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Abstract
Assistive agents should make humans’ lives eas-
ier. Classically, such assistance is studied through
the lens of inverse reinforcement learning, where
an assistive agent (e.g., a chatbot, a robot) infers a
human’s intention and then selects actions to help
the human reach that goal. This approach requires
inferring intentions, which can be difficult in high-
dimensional settings. We build upon prior work
that studies assistance through the lens of em-
powerment: an assistive agent aims to maximize
the influence of the human’s actions such that
they exert a greater control over the environmen-
tal outcomes and can solve tasks in fewer steps.
We lift the major limitation of prior work in this
area—scalability to high-dimensional settings—
with contrastive successor representations. We
formally prove that these representations estimate
a similar notion of empowerment to that studied
by prior work and provide a ready-made mecha-
nism for optimizing it. Empirically, our proposed
method outperforms prior methods on synthetic
benchmarks, and scales to Overcooked, a cooper-
ative game setting. Theoretically, our work con-
nects ideas from information theory, neuroscience,
and reinforcement learning, and charts a path for
representations to play a critical role in solving
assistive problems.

1 Introduction
AI agents deployed in the real world should be helpful to
humans. When we know the utility function of the humans
an agent could interact with, we can directly train assistive
agents through reinforcement learning with the known hu-
man objective as the agent’s reward. In practice, agents
rarely have direct access to a scalar reward corresponding to
human preferences (if such a consistent model even exists)
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(Casper et al., 2023), and must infer them from human be-
havior (Hadfield-Menell et al., 2016; 2017). This inference
can be challenging, as humans may act suboptimally with
respect to their stated goals, not know their goals, or have
changing preferences (Carroll et al., 2021). Optimizing a
misspecified reward function can have poor consequences
(Turner et al., 2023).

An alternative paradigm for assistance is to train agents that
are intrinsically motivated to assist humans, rather than di-
rectly optimizing a model of their preferences. An analogy
can be drawn to a parent raising a child. A good parent
will empower the child to make impactful decisions and
flourish, rather than proscribing an “optimal” outcome for
the child. Likewise, AI agents might seek to empower the
human agents they interact with, maximizing their capacity
to change the environment (Du et al., 2020). In practice, con-
crete notions of empowerment can be difficult to optimize
as an objective, requiring extensive modeling assumptions
that don’t scale well to the high-dimensional settings deep
reinforcement learning agents are deployed in.

What is a good intrinsic objective for assisting humans that
doesn’t require these assumptions? We propose a notion of
assistance based on maximizing the influence of the human’s
actions on the environment. This approach only requires
one structural assumption: the AI agent is interacting with
an environment where there is a notion of actions taken
by the human agent—a more general setting than the case
where we model the human actions as the outcome of some
optimization procedure, as in IRL (Russell, 1998; Arora &
Doshi, 2021) or PbRL (Wirth et al., 2017).

Prior work has studied many effective objectives for empow-
erment. For instance, Du et al. (2020) approximates human
empowerment as the variance in the final states of random
rollouts. Despite excellent results in certain settings, this
approach can be challenging to scale to higher dimensional
settings, and does not necessarily enable human users to
achieve the goals the want to achieve. By contrast, our ap-
proach exclusively empowers the human with respect to the
distribution of (useful) behaviors induced by their current
policy, and can be implemented through a simple objec-
tive derived from contrastive successor features, which can
then be optimized with scalable deep reinforcement learning
(Fig. 1). We provide a theoretical framework connecting our
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Caption: We propose an algorithm training assistive agents to empower human users – the assistant should 
take actions that enable human users to visit a wide range of future states, and the human's actions should 
exert a high degree of influence over the future outcomes. Our algorithm scales to high-dimensional settings, 
opening the door to building assistive agents that need not directly reason about human intentions.
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Figure 1: We propose an algorithm training assistive agents to empower human users—the assistant should take actions that
enable human users to visit a wide range of future states, and the human’s actions should exert a high degree of influence
over the future outcomes. Our algorithm scales to high-dimensional settings, opening the door to building assistive agents
that need not directly reason about human intentions.

objective to prior work on empowerment and goal inference,
and empirically show that agents trained with this objective
can assist humans in the Overcooked environment (Carroll
et al., 2020) as well as the obstacle gridworld assistance
benchmark proposed by Du et al. (2020).

Our core contribution is a novel objective for training agents
that are intrinsically motivated to assist humans without
requiring a model of the human’s reward function. Our ob-
jective maximizes the influence of the human’s actions on
the environment, and, unlike past approaches for assistance
without reward inference, is based on a scalable model-free
objective that can be derived from learned successor fea-
tures that encode which states the human is likely to want to
reach given their current action. Our objective empowers the
human to reach the desired states, not all states, without as-
suming a human model. We analyze this objective in terms
of empowerment and goal inference, drawing novel math-
ematical connections between time-series representations,
decision-making, and assistance. We empirically show that
agents trained with our objective can assist humans in two
benchmarks proposed by past work: the Overcooked envi-
ronment (Carroll et al., 2020) and an obstacle-avoidance
gridworld (Du et al., 2020).

2 Related Work
Our approach broadly connects ideas from contrastive con-
trastive representation learning and intrinsic motivation to
the problem of assisting humans.

Assistive Agents. There are two lines of past work on
assistive agents that are most relevant.

The first line of work focuses on the setting of an assistance

game (Hadfield-Menell et al., 2016), where a robot (AI)
agent tries to optimize a human reward of which it is ini-
tially unaware. Practically, inverse reinforcement learning
(IRL) can be used in such a setting to infer the human’s
reward function and assist the human in achieving their
goals (Hadfield-Menell et al., 2017). The key challenge
with this approach is that it requires modeling the human’s
reward function. This can be difficult in practice, especially
if the human’s behavior is not well-modeled by the reward
architecture. Slightly mispecified reward functions can lead
to catastrophic outcomes (i.e., directly harmful behavior in
the assistance context) (Pan et al., 2022; Tien et al., 2023;
Laidlaw et al., 2024). By contrast, our approach does not
require modeling the human’s reward function.

The second line of work focuses on empowerment-like ob-
jectives for assistance and shared autonomy. Empowerment
generally refers to a measure of an agent’s ability to influ-
ence the environment (Salge et al., 2013; de Abril & Kanai,
2018). In the context of assistance, Du et al. (2020) show
one such approximation of empowerment (AvE) can be ap-
proximated in simple environments through random rollouts
to assist humans. Meanwhile, empowerment-like objectives
have been used in shared autonomy settings to assist hu-
mans with teleoperation (Chen et al., 2022) and general
assistive interfaces (Reddy et al., 2022). A key limitation of
these approaches for general assistance is they only model
empowerment over one time step. Our approach enables a
more scalable notion of empowerment that can be computed
over multiple time steps.

Intrinsic Motivation. Intrinsic motivation broadly refers
to agents that accomplish behaviors in the absence of an
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externally-specified reward or task (Barto, 2013). Com-
mon applications of intrinsic motivation in single-agent re-
inforcement learning include exploration and skill discovery
(Aubret et al., 2019; Eysenbach et al., 2018; Burda et al.,
2018), empowerment (de Abril & Kanai, 2018; Salge et al.,
2013), and surprise minimization (Friston, 2010; Berseth
et al., 2021; de Abril & Kanai, 2018). When applied to set-
tings with humans, these objectives may lead to antisocial
behavior (Turner et al., 2023). Our approach applies intrin-
sic motivation to the setting of assisting humans, where the
agent’s goal is an empowerment objective—to maximize
the human’s ability to change the environment.

Information-theoretic Decision Making. Information-
theoretic approaches have seen broad applicability across
unsupervised reinforcement learning (Poole et al., 2019; de
Abril & Kanai, 2018; Aubret et al., 2019). These methods
have been applied to goal-reaching (Choi et al., 2021), skill
discovery (Mohamed & Rezende, 2015; Jung et al., 2011;
Eysenbach et al., 2018; Laskin et al., 2022; Park et al., 2021),
and exploration (Burda et al., 2018; Still & Precup, 2012;
Nikolov et al., 2019). In the context of assisting humans,
information-theoretic methods have primarily been used to
reason about the human’s goals or rewards (Biyik et al.,
2021; Myers et al., 2022; Houlsby et al., 2011).

Our approach is made possible by advances in contrastive
representation learning for efficient estimation of the mutual
information of sequence data (van den Oord et al., 2019).
While these methods have been widely used for represen-
tation learning (Chen et al., 2020; Wu et al., 2018) and re-
inforcement learning (Laskin et al., 2020; Eysenbach et al.,
2022; Dayan, 1993; Momennejad et al., 2017), to the best
of our knowledge prior work has not used these contrastive
techniques for learning assistive agents.

3 The Information Geometry of
Empowerment

We will first state a general notion of an assistive setting,
then show how an empowerment objective based on learned
successor representations can be used to assist humans with-
out making assumptions about the human following an un-
derlying reward function. In Section 5, we provide empirical
evidence supporting these claims.

3.1 Preliminaries

Formally, we adapt the notation of Hadfield-Menell et al.
(2016), and assume a “robot” (R) and “human” (H) policy
are training together in an MDPM = (S,AH,AR, R, P, γ).
The observations s consistent of the joint states of the robot
and the human; we do not have separate observations for
the human and robot. At any state s ∈ S, the robot pol-
icy selects actions distributed according to πR(aR | s) for
aR ∈ AR and the human selects actions from πH(aH | s)
for aH ∈ AH. The transition dynamics are defined by a dis-

tribution P (s′ | s, aH, aR) over the next state s′ ∈ S given
the current state s ∈ S and actions aH ∈ AH and aR ∈ AR,
as well as an initial state distribution P (s0). For notational
convenience, we will additionally define random variables
st to represent the state at time t, and aR

t ∼ πR(• | st) and
aH
t ∼ πH(• | st) to represent the human and robot actions

at time t, respectively.

Empowerment. Our work builds on a long line of prior
methods that use information theoretic objectives for RL.
Specifically, we adopt empowerment as an objective for
training an assistive agent (Du et al., 2020; Salge et al.,
2014; Klyubin et al., 2005). This section provides the math-
ematical foundations for empowerment, as developed in
prior work. Our work will build on the prior work by (1)
providing an information geometric interpretation of what
empowerment does (Sec. 3.3) and (2) providing a scalable
algorithm for estimating and optimizing empowerment, go-
ing well beyond the gridworlds studied in prior work.

The idea behind empowerment is to think about the changes
that an agent can effect on a world; an agent is more em-
powered if it can effect a larger degree of change over future
outcomes. Following prior work (Choi et al., 2021; Klyubin
et al., 2005; Salge et al., 2014), we measure empowerment
by looking at how much the actions taken now affect out-
comes in the future. An agent with a high degree of empow-
erment exerts a high degree of control of the future states by
simply changing the actions taken now. Like prior work, we
measure this degree of control through the mutual informa-
tion I(s+; aH) between the current action aH and the future
states s+. Note that these future states might occur many
time steps into the future.

Empowerment depends on several factors: the environment
dynamics, the choice of future actions, the current state, and
other agents in the environment. Different problem settings
involve maximizing empowerment using these different fac-
tors. In this work, we study the setting where a “human”
agent and a “robot” agent collaborate in an environment; the
robot will aim to maximize the empowerment of the human.
This problem setting was introduced in prior work (Du et al.,
2020). Compared with other mathematical frameworks for
learning assistive agents (Reddy et al., 2018), framing the
problem in terms of empowerment means that the assistive
agent need not infer the human’s underlying intention, an
inference problem that is typically challenging (Ratliff et al.,
2006; Abbeel & Ng, 2004).

Formally, we define the empowerment E(πH , πR) as the
mutual information between the human’s actions and the
future states s+ while interacting with the robot:

E(πH , πR) = E
[ ∞∑
t=0

γtI(aH
t ; s

+ | st)
]
, (1)

where s+ is a future state sampled K ∼ Geom(1 − γ)
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(a) State marginal polytope (b) Mutual information (c) Maximizing empowerment

Figure 2: The Information Geometry of Empowerment, illustrating the analysis in Sec. 3.3. (Left) For a given controlled
Markov process, each policy induces a distribution over states. In a 3-state MDP, we can represent each policy as a vector
lying on the 2-dimensional probability simplex. We refer to the set of all possible state distributions as the state marginal
polytope. (Center) Mutual information corresponds to the distance between the center of the polytope and the vertices that
are maximally far away. (Right) Empowerment corresponds to maximizing the size of this polytope. For example, when an
assistive agent moves an obstacle out of a human user’s way, the human user can spend more time at desired state.

steps into the future under the behavior policies πH , πR,
and where the mutual information is defined as

I(aH
t ; s

+ | st) ≜ Est,st+k,aH
t ,a

R
t[

log
p(st+K = st+k | st = st, a

H
t = at)

p(st+K = st+k | st = st)

]
.

Note that this objective resembles an RL objective: we do
not just want to maximize this objective greedily at each
time step, but rather want the assistive agents to take actions
now that help the human agent reach states where it will
have high empowerment in the future.

3.2 Assistive Agents Maximize Coverage

Intuitively, the assistive agent should aim to maximize the
size of this set of possible measures. We can formalize this
intuition by employing a result from Eysenbach et al. (2021,
Lemma 6.2), which says that a human maximizing mutual
information will only select those skills z that are maximally
far away from the prior.
Lemma 1 (Lemma 6.2 from Eysenbach et al. (2021)). Let
πH(z) be the human’s skill distribution that maximizes mu-
tual information. Then we have

π∗
H(z) > 0 =⇒
DKL

(
ρ(s | z)

∥∥ ρ(s)) = max
z∗

DKL
(
ρ(s | z∗)

∥∥ ρ(s)). (2)

Noting that the mutual information is the expected value of
this KL divergence over π∗

H(z), we have

Iπ
∗
H (s+; z) = max

z∗
DKL

(
ρ(s | z∗)

∥∥ρ(s)) ≜ dmax. (3)

Thus, we can think about mutual information maximization
as finding the set of skills with the maximal coverage –
where skills are maximally far away from their center.

Now, by extension, a robot assistant that is maximizing this
mutual information also aims to increase the size of this set:

max
πR

IπR,π
∗
H (s+; z) = max

πR

dmax. (4)

In other words, an agent maximizing the empowerment of
the human will aim to increase the support of goals the
human can reach conditioned on their intention (Fig. 2).

3.3 The Information Geometry of Empowerment

To build on this intuition, we will show that in the special
case where the human is well-modeled as optimizing a re-
ward function, we can relate empowerment maximization to
reward maximization. Since a key advantage of empower-
ment is that it does not necessarily require this assumption
to be a meaningful assistance objective, we can view our
objective as a generalization of the assistance problem be-
yond the CIRL setting (Hadfield-Menell et al., 2016). In
particular, we will show that under certain assumptions max-
imizing empowerment corresponds to provably increasing
their expected rewards.

Lemma 2. Assume that a human has learned skills π(a |
s, z) by maximizing mutual information I(s+; z) and adapts
to a reward function by minimizing the regularized regret:

min
ρ∗∈CπR

max
ρ+∈C

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)]

+DKL
(
ρ∗(s)∥ρ(s)

)
. (5)

We assume that the human chooses the prior ρ(s) that mini-
mizes this regret for the worst-case choice of reward function
(i.e., the minimax optimal prior). An assistive agent that
maximizes IπR(s+; z) minimizes the worst-case (regular-
ized) regret incurred by the human.
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Letting π∗
R ∈ argmaxπR

IπR(s+; z), we have

π∗
R ∈ argmin

πR

(
min

ρ(s)∈CπR
max
r(s)

min
ρ∗∈CπR

max
ρ+∈CπR

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)] +DKL(ρ
∗(s)∥ρ(s))

)
. (6)

The proof is in Appendix B. To the best of our knowl-
edge, this theoretical result provides the first formal link
between empowerment maximization and reward maximiza-
tion. This motivates us to develop a scalable algorithm for
empowerment maximization, which we introduce in the
following section.

4 Estimating and Maximizing Empowerment
with Contrastive Representations

Directly computing equation 1 would require access to the
human policy, which we don’t have. Therefore, we want
a tractable estimation that still performs well in large en-
vironments which are more difficult to model due to the
exponentially increasing set of possible future states. To
better-estimate empowerment, we learn contrastive repre-
sentations that encode information about which future states
are likely to be reached from the current state. These con-
trastive representations learn to model mutual information
between the current state, action, and future state, which we
then use to compute the empowerment objective.

4.1 Estimating Empowerment

To estimate this empowerment objective, we need a way of
learning the probability ratio inside the expectation. Prior
methods such as Du et al. (2020) and Salge et al. (2014)
rollout possible future states and compute a measure of their
variance as a proxy for empowerment, however this doesn’t
scale when the environment becomes complex. Other meth-
ods learn a dynamics model, which also doesn’t scale when
dynamics become challenging to model (Jung et al., 2011).
Modeling these probabilities directly is challenging in set-
tings with high-dimensional states, so we opt for an indirect
approach. Specifically, we will learn representations that
encode two probability ratios. Then, we will be able to
compute the desired probability ratio by combining these
other probability ratios.

Our method will learn three representations:

1. ϕ(s, aR, aH) – This representation can be understood as a
sort of latent-space model, predicting the future represen-
tation given the current state s and the human’s current
action aH as well as the robot’s current action aR.

2. ϕ′(s, aR) – This representation can be understood as an
uncontrolled model, predicting the representation of a
future state without reference to the current human action
aH. This representation is analogous to a value function.

3. ψ(g) – This is a representation of a future state.

We will learn these three representations with two con-
trastive losses, one that aligns ϕ(s, aH) ↔ ψ(g) and one
that aligns ϕ′(s) ↔ ψ(g)

max
ϕ,ϕ′,ψ

E{(si,ai,s′i)∼p(st,aH
t ,st+k)}N

i=1[
Lc

({
ϕ(si, ai)

}
, {ψ(s′j)}

)
+ Lc

({
ϕ′(si)

}
, {ψ(s′j)}

)]
, (7)

where the contrastive loss Lc is the symmetrized infoNCE
objective (van den Oord et al., 2019):

Lc({xi}, {yj}) ≜
N∑
i=1

[
log

(
ex

T
i yi∑N

j=1 e
xT
i

yj

)
+ log

(
ex

T
i yi∑N

j=1 e
xj

T yi

)]
. (8)

We have colored the index j for clarity. At convergence,
these representations encode two probabilities ratios (Poole
et al., 2019), which we will ultimately be able to use to
estimate empowerment (Eq. 1):

ϕ(s, aR, aH)Tψ(g) = log

[
p(st+K=g|st=s,aH

t =a)
C1p(st+K=g)

]
(9)

ϕ′(s, aR)Tψ(g) = log

[
p(st+K=st+k|st=st)

C2p(st+K=g)

]
. (10)

Note that our definition of empowerment (Eq. 1) is defined
in terms of similar probability ratios. The constants C1 and
C2 will mean that our estimate of empowerment may be off
by an additive constant, but that constant will not affect the
solution to the empowerment maximization problem.

4.2 Estimating Empowerment with Learned
Representations

To estimate empowerment, we will look at the difference
between these two inner products:

ϕ(st+K , a
R, aH)Tψ(g)− ϕ(st+K , a

R)Tψ(g)

= log p(st+K | s, aH)− logC1 −������
log p(st+K)

− log p(st+K | s) + logC2 +������
log p(st+K)

= log
p(st+K | s, aH)

p(st+K | s)
+ log

C2

C1
.

Note that the expected value of the first term is the condi-
tional mutual information I(st+K ; aH | s). Our empow-
erment objective corresponds to averaging this mutual in-
formation across all the visited states. In other words, our
objective corresponds to an RL problem, where empower-
ment corresponds to the expected discounted sum of these
log ratios:

E(πH , πR) = EπH ,πR

[∑∞
t=0 γ

tI(aHt ; st | st)
]

≈ EπH ,πR

[∑∞
t=0 γ

t
(
ϕ(st, a

R, aH)− ϕ(st, a
R)
)T
ψ(g)− log C2

C1

]
.
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Algorithm 1: Empowerment via Successor Representations (ESR)

Input: Human policy πH(a | s)
Randomly initialize assistive agent policy πR(a | s), and representations ϕ(s, aR, aH), ψ(s, aT ), and ψ(g).
Initialize replay buffer B.
while not converged do

Collect a trajectory of experience with human policy and assistive agent policy, store in replay buffer B.
Update representations ϕ(s, aR, aH), ψ(s, aT ), and ψ(g) with the contrastive losses in Eq. (7).
Update πR(a | s) with RL using reward function r(s, aR, aH) = (ϕ(s, aR, aH)− ϕ′(s, aR))Tψ(g).

Return: Assistive policy πR(a | s).

(a) Obstacle Gridworld (b) Cramped Room (c) Coordination Ring

Figure 3: The modified environment from Du et al. (2020) scaled to N = 7 blocks (left), and the two layouts of the
Overcooked environment (Carroll et al., 2020) (middle and right).

The approximation above comes from function approxima-
tion in learning the Bayes optimal representations. Again,
note that the constants C1 and C2 do not change the opti-
mization problem. Thus, to maximize empowerment we
will apply RL to the assistive agent πR(a | s) using a reward
function

r(s, aR) = (ϕ(st, a
R, aH)− ϕ(st, a

R))Tψ(g). (11)

4.3 Algorithm Summary

We propose an actor-critic method for learning the assis-
tive agent. Our method will alternative between updating
these contrastive representations and using them to estimate
a reward function (Eq. 11 that is optimized via RL. We
summarize the algorithm in Alg. 1. In practice, we use
SAC (Haarnoja et al., 2018) as our RL algorithm. In our
experiments, we will also study the setting where the human
user updates their policy alongside the assistive agent.

5 Experiments
We hope to answer two questions with our experiments: (1)
Does our approach enable assistance in standard coopera-
tion benchmarks? (2) Does our approach scale to harder
benchmarks where prior methods fail?

Our experiments will use two benchmarks designed by prior
work to study assistance: the obstacle gridworld (Du et al.,
2020) and Overcooked (Carroll et al., 2020). Our main base-

line will be AvE (Du et al., 2020), a prior empowerment-
based method. Our conjecture is that both methods will
perform well on the lower-dimensional gridworld task, and
that our method will scale more gradefully to the higher
dimensional Overcooked environment. We will also com-
pare against a naïve baseline where the assistive agent acts
randomly.

5.1 Do contrastive successor representations
effectively estimate empowerment?

We test our approach in the assistance benchmark suggested
in Du et al. (2020). The human (orange) is tasked with
reaching a goal state (green) while avoiding the obstacles
(purple). The AI assistant can move blocks one step at a time
in any direction (Du et al., 2020). While the original bench-
mark used N = 2 obstacles, we will additionally evaluate
on harder versions of this task with N = 5, 7, 10 obstacles.
We show results in Fig. 4. On the easiest task, both our
method and AvE achieve similar asymptotic reward, though
our method learns more slowly than AvE. However, on the
tasks with moderate and high degrees of complexity, our
approach (ESR) achieves significantly higher rewards than
AvE, which performs worse than a random controller. These
experiments support our claim that contrastive successor
representations provide an effective means for estimating
empowerment, and hint that ESR might be well suited for
solving higher dimensional tasks.
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Figure 4: We apply our method to the benchmark proposed in prior work (Du et al., 2020), visualized in Fig. 3a. The four
subplots show variant tasks of increasing complexity (more blocks), (±1 SE). The prior approach (AvE (Du et al., 2020))
fails on all except the easiest task, highlighting the importance of scalability.

5.2 Does ESR scale to image-based observations?

Our second set of experiments look at scaling ESR to the
image-based Overcooked environment. Since contrastive
learning is often applied to image domains, we conjectured
that ESR would scale gradefully to this setting. We will eval-
uate our approach in assisting a human policy trained with
behavioral cloning taken from Laidlaw & Dragan (2022).
The human prepares dishes by picking up ingredients and
cooking them on a stove, while the AI assistant moves in-
gredients and dishes around the kitchen. We focus on two
environments within this setting: a cramped room where the
human must pass ingredients and dishes through a narrow
corridor, and a coordination ring where the human must
pass ingredients and dishes around a ring-shaped kitchen
(Figs. 3b and 3c). As belore, we compare with AvE as well
as a naïve random controller. We report results in Fig. 5. On
both tasks, we observe that our approach achieves higher
rewards than AvE baseline, which performs no better than
a random controller. Taken together with the results in the
previous setting, these results highlight the scalability of
ESR to higher dimensional problems.

6 Discussion
One of the most important problems in AI today is equip-
ping AI agents with the capacity to assist humans achieve
their goals. While much of the amazing work in this area
requires inferring the human’s intention, our work builds on
prior work in studying how an assistive agent can empower
a human user without inferring their intention. Relative
to prior methods, we demonstrate how empowerment can
be readily estimated using contrastive learning, paving the
way for deploying these techniques on high-dimensional
problems.

Limitations. One of the main limitations of our approach
is the assumption that the assistive agent has access to the
human’s actions, which could be challenging to observe in
practice. Automatically inferring the human’s actions re-
mains an important problem for future work. A second limi-
tation is that the method is currently an on-policy method,
in the sense that the assistive agent has to learn by trial
and error. Moving forward, we look forward to investigat-
ing techniques from off-policy evaluation and cooperative
game theory to enable faster learning of assistive agents
with fewer trials.
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Figure 5: We test our approach in the Overcooked environment (Carroll et al., 2020). Our approach outperforms the prior
method (AvE (Du et al., 2020)) and random selection without access to the human reward function (plotted ±1SE.)

Safety risks. Perhaps the main risk involved with maxi-
mizing empowerment is that it may be at odds with a hu-
man’s agents goal, especially in contexts where the pursuit
of that goal limit’s the human’s capacity to persue other
goals. For example, a family choosing to have a kid has
many fewer options over where they can travel for vacation,
yet we do not want assistive agents to stymie families from
having children.

One key consideration is whom should be empowered. The
present paper assumes there is a single human agent. Equiv-
alently, this can be seen as maximizing the empowerment
of all exogenous agents. However, it is easy to adapt the
proposed method to maximize the empowerment of a single
target individual. Given historical inequities in the distribu-
tion of power, practitioners must take care when considering
who’s empowerment to maximize. Similarly, while we fo-
cused on maximizing empowerment, it is trivial to change
the sign so that an “assistive” agent minimizes empower-
ment. One could imagine using such a tool in policies to
handicap one’s political opponents.
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A Experimental Details
We ran all our experiments on NVIDIA RTX A6000 GPUs with 48GB of memory within an internal cluster. Each
evaluation seed took around 5-10 hours to complete. Our losses (Eqs. (7) and (11)) were computed and optimized in JAX
with Adam (Kingma & Ba, 2017). The experimental results described in Section 5 were obtained by averaging over 5
seeds for the Overcooked coordination ring layout, 15 for the cramped room layout, and 20 for the obstacle gridworld
environment. Specific hyperparameter values can be found in our code, which is available at https://anonymous.
4open.science/r/esr-7E94.

B The Information Geometry of Empowerment
This section considers an objective that might be slightly different: IπR(s+; z), where z is a representation of the human’s
intention. In practice, this could be represented as a sequence of actions (as in the main doc above), but it also includes
reactive and closed loop policies. This mutual information also depends on the human’s policy πH , but here we are interested
in just the dependence on the robot.

Here’s the primary question of interest: what actions/behaviors should the robot employ to maximize the mutual information
between the human’s intentions and the outcomes. Note that this is a standard mutual information skill learning objective.
However, whereas prior work typically optimizes this objective w.r.t. the human’s policy πH(a | s, z), here we aim to
optimize this w.r.t. the robot’s policy πR(a | s). Note that the robot is not conditioned on the human’s intention z. We
assume that this intention is not observed. 1 The objective can then be written as

max
πR

IπR(s+; z). (12)

One way of thinking about this optimization problem is that we are modifying the MDP itself. However, rather than (say)
changing the positions of clouds or changing the framerate, we will only consider changes that can be mediated by an
interactive robot agent. These include changes such as pushing an object, opening a drawer, charging or discharging another
robot.

B.1 Preliminaries: Relating Mutual Information to Reward Maximization

The mutual information is an information theoretic quantity, defined in terms of bits and probabilities. However, what we
actually care about is the ability of an assisted human to achieve high rewards. So, we need a way of relating this mutual
information objective to reward maximizing. We start by recalling the result from Eysenbach et al. (2021), which provides
one such relation:

max
πH(z)

I(s+; z) = min
ρ(s)∈C

max
r(s)

min
ρ∗∈C

max
ρ+∈C

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)]︸ ︷︷ ︸
regret

+DKL(ρ
∗(s)∥ρ(s)). (13)

Unpacking this objective. There’s a lot of math in that equation, so let’s unpack it a bit. The LHS is about learning skills
for the human policy πH . We assume that all possible skills are enumerated, so the human simply has to select from this
menu of skills by deciding much more of each skill πH(z) to order from this menu. Of course, this menu is exponentially
long, but it is finite and well defined, and practical algorithms won’t actually attempt to enumerate this menu of skills. The
optimization problem on the LHS is about selecting those skills that most readily maximize the mutual information – the
skills that have a strong influence over the states visited in the future.

The RHS has a whole bunch of terms. For a given reward function r(s), we care about how much reward a particular
policy gets. The RHS studies this standard expected reward by using the dual of the RL problem, thinking about the states
ρ(s) visited by a policy and counting up the rewards at those states. The term Eρ+(s)[r(s)] is the expected reward for a
policy with occupancy measure ρ+(s). Thus, maxρ+(s) Eρ+(s)[r(s)] is the maximal reward that any policy can get on this
particular reward function.

We are often given a policy (or its occupancy measure ρ∗(s)) and and reward function r(s) and want to know how good that
policy is for that reward function. While we could directly measure the expected reward, we usually don’t know whether

1One area for future work is to study whether actively inferring this intention improves assistance. Another area for future work
is to study whether non-Markovian robot policies can perform better than their Markovian counterparts because they can accumulate
information about the human’s intentions across time.
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this is a particularly good value or not. Instead, we might measure the regret of the policy: how much lower is its expected
reward, as compared to the optimal policy for that reward function:

REGRET(ρ(s)∗, r(s)) = max
ρ+(s)

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)]. (14)

This is the term that appears on the RHS on Eq. 13. Now, when we have limited data, we usually want to minimize a
regularized notion of regret. This is what ρ∗ is doing, using the KL divergence against a prior ρ(s) as the regularization term:

min
ρ∗(s)

REGRET(ρ∗(s), r(s)) +DKL(ρ
∗(s)∥ρ(s)). (15)

This objective above can be interpreted as the difficulty of learning to maximize reward function r(s). But, in the
unsupervised RL setting, which reward functions should we learn how to optimize? We could take an average case approach,
but this runs into challenges because “average” depends on a choice of measure. Instead, we take a worst-case approach,
selecting the reward function that is most challenging to adapt to:

max
r(s)

min
ρ∗(s)

REGRET(ρ∗(s), r(s)) +DKL(ρ
∗(s)∥ρ(s)). (16)

Finally, when discussing adaptation, we had some prior ρ(s) to which we were referring. The overall aim is to find the prior
ρ(s) that makes it easy to adapt to the most challenging reward function:

min
ρ(s)∈C

max
r(s)

ADAPTATIONOBJECTIVE(ρ(s), r(s)). (17)

Eq. 13 tells us that the problem of finding this optimal prior is equivalent to maximizing mutual information.

B.2 Application to Empowerment

We can extend this result to the assistive setting, thinking about how an assistive robot should act to make it easier for a
human to maximize their worst-case rewards. From the human’s perspective, the robot is just another part of the MDP.2 So,
to apply the result from Eq. 13 to empowerment, we just need to modify the definitions to depend on the choice of πR.

On the LHS, let’s use IπR(s+; z) to denote the mutual information between the human’s choice of skills πH(z) and the
future states, when interacting in an environment alongside a robot πR(a | s). The RHS thinks about the state occupancy
measure of the human, terms like ρ(s), ρ+(s), ρ∗(s). An effective assistive agent will enable a human to visit a wide
distribution over states, or to spend more time visiting any given state. We will use CπR to denote the feasible occupancy
measures when interacting alongside an assistive agent.

B.3 Assistive Agents Minimize Regret

We can now state our main result, which is a direct corollary of Eq. 13 Consider the human and the robot as one monolithic
agent selecting actions aH , aR ∼ πH(aH | s, z)πR(aR | s). This policy is Markovian, so we can immediately apply Eq. 13.

We start with some intuition: we would like an assistive agent to help the human maximize rewards. The challenge is that
the assistive agent doesn’t know what reward function the human is trying to solve, and we would like to avoid this inverse
RL problem. So, we will take a worst-case approach, thinking about how the assistive agent can help the human solve the
hardest task. We will measure difficulty as a combination of (1) regret versus the optimal policy, and (2) divergence from a
prior over policies.

Notation. Let CπR denote the set of feasible state marginal distributions with cooperating with assistive agent πR(a | s).
We assume that this assistive agent does not know the human’s intention. We will measure regret against an omniscient
assistive agent, which knows the human’s intent. Thus, we compare to an occupancy measure optimized within the larger
set C, which includes adaptive strategies.

Assume human πH(a | s) and robot πR(a | s) induce state occupancy measure ρ∗(s). We define their regret, which is
measured relative to the highest reward they could achieve with any assistive agent (hence, we use ρ+ ∈ C rather than
ρ+ ∈ CπR ):

max
ρ+∈C

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)].

2The reason we wanted to assume that the robot was Markovian was so that this remains a Markov decision process.
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We will include an additional regularization term, so the overall objective becomes

max
ρ+∈C

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)] +DKL(ρ
∗(s)∥ρ(s)).

Given a reward function r(s), we assume that the human adapts by minimizing this regularized regret. We assume that the
assistive agent does not adapt. Thus, the human is optimizing over the smaller set CπR :

min
ρ∗∈CπR

max
ρ+∈C

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)] +DKL(ρ
∗(s)∥ρ(s)).

As before, the reward function is adversarially chosen. And, the human’s job is to find the prior ρ(s) that is minimax optimal:

min
ρ(s)∈CπR

max
r(s)

min
ρ∗∈CπR

max
ρ+∈C

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)] +DKL(ρ
∗(s)∥ρ(s)).

Lemma 3. Assume that a human has learned skills π(a | s, z) by maximizing mutual information I(s+; z) and adapts to a
reward function by minimizing the regularized regret:

min
ρ∗∈CπR

max
ρ+∈C

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)] +DKL(ρ
∗(s)∥ρ(s)).

We assume that the human chooses the prior ρ(s) that minimizes this regret for the worst-case choice of reward function (i.e.,
the minimax optimal prior). An assistive agent that maximizes IπR(s+; z) minimizes the worst-case (regularized) regret
incurred by the human.

Letting π∗
R ∈ argmaxπR

IπR(s+; z), we have

π∗
R ∈ argmin

πR

(
min

ρ(s)∈CπR
max
r(s)

min
ρ∗∈CπR

max
ρ+∈C

Eρ+(s)[r(s)]− Eρ∗(s)[r(s)] +DKL
(
ρ∗(s)∥ρ(s)

))
. (18)

C Simplifying the Objective
The reward function in Eq. 11 is itself a random variable because it depends on future states g. This subsection describes
how this randomness can be removed. To do this, we follow prior work (Wang & Isola, 2020; Eysenbach et al., 2024) in
arguing that the learned representations ψ(g) follow a Gaussian distribution:
Assumption 1 (Based on Wang & Isola (2020)). The representations of future states ψ(g) learned by contrastive learning
have a marginal distribution that is Gaussian:

p(ψ) =

∫
p(g)δ(ψ = ψ(g)) dg

d
= N (0, I). (19)

With this assumption, we can remove the random sampling of g from the reward function. We start by noting that the learned
representations tell us the relative likelihood of seeing a future state (Eq. 10). Assumption 1 will allow us to convert these
relative likelihoods into likelihoods.

Ep(s+|s,aR,aH)[r(s, a
R)] = Ep(s+)

[
p(s+|s,aR,aH)

p(s+) r(s, aR)

]
= Ep(s+)

[
C1e

ϕ(s,aR,aH)Tϕ(s+)r(s, aR)
]

= C1Eψ∼p(ϕ(s+))

[
eϕ(s,a

R,aH)Tψ(ϕ(s, aR, aH)− ϕ(s, aR))Tψ
]

= C1

(
ϕ(s, aR, aH)− ϕ(s, aR)

)T ∫
1

(2π)d/2
e−

1
2∥ψ∥

2
2+ϕ(s,a

R,aH)Tψψ dψ

= C1

(
ϕ(s, aR, aH)− ϕ(s, aR)

)T
e

1
2∥ϕ(s,a

R,aH)∥2
2∫

1
(2π)d/2

e−
1
2∥ψ∥

2
2+ϕ(s,a

R,aH)Tψ− 1
2∥ϕ(s,a

R,aH)∥2
2ψ dψ

= C1

(
ϕ(s, aR, aH)− ϕ(s, aR)

)T
e

1
2∥ϕ(s,a

R,aH)∥2
2Eψ∼N (µ=ϕ(s,aR,aH),Σ=I)

[
ψ
]

= C1e
1
2∥ϕ(s,a

R,aH)∥2
2
(
ϕ(s, aR, aH)− ϕ(s, aR)

)T
ϕ(s, aR, aH). (20)
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