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superlevel set of a function that resides within some potentially infinite-dimensional function
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1. INTRODUCTION

Scene reconstruction is the task of estimating the dense 3D
structure of a sensor’s surroundings using measurements
obtained from that sensor. Reconstructions have a wide va-
riety of practical applications, including robotic mapping,
3D scanning and inspection of objects, medical imaging,
and augmented reality.

The vast majority of the literature on the subject of
estimating scenes and objects comes from the computer
vision community. In that community, the goal is typically
to produce dense reconstructions of objects from their
sparse point-cloud representations, and the topic is known
as 3D reconstruction or surface reconstruction. Typically,
the point clouds that these methods use must be oriented,
so that they specify positions in space and corresponding
directions normal to the surface to be estimated. The
points are assumed to lie on the boundary of the set
representing the object and each direction specifies the
direction of the gradient of the characteristic function of
the set at the corresponding point. The approach intro-
duced by Kazhdan et al. (2006), known as Poisson surface
reconstruction, then solves Poisson’s equation using this
gradient information in order to estimate the characteris-
tic function. Other techniques exploit this information in
order to simplify estimates of coefficients of Fourier series,
as in Kazhdan (2005), or wavelet representations as in
(Manson et al., 2008). Recently, in Mescheder et al. (2018),
neural networks have been trained on large datasets in
order to produce a measurement-dependent characteristic
function that takes as input a point and a measurement
and returns a likelihood that the point is occupied given
that measurement. All of the mentioned techniques take
hours of computation time on dedicated hardware.

� This research was supported by the Australian Research Council
through the ARC Discovery Project DP160100783 “Sensing a com-
plex world: Infinite dimensional observer theory for robots.”

The robotics community has also developed techniques for
solving this problem over the last few decades. A standard
technique, known as occupancy grid mapping was intro-
duced by Thrun and Bü (1996). This technique studies the
assignment of function values to discrete voxels. Typically
these techniques have a Bayesian flavour, coming from the
perspective of machine learning, and the functions being
estimated are conditional probability distributions. While
the majority of these methods estimate functions defined
on a regular voxel grid, recent progress has been made on
continuous occupancy mapping techniques (see Ramos and
Ott (2016), Senanayake and Ramos (2018)). Again, the
literature on this topic comes from a probabilistic perspec-
tive. Although the experimental results of these methods
are promising, theoretical guarantees of the correctness of
3D reconstruction or occupancy mapping techniques are
not provided in these papers.

To the authors’ knowledge, it has not before been recog-
nised that occupancy grid mapping techniques are ob-
servers, albeit observers with trivial state dynamics. The
ramifications of this observation include potentially adding
internal models to these techniques in order to produce
online dense 4D reconstructions of evolving environments.
4D reconstruction is yet another developing topic within
computer vision that concerns estimation of the dense
geometry of a scene together with its time evolution. Most
published methods on 4D scene reconstruction are per-
formed offline in post-processing (Mustafa et al. (2016)).
As with the occupancy mapping approaches, there is good
experimental evidence that these methods produce accu-
rate results, but theoretical proofs of convergence are not
supplied.

In this paper, we derive an observer that estimates charac-
teristic functions of scenes, in a way that does not depend
on the function class of which the characteristic function
is assumed to be a member. We prove that the derived
observer exhibits point-wise finite-time convergence from
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reconstruction, then solves Poisson’s equation using this
gradient information in order to estimate the characteris-
tic function. Other techniques exploit this information in
order to simplify estimates of coefficients of Fourier series,
as in Kazhdan (2005), or wavelet representations as in
(Manson et al., 2008). Recently, in Mescheder et al. (2018),
neural networks have been trained on large datasets in
order to produce a measurement-dependent characteristic
function that takes as input a point and a measurement
and returns a likelihood that the point is occupied given
that measurement. All of the mentioned techniques take
hours of computation time on dedicated hardware.
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plex world: Infinite dimensional observer theory for robots.”

The robotics community has also developed techniques for
solving this problem over the last few decades. A standard
technique, known as occupancy grid mapping was intro-
duced by Thrun and Bü (1996). This technique studies the
assignment of function values to discrete voxels. Typically
these techniques have a Bayesian flavour, coming from the
perspective of machine learning, and the functions being
estimated are conditional probability distributions. While
the majority of these methods estimate functions defined
on a regular voxel grid, recent progress has been made on
continuous occupancy mapping techniques (see Ramos and
Ott (2016), Senanayake and Ramos (2018)). Again, the
literature on this topic comes from a probabilistic perspec-
tive. Although the experimental results of these methods
are promising, theoretical guarantees of the correctness of
3D reconstruction or occupancy mapping techniques are
not provided in these papers.

To the authors’ knowledge, it has not before been recog-
nised that occupancy grid mapping techniques are ob-
servers, albeit observers with trivial state dynamics. The
ramifications of this observation include potentially adding
internal models to these techniques in order to produce
online dense 4D reconstructions of evolving environments.
4D reconstruction is yet another developing topic within
computer vision that concerns estimation of the dense
geometry of a scene together with its time evolution. Most
published methods on 4D scene reconstruction are per-
formed offline in post-processing (Mustafa et al. (2016)).
As with the occupancy mapping approaches, there is good
experimental evidence that these methods produce accu-
rate results, but theoretical proofs of convergence are not
supplied.

In this paper, we derive an observer that estimates charac-
teristic functions of scenes, in a way that does not depend
on the function class of which the characteristic function
is assumed to be a member. We prove that the derived
observer exhibits point-wise finite-time convergence from
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dense measurements of the scene, such as those that may
be obtained from a light-field camera or laser range finder,
under certain assumptions. We further show that any
update function with the right properties will result in
a converging scene estimate. Finally, we demonstrate that
the derived observer works in simulation and on real light-
field camera data.

The remainder of this paper is structured as follows: in Sec-
tion 2 we develop a theoretical framework for the observer,
starting with implicit representations of scenes using ex-
tended characteristic functions, parametrisations of the
space of functions used to represent the scenes, errors of
scene estimates, and measurements of scenes. In Section 3
we develop a general observer for scene reconstruction that
applies regardless of the scene representation chosen, and
derive different instances of the observer for several chosen
function classes: voxels, wavelets, and neural networks.
In Section 4 we demonstrate that the observer exhibits
convergence behaviour both in simulation and with real
light-field camera data. In Section 5 we prove that this
observer can estimate points on the scene in finite time,
even if the function class chosen to represent scenes itself
is infinite dimensional.

2. SCENES AND REPRESENTATIONS

Scene reconstruction is the task of estimating the environ-
ment that a sensor resides within. An environment may
have many different properties, such as location of objects,
lighting conditions, texture and colours of objects, and so
on. The aspects of the environment that are estimated
will depend on what information can be obtained from
the sensor being used. In this paper, we will only estimate
the geometry of the environment within a region of space,
and the texture of the objects within that region.

2.1 Scenes and Parametrisations

The part of the environment that we wish to estimate is
called a scene. A scene is typically treated as a subset of
R3. The set of all subsets of R3 is too large and does not
possess enough structure to be practical, so it is necessary
in implementation to restrict estimates of scenes to a
chosen subclass X of the powerset of R3. The choice of
scene class X is usually the result of a choice of some
constraint or model that we assume the scene must satisfy.
However, it is also often the case that even with such a
constraint, a scene in X still requires an infinite number
of parameters to specify.

In order to estimate a particular scene X ∈ X in an op-
timisation framework, some parametrisation of the scene
class X needs to be chosen. In this paper, we represent
scenes implicitly using a class of parametrised functions.
There are two ways in which a set X can be represented
by a function. The first way is to take some known set
A and take the image of this set under some function
χθ : A → P whose parameters θ we may vary. Such a
representation is known as an explicit representation of
the set. An alternative method is to let χθ : P → A
and let X be the preimage (not to be confused with the
image produced by a camera) of some set B ⊂ A, so that
χθ(X) = B. Such a representation is called an implicit
representation.

In this paper, we represent a scene X implicitly as the
zero superlevel set of some function χ : P → R, and
the scene surface ∂X by the zero level set of the same
function. By zero superlevel set, we mean the set of all
points p ∈ P such that χ(p) ≥ 0. We call the function χ
an extended characteristic function. However, as a result
of this representation method, there are likely to be many
functions χ that represent the same scene because they
have the same zero superlevel set and the same zero level
set. Thus, there is an equivalence relation χ1 ∼ χ2 if
χ−1
1 (R+) = χ−1

2 (R+) and χ−1
1 (0) = χ−1

2 (0). Every element
in the equivalence class [χ] represents the same scene
X = χ−1(R+).

2.2 Errors of Scene Estimates

The fact that a scene is a set poses some challenges to
the notion of convergence of estimates. One standard way
of defining the distance between two sets is with the
Hausdorff distance, which is the largest distance between
a pair of points taken from each set. However, designing
an observer that uses Hausdorff distance to derive an
innovation term is challenging because it will not be
resistant to outliers in the measurement data.

In this paper, we exploit our representation of the scene
as a function, and define the distance between a scene
estimate X̂ ⊂ P and the true scene X ⊂ P with extended
characteristic functions χ̂ and χ, respectively as:

E([χ̂], [χ]) :=

∫

P

|sgn(χ̂(p))− sgn(χ(p))|2 dp. (1)

Note that this distance is well-defined as a distance on
equivalence classes of extended characteristic functions.

2.3 Measurements of Scenes

Fig. 1. (Top) A raw light-field measurement µ of a scene.
Zoomed portions of this raw data are highlighted to
show the image consisting of thousands of densely-
packed lenslet images each consisting of hundreds of
pixels. (Bottom) An image extracted from the raw
data µ.

The observer implemented in Section 4 uses measurement
data produced by a light-field camera. A brief overview of
these sensors is given in this subsection, but is not essential
to understanding the obsever design methodology, as the
proposed observer does not operate directly on the raw
data produced by these cameras but on depth maps
extracted from these cameras. While we prove in Section
5 that depth maps can be correctly extracted from such

data, depth maps obtained from other sensors may be
used instead. Light-field cameras are sensors that densely
sample light passing through a region of space. A light-
field camera is modelled by a set L ⊂ R2 called the
lenslet plane, and a set P ⊂ R2 called the pixel plane,
together with the pose ξ ∈ SE(3) of the camera, and a
tuple Φ = (K1,K2, f

x, fy, cx, cy, k1, k2) of real numbers
called the intrinsic parameters of the camera (note that
an additional radial distortion parameter is used in this
paper), see O’Brien et al. (2018). A measurement produced
by the light-field camera is a function µ : L × P → [0, 1]3

that implicitly depends on the pose ξ of the camera and
the intrinsics Φ and whose values represent the colours of
recorded pixels (Figure 1).
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λ(x, y)
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(x′, y′)
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Fig. 2. Light-field geometry: a point p is imaged by lenslets
(x, y) and (x′, y′). Since the ray that passes through
(x′, y′) and p passes through the optical centre of
the focus lens, it has offset (0, 0) and we set π(p) =
(x′, y′). The ray that passes through the lenslet (x, y)
is refracted by the focal lens and appears in the
subimage produced by the lenslet (x, y) at pixel (u, v).
The depth λ(x′, y′) assigned to lenslet (x′, y′) is the
depth of the point q on the scene surface ∂X. Observe
that Cpz < λ(π(p)) as the point p is in front of the
scene.

Let (x, y) ∈ L and (u, v) ∈ P. The coordinates (x, y, u, v) ∈
L × P are called a lenslet-pixel pair and specify a line
in space that passes through the lenslet with coordinates
(x, y) and the pixel with coordinates (u, v), see Figure 2. If
p ∈ R3 is a point in front of the camera, and if (x, y, u, v)
are the lenslet-pixel coordinates of the ray that passes
through the point p, then it is well-known in the light-field
literature that there is a quantity δ called disparity that
depends only on the depth of the point p for which the rays
with lenslet-pixel coordinates (x+δ∆u, y+δ∆v, u+∆u, v+
∆v) all pass through the point p for all (∆u,∆v) ∈ R2

(Wanner and Goldluecke (2014)).

Under the standard Lambertian assumption that the
colour of a point does not depend on the perspective it
is viewed from, the light-field measurement µ is constant
on the set {(x+δ∆u, y+δ∆v, u+∆u, v+∆v) : (∆u,∆v) ∈
R2}, which defines a plane in L×P. Thus, the gradient of
the light-field is normal to this plane. Therefore, by calcu-
lating gradients of the light-field measurement, disparity
can be obtained, and so too can depth (for the details see
Proposition 3 in Section 5).

The depth-map λ : L → R+ is a map that takes a lenslet
with coordinates (x′, y′) and returns the depth Cqz ex-
pressed in the body-fixed frame C of the camera of the
first point q on the scene surface ∂X that lies along the
ray with coordinates (x′, y′, 0, 0), see Figure 2. It is also
useful to define the centre perspective projection π that

maps a point p in front of the camera to the location of the
lenslet (x′, y′) for which the ray (x′, y′, 0, 0) passes through
p, see Figure 2. The coordinates (x′, y′) may or may not
correspond to an actual lenslet in L. If they do, i.e. if
π(p) ∈ L, then Cqz = λ(π(p)) is the depth of the scene in
direction of p.

Although the experimental results presented in this paper
use depth measurements obtained from light-field camera
data, it is neither essential that this particular sensor
is used, nor that depth is explicitly computed. What is
important is that as long as the measurement µ can be
used to define an update with the properties described in
Section 3, the derived observer will produce an estimate of
the extended characteristic function χ that asymptotically
converges to the equivalence class [χ].

3. OBSERVER DESIGN

We assume that the true scene X actually resides within
our scene class X, so that there are parameters θ such that
χ−1
θ (R+) = X. We assume that the scene is stationary in

our experiments and analysis. While an assumption of a
stationary scene is a standard one in most SLAM and 3D
reconstruction algorithms, our observer approach allows
the introduction of non-trivial dynamics into the model.
However, in this paper we assume that the parameters
that represent the true scene are constant, that is

θ̇t = 0. (2)

At time t, we receive a partial measurement of the scene
surface in the form of a depth-map λt that is computed
from the light-field measurement µt. At time t, we also

have a parameter estimate θ̂t that determines a scene
estimate X̂t = χ̂−1

θ̂t
(R+). From the depth measurement

λt, we may compute the error of the current parameter
estimates given the current depth estimates by computing
what the sign of the current extended characteristic func-
tion estimate is, and what the depth measurement says
the sign of the function value should be:

ε(θ̂t, λt) :=

∫

π−1
t (L)

(sgn(χ̂θ̂t
(p))− sgn(Cpz − λt(πt(p))))

2dp. (3)

Ideally, the observer dynamics would be written in the

standard innovation term form
˙̂
θt = −∇1ε(θ̂t, λt), where

the internal model term is zero according to Equation (2).
The gradient of the integrand may not be well-defined
due to the presence of the ‘sgn’ function, however, we

still pursue the idea of updating θ̂t in the direction that

minimises the error ε(θ̂t, λt).

To do this, we initialise the extended characteristic esti-
mate so that

χθ̂0
(p) = 0 for all p ∈ P. (4)

and calculate
˙̂
θt, so that the following is satisfied:

sgn(χ̇θ̂t
(p)) :=

{
sgn(Cpz − λt(πt(p))) πt(p) ∈ L
0 otherwise

(5)

Under certain mild conditions (see Section 5), this observer
will converge in finite-time (see Prop. 2).

The way in which the derivative of the parameters is
computed depends on the choice of representation used.



 Sean G.P. O’Brien  et al. / IFAC PapersOnLine 53-2 (2020) 4947–4954 4949

data, depth maps obtained from other sensors may be
used instead. Light-field cameras are sensors that densely
sample light passing through a region of space. A light-
field camera is modelled by a set L ⊂ R2 called the
lenslet plane, and a set P ⊂ R2 called the pixel plane,
together with the pose ξ ∈ SE(3) of the camera, and a
tuple Φ = (K1,K2, f

x, fy, cx, cy, k1, k2) of real numbers
called the intrinsic parameters of the camera (note that
an additional radial distortion parameter is used in this
paper), see O’Brien et al. (2018). A measurement produced
by the light-field camera is a function µ : L × P → [0, 1]3

that implicitly depends on the pose ξ of the camera and
the intrinsics Φ and whose values represent the colours of
recorded pixels (Figure 1).

p

π(p) = (x, y)

λ(x, y)

X

(u, v)

LP

(x′, y′)

(0, 0)

Fig. 2. Light-field geometry: a point p is imaged by lenslets
(x, y) and (x′, y′). Since the ray that passes through
(x′, y′) and p passes through the optical centre of
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is refracted by the focal lens and appears in the
subimage produced by the lenslet (x, y) at pixel (u, v).
The depth λ(x′, y′) assigned to lenslet (x′, y′) is the
depth of the point q on the scene surface ∂X. Observe
that Cpz < λ(π(p)) as the point p is in front of the
scene.

Let (x, y) ∈ L and (u, v) ∈ P. The coordinates (x, y, u, v) ∈
L × P are called a lenslet-pixel pair and specify a line
in space that passes through the lenslet with coordinates
(x, y) and the pixel with coordinates (u, v), see Figure 2. If
p ∈ R3 is a point in front of the camera, and if (x, y, u, v)
are the lenslet-pixel coordinates of the ray that passes
through the point p, then it is well-known in the light-field
literature that there is a quantity δ called disparity that
depends only on the depth of the point p for which the rays
with lenslet-pixel coordinates (x+δ∆u, y+δ∆v, u+∆u, v+
∆v) all pass through the point p for all (∆u,∆v) ∈ R2

(Wanner and Goldluecke (2014)).

Under the standard Lambertian assumption that the
colour of a point does not depend on the perspective it
is viewed from, the light-field measurement µ is constant
on the set {(x+δ∆u, y+δ∆v, u+∆u, v+∆v) : (∆u,∆v) ∈
R2}, which defines a plane in L×P. Thus, the gradient of
the light-field is normal to this plane. Therefore, by calcu-
lating gradients of the light-field measurement, disparity
can be obtained, and so too can depth (for the details see
Proposition 3 in Section 5).

The depth-map λ : L → R+ is a map that takes a lenslet
with coordinates (x′, y′) and returns the depth Cqz ex-
pressed in the body-fixed frame C of the camera of the
first point q on the scene surface ∂X that lies along the
ray with coordinates (x′, y′, 0, 0), see Figure 2. It is also
useful to define the centre perspective projection π that

maps a point p in front of the camera to the location of the
lenslet (x′, y′) for which the ray (x′, y′, 0, 0) passes through
p, see Figure 2. The coordinates (x′, y′) may or may not
correspond to an actual lenslet in L. If they do, i.e. if
π(p) ∈ L, then Cqz = λ(π(p)) is the depth of the scene in
direction of p.

Although the experimental results presented in this paper
use depth measurements obtained from light-field camera
data, it is neither essential that this particular sensor
is used, nor that depth is explicitly computed. What is
important is that as long as the measurement µ can be
used to define an update with the properties described in
Section 3, the derived observer will produce an estimate of
the extended characteristic function χ that asymptotically
converges to the equivalence class [χ].

3. OBSERVER DESIGN

We assume that the true scene X actually resides within
our scene class X, so that there are parameters θ such that
χ−1
θ (R+) = X. We assume that the scene is stationary in

our experiments and analysis. While an assumption of a
stationary scene is a standard one in most SLAM and 3D
reconstruction algorithms, our observer approach allows
the introduction of non-trivial dynamics into the model.
However, in this paper we assume that the parameters
that represent the true scene are constant, that is

θ̇t = 0. (2)

At time t, we receive a partial measurement of the scene
surface in the form of a depth-map λt that is computed
from the light-field measurement µt. At time t, we also

have a parameter estimate θ̂t that determines a scene
estimate X̂t = χ̂−1

θ̂t
(R+). From the depth measurement

λt, we may compute the error of the current parameter
estimates given the current depth estimates by computing
what the sign of the current extended characteristic func-
tion estimate is, and what the depth measurement says
the sign of the function value should be:

ε(θ̂t, λt) :=

∫

π−1
t (L)

(sgn(χ̂θ̂t
(p))− sgn(Cpz − λt(πt(p))))

2dp. (3)

Ideally, the observer dynamics would be written in the

standard innovation term form
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θt = −∇1ε(θ̂t, λt), where

the internal model term is zero according to Equation (2).
The gradient of the integrand may not be well-defined
due to the presence of the ‘sgn’ function, however, we
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and calculate
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{
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Under certain mild conditions (see Section 5), this observer
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In this paper, we test this method using voxel, wavelet,
and neural network representations and show that there
are practical ways of implementing this method for each
of these choices. Sometimes, in the case where the relation-
ship between the parameters and function outputs is trivial
as in voxels, or linear as in wavelets, there are techniques
for simplifying the calculation of new parameters from
the old parameters. However, even when the relationship
between the parameters and function outputs is nonlinear,
as in neural networks, there are still techniques for easily
computing the update of the parameters.

3.1 Voxel Representation

In this section, we demonstrate the estimation of an ex-
tended characteristic function using a voxel representation.
In this case, the set of functions is given by {χ : P → R},
and P is a discrete grid of 3D points p = (i, j, k) ∈ Z3

where imin ≤ i ≤ imax, jmin ≤ j ≤ jmax, kmin ≤ k ≤
kmax. A function χ ∈ F is determined by the parameters
θp := χ(p) where p ∈ P . In this case, the extended char-
acteristic function is updated directly with

˙̂
θp :=

{
sgn(Cpz − λt(πt(p))) πt(p) ∈ L
0 otherwise.

(6)

3.2 Curvelet Representation

Curvelets were constructed with the goal of finding sparse
representations of functions that have discontinuities along
C2-curves, as is common in image processing and com-
puter vision tasks. Whereas classical wavelets are functions
that, under translation and scaling, form a basis of L2(R),
curvelets are functions that under translation, parabolic
scaling, and rotation form a Parseval frame of L2(R2).
A Parseval frame for L2(R2) is a family of functions
{φi}∞i=1 that satisfy Parseval’s identity, namely that for

all ψ ∈ L2(R2) we have that
∑∞

i=1 |〈ψ, φi〉|2 = ||ψ||2 . In
the curvelet literature, curvelets are often said to form
a tight frame, however this is not to be confused with
other notions of a tight frame which only require Parseval’s
relation to hold up to a constant scale (see Christensen
(2016)).

We will not give a complete description of how a curvelet is
constructed in this paper, a more comprehensive overview
of curvelets can be found in Candès et al. (2006). Curvelets
are typically constructed by taking a mother curvelet ϕ,
and defining the curvelet family ϕj,k,l, that depends on
the parameters j ∈ N, l ≤ 2j ∈ N, and k ∈ Z2. The family
of functions ϕj,k,l(x) := 23j/2ϕ(DjRj,lx− kδ), where Dj is
a parabolic scaling matrix, Rj,l is a rotation matrix, and
kδ is a translation depending on a predetermined fixed
parameter δ form a Parseval frame of L2(R2). This notion
may be extended to construct a Parseval frame of L2(R3),
for more details see Ying et al. (2005).

To use a curvelet representation, consider an extended
characteristic function χ ∈ L2(P ), where P is some
rectangular prism in R3. Since χ ∈ L2(P ), it has a curvelet
expansion

χ(p) =
∑
j,k,l

θj,k,lϕj,k,l(p). (7)

The parameters of the extended characteristic function χ
in this representation are the coefficients

θj,k,l =

∫

P

χ(p)ϕj,k,l(p)dp. (8)

In order to update these coefficients given a depth mea-

surement λt, we approximate the coefficients ∆θ̂t of χ̇θ̂t
by

computing the curvelet coefficients of the ‘update’ function

vt(p) :=

{
sgn(Cpz − λt(πt(p))) πt(p) ∈ L
0 otherwise.

(9)

We exploit the sparsity of the coefficients for real scenes,
by keeping only the N most significant coefficients in the
state after applying the update, and setting the rest to
0, which helps eliminate noise that may be present in the
measurements (see Section 4.1).

3.3 Neural Network Representation

A feed-forward neural network is a function χ : Rm → Rn

that is a finite iterated composition of functions of the
form

p �→ σl(Alp+ bl),

where {σl}Ll=1 are nonlinear functions known as activation
functions, Al is a matrix and bl is a vector. Let

fl(p) := σl(Alp+ bl),

then the neural network function is given by

χ(p) := (fL ◦ · · · ◦ f1)(p).
The number of functions in the composition is L and is
known as the depth of the network. Given that the acti-
vation functions σl are chosen beforehand, the parameters
of the neural network function are given by the sequence
of matrices and vectors: θ := (Al, bl)

L
l=1.

The parameters of this representation are updated by
taking a random sample S of points in π−1

t (L), pairing
each p ∈ S with an ideal value y(p), and performing back-
propogation on the training pairs {(p, y(p))}p∈S for a small
number of training steps using the error

ε̃(θ̂t, λt) :=
∑
p∈S

∣∣∣χ̂θ̂t
(p)− y(p)

∣∣∣
2

,

where χ̂θ̂t
denotes the function that is computed by a

neural network with parameters θ̂t.

In effect, this process will approximate −∇1ε̃(θ̂t, λt) and
update the parameters in the direction of this gradient.
The ideal value y(p) assigned to point p will depend on
the choice of activation functions used. For example, if the
activation function on the final layer is σL(h) = 2σ̃(h)−1,
where σ̃ is a sigmoid function, then the range of the neural
network function is (−1, 1), in which case letting

yt(p) =

{
sgn(Cpz − λt(πt(p))) πt(p) ∈ L
χ̂θt(p) otherwise

will result in an update that approximates (5).

4. EXPERIMENTS

In this section, we provide both simulated and experi-
mental evidence for the correctness of our approach. The
simulated scene is a 3D model of a bas-relief obtained from
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of functions ϕj,k,l(x) := 23j/2ϕ(DjRj,lx− kδ), where Dj is
a parabolic scaling matrix, Rj,l is a rotation matrix, and
kδ is a translation depending on a predetermined fixed
parameter δ form a Parseval frame of L2(R2). This notion
may be extended to construct a Parseval frame of L2(R3),
for more details see Ying et al. (2005).

To use a curvelet representation, consider an extended
characteristic function χ ∈ L2(P ), where P is some
rectangular prism in R3. Since χ ∈ L2(P ), it has a curvelet
expansion

χ(p) =
∑
j,k,l

θj,k,lϕj,k,l(p). (7)

The parameters of the extended characteristic function χ
in this representation are the coefficients

θj,k,l =

∫

P

χ(p)ϕj,k,l(p)dp. (8)

In order to update these coefficients given a depth mea-

surement λt, we approximate the coefficients ∆θ̂t of χ̇θ̂t
by

computing the curvelet coefficients of the ‘update’ function

vt(p) :=

{
sgn(Cpz − λt(πt(p))) πt(p) ∈ L
0 otherwise.

(9)

We exploit the sparsity of the coefficients for real scenes,
by keeping only the N most significant coefficients in the
state after applying the update, and setting the rest to
0, which helps eliminate noise that may be present in the
measurements (see Section 4.1).

3.3 Neural Network Representation

A feed-forward neural network is a function χ : Rm → Rn

that is a finite iterated composition of functions of the
form

p �→ σl(Alp+ bl),

where {σl}Ll=1 are nonlinear functions known as activation
functions, Al is a matrix and bl is a vector. Let

fl(p) := σl(Alp+ bl),

then the neural network function is given by

χ(p) := (fL ◦ · · · ◦ f1)(p).
The number of functions in the composition is L and is
known as the depth of the network. Given that the acti-
vation functions σl are chosen beforehand, the parameters
of the neural network function are given by the sequence
of matrices and vectors: θ := (Al, bl)

L
l=1.

The parameters of this representation are updated by
taking a random sample S of points in π−1

t (L), pairing
each p ∈ S with an ideal value y(p), and performing back-
propogation on the training pairs {(p, y(p))}p∈S for a small
number of training steps using the error

ε̃(θ̂t, λt) :=
∑
p∈S

∣∣∣χ̂θ̂t
(p)− y(p)

∣∣∣
2

,

where χ̂θ̂t
denotes the function that is computed by a

neural network with parameters θ̂t.

In effect, this process will approximate −∇1ε̃(θ̂t, λt) and
update the parameters in the direction of this gradient.
The ideal value y(p) assigned to point p will depend on
the choice of activation functions used. For example, if the
activation function on the final layer is σL(h) = 2σ̃(h)−1,
where σ̃ is a sigmoid function, then the range of the neural
network function is (−1, 1), in which case letting

yt(p) =

{
sgn(Cpz − λt(πt(p))) πt(p) ∈ L
χ̂θt(p) otherwise

will result in an update that approximates (5).

4. EXPERIMENTS

In this section, we provide both simulated and experi-
mental evidence for the correctness of our approach. The
simulated scene is a 3D model of a bas-relief obtained from

Maier et al. (2017). This dataset is chosen in our simulation
because it best reflects the theoretical assumptions on the
scene given in Section 5. Depth maps were computed from
triangle meshes extracted from this data and used as scene
measurements. The domain P is chosen so that the triangle
mesh divides the domain into two halves, and from this the
true characteristic function can be computed.

We also test the observer on a real scene using data
produced by a Lytro Illum camera. However, since ground
truth is not available, actual error trajectories cannot be
computed for this data. The final 3D reconstructions of
the observer are provided instead for visual inspection. A
sample central sub-aperture image of the scene is shown
in Fig 5 for comparison. The scene consists of an object to
be reconstructed and a checkerboard. The checkerboard is
used to calibrate the camera, providing both estimates of
the camera intrinsic parameters Φ and of the pose of the
camera ξ for each frame. A total of 101 frames are used in
this experiment.

For each simulated frame, an error comparing the esti-
mated characteristic function with the true characteristic
function based on the known scene geometry is reported.
This error is defined on the output of the function, not on
the parameters of the function. Given a regularly sampled
voxel grid G on the input space P , we compute at each
time step the approximate error

Ẽ([χ̂t], [χ]) :=
1

2

∑
p∈G

|sgn(χ̂t(p))− sgn(χ(p))|2 .

Graphs of these errors for each of the representation
methods are shown in Fig 3. Final reconstructions of the
simulated scene are shown in Fig 4.

(a) Error for voxel representation

(b) Error for curvelet representation

(c) Error for neural representation

Fig. 3. Error graphs for each representation of the simu-
lated scene.

We represent the extended characteristic functions in sev-
eral different ways in order to demonstrate that our ap-
proach is not limited to a specific function class or repre-
sentation. For the voxel representation, the resolution used
is 128×128×128. For the curvelet representation, we utilize
the Curvelab toolbox to implement a discrete curvelet
transform (Candes et al. (2015)). At each timestep, we

(a) Ground truth geom-
etry

(b) Voxel reconstruction

(c) Curvelet reconstruc-
tion

(d) Neural reconstruc-
tion

Fig. 4. Comparison of final reconstructions of a simulated
scene shown with ground truth.

(a) Example subaper-
ture image

(b) Voxel reconstruction

(c) Curvelet reconstruc-
tion

(d) Neural reconstruc-
tion

Fig. 5. Final reconstructions using real light-field camera
data from a Lytro Illum camera.

progressively increase the number of parameters used. The
maximum number of parameters used in the curvelet rep-
resentation is 10000, that is 209 times lower than what is
required for the voxel representation. Because the curvelet
transform used is not norm-preserving, the scaling factors
associated with each curvelet have been robustly estimated
as a preprocessing step. At each timestep, the largest
curvelet coefficients, taking into account the scaling, are
extracted from the current scene estimate. In our exper-
iments, we do not use curvelets of scaling depth greater
than 8. The neural network used in the simulations is a
fully-connected neural network with 4 hidden layers, each
layer consisting of 100, 50, 20 and 10 neurons, respectively.
For the neural network representation, the number of
training update steps at each time step is 20, and the
activation function used at each layer is a sigmoid function.
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This update is fast enough to be performed online (on
average 0.7 seconds per frame) for a small neural network
of 6693 parameters. The parameters for this representation
are not initialised to zero, as with the other representations
used, but assigned randomly.

In the simulations, the camera trajectory consists of 75
frames and is chosen so that every point on the scene is
within the field of view of the camera at least once. By
frame 20, each portion of the scene has been seen. The
trajectory consists of a fast scan of the entire scene with
minimal overlapping between frames followed by a slower
scan of the scene for the remaining frames.

The trajectory for the real data is taken by hand, and
is constrained more by keeping the checkerboard in view
and in focus in order to achieve good calibration results for
the data. These calibration results are used to extract pose
estimates for the camera. The focal plane for the light-field
camera is set to roughly 30 cm.

4.1 Discussion of results

In Fig. 3 we show the error trajectories for the simulated
data. It can be seen that the neural network method ex-
hibits a steeper initial descent than the other methods, but
the voxel and curvelet trajectories converge much faster
than the neural network representation and have a lower
final noise floor, as well as less variability at this noise floor.
It can be seen that for the voxel and curvelet methods, the
estimate approaches the noise floor by the time the fast
pass over ends at frame number 12. For the neural network
method, there is a brief period where the error does not
decrease. This is likely due to some time being required
before the parameters of the neural network represent a
significantly different state to the inital state. Additionally,
the neural network method exhibits oversmoothing and
much of the finer details of the bas-relief are lost. The
difference between the voxel and curvelet representation
graphs is striking, and demonstrates that the parameter
thresholding in the curvelet representation results in sig-
nificant noise reduction.

Fig. 4 presents the final reconstructions of the simulated
scene for each of the methods together with the ground
truth data. The final results for the voxel and curvelet
methods are similar despite the latter using 200 times
fewer parameters. The neural network method exhibits
oversmoothing, but still produces a good approximation of
the scene. It is likely that different activation functions and
more sophisticated network architectures would produce
superior results in this approach.

Fig. 5 presents the final reconstructions of the real data
together with a subaperture image of the scene. The
curvelet method seems to reduce noise when compared to
the voxel method, but can result in artifacts towards the
edges of the bounding box. This is a known phenomenon
in the curvelet literature (Candès et al. (2006)). As with
the simulated data, the neural network method seems to
exhibit excessive smoothing.

5. THEORETICAL ANALYSIS

In this section, we prove that the observer converges point-
wise in finite time, despite the fact that the state is infinite-

dimensional, if we can update the output values of the
characteristic function directly. To do this, we make several
mild assumptions, however these are not necessarily the
weakest assumptions under which the observer converges.
Further analysis of the behaviour of the observer when
only the parameters may be updated is the subject of
future work. We also show that the observer can be
implemented using light-field measurement data.

Notation In this section, we use the following notation
for line segments. For two distinct points p1, p2 ∈ R3, let
[p1, p2] denote the line segment starting at p1 and ending
at p2, that is

[p1, p2] := {p′ ∈ R3 : p′ = p1 + α(p2 − p1) : α ∈ [0, 1]}.
We denote the set of positions assumed by the lenslets of
the camera by K, so that if Lt ⊂ R3 denotes the embedded
lenslet plane at time t, then K =

⋃
t∈R+ Lt.

Assumptions on the scene There are several assumptions
that are necessary in order to prove convergence of the
scene estimate to the true scene. The first assumption we
need is that we are estimating the portion X of some
larger star-shaped scene X ′ that is contained within a
rectangular prism P . 1

Assumption 1. The portion X of the scene that is to be
estimated is given by X = X ′∩P , where X ′ is star-shaped
and P is a rectangular prism.

The next assumption is necessary in order for several of
the maps used in the proof to be differentiable, as well as
to guarantee boundedness of the depth map.

Assumption 2. The total scene surface ∂X ′ is a manifold
that is diffeomorphic to the sphere S2.

Since ∂X ′ is diffeomorphic to the sphere, the Jordan-
Brouwer separation theorem says that R3 \∂X ′ is equal to
the disjoint union of two separated sets called the interior
I which is bounded, and the exterior E.

Assumptions on the camera trajectory The following
assumption is a persistency of excitation condition, and
is a constraint on the camera trajectory.

Assumption 3. For all p ∈ P there exists a t > 0 and
a positive number δ > 0 such that πs(p) ∈ L for all
s ∈ (t, t+ δ).

That is: for each point that point is updated at least once,
continuously for some interval of time. We also assume
that every point in P is always in front of the camera.

Assumption 4. The depth of every point p ∈ P satisfies
Cpz > 0 for all times t ≥ 0.

Finally, we assume that every point of the total scene
surface ∂X ′ is visible from the position of the camera at
every time.

Assumption 5. K is contained in the kernel of the interior
I of ∂X ′.

Proof of convergence The proof of convergence uses the
following approach. Firstly, we show that any point p ∈ P
1 Note that because X′ is not being estimated, this assumption is
far stronger than neccessary. It is only necessary for it to be possible
that X is contained in a star-shaped set X′.
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This update is fast enough to be performed online (on
average 0.7 seconds per frame) for a small neural network
of 6693 parameters. The parameters for this representation
are not initialised to zero, as with the other representations
used, but assigned randomly.

In the simulations, the camera trajectory consists of 75
frames and is chosen so that every point on the scene is
within the field of view of the camera at least once. By
frame 20, each portion of the scene has been seen. The
trajectory consists of a fast scan of the entire scene with
minimal overlapping between frames followed by a slower
scan of the scene for the remaining frames.

The trajectory for the real data is taken by hand, and
is constrained more by keeping the checkerboard in view
and in focus in order to achieve good calibration results for
the data. These calibration results are used to extract pose
estimates for the camera. The focal plane for the light-field
camera is set to roughly 30 cm.

4.1 Discussion of results

In Fig. 3 we show the error trajectories for the simulated
data. It can be seen that the neural network method ex-
hibits a steeper initial descent than the other methods, but
the voxel and curvelet trajectories converge much faster
than the neural network representation and have a lower
final noise floor, as well as less variability at this noise floor.
It can be seen that for the voxel and curvelet methods, the
estimate approaches the noise floor by the time the fast
pass over ends at frame number 12. For the neural network
method, there is a brief period where the error does not
decrease. This is likely due to some time being required
before the parameters of the neural network represent a
significantly different state to the inital state. Additionally,
the neural network method exhibits oversmoothing and
much of the finer details of the bas-relief are lost. The
difference between the voxel and curvelet representation
graphs is striking, and demonstrates that the parameter
thresholding in the curvelet representation results in sig-
nificant noise reduction.

Fig. 4 presents the final reconstructions of the simulated
scene for each of the methods together with the ground
truth data. The final results for the voxel and curvelet
methods are similar despite the latter using 200 times
fewer parameters. The neural network method exhibits
oversmoothing, but still produces a good approximation of
the scene. It is likely that different activation functions and
more sophisticated network architectures would produce
superior results in this approach.

Fig. 5 presents the final reconstructions of the real data
together with a subaperture image of the scene. The
curvelet method seems to reduce noise when compared to
the voxel method, but can result in artifacts towards the
edges of the bounding box. This is a known phenomenon
in the curvelet literature (Candès et al. (2006)). As with
the simulated data, the neural network method seems to
exhibit excessive smoothing.

5. THEORETICAL ANALYSIS

In this section, we prove that the observer converges point-
wise in finite time, despite the fact that the state is infinite-

dimensional, if we can update the output values of the
characteristic function directly. To do this, we make several
mild assumptions, however these are not necessarily the
weakest assumptions under which the observer converges.
Further analysis of the behaviour of the observer when
only the parameters may be updated is the subject of
future work. We also show that the observer can be
implemented using light-field measurement data.

Notation In this section, we use the following notation
for line segments. For two distinct points p1, p2 ∈ R3, let
[p1, p2] denote the line segment starting at p1 and ending
at p2, that is

[p1, p2] := {p′ ∈ R3 : p′ = p1 + α(p2 − p1) : α ∈ [0, 1]}.
We denote the set of positions assumed by the lenslets of
the camera by K, so that if Lt ⊂ R3 denotes the embedded
lenslet plane at time t, then K =

⋃
t∈R+ Lt.

Assumptions on the scene There are several assumptions
that are necessary in order to prove convergence of the
scene estimate to the true scene. The first assumption we
need is that we are estimating the portion X of some
larger star-shaped scene X ′ that is contained within a
rectangular prism P . 1

Assumption 1. The portion X of the scene that is to be
estimated is given by X = X ′∩P , where X ′ is star-shaped
and P is a rectangular prism.

The next assumption is necessary in order for several of
the maps used in the proof to be differentiable, as well as
to guarantee boundedness of the depth map.

Assumption 2. The total scene surface ∂X ′ is a manifold
that is diffeomorphic to the sphere S2.

Since ∂X ′ is diffeomorphic to the sphere, the Jordan-
Brouwer separation theorem says that R3 \∂X ′ is equal to
the disjoint union of two separated sets called the interior
I which is bounded, and the exterior E.

Assumptions on the camera trajectory The following
assumption is a persistency of excitation condition, and
is a constraint on the camera trajectory.

Assumption 3. For all p ∈ P there exists a t > 0 and
a positive number δ > 0 such that πs(p) ∈ L for all
s ∈ (t, t+ δ).

That is: for each point that point is updated at least once,
continuously for some interval of time. We also assume
that every point in P is always in front of the camera.

Assumption 4. The depth of every point p ∈ P satisfies
Cpz > 0 for all times t ≥ 0.

Finally, we assume that every point of the total scene
surface ∂X ′ is visible from the position of the camera at
every time.

Assumption 5. K is contained in the kernel of the interior
I of ∂X ′.

Proof of convergence The proof of convergence uses the
following approach. Firstly, we show that any point p ∈ P
1 Note that because X′ is not being estimated, this assumption is
far stronger than neccessary. It is only necessary for it to be possible
that X is contained in a star-shaped set X′.

can be unambiguously said to be in front of, behind, or on
the scene in a way that does not depend on a particular
choice of perspective k ∈ K (Proposition 1). Then we
note that for points in front of the scene the characteristic
value can only decrease, for points behind the scene the
value can only increase, and for points on the scene the
value is always zero. This leads to our point-wise finite-
time convergence result (Proposition 2).

Proposition 1. Use Assumptions 1, 2, and 5, and let

(1) P− be the set of points p ∈ P such that for all k ∈ K
the line segment [k, p] does not intersect ∂X ′ (the
visible set), and

(2) P+ be the set of points p ∈ P such that for all k ∈ K
the line segment [k, p] does intersect ∂X ′ (the occluded
set).

Then P \ ∂X = P− ∪ P+.

Proof. By Assumptions 1, 2 and 5, the total scene ∂X ′

is star-shaped and K is within the kernel of the interior
I. Let P− and P+ be the sets defined in the statement of
the proposition.

Let p ∈ (P \ ∂X) ∩ E and let k ∈ K. Since k ∈ I and
p ∈ E, and I and E are separated, then because [k, p] is
connected, it contains a point that is in neither set. Since
∂X ′ = (I ∪E)c, we have that there is some x ∈ [k, p] such
that x ∈ ∂X ′. Therefore, [k, p] ∩ ∂X ′ �= ∅ for all k ∈ K
and all p ∈ (P \ ∂X) ∩ E. Therefore (P \ ∂X) ∩ E ⊂ P+.

Let p ∈ (P \ ∂X) ∩ I and let k ∈ K. Assume, to arrive
at a contradiction, that [k, p] ∩ ∂X ′ �= ∅. Since k, p ∈ I,
the line segment [k, p] must cross through the boundary
∂X ′ at least twice, but this is not possible because I is a
star-shaped set and k is in the kernel of I. It follows that
[k, p] ∩ ∂X ′ = ∅ for all k ∈ K and all p ∈ (P \ ∂X) ∩ I.
Therefore (P \ ∂X) ∩ I ⊂ P−.

Note that the sets (P \∂X)∩I and (P \∂X)∩E partition
P \∂X because I ∪E = R3 \∂X ′ and ∂X = P ∩∂X ′. Also
note that p ∈ P+ implies p �∈ P− and vice versa simply by
the definitions of these sets. Therefore, (P \∂X)∩E = P+

and (P \∂X)∩I = P−. This shows that P \∂X = P−∪P+.

�

Proposition 2. Let χ̇θ̂t
(p) be an integrable function satis-

fying Eqns. (4) and (5). Use Assumptions 1, 2, and 5, and
let P− and P+ be the sets defined in Proposition 1. Then,
under Assumptions 3 and 4 all of the following hold:

(1) For all p ∈ P− there exists a time T ≥ 0 such that
χθ̂τ

(p) < 0 for all τ > T ,

(2) For all p ∈ P+ there exists a time T ≥ 0 such that
χθ̂τ

(p) > 0 for all τ > T ,

(3) For all p ∈ ∂X, we have that χθ̂t
(p) = 0 for all t ≥ 0.

Proof. The third statement follows immediately from
χ̇θ̂t

(p) = 0 for all t ≥ 0 and all p ∈ ∂X, and the fact

that χθ̂0
(p) = 0.

To show the first statement, let p ∈ P−. Then there exists
a time t > 0 and a δ > 0 such that πs(p) ∈ L for all
s ∈ (t, t+ δ) (Assumption 3).

For a given s ∈ (t, t + δ) let k ∈ Ls ⊂ K denote the
embedded location of πs(p) ∈ L and let q ∈ ∂X ′ be the

point that lies on the half-line starting at k and passing
through p (Assumptions 1 and 5). Since p ∈ P− the line
segment [k, p] does not intersect ∂X ′ hence the distance of
p from k is less than the distance of q from k. Now, due
to Assumption 4, we have that the depth Cpz of point p
is also less than the depth Cqz = λs(πs(p)) of point q.

Therefore, the value of Cpz − λs(πs(p)) is negative on the
interval (t, t + δ). Now, since πs(p) ∈ L for s ∈ (t, t +
δ), the derivative χ̇θ̂s

(p) of χθ̂s
(p) is negative on this

interval. Therefore, we have that χθ̂t+δ
(p) = χθ̂t

(p) +∫ t+δ

t
χ̇θ̂s

(p)ds < χθ̂t
(p) because the integral is negative.

But since the derivative of χθ̂t
at p is always either negative

or zero, and χθ̂0
(p) = 0, we have that χθ̂t

(p) ≤ 0 to begin

with. Therefore, χθ̂t+δ
(p) < 0. Let T := t+δ and note that

for all future times τ > T , we have that χ̇θ̂τ
(p) ≤ 0 and

hence χθ̂τ
< 0.

The statement for p ∈ P+ follows along the same lines.

�

A careful inspection of the previous proof shows that if
Assumption 3 is strengthened to require the existence
of a finite time Tmax > 0 such that for all p ∈ P the
corresponding t+ δ < Tmax then the entire scene estimate
converges in finite time Tmax. More generally, any portion
of the scene is reconstructed as soon as it has been seen
continuously for some time.

Proof of implementability from light-field measurements
In this section, we show that depth measurements may
in principle be perfectly estimated using light-field data.
To show this, we require an assumption on the colour
distribution of our light-field measurement.

Assumption 6. The light-field measurement µ : L × P →
[0, 1]3 is differentiable and satisfies ||∇µxy(x, y, 0, 0)|| > 0
for all (x, y) ∈ L.

This assumption is fulfilled for Lambertian scenes whose
colouring has non-zero gradient everywhere. The existence
of such a colouring for any given (smooth) scene surface is
guaranteed by a theorem of Hirsch (1961).

The following proposition proves correctness of depth
estimates from light-field measurement data given this
assumption.

Proposition 3. Let Θ = (K1,K2, f
x, fy, cx, cy) be the

intrinsic parameters of a light-field camera without lens
distortion. Use Assumption 6 and define the function
δ : L → R+ as

δ(x, y) := −∇xyµ(x, y, 0, 0) · ∇uvµ(x, y, 0, 0)

||∇xyµ(x, y, 0, 0)||2
. (10)

Then, the function λ : L → R defined as

λ(x, y) := − K2

K1 + δ(x, y)

is equal to the depth of the first point on the scene surface
that lies along the ray with coordinates (x, y, 0, 0).

Proof. In O’Brien et al. (2018), it was shown that the
depth of a point p with π(p) ∈ L expressed in body-fixed
coordinates C of the camera is given by
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Cpz = − K2

K1 +
R(p)
r

, (11)

where R(p) is the plenoptic disc radius of p, and r is the
subimage radius. In the same paper it was shown that
(noting that in that paper, pixel coordinates are defined
absolutely on the raw image rather than relative to a
lenslet coordinate)(

u1 − u2

v1 − v2

)
=

r

R(p)

(
x1 − x2

y1 − y2

)

holds for all pairs of lenslet-pixel coordinates (x1, y1, u1, v1)
and (x2, y2, u1, v2) imaging the same point p. Comparing
this to the defining equation(

∆x
∆y

)
= δ(p)

(
∆u
∆v

)

for the disparity δ(p) of p, it follows that

δ(p) =
R(p)

r
and hence Equation (11) can be rewritten as

Cpz = − K2

K1 + δ(p)
. (12)

The light-field measurement µ : L×P → [0, 1]3 is constant
on the level set

{(x+ δ(q)∆u, y + δ(q)∆v,∆u,∆v) : (∆u,∆v) ∈ R2},
where q is the first point on the scene surface ∂X that lies
along the ray with coordinates (x, y, 0, 0). The gradient of
µ is nonzero by Assumption 6 and orthogonal to this level
set at (x, y, 0, 0). By expressing (∆u,∆v) = ρω for some
ω ∈ S2, ρ > 0 we therefore obtain that

δ(q)ω · ∇xyµ+ ω · ∇uvµ = 0 (13)

which, for any ω ∈ S2, has the solution

δ(q) = −ω · ∇uvµ

ω · ∇xyµ
. (14)

Letting ω = ∇xyµ(x, y, 0, 0), we obtain (10), and the result
follows by substituting into Equation (12).

�

6. CONCLUSION

In this paper, we represent a scene as the superlevel set
of an extended characteristic function. We then use dense
measurements of the scene that are known to correlate
with depth, such as those obtained from a light-field cam-
era or laser range finder, in order to update the param-
eters of the extended characteristic function. We prove
that using ideal light-field data, we may in principle per-
fectly reconstruct a scene under certain mild assumptions
using this observer. Regardless of the dimensionality of
the representation, the observer estimate converges to the
true scene in finite time under the same assumptions. Fu-
ture work will involve rigorous comparisons with existing
benchmarks on wider datasets.
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