020) is a high-throughput materials database developed by the National Institute of Standards
and Technology(NIST). The dataset encompasses a wide array of materials properties, computed
using density functional theory (DFT) simulations. MatMMFuse achieves a MAE of 0.078 which is
48% lower than the CGCNN and the 59% lower than the SciBERT model.
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Figure 4: The scatter plot presents a comparison between the actual and the predicted values of
formation energy per atom for the JARVIS dataset.

The actual versus predicted curve in Figure4 shows that the predicted and actual values are aligned
with a R2 of 0.94. However, there are a number of data points around -0.9 eV/atom which have a
much lower prediction.

Table 2: Zero Shot performance for the Energy per atom. The lower the error the better the model
performance.

Energy MAE(eV/atom)

CGCNN SciBERT Proposed

Perovskites(ABO3) 1.42 2.84 1.28
Chalcogenides(ABS3) 1.33 1.44 1.05

JARVIS 0.15 0.19 0.08

4.3 ABLATION STUDIES

This section presents the ablation studies performed by changing, adding or removing the key parts
or inputs of the model architecture.

4.3.1 ENCODED DOMAIN KNOWLEDGE

To prove our hypothesis that MatMMFuse is able to leverage the encoded knowledge in the LLM
Model, we have run experiments by using variations of the BERT model as the text encoder for
predicting the formation energy per atom. The alternate models used are ALBERT(Lan et al., 2019),
RoBERT(Masala et al., 2020), DeBERT(Sergio & Lee, 2021) and DistillBERT(Sanh et al., 2019).
Due to the knowledge of material science encoded in the MatSciBERT model, we observe that it
outperforms all models closely followed by SciBERT model. It is important to note that ALBERT
shows a sharp deterioration in model performance. We posit that this might be due to two reasons.
Firstly, ALBERT shares parameters across all transformer layers, reducing model size but limiting
the model’s capacity to learn distinct representations at different levels of abstraction. Secondly, it
uses token order prediction as compared to next token prediction used in other BERT Models. The
plot5 presents a comparison of model performance for different BERT models.

Further to this, we also observe a similar improvement in the zero shot performance of the model on
the specialized cubic oxide Perovskite, Chalcogenides and the JARVIS dataset which is shown in
table3
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Figure 5: The plot compares the performance of different BERT models for encoding the text
representation. MatSciBERT has the best performance and ALBERT has the worst performance.

Table 3: Zero Shot performance of the MatSciBERT model for the Formation Energy per atom. The
lower the error the better the model performance.

MAE(eV/atom)

MATSciBERT SciBERT

Perovskites(ABO3) 2.26 1.28
Chalcogenides(ABS3) 1.33 0.98

JARVIS 0.037 0.08
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Figure 6: The plot compares the performance of different GNN models for encoding the lattice
structure. CGCNN gives the optimum tradeoff between performance and efficiency.

We have decided to use SciBERT model because it has more interdisciplinary knowledge which
leads to a more broader scientific context. Especially, for applications in biomedicine and energy.
ABO3 perovskites are used for solar cells and therefore SciBERT outperforms MatsciBERT in such
specialized applications.

4.3.2 ENCODED LATTICE STRUCTURE

The encoding of the crystal lattice structure using different graph encoding models results in different
ways of capturing the complex relationships within crystal structures. We used SchNet(Schütt et al.,
2018), MEGNet(Chen et al., 2019), CGCNN and Graph convolution networks(GCN) for the analysis.
Vanilla GCN architectures are not designed to incorporate periodic boundary conditions. On the
other hand, SchNET and CGCNN explicitly incorporate crystal periodicity. CGCNN uses discretized
bins for edge features while SchNet uses continuous radial basis functions for smooth distance
representation. CGCNN includes more extensive information about the crystal structure and is
computationally more efficient compared to SchNET which uses continuous-filter convolutions with
filter-generating networks that create customized filters for each atomic interaction based on distance.
Unlike other models, MEGNet uses global state variables such as unit cell parameters which makes it
more expressive but also more computationally expensive. We found that CGCNN gives the optimum
tradeoff between performance and efficiency. The plot6 presents a comparison of model performance
for different GNN based encoder models.

4.3.3 MULTI-HEAD ATTENTION MODULE

A comprehensive ablation study was performed on the different sub-modules of the attention based
fusion mechanism for allowing the model to focus on the specific parts of the structure aware
and context aware embeddings. We observe that using a multi-head attention method considerably
improves the performance. Using a layer-norm to normalize the layer outputs increases the stability of
the training and helps the model converge. For small datasets, including dropout prevents overfitting
and helps the model generalize better. Interestingly, including a residual layer does not lead to
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Figure 7: The waterfall chart shows the effect of adding individual components to improve the
attention based fusion method.

Figure 8: The chart shows that MatMMFuse is relatively robust to reduction in training data.

a significant improvement in model performance.The waterfall chart7 captures the effect of each
change on the model performance.

4.3.4 ROBUSTNESS TO TRAINING DATA SIZE

As reported in literature, reducing the size of the training data reduces the performance of the CGCNN
model(Xie & Grossman, 2018). Interestingly, we observe that using an enhanced feature space which
uses multiple modalities improves the robustness of the model to reduction in training data. The plot8
shows that the model is able to converge to a low training loss .

4.3.5 CORRUPTION OF TEXT INPUT

Corruption of text input remains a limitation of BERT models(Jin et al., 2020). Moreover, Robocrsy-
tallographer might lead to corrupted text output if there are aberrations in the CIF file (Ganose &
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Jain, 2019). Thus, we have studied the effect of different levels of text corruption on the performance
of the model for predicting the formation energy per atom. For corrupting the text, we have deleted
random characters, added random punctuations and performed random word substitutions. The
level of corruption has been controlled by using the probability of corruption. There is a significant
decrease in model performance as captured by the plot. The plot9 captures the degradation in model
performance in training and inference with the increase in corruption of the text input.

(a) (b)

Figure 9: The figure (9a) and figure (9b) shows the effect of the corruption of the input text on the
training loss and the test loss respectively. The model performance deteriorates significantly with
corruption in text.

5 CONCLUSION

This paper explores a multi-modal fusion model for predicting material properties. The Material
Multi-Modal Fusion(MatMMFuse) model uses a multi-head cross attention based method for
combining the embedding from graph neural network and a LLM model. The CGCNN model has
been selected to encode the lattice structure as a graph encoding while, the SciBERT model has been
used to encode the text descriptors. The SciBERT model already posses domain specific scientific
knowledge which is helpful for generating meaningful embeddings. The enhanced feature space with
the attention mechanism allows the model to selectively focus on key features from the structure
aware graph embedding and the context aware embedding. The graph encoder focuses on local
information while the text encoder is able to learn global information such as symmetry and space
group. The results show that the proposed model is able to outperform both the plain vanilla versions
of CGCNN and SciBERT models by 35% and 68% respectively for predicting the formation energy
per atom. We observe an improvement for the Energy above Hull and the Fermi energy as well.
Further, we observe a marginal improvement for the prediction of Band Gap which is aligned to the
state of the art. Interestingly, we demonstrate that the zero shot performance of the model is better
than the vanilla CGCNN and SciBERT models for cubic oxide perovskites, chalcogenide perovskites
and a subset of the JARVIS datasets which is an important step for specialized uses cases. Analyses
of the t-SNE plots show that our model is able to generate embeddings which have clear lobe-shaped
decision boundaries and similar material properties are clustered together. Finally, we believe the
ability of LLM models to use text based inputs for probing the underlying mechanism of the model
to understand specific points of failure provides a tool to analyze the structure property relationships
in crystalline solids.
Limitations and Future scope of work: The model is unable to accurately predict the band gap
for near zero values. A possible explanation might be the lack of experimental data. MatMMFuse
has been designed to work only with CIF Files and thus, performance might be improved with
grounding in experimental data. Importantly, quantum effects become more dominant at very small
energy gaps. Thus, a possible area of improvement would be the explicit incorporation of quantum
effects. Furthermore, we believe that additional modalities might lead to an improvement in the
model performance. The cross attention operation scales quadratically with sequence length which
makes it computationally expensive for long sequences. Also, it is possible for one modality to
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dominate the training process leading to imbalance. Thus, it would be interesting to explore alternate
approaches for a balanced integration of modalities.

6 REPRODUCIBILITY

Data Availability: The Material project dataset analyzed during this study is available at
https://next-gen.materialsproject.org/. The cubic oxide perovskite and chalcogenides datasets are
available in the Computational Material Repository(https://cmr.fysik.dtu.dk). The JARVIS dataset is
available at https://jarvis.nist.gov/.
Code availability: The code is available in the Github repository-
https://github.com/AbhiroopBhattacharya/MatMMFuse . Moreover, the pseudocode is also
provided in the Appendix section.
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A APPENDIX

A.1 DATASET DESCRIPTION

A.1.1 MATERIALS PROJECT

We leverage the widely used Materials Project dataset (Jain et al., 2013). We focus on four important
material properties: the formation energy per atom, the energy above the hull, the fermi energy and
the Band Gap. The table 4 shows the distribution of the target variables.

Table 4: Summary Statistics for Target Variable for Materials Project Dataset

Target Variable Statistics
Formation Energy

(eV/atom)
Fermi Energy

(eV)
Energy Above Convex Hull

(eV/atom)
Band Gap

(eV)
Mean -1.66 3.069 0.022 0.874

Standard Deviation 1.009 2.776 0.244 1.514
Range [-11.86, 5.45] [ -14.017, 19.41] [0.00, 7.497] [0.00, 17.891]
Median -1.75 3.024 0.00 0.00

We use Robocrystallographer(Ganose & Jain, 2019) to convert the crystal data encoded in CIF file
into text format. The distribution of the generated text descriptions are given below in the table5

Table 5: Summary Statistics for Text descriptions for Materials Project.

Text Description Statistics
Average Length 741.4 words
Standard Deviation 1426.9 words
Range [28, 49051] words

A.1.2 CUBIC OXIDE PEROVSKITES

We use the cubic oxide perovskite ABO3 dataset from Computational material repository for evaluat-
ing the Zero shot performance of MatMMFuse. The summary statistics of the text descriptions are
given in the table6.

Table 6: Summary Statistics for Text descriptions for Cubic Oxide perovskites(AB03)

Text Description Statistics
Average Length 136.6 words
Standard Deviation 31.6 words
Range [79, 239] words

A.1.3 CHALCOGENIDES

Chalcogenide perovskites have the form AB(S, Se)3. We have used them for evaluating the zero
shot performance of MatMMFuse. The summary statistics of the text descriptions are tabulated in the
table7.

A.2 PSEUDOCODE FOR IMPLEMENTING PROPOSED FRAMEWORK

MatMMFuse can be implemented using the following pseudocode.
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Table 7: Summary Statistics for Text descriptions for Chalcogenide perovskites(ABS3,ABSe3)

Text Description Statistics
Average Length 199.2 words
Standard Deviation 103.2 words
Range [63, 1641] words

Algorithm 1 Fusion of Graph and Text Embeddings for Material Property Prediction

Require: CIF file C, Text Description T , Property Label y, Pretrained GNN G, Pretrained Trans-
former B, Attention Combiner A, Learning Rate η, Cosine Warmup λ

Ensure: Trained Model for Property Prediction
1: Initialize model parameters θ
2: Split dataset into Train (Dtrain), Validation (Dval), and Test (Dtest)
3: for each epoch in 1, . . . , Nepochs do
4: for each batch (Ci, Ti, yi) in Dtrain do
5: Extract Graph Features:
6: Construct crystal graph Gi from CIF file Ci
7: Compute graph embedding: hG = G(Gi)

8: Project embedding: h̃G = WGhG

9: Extract Text Features:
10: Tokenize text: XT = Tokenizer(Ti)
11: Compute transformer embedding: hT = B(XT )
12: Pool embedding: hT = Mean(hT )

13: Project embedding: h̃T = WThT

14: Fuse Representations using Attention:
15: Compute query: Q = WQh̃T

16: Compute key: K = WK h̃G

17: Compute value: V = WV h̃G

18: Compute attention scores: α = softmax
(

QKT

√
dk

)
19: Compute attended representation: hfused = αV

20: Apply residual connection: hfused = LayerNorm(hfused + h̃T )
21: Predict Property:
22: ypred = σ(Wohfused)
23: Compute Loss:
24: L = 1

N

∑N
i=1(yi − ypred)

2

25: Optimize Parameters:
26: Compute gradients: ∇θL
27: Update parameters: θ ← θ − η · λ(t) · ∇θL
28: end for
29: Evaluate on Dval and adjust learning rate η
30: end for
31: Test Model: Evaluate on Dtest
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