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ABSTRACT

Despite the remarkable progress made by the policy gradient algorithms in re-
inforcement learning (RL), sub-optimal policies usually result from the local
exploration property of the policy gradient update. In this work, we propose a
method called Zeroth-Order Supervised Policy Improvement (ZOSPI) that exploits
the estimated value function Q globally while preserving the local exploitation of
the policy gradient methods. Experiments show that ZOSPI achieves competitive
results on the MuJoCo benchmarks with a remarkable sample efficiency. Moreover,
different from the conventional policy gradient methods, the policy learning of
ZOSPI is conducted in a self-supervised manner. We show such a self-supervised
learning paradigm has the flexibility of including optimistic exploration as well as
adopting a non-parametric policy.

1 INTRODUCTION

Model-free Reinforcement Learning has achieved great successes in many challenging tasks (Mnih
et al., 2015; Vinyals et al., 2019; Pachocki et al.), however one obstacle for its application to real-
world control problems is the insufficient sample efficiency. To improve the sample efficiency,
off-policy methods (Degris et al., 2012; Gu et al., 2016; Wang et al., 2016; Lillicrap et al., 2015;
Fujimoto et al., 2018) reuse the experiences generated by previous policies to optimize the current
policy, therefore obtaining a higher sample efficiency than on-policy methods (Schulman et al.,
2015; 2017). Alternatively, SAC (Haarnoja et al., 2018) increases sample efficiency by conducting
more active exploration of current policy, which is achieved by applying a maximum entropy
framework (Haarnoja et al., 2017) to the off-policy actor critic, and also results in the state-of-the-art
asymptotic performance. OAC (Ciosek et al., 2019) further improves SAC by combining it with the
Upper Confidence Bound heuristics (Brafman & Tennenholtz, 2002) to conduct more informative
exploration. Despite of their improvements, these methods all rely on a Gaussianized policy and a
local exploration strategy that simply adds noises to the action space, thus they might still lead to
sub-optimal solutions as pointed out by Tessler et al. (2019).

In this work we aim to explore a new learning paradigm that is able to carry out non-local exploration
as well as non-local exploitation in continuous control tasks and achieve higher sample efficiency.
Specifically, to better exploit the learned value function Q, we propose to search it globally for a
better action, in contrast to previous attempts in policy gradient methods that only utilize its local
information (e.g. the Jacobian matrix used in (Silver et al., 2014)). The idea behind our work is mostly
related to the value-based policy gradient methods (Lillicrap et al., 2015; Fujimoto et al., 2018),
where the policy gradient optimization step takes the role of finding a well-performing action given a
learned state-action value function. In previous works, the policy gradient step tackles the curse of
dimensionality since it is intractable to directly search for the maximal value in the continuous action
space (Mnih et al., 2015).

To perform a global exploitation of the learned value function Q, we propose to apply a zeroth-order
optimization scheme and update the target policy through supervised learning, which is inspired
by works of evolution strategies (Salimans et al., 2017; Conti et al., 2018; Mania et al., 2018) that
adopt zeroth-order optimizations in the parameter space. Different from the standard policy gradient,
combining the zeroth-order optimization with supervised learning forms a new way of policy update.
Such a update avoids the local improvement of policy gradient: when policy gradient is applied,
the target policy uses policy gradient to adjust its predictions according to the deterministic policy
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gradient theorem (Silver et al., 2014), but such adjustments can only lead to local improvements and
may induce sub-optimal policies due to the non-convexity of the policy function (Tessler et al., 2019);
on the contrary, the combination of zeroth-order optimization and supervised learning proposed in
this paper can help the non-convex policy optimization to escape the local minimum as shown in our
experiments.

Our contributions are summarized as follows. We first introduce a simple yet novel policy optimization
method, namely the Zeroth-Order Supervised Policy Improvement (ZOSPI), where the policy utilizes
global information of the learned value function Q and adjusts itself through sample-based supervised
learning. Then we show the capability of ZOSPI by comparing it with SOTA policy gradient methods
on the MuJoCo locomotion benchmarks, demonstrating its remarkable sample efficiency as well as
on-par final performance. Finally, we further demonstrate the flexibility of ZOSPI by exposing two
potential extensions of ZOSPI, namely the combination of ZOSPI and optimistic explorations and
the compatibility of ZOSPI with non-parametric policies such as Gaussian Processes policies.

2 RELATED WORK

Policy Gradient Methods. The policy gradient methods solve the MDP by directly optimizing
the policy to maximize the cumulative reward (Williams, 1992; Sutton & Barto, 1998). While the
prominent on-policy policy gradient methods like TRPO (Schulman et al., 2015) and PPO (Schulman
et al., 2017) improve the learning stability via trust region updates, off-policy methods such as
DPG (Silver et al., 2014) and DDPG (Lillicrap et al., 2015) can learn with a higher sample efficiency
than on-policy methods. The work of TD3 (Fujimoto et al., 2018) further addresses the function
approximation error and boost the stability of DDPG with several improvements. Another line of
works is the combination of policy gradient methods and the max-entropy principle, which leads to
better exploration and stable asymptotic performances (Haarnoja et al., 2017; 2018). All of these
approaches adopt function approximators (Sutton et al., 2000) for state or state-action value estimation
as well as directionally uninformed Gaussian policies for policy parameterization, which lead to a
local exploration behavior (Ciosek et al., 2019; Tessler et al., 2019).

Self-Supervised RL. Self-supervised learning or self-imitate learning is a rising stream as an al-
ternative approach for model-free RL. Instead of applying policy gradient for policy improvement,
methods of self-supervised RL update policies through supervised learning by minimizing the mean
square error between target actions and current actions predicted by a policy network (Sun et al.,
2019), or alternatively by maximizing the likelihood for stochastic policy parameterizations (Ghosh
et al., 2019). While these works focus on the Goal-Conditioned tasks, in this work we aim at general
RL tasks. Some other works use supervised learning to optimize the policy towards manually-selected
policies to achieve better training stability (Wang et al., 2018; Zhang et al., 2019; Abdolmaleki et al.,
2018), but rather in this work our our policy optimization is purely based on self-supervision with a
much simpler formulation while achieving efficient performance.

Zeroth-Order Methods. Zeroth-order optimization methods, also called gradient-free methods, are
widely used when gradients are difficult to compute. They approximate the local gradient with random
samples around the current estimate. The works in Wang et al. (2017); Golovin et al. (2019) show
that a local zeroth-order optimization method has a convergence rate that depends logarithmically
on the ambient dimension of the problem under some sparsity assumptions. It can also efficiently
escape saddle points in non-convex optimizations (Vlatakis-Gkaragkounis et al., 2019; Bai et al.,
2020). In RL, many studies have verified an improved sample efficiency of zeroth-order optimization
(Usunier et al., 2016; Mania et al., 2018; Salimans et al., 2017). In this work we provide a novel way
of combining the local sampling and the global sampling to ensure that our algorithm approximates
the gradient descent locally and is also able to find a better global region.

3 PRELIMINARIES

We consider the deterministic Markov Decision Process (MDP) with continuous state and action
spaces in the discounted infinite-horizon setting. Such MDPs can be denoted byM = (S,A, P, r, γ),
where the state space S and the action space A are continuous, and the unknown state transition
probability representing the transition dynamics is denoted by P : S × A 7→ S. r : S × A 7→
[0, 1] is the reward function and γ ∈ [0, 1] is the discount factor. An MDP M and a learning
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Figure 1: (a) Q value landscape of a 1-dim continuous control task. Policy gradient methods optimize
the policy according to the local information of Q (b) For the same task, ZOSPI directly updates the
predicted actions to the sampled action with the largest Q value. (c) Simulation results, where in each
optimization iteration 10 actions are uniformly sampled with different ranges, and reported results
are averaged over 100 random seeds. It can be seen that a larger random sample range improves the
chance of finding global optima. Similar phenomenon also exist in practice as shown in Appendix A.

algorithm operating on M with an arbitrary initial state s0 ∈ S constitute a stochastic process
described sequentially by the state st visited at time step t, the action at chosen by the algorithm
at step t, the reward rt = r(st, at) and the next state st+1 = P (st, at) for any t = 0, . . . , T . Let
Ht = {s0, a0, r0, . . . , st, at, rt} be the trajectory up to time t. Our algorithm finds the policy that
maximizes the discounted cumulative rewards

∑T
t=0 γ

trt. Our work follows the general Actor-Critic
framework (Konda & Tsitsiklis, 2000; Peters & Schaal, 2008; Degris et al., 2012; Wang et al., 2016),
which learns in an unknown environment using a value network denoted by Qwt : S ×A 7→ R for
estimating Q values and a policy network for learning the behavior policy πθt : S 7→ A. Here wt and
θt are respectively the parameters of these two networks at step t.

4 ZEROTH-ORDER SELF-SUPERVISED CONTINUOUS CONTROL

4.1 A MOTIVATING EXAMPLE

Figure 1 shows a motivating example to demonstrate the benefits of applying zeroth-order optimization
to policy updates. Consider we have learned a Q function that has multiple local optima1, and our
present deterministic policy selects a certain action at this state, denoted as the red dot in Figure 1(a).
In deterministic policy gradient methods (Silver et al., 2014; Lillicrap et al., 2015), the policy gradient
is conducted according to the chain rule to update the policy parameter θ with regard to Q-value
by timing up the Jacobian matrix ∇θπθ(s) and the derivative of Q, i.e. ∇aQ(s, a). Consequently,
the policy gradient can only lead to a local improvement, and similar local improvement behaviors
are also observed in stochastic policy gradient methods like PPO and SAC (Schulman et al., 2017;
Haarnoja et al., 2018; Tessler et al., 2019; Ciosek et al., 2019). Instead, if we are able to sample
sufficient random actions in a broader range of the action space, denoted as blue dots in Figure 1(b),
and then evaluate their values respectively through the learned Q estimator, it is possible to find the
action with a higher Q value as the target action in the optimization. Figure 1(c) shows the simulation
results using different sample ranges for the sample-based optimization starting from the red point. It
is clear that a larger sample range improves the chance of finding the global optima. Utilizing such a
global exploitation on the learned value function is the key insight of this work.

4.2 ZEROTH-ORDER SUPERVISED POLICY IMPROVEMENT

Q-learning in the tabular setting relies on finding the best action given the current state, which can
be difficult in the continuous action space due to the non-convexity of Q. Instead, a policy network
is thus trained to approximate the solution. In most of previous policy gradient methods, the policy
class is selected to be Gaussian in consideration of both exploration and computational tractability,

1Here we assume the traditional estimation of Q function is sufficient for a global exploitation (Fujimoto
et al., 2018; Haarnoja et al., 2018) and we will discuss an improved estimation method in the next section.
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Algorithm 1 Zeroth-Order Policy Optimization
Require
Objective function Qs, domain A, current point a0 = πθ(s), number of local samples n1 and
global samples n2, local scale η > 0 and step size h.
Locally sampling
Sample n points around a0 by

ai = a0 + µei for ei ∼ N (a0, Id), i = 1, . . . n1,

where N (a0, Id) is the standard normal distribution centered at a0.
Globally sampling
Sample n points uniformly in the entire space by

ai+n1
∼ UA, for i = 1, . . . , n2,

where UA is the uniform distribution over A.
Update
Set a+ = argmaxa∈{a0,...an1+n2}

Qs(a).
Update policy πθ according to Eq.(2)

while, in this work, we consider the deterministic policy class which is simpler and easier to learn as
presented in Silver et al. (2014).

As shown in Silver et al. (2014), DPG updates the policy network only through the first-order gradient
of the current Q value estimation:

∇aQwt
(st, πθt(st))∇θπθt(st). (1)

Such an update through the local information of Q may incur a slow convergence rate, especially
when Q function is non-convex. To mitigate this issue, we propose the Zeroth-Order Supervised
Policy Improvement (ZOSPI), which exploits the entire learned Q function instead of merely the
local information of Q. Thus the key insight of our proposed method is to utilize the zeroth-order
method to overcome the local policy improvement problem induced by the non-convexity of Q.

To be specific, we first calculate the predicted action a0 = πθt(st). Then we sample two sets of
actions with size n, namely a local set and a global set. For the local set, we sample actions randomly
from a Gaussian distribution centered at a0. For the global set, we sample points uniformly over the
action space. The update a+t is chosen as the action that gives the highest Q value in the union of two
sets. Finally, we apply the supervised policy improvement that minimizes the L2 distance between
a+t and πθt(st), which gives the descent direction:

∇θ
1

2
(a+t − πθt(st))2 = (a+t − πθt(st))∇θπθt(st). (2)

The implementation detail is shown in Algorithm 1.

Comparison between two methods. We now compare the performances obtained via applying
Eq.(2) to the standard deterministic policy gradient update used in Eq.(1).
Proportion 1. Following the definition in Algorithm 1, let the best action in the local set be aL =
argmaxai,i=1,...nQwt(st, ai). We have aL − a0 ∝ ∇aQwt(st, a0), when n→∞ and η → 0.

Proportion 1, derived directly from the definition of gradient, guarantees that with a sufficiently large
number of samples and a sufficiently small η, zeroth-order optimization can at least find the local
descent direction as in a first-order method.

When the best action is actually included in the global set, zeroth-order optimization will update
towards the global direction with a larger step size as E‖a1 − πθt(st)‖ ≤ E‖an+1 − πθt(st)‖ in
general. The benefits of ZOSPI over DPG are determined by the probability of sampling an action
globally that is close to the global minima. We will discuss this with more details in Appendix A.1.
With a sufficient number of sampled actions at each step, ZOSPI is able to find better solutions in
terms of higher Q values for a given state, and therefore can globally exploit the Q function, which is
especially useful when the Q function is non-convex as illustrated in Figure 1.
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Algorithm 2 Zeroth-Order Supervised Policy Improvement (ZOSPI)
Require
• Number of epochs M , size of mini-batch N , momentum τ > 0.
• Random initialized policy network πθ1 , target policy network πθ′1 , θ′1 ← θ1.
• Two random initialized Q networks, and corresponding target networks, parameterized by
w1,1, w2,1, w

′
1,1, w

′
2,1. w′i,1 ← wi,1.

• Empty experience replay buffer D = {}.
for iteration = 1, 2, ... do

for t = 1, 2, ..., T do
# Interaction
Run policy πθ′t in environment, store transition tuples (st, at, st+1, rt) into D.
for epoch = 1, 2, ...,M do

Sample a mini-batch of transition tuples D′ = {(stj , atj , stj+1, rtj )}Nj=1.
# Update Q
Calculate target Q value yj = rtj +mini=1,2Qw′

i,t
(stj+1, πθ′t(stj )).

Update wit with one step gradient descent on the loss
∑
j(yj −Qw′

i,t
(stj , atj ))

2, i = 1, 2.
# Update π
Call Algorithm 1 for policy optimization to update θt.

end for
θ′t+1 ← τθt + (1− τ)θ′t.
w′i,t+1 ← τwi,t + (1− τ)w′i,t.
wi,t+1 ← wi,t; θt+1 ← θt.

end for
end for

Algorithm 2 provides the pseudo code for ZOSPI, where we follow the double Q network in TD3
as the critic, and also use target networks for stability. In the algorithm we sample actions in the
global set from a uniform distribution on the action space ai ∼ UA, and sample actions from an
on-policy local Gaussian (e.g., ai(s) = πθold(s) + ηi, and ηi ∼ N (0, σ2) )) to form the local set
and guarantee local exploitation, so that ZOSPI will at least perform as good as deterministic policy
gradient methods (Silver et al., 2014; Lillicrap et al., 2015; Fujimoto et al., 2018).

5 BENEFITS OF CONTINUOUS CONTROL WITHOUT POLICY GRADIENT

Different from standard policy gradient methods, the policy optimization step in ZOSPI can be
interpreted as sampling-based supervised learning. Such difference provides several potential benefits
and enable further extensions of this work. Here we discuss the combination of ZOSPI with UCB
exploration as well as non-parametric models in RL.

5.1 BETTER EXPLORATION WITH BOOTSTRAPPED NETWORKS

Sample efficient RL requires algorithms to balance exploration and exploitation. One of the most
popular way to achieve this is called optimism in face of uncertainty (OFU) (Brafman & Tennenholtz,
2002; Jaksch et al., 2010; Azar et al., 2017; Jin et al., 2018), which gives an upper bound on Q
estimates and applies the optimal action corresponding to the upper bound. The optimal action at is
given by the following optimization problem:

argmax
a

Q+(st, a), (3)

where Q+ is the upper confidence bound on the optimal Q function. A guaranteed exploration
performance requires both a good solution for (3) and a valid upper confidence bound.

While it is trivial to solve (3) in the tabular setting, the problem can be intractable in a continuous
action space. Therefore, as shown in the previous section, ZOSPI adopts a local set to approximate
policy gradient descent methods in the local region and further applies a global sampling scheme to
increase the potential chance of finding a better maxima.
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As for the requirement of a valid upper confidence bound, we use bootstrapped Q networks to address
the uncertainty of Q estimates as in Osband et al. (2016; 2018); Agarwal et al. (2019); Kumar et al.
(2019); Ciosek et al. (2019). Specifically, we keep K estimates of Q, namely Q1, . . . QK with
bootstrapped samples from the replay buffer. Let Q = 1

K

∑
kQk(s, a). An upper bound Q+ is

Q+(s, a) = Q+ φ

√
1

K

∑
k

[Qk(s, a)−Q]2, (4)

where φ is the hyper-parameter controlling the failure rate of the upper bound. Another issue is on
the update of bootstrapped Q networks. Previous methods (Agarwal et al., 2019) usually update
each Q network with the following target rt + γQk (st+1, πθt(st+1)) , which violates the Bellman
equation as πθt is designed to be the optimal policy for Q+ rather than Qk. Using πθt also introduces
extra dependencies among the K estimates. We instead employ a global random sampling method to
correct the violation as

rt + γ max
i=1,...n

Qk (st+1, ai) , a1, . . . an ∼ UA.

The correction also reinforces the argument that a global random sampling method yields a good
approximation to the solution of the optimization problem (3). The detailed algorithm is provided in
Algorithm 4 in Appendix C.

5.2 LEVERAGING GAUSSIAN PROCESSES IN CONTINUOUS CONTROL

Different from previous policy gradient methods, the self-supervised learning paradigm of ZOSPI
permits it to learn both its actor and critic with a regression formulation. Such a property enables the
learning of actor in ZOSPI to be implemented with either parametric models like neural networks
or non-parametric models like Gaussian Processes (GP). Although plenty of previous works have
discussed the application of GP in RL by virtue of its natural uncertainty capture ability, most of these
works are limited to model-based methods or discrete action spaces for value estimation (Kuss &
Rasmussen, 2004; Engel et al., 2005; Kuss, 2006; Levine et al., 2011; Grande et al., 2014; Fan et al.,
2018). On the other hand, ZOSPI formulates the policy optimization in continuous control tasks as a
regression objective, therefore empowers the usage of GP policy in continuous control tasks.

As a first attempt of applying GP policies in continuous control tasks, we simply alter the actor
network with a GP to interact with the environment and collect data, while the value approximator is
still parameterized by a neural network. We leave the investigation of better consolidation design in
the future.

6 EXPERIMENTS

In this section, we show the empirical results to demonstrate the effectiveness of our proposed ZOSPI
method on the MuJoCo locomotion tasks, and provide diagnostic environment with known optimal
policy to show the proposed extensions discussed in Sec. 5 . Specifically, we validate the following
statements:

1. If we use ZOSPI with locally sampled actions, the performance of ZOSPI should be the
same as its policy gradient counterpart (i.e., TD3); if we increase the sampling range, ZOSPI
will be able to better exploit the Q function and find better solutions than the methods based
on policy gradient.

2. If we continuously increase the sampling range, it will result in an uniform sampling (in
practice we include an additional local sampling to encourage local improvements in the
later stage of the learning process), and the Q function can be maximally exploited.

3. ZOSPI can be combined with BootstrappedQ-value estimation and behave with the principle
OFU Brafman & Tennenholtz (2002) to pursue better exploration, or combined with GP to
lay a foundation of future works of continuous control with non-parametric models.

ZOSPI on the MuJoCo Locomotion Tasks. In this section we evaluate ZOSPI on the OpenAI
Gym locomotion tasks based on the MuJoCo engine (Brockman et al., 2016; Todorov et al., 2012).
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Figure 2: Experimental results on the MuJoCo locomotion tasks. The shaded region represents half a
standard deviation of the average evaluation over 10 trials.

Concretely, we test ZOSPI on five locomotion environments, namely the Hopper-v2, Walker2d-v2,
HalfCheetah-v2, Ant-v2 and Humanoid-v2 and include TD3 and SAC, respectively the deterministic
and the stochastic SOTA policy gradient methods in the comparison. We compare results of different
methods within 1 × 106 environment interactions to demonstrate the high learning efficiency of
ZOSPI.The results of TD3 are obtained by running the code released by the author and the results of
SAC are directly extracted from the training logs reported in (Haarnoja et al., 2018).

The results of ZOSPI, TD3, and SAC are included in Figure 2. It is worth noting that in our
implementation of ZOSPI, only 50 actions are sampled for all tasks and it is sufficient to learn
well-performing policies. Surprisingly, with such high sampling efficiencies, the results of ZOSPI are
good even in the tasks that have high-dimensional action spaces such as Ant-v2 and Humanoid-v2.
While a total of 50 sampled actions should be very sparse in the high dimensional space, we contribute
the success of ZOSPI to the generality of the policy network as well as the sparsity of meaningful
actions, i.e., even in tasks that have high dimension action spaces, only limited dimensions of actions
are crucial for making decisions.

The last plot in Figure 2 shows the ablation study on the sampling range N in ZOSPI, where a
sampling method based on a zero-mean Gaussian is applied and we gradually increase its variance
from 0.1 to 0.5. We also evaluate the uniform sampling method with radius of 0.5, which is denoted as
U 0.5 in the Figure. The results suggest that zeroth-order optimization with local sampling performs
similarly to the policy gradient method, and increasing the sampling range can effectively improve
the performance.

Extensions on the Four-Solution-Maze. The Four-Solution-Maze (FSM) environment is a diag-
nostic environment where four positive reward regions with a unit side length are placed in the
middle points of 4 edges of a N × N map. An agent starts from a uniformly initialized position
in the map and can then move in the map by taking actions according to the location observations
(current coordinates x and y). Valid actions are limited to [−1, 1] for both x and y axes. Each
game consists of 2N timesteps for the agent to navigate in the map and collect rewards. In each
timestep, the agent will receive a +10 reward if it is inside one of the 4 reward regions or a tiny
penalty otherwise. For simplicity, there are no obstacles in the map, the optimal policy thus will find
the nearest reward region, directly move towards it, and stay in the region till the end. Figure 3(a)
visualizes the environment and the ground-truth optimal solution.

On this environment we compare ZOSPI to on-policy and off-policy SOTA policy gradient methods
in terms of the learning curves, each of which is averaged by 5 runs. The results are presented in
Figure 3(b). And learned policies from different methods are visualized in Figure 3(c)-3(i). For each
method we plot the predicted behaviors of its learned policy at grid points using arrows (although
the environment is continuous in the state space), and show the corresponding value function of its
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Figure 3: Visualization of learned policies on the FSM environment. (a) the FSM environment and
its optimal solution, where the policy should find the nearest reward region and move toward it; (b)
learning curves of different approaches; (c)-(i) visualize the learned policies and corresponding value
functions.

learned policy with a colored map. All policies and value functions are learned with 0.3M interactions
except for SAC whose figures are learned with 1.2M interactions as it can find 3 out of 4 target
regions when more interactions are provided.

We use 4 bootstrapped Q networks for the upper bound estimation in consideration of both better
value estimation and computational cost for ZOSPI with UCB. And in ZOSPI with GP, a GP model is
used to replace the actor network in data-collection, i.e.,exploration. The sample efficiency of ZOSPI
is much higher than that of other methods. Noticeably ZOSPI with UCB exploration is the only
method that can find the optimal solution, i.e., a policy directs to the nearest region with a positive
reward. All other methods get trapped in sub-optimal solutions by moving to only part of reward
regions they find instead of moving toward the nearest one.

7 CONCLUSION

In this work, we propose the Zeroth-Order Supervised Policy Improvement (ZOSPI) method as an
alternative approach to policy gradient methods for continuous control tasks. We evaluate ZOSPI
on the MuJoCo locomotion tasks, where our method achieves competitive performance in terms of
sample efficiency and final performance compared to SOTA policy gradient methods (TD3, SAC).
Different from previous policy gradient methods, ZOSPI is based on self-supervised learning and the
learning of its actor can be conducted with regression. Such a property enables several extensions
such like optimistic exploration and non-parametric policies which can not be seamlessly deployed on
policy gradient methods, therefore opens up potential future directions. On a diagnostic environment
called Four-Solution-Maze, the proposed method is shown to outperform prevailing policy gradient
methods in terms of both sample efficiency and final performance. Besides, ZOSPI with optimistic
exploration is the only algorithm that is able to find the near-optimal solution.
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Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 263–272. JMLR. org, 2017.

Qinbo Bai, Mridul Agarwal, and Vaneet Aggarwal. Escaping saddle points for zeroth-order non-
convex optimization using estimated gradient descent. In 2020 54th Annual Conference on
Information Sciences and Systems (CISS), pp. 1–6. IEEE, 2020.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic
actor critic. In Advances in Neural Information Processing Systems, pp. 1785–1796, 2019.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley, and
Jeff Clune. Improving exploration in evolution strategies for deep reinforcement learning via a
population of novelty-seeking agents. In Advances in Neural Information Processing Systems, pp.
5027–5038, 2018.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement learning with gaussian processes. In
Proceedings of the 22nd international conference on Machine learning, pp. 201–208, 2005.

Ying Fan, Letian Chen, and Yizhou Wang. Efficient model-free reinforcement learning using gaussian
process. arXiv preprint arXiv:1812.04359, 2018.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Dibya Ghosh, Abhishek Gupta, Justin Fu, Ashwin Reddy, Coline Devine, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals without reinforcement learning. arXiv preprint
arXiv:1912.06088, 2019.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, et al. Gradientless
descent: High-dimensional zeroth-order optimization. arXiv preprint arXiv:1911.06317, 2019.

Robert Grande, Thomas Walsh, and Jonathan How. Sample efficient reinforcement learning with
gaussian processes. In International Conference on Machine Learning, pp. 1332–1340, 2014.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey Levine. Q-prop:
Sample-efficient policy gradient with an off-policy critic. arXiv preprint arXiv:1611.02247, 2016.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1352–1361. JMLR. org, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

9



Under review as a conference paper at ICLR 2021

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient?
In Advances in Neural Information Processing Systems, pp. 4863–4873, 2018.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pp. 11761–11771, 2019.

Malte Kuss. Gaussian process models for robust regression, classification, and reinforcement learning.
PhD thesis, echnische Universität Darmstadt Darmstadt, Germany, 2006.

Malte Kuss and Carl E Rasmussen. Gaussian processes in reinforcement learning. In Advances in
neural information processing systems, pp. 751–758, 2004.

Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with
gaussian processes. In Advances in Neural Information Processing Systems, pp. 19–27, 2011.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pp. 4026–4034, 2016.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 8617–8629, 2018.

Jakub Pachocki, Greg Brockman, Jonathan Raiman, Susan Zhang, Henrique Pondé, Jie Tang, Filip
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A VISUALIZATION OF Q-LANDSCAPE

Figure 4 shows the visualization of learned policies (actions given different states) and Q values in
TD3 during training in the Pendulum-v0 environment, where the state space is 3-dim and action space
is 1-dim. The red lines indicates the selected action by the current policy. The learned Q function are
always non-convex, as a consequence, in many states the TD3 is not able to find globally optimal
solution and locally gradient information may be misleading in finding actions with high Q values.
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Figure 4: Landscape of learned value function in the Pendulum-v0 environment

A.1 DISCUSSION ON THE BENEFITS OF GLOBAL SAMPLING

In this section, we discuss a type of structure, with which our zeroth-order optimization has a
exponential convergence rate. To better explain our points, we include an Algorithm 3 in Appendix
B, a modified version of Algorithm 1, which prevents the sampled action jumping too far across
different global regions.

Definition 1 (Sampling-Easy Functions). A function F : X ⊂ Rd 7→ R is called αβ-Sampling-Easy,
if it has an unique global minima x∗, and there exists an region D ⊂ X , such that

1. x∗ ∈ D;

2. F is α-convex and β-smooth in region D;

3. |D|/|X | ≥ c/d for some c > 0.

A function F is α-convex in region D, if F (y) ≥ F (x) + 〈∇F (x), y − x〉+ α
2 ‖y − x‖

2, x, y ∈ D.
Furthermore, it is β-smooth, if |F (y)− F (x)− 〈∇F (x), y − x〉| ≤ β

2 ‖x− y‖
2, x, y ∈ D.

Theorem 1. For any αβ-Sampling-Easy function F that satisfies F (x∗) ≤ F (x)−ε0, for all x /∈ D,
by running Algorithm 3, on average it requires at most

O

(
log

(
Dmβ

min{ε, ε0}

)
d2β

cα

)
iterations to find an ε-optimal solution for any ε > 0, with c and d the same in Definition 1. Here
Dm = maxx∈D ‖x− x∗‖22. The proof is provided in Appendix B.

Theorem 1 suggests that despite the function is non-convex or non-smooth, the convergence can be
guaranteed as long as there is a sufficiently large convex and smooth area around the global optima.
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B CONVERGENCE FOR ZEROTH-ORDER OPTIMIZATION

Algorithm 3 One-step Zeroth-Order Optimization with Consistent Iteration
Require
Objective function Q, domain A, current point a0, number of local samples n1, number of global
samples n2, local scale η > 0 and step size h, number of steps m.
for t = 1, . . . n2 do

Globally sampling
Sample a point uniformly in the entire space by

at0 ∼ UA
where UA is the uniform distribution over A.
for i = 1, . . . ,m do

Locally sampling
Sample n1 points around at,i−1 by

ãj = at,i−1 + µej for ej ∼ N (0, Id), j = 1, . . . n1,

where N (0, Id) is the standard normal distribution centered at 0.
Update
Set at,i = at,i−1 + h(argmaxa∈{ãj}Q(a)− at,i−1)

end for
end for
return maxa∈{atm}n2

t=1
Q(a).

Proof Sketch. As shown in Nesterov & Spokoiny (2017), under the same condition in Definition 1,
given x0 . . . , xN ∈ D, we have

F (xN )− F (x∗) ≤ β
2 (1−

α
8(d+4)β )

N‖x0 − x∗‖2.

Thus, as long as there is a global sample lie in D, it requires at most

Nε = log(
β‖x0 − x∗‖2

2ε
)
8(d+ 4)β

α

iterations to find an ε-optimal maxima.

The probability of sampling a point in D globally is at least cd . On expectation, it requires d
c global

samples to start from a point in D. Theorem 1 follows.

C ALGORITHM 4: ZOSPI WITH BOOTSTRAPPED Q NETWORKS
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Algorithm 4 ZOSPI with UCB Exploration
Require
• The number of epochs M , the size of mini-batch N , momentum τ > 0 and the number of

Bootstrapped Q-networks K.
• Random initialized policy network πθ1 , target policy network πθ′1 , θ′1 ← θ1.
• K random initialized Q networks, and corresponding target networks, parameterized by
wk,1, w

′
k,1, w′k,1 ← wk,1 for k = 1, . . . ,K.

for iteration = 1, 2, ... do
for t = 1, 2, ..., T do
# Interaction
Run policy πθ′t , and collect transition tuples (st, at, s′t, rt,mt).
for epoch j = 1, 2, ...,M do

Sample a mini-batch of transition tuples Dj = {(s, a, s′, r,m)i}Ni=1.
# Update Q
for k = 1, 2, ...,K do

Calculate the k-th target Q value yki = ri +maxlQw′
k,t
(s′i, a

′
l), where a′l ∼ UA.

Update wk,t with loss
∑N
i=1mik(yki −Qw′

k,t
(si, ai))

2.
end for
# Update π
Calculate the predicted action a0 = πθ′t(si)
Sample actions al ∼ UA
Select a+ ∈ {al} ∪ {a0} as the action with maximal Q+(st, a) defined in (4).
Update policy network with Eq.(2).

end for
θ′t+1 ← τθt + (1− τ)θ′t.
w′k,t+1 ← τwk,t + (1− τ)w′k,t.
wk,t+1 ← wk,t; θt+1 ← θt.

end for
end for
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