
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALING BAYESIAN EXPERIMENTAL DESIGN TO HIGH-
DIMENSIONS WITH INFORMATION-GUIDED DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present DiffBED, a Bayesian experimental design (BED) approach that scales
to problems with high-dimensional design spaces. Our key insight is that cur-
rent BED approaches typically cannot be scaled to real high–dimensional design
problems because of the need to specify a likelihood model that remains accurate
throughout the design space. We show that without this, their design optimisation
procedures exploit deficiencies in the likelihood and produce implausible designs.
We overcome this issue by introducing a generative prior over feasible designs using
a diffusion model. By guiding this diffusion model using principled information-
theoretic experimental design objectives, we are then able to generate highly
informative yet realistic designs at an unprecedented scale: while previous appli-
cations of BED have been restricted to design spaces with a handful of dimensions,
we show that DiffBED can successful scale to designing high–resolution images.

1 INTRODUCTION

Experimentation, the process by which we gather information about a phenomenon of interest, is
a central task throughout science and industry. In scenarios where data collection is costly or time-
consuming, such as drug discovery (Paul et al., 2010; DiMasi et al., 2016) or clinical trials (Fogel,
2018), it is natural to seek designs that yield data that is maximally informative. This intuition is
captured by the framework of Bayesian experimental design (BED) (D. V. Lindley, 1956; Chaloner
& Verdinelli, 1995; Rainforth et al., 2024; Huan et al., 2024). In BED, we specify a probabilistic
model of the data gathering process, use this to derive a formal notion of the expected information
gain (EIG) of an experiment for a target quantity of interest, then optimise this EIG to yield designs
we expect to maximally reduce our uncertainty. Thanks to the coherence of Bayesian reasoning, this
framework is naturally suited to adaptively gathering information across several experimental steps,
utilising information from previous experiments in each sequential decision we make.

Although, in principle, BED can be applied to a wide array of tasks, successful applications have
historically been limited to simple problems in which the design variables are low-dimensional
(Myung et al., 2013; Vincent & Rainforth, 2017; Watson, 2017; Dushenko et al., 2020; Loredo,
2004; Vanlier et al., 2012; Shababo et al., 2013; Papadimitriou, 2004). Developing methods for
high-dimensional design spaces is thus a critical open challenge (Rainforth et al., 2024; Huan et al.,
2024), with the problem historically being considered mostly as one of developing scalable EIG
estimators (Foster et al., 2019; Goda et al., 2022; Ao & Li, 2023; Iollo et al., 2025a; Huan et al., 2024).

In this work, we demonstrate the existence of an even more fundamental barrier: being able to
specify a likelihood in high dimensions that faithfully reflects the real-world data generation process
across the entirety of the design space. In other words, model misspecification becomes increasingly
unavoidable as design dimensionality increases, as we must construct a likelihood model that remains
accurate over an ever-growing space. In particular, while the success of modern machine learning
methods relies on modelling around some data manifold, our desire to optimise with respect to
the design and seek out information that is distinct from that already known inevitably relies on the
ability of our likelihood to “extrapolate” to regions when our ability to predict outcomes is limited.

The upshot of this, as shown in Figure 1, is that directly optimising the EIG leads to flaws in the
likelihood being exploited, and meaningless designs being produced. This is akin to reward hacking
in reinforcement learning (Skalse et al., 2022). Namely, we see that even though existing stochastic
gradient approaches are already effective at optimising the EIG in this very high dimensional setup,
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Figure 1: First iteration design sets for the search experiment (see Section 6) for BED (top left) and via
DiffBED (bottom left). Also shown is incremental EIG achieved at each experiment iteration (right).

Figure 2: Posterior samples after 50 search iterations for standard BED (left) and DiffBED (right).

the problem instead is that the optimisation leads to unrealistic designs for which the assumed
likelihood is heavily misaligned with the true data-generating process. In particular, as we show later,
it seeks out designs where the model’s likelihood is overconfident and the experiment outcomes will,
in truth, be uninformative. Moreover, in Figure 2, we see that when sequentially applying BED to
adaptively choose designs, this in turn leads to a problematic feedback loop in the posterior updates:
rather than simply remaining uncertain, our posterior beliefs collapse around a distinctly incorrect θ.

To address this, we introduce DiffBED, a novel method for Bayesian experimental design in
high-dimensional design spaces. DiffBED works by introducing a prior over feasible designs. It
reframes the design optimisation as sampling from a distribution that balances prior feasibility and
EIG under the model. This ensures that the designs generated stay on an admissible manifold where
the likelihood is relatively well aligned, and regularises against such reward hacking behaviour.

Specifically, DiffBED uses a diffusion model for its design prior. Designs are then generated by
a process we call information-guided diffusion, where designs are chosen by simulating the reverse–
time SDE of this diffusion process, with guidance provided by an estimator for the score of the EIG.
This estimator is itself based on a combination of Tweedie’s formula (Robbins, 1956) and existing
EIG gradient estimators (Rainforth et al., 2018; Foster et al., 2020). Adaptive design is performed
by rerunning the diffusion process with updated EIG estimators that incorporate new observations.

As shown in Figure 1, this leads to designs that are both meaningful and informative. In turn, these
designs enable effective learning about the target quantity of interest (see Figure 2). DiffBED
therefore represents the first successful application of BED in high-dimensional design spaces:
we show successful deployment of DiffBED to design spaces in excess of 750 000 dimensions,
whereas previous BED approaches have rarely been successfully been used beyond ∼ 20 dimensions.

2 PRELIMINARIES

We begin by reviewing the key concepts underpinning the BED framework. In BED, we express our
initial beliefs about the target variable of interest, θ, through a prior distribution p(θ). We also specify
a likelihood p(y | θ, ξ), which gives the probability of possible experimental outcomes y given θ and
a design ξ. If an outcome y were observed by running an experiment with design ξ, the information
gain (IG) of such an experiment is the reduction in entropy obtained when updating from the prior
p(θ) to the posterior p(θ | y, ξ) (Lindley, 1956), defined as, IG(y, ξ) = H[p(θ)] − H[p(θ | y, ξ)] .
Since the outcome y is unknown before running the experiment, we instead maximise the expected
information gain (EIG) (Lindley, 1972; Bernardo, 1979; Sebastiani & Wynn, 2000):

EIG(ξ) = Ep(y|ξ)[IG(y, ξ)] = Ep(θ) p(y|θ,ξ) [log p(θ | y, ξ)− log p(θ)] (1)

= Ep(θ) p(y|θ,ξ) [log p(y | θ, ξ)− log p(y | ξ)] , (2)
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where the last equality follows from Bayes’ rule. The EIG is then maximized to produce an optimal
design ξ∗ = argmaxξ∈Ξ EIG(ξ), where Ξ is the space of admissible designs.

Adaptive Design In many applications, we are interested in producing a sequence of designs
ξ1, ξ2, . . . , ξK yielding data y1, y2, . . . , yK . While the sequence ξ = (ξ1, ξ2, . . . , ξK) could be deter-
mined statically before observing any data, a more performant approach is to select the design ξk
adaptively depending on the history Dk−1 = {(ξi, yi)}k−1

i=1 of designs and outcomes prior to step
k. In this adaptive setting, the design for the k-th experiment is typically obtained by greedily max-
imising the incremental EIG(ξk | Dk−1) = Ep(θ|Dk−1) p(yk|θ,ξk) [log p(yk | θ, ξk)− log p(yk | ξk)] .
This expression is equivalent to the EIG except that the prior, p(θ), is replaced with the posterior,
p(θ|Dk−1), which reflects the current beliefs given the history (Rainforth et al., 2024).

Estimating the EIG While the EIG is conceptually appealing, estimating it can be challenging
due to the doubly intractable nature of the objective, with a wide variety of approaches proposed to
address this, see (Rainforth et al., 2024, Section 3) for a review. However, when the outcome space Y
is discrete, the outer expectation with respect to the likelihood can be enumerated over. In this case,
the EIG is now singly-intractable, yielding a non-nested estimator (Rainforth, 2017; Gal et al., 2017)

ÊIG(ξ) = −
∑

y∈Y
p̂(y | ξ) log p̂(y | ξ) + 1

N

∑N

n=1

∑
y∈Y

p(y | θn, ξ) log p(y | θn, ξ), (3)

where θn ∼ p(θ) (or θn ∼ p(θ | Dk−1) in adaptive settings) and p̂(y | ξ) = 1
N

∑N
n=1 p̂(y | θn, ξ).

Optimizing the EIG with Stochastic Gradients During active experimentation, we not only want
to estimate the EIG, but optimize it. Stochastic gradient-based methods are scalable and effective for
optimization in high-dimensional continuous design spaces and can easily be applied to estimates of
the gradients of the EIG such as (3) (Huan & Marzouk, 2014; Foster et al., 2020; Goda et al., 2022).

3 DIRECTLY OPTIMISING EIG SEEKS OUT MODEL MISSPECIFICATION

Bayesian experimental design is inherently model-based, with the EIG relying on the assumed
likelihood model p(y | θ, ξ) and a subjective prior p(θ). As such, how well the EIG reflects the true
expected utility of gathering new data will depend on the accuracy of this model, in particular how
well the assumed likelihood approximates the true conditional data-generating process ptrue(y | θ, ξ).
While the prior provides some protection against needing the likelihood to be accurate across all θ,
optimising over ξ requires the likelihood to remain accurate across the entire design space.

When the designs ξ are high-dimensional, faithfully modelling y | θ, ξ becomes especially challenging
and it is usually not realistic to construct a likelihood that is accurate across all (θ, ξ) pairs. Indeed,
the assumed likelihood p(y|θ, ξ) in high-dimensional problems will often itself be a learned function
derived from a pre-trained machine learning model. For example, in Figure 1 our likelihood utilises a
fixed encoder that captures semantic content. In such cases the likelihood will only reflect the true
data-generating mechanism in data regions near where the feature extracting component was trained.

We now show that direct optimisation of the EIG is inherently prone to seeking out areas of the
design space where the model is misspecified, specifically, it is drawn to regions where the likelihood
is overconfident. To do this we consider the difference in using the EIG with our model’s likelihood
compared with a “true” EIG that uses the unknown true underlying data distribution:

TEIG(ξ) := Ep(θ)ptrue(y|θ,ξ) [log ptrue(y | θ, ξ)− log ptrue(y | ξ)] (4)

where ptrue(y | ξ) = Ep(θ)[ptrue(y | θ, ξ)]. We now have

EIG(ξ) = TEIG(ξ) + Eptrue(y|ξ) [H[ptrue(θ | y, ξ)]]− Ep(y|ξ) [H[p(θ | y, ξ)]] (5)

= TEIG(ξ) + Ep(θ) [H[ptrue(y | θ, ξ)]− H[p(y | θ, ξ)]]︸ ︷︷ ︸
=:M(ξ)

+H[p(y | ξ)]− H[ptrue(y | ξ)], (6)

where ptrue(θ | y, ξ) = p(θ)ptrue(y | θ, ξ)/ptrue(y | ξ). This decomposition provides helpful insight
into how the EIG behaves when used with an approximate model likelihood. Namely, we can view
M(ξ) as a measure on the average degree of model overconfidence across possible θ: it is zero if
the likelihood matches the true data generating process and it grows as the likelihood becomes more
certain than it should be. Critically,M(ξ) varies across designs, and its presence in the decomposition
encourages designs found by directly optimizing the EIG to lie where the likelihood is overconfident.
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Moreover, the remaining H[p(y | ξ)] − H[ptrue(y | ξ)] term typically provides little protection
against this desire to move to regions of overconfident likelihoods. In particular, these marginal data
distributions will inherently be more diffuse than the corresponding likelihoods, with the averaging
over θ providing regularisation on their predictions. Thus, in high-dimensional spaces it will usually
be easy to find designs where we are overconfident in y|θ, ξ, but our uncertainty over θ ensures
that H[p(y | ξ)] remains high. Thus, even when the likelihood is heavily misspecified, p(y | ξ) and
ptrue(y | ξ) will often still be similar for most ξ. For example, if we have a design very far away from
previous designs then a misspecified (but still sensible) model will generally produce high marginal
predictive uncertainty, even though it might be very confident about y when θ is known. As such, the
signal from this remaining term will generally not sufficiently counteractM(ξ) and we can expect
direct EIG optimisation to seek out designs where the likelihood is overconfident.

4 BAYESIAN EXPERIMENTAL DESIGN VIA INFORMATION-GUIDED DIFFUSION

While improving the fidelity of p(y | θ, ξ) would reduce the misalignment in (5)-(6), simply
modifying the likelihood is not a viable solution , since any residual imperfections will be exploited
by the optimizer in high-dimensional spaces. Rather, we accept inevitable misalignment and instead
modify the design process itself. Ideally, we would like to maximize the EIG subject toM(ξ) being
small, but this misalignment, by definition, is often difficult, if not impossible, to quantify.

Instead, we introduce a reference prior on designs, pref(ξ), that captures the manifold of feasible
designs. We can then restrict our search to only those designs which have reasonable support under
this reference prior. For many problems, suitable reference priors can be constructed from unlabelled
auxiliary data or a separate foundation model, without requiring any task-specific data. For example,
if our design is an image of a face, then pref(ξ) could be instantiated as a deep generative model over
faces. The manifold defined by pref(ξ) also often aligns with regions where likelihood misalignment is
relatively small. In particular, as we demonstrate later, it is often possible to derive the reference prior
from the same data used in constructing the likelihood. For example, in Section 6 we use likelihoods
that depend on an unsupervised encoder of images. Constraining design optimization to a manifold
that is meaningful avoids the catastrophic collapse to incorrect θs seen in Figure 2 for traditional BED.

We now need a mechanism to produce designs that both representative samples under pref(ξ) and
which we expect to be highly informative under our model, i.e. that have high EIG(ξ). To do this,
we consider the following optimisation problem over q(ξ) ∈ P(Ξ),

p∗(ξ) = argmaxq(ξ)∈P(Ξ) Eq(ξ)[EIG(ξ)]− αKL
[
q(ξ) ∥ pref(ξ)

]
(7)

where α > 0 is a hyperparameter that trades off achieving high EIG values with adherence to the
reference distribution, as measured by the KL divergence. Using variational calculus, Equation (7)
yields a unique solution known as the exponential tilting distribution (Rawlik et al., 2012)

p∗(ξ) ∝ pref(ξ) · exp
(
α−1EIG(ξ)

)
. (8)

Sampling ξ ∼ p∗(ξ) now ensures that designs are drawn from high-probability regions of pref(ξ)
while up-weighting those with large EIG. Notably, this approach requires no likelihood-dependent
training of pref nor any modifications to the likelihood, so that a pre-trained generative model is
readily applicable. While Equation (8) could potentially be maximized, we choose to sample from
p∗(ξ) to avoid exploiting imperfections in the approximation of the generative model, which may lead
to unrealistic designs. In particular, it has been shown that the points to which deep generative models
assign the highest density are often not themselves reasonable samples (Nalisnick et al., 2018).

4.1 GUIDING DIFFUSION WITH EIG

Having established p∗(ξ) as our target distribution for producing designs, we now introduce
DiffBED, our proposed framework which instantiates this idea using a diffusion model (Ho et al.,
2020; Song et al., 2021) as the reference generative model pref in (8). Diffusion models offer
state-of-the-art generative quality and diversity across images, video, and scientific data. Unlike
VAEs (Kingma & Welling, 2013) or GANs (Goodfellow et al., 2014), diffusion models learn a
score function rather than a fixed decoder. This enables powerful training-free guidance methods
for sampling from tilted distributions (Bansal et al., 2023; Uehara et al., 2025; Ye et al., 2024;
Domingo-Enrich et al., 2024; Denker et al., 2024), making them uniquely suited to our framework by
allowing sampling from (8) without retraining or latent-space optimization.
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Diffusion Models Diffusion models define a forward SDE which gradually corrupts data with noise
and a learn reverse process which undoes this corruption (Song et al., 2021). The forward SDE is

dξt = f(ξt, t) dt+ g(t) dWt ξ0 ∼ p0(ξ0) t ∈ [0, T ] (9)

where p0(ξ0) is a training distribution of designs with ξ = ξ0, f(ξt, t) is a drift vector field, and
g(t) is a noise schedule. The functions f, g are chosen so that pT (ξT ) is approximately Gaussian. A
generative model is obtained by solving time time-reversal of Equation (9), given by

dξt =
[
f(ξt, t)− g(t)2∇ξt log pt(ξt)

]
+ g(t) d

←−
Wt ξT ∼ pT (ξT ) t ∈ [0, T ] (10)

where d
←−
Wt is a time-reversed Brownian increment and b(ξt, t) := f(ξt, t)− g(t)2∇ξt log pt(ξt) is

an updated drift. The intractable score∇ξt log pt(ξt) is approximated by a neural network sϕ(ξt, t)
with parameters ϕ trained via denoising score matching (Hyvärinen & Dayan, 2005; Song et al.,
2021). Sampling ξT from the Gaussian prior and integrating (10) backwards in time yields samples
ξ ∼ pref(ξ), our generative approximation to p0. In practice, we use pre-trained diffusion models,
which can optimally be conditioned (e.g., via text prompts) to produce domain-specific designs.

Information-Guided Diffusion We aim to sample from the EIG-tilted distribution p∗(ξ). This
amounts to adding an extra drift term to Equation (10) of the form

u(ξt, t) = g(t)2∇ξt logE
[
exp(α−1EIG(ξ0)) | ξt

]
≈ g(t)2α−1∇ξtE [EIG(ξ0) | ξt] (11)

where the approximation follows by assuming that the EIG of ξ0 is a function of ξt with additive
noise. This approximation is still intractable, though, as E [EIG(ξ0) | ξt] is unknown. Inspired by
recent work on inverse problems (Chung et al., 2024), we define ξ̂0(ξt) := E[ξ0 | ξt] and approximate
E [EIG(ξ0) | ξt] ≈ EIG(ξ̂0(ξt)) which follows from approximating the intractable p(ξ0 | ξt) by a
delta function located at its mean. Critical to making this approximation tractable is Tweedie’s
formula (Robbins, 1956; Efron, 2011; Meng et al., 2021), which allows us to approximate ξ̂0(ξt)
in terms of the score function sφ(ξt, t) without needing to simulate the SDE (10). For instance,
when f(ξt, t) = − 1

2β(t)ξt and g =
√
β(t) (i.e., DDPM (Ho et al., 2020) or the VP-SDE (Song

et al., 2021)), Tweedie’s formula may be written as ξ̂0(ξt) = (xt + (1 − αt)∇ξt log pt(ξt))/
√
αt,

αt = exp(−
∫ t

0
β(s) ds) enabling an efficient approximation of (11) using our pre-trained score

network. Altogether, we obtain an approximate sampler for p∗(ξ) by solving the SDE

dξt =
[
f(ξt, t)− g(t)2

(
sφ(ξt, t) + α−1∇ξtEIG

(
ξ̂0(ξt)

))]
dt+ g(t) d

←−
W t (12)

backwards in time. We initialize from Gaussian noise, acknowledging a small bias from not adjusting
the initial distribution (Uehara et al., 2024). In practice this simply adds a scaled EIG-gradient
estimate to the pre-trained score network at each step, which we find sufficient for high-quality
designs without additional Langevin corrections targeting p∗(ξ). We note that the EIG gradient used
during guidance is itself an approximated quantity, e.g., via (3). Importantly, this does not require
reparametrization, so that our method is applicable in a broad set of contexts. If y is not discrete,
alternative EIG gradient estimatiors can be used instead (see e.g. Rainforth et al. (2024, Section 3)).

In some applications, our task calls for sets of designs. We consider several applications of this nature
in Section 6. In Appendix B.3, we discuss how our techniques can be extended to the set-valued case.

4.2 DIFFBED: BED WITH INFORMATION-GUIDED DIFFUSION

Our end-to-end procedure for DiffBED is similar to the standard (sequential) BED framework,
except that our optimization for ξ at each experiment iteration utilises the guided diffusion technique
in Section 4.1. In Appendix B, we provide a full discussion of the details needed to implement
DiffBED, including an algorithmic description in Algorithm 1.

For sequential BED, we require a high-fidelity and fast posterior sampler. A key design choice in
DiffBED is to perform inference in a latent space rather than directly in pixel space. This approach
exploits the fact that, in many ostensibly high-dimensional tasks, the information we care about lives
in a much lower-dimensional space (such as perceptual features) while other variations (background or
pixel noise) can be ignored. This makes sequential BED feasible to scale while remaining compatible
with a wide range of problems where the likelihood is naturally defined on top of an encoder.
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Concretely, we embed θ using a trained encoder and place a simple prior on the resulting latent
vector (e.g., a Gaussian or a uniform distribution on the unit sphere). Although we work in an
embedding space, the latent dimension can still be moderately high (e.g., 64 dimensions), which
is sufficient for expressivity but tractable for inference. Posterior inference over θ is done in this
latent space using fast particle-based filtering methods (Johansen, 2009), yielding high-fidelity
posterior samples at each sequential iteration. From these latent posterior samples we can also
recover image-space designs – for instance, by nearest-neighbour retrieval from a large pool or by
guiding a diffusion model to synthesize images whose embeddings match the posterior particles
(e.g., via cosine similarity). Overall, this strategy makes DiffBED scalable and flexible: it retains
high-quality inference while seamlessly interfacing with modern generative models. Details of our
particle filtering and inverse-mapping procedures are given in Appendix C.

5 RELATED WORK

Although the framework of BED has a long history (Lindley, 1956; Bernardo, 1979; Sebastiani &
Wynn, 2000), scaling BED to realistic settings remains an open challenge (Rainforth et al., 2024;
Huan et al., 2024). Viewing challenge as one of computational costs, a long list of works (Foster et al.,
2019; 2020; Goda et al., 2022; Ao & Li, 2023; Iollo et al., 2025a) have looked to provide improved
gradient estimators compared to simple nested Monte Carlo (Rainforth et al., 2018). Notably, Iollo
et al. (2025a) also considers the use of diffusion models, but only in an attempt to improve scaling in
the target variable space, θ, by using a diffusion model for their prior, p(θ). All of the aforementioned
works are restricted to low–dimensional design spaces, with the 15-dimensional and 20-dimensional
design spaces considered by Iollo et al. (2025b) and Ivanova et al. (2021) respectively being some
of the highest dimensional applications of sequential BED. By contrast, we successfully conduct
sequential design optimisation in design spaces of over 750 000 dimensions.

Recent BED work has also considered leveraging LLMs to generate natural language questions as
experiment designs to be used in preference elicitation (Choudhury et al., 2025; Kobalczyk et al.,
2025). A batch of candidate designs is generated by an LLM, ranked, and the design with the highest
EIG is selected. Handa et al. (2024) similarly considers preference elicitation using BED and LLMs,
but assumes the parameter and design are supported on an explicit and fixed low-dimensional feature
space. On the other hand, DiffBED is explicitly focused on the setting where the design space is
high-dimensional and continuous, leveraging gradient-based optimization.

Active learning (AL) (Settles, 2009) also aims to select informative data, but typically with the aim
of learning a predictive model rather than learning about a specific target quantity as in BED. Much
of the AL literature focuses on pool-based selection, where an existing set of unlabelled examples is
available (Houlsby et al., 2011; Gal et al., 2017). Some works consider query synthesis, i.e., generating
inputs directly, often by optimizing an acquisition function in a generative latent space to ensure
plausible queries (Zhu & Bento, 2017; Schumann & Rehbein, 2019; Mayer & Timofte, 2020). Instead,
we focus on the more general setting of experimental design (which subsumes active learning); active
learning approaches are not generally applicable the problems considered in our experiments.

Other works have also previously studied model misspecification in BED (Forster et al., 2025;
Overstall & McGree, 2022; Go & Isaac, 2022; Feng et al., 2015). However, they all look to address
this by adjusting the model or EIG itself. Our work is the first to identify that model misalignment
is not constant across design space and show the potential for reward hacking to occur even for
ostensibly good models; none of these approaches are suitable for addressing this issue and thus they
do not provide useful benefits in settings we consider. We are thus the first to provide a scalable
solution by using reference prior and regularising the optimisation.

6 EXPERIMENTS

We now perform an extensive empirical evaluation of our proposed DiffBED method. Although
DiffBED is not specific to any one experimental setting, our experiments are unified by the theme
of human feedback elicitation, as this encapsulates a broad range of important, real-world tasks with
high-dimensional designs. In particular, we focus on the setting where designs consist of one or more
images. We consider a range of datasets and feedback types, which include binary rankings, rankings
of a subset of images from the design set, and discrete ratings. We defer in depth experimental details,
including additional results and ablations, to the Appendix.
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Figure 3: Design sets of four images generated by DiffBED for CelebA Search, against two ground
truths (top and bottom row), at experiment iteration 1 (centre, both rows) and 40 (right, both rows).

Baselines Our primary baseline is the current standard paradigm (Huan et al., 2024; Rainforth et al.,
2024) for BED, namely, direct gradient-based maximization of the EIG estimator (3) (Huan & Mar-
zouk, 2014; Foster et al., 2020). We refer to this baseline simply as BED. We also compare against En-
tropy, a variant of DiffBED where we guide the diffusion model with the marginal predictive entropy
rather than the EIG. In addition, we consider Rank, an ablation of DiffBED where we generate a set
of 1000 unguided candidate designs upfront (where the set size is chosen to roughly match runtime to
DiffBED), then select at each iteration the candidate with the highest estimated EIG. To ensure the
strongest baseline possible, we take these candidate designs directly from the data originally used to
train the diffusion model, rather than actually diffusing them. Finally, we compare against Random, a
simple baseline where designs are selected uniformly at random from a discrete set of feasible designs.

Metrics To evaluate the effectiveness of the various design strategies, at each experiment iteration
we compute the average cosine similarity between the ground truth, θtrue, and our current posterior
θ samples. This measures our ability to recover a ground truth target variable. We also evaluate the
incremental EIG of the chosen design at each step; we emphasise that this should not be viewed
as a success metric itself but rather an insightful quantity to track. We additionally include several
qualitative results (c.f. Figures 1 and 2). All numerical results on MNIST are averaged over 25
random seeds, while the higher-dimensional CelebA and Zappos runs are averaged over 10.

6.1 INFORMATION-THEORETIC SEARCH

We first evaluate DiffBED on an information-theoretic search task, where the goal is to recover a
ground-truth image based on feedback from a user. Here, designs are sets of images and the outcomes
y are rankings indicating the relative similarity of each design to the ground-truth image. As a
motivating example, suppose an eyewitness of a crime is being interviewed in order to construct
possible images of the suspect that we wish to be perceptually close to the true suspect. Though
it is not generally possible for the eyewitness to directly generate accurate images, they likely can
positively identify a photo of the true suspect if shown one and more generally provide feedback
when shown images. We can therefore instead iteratively show the eyewitness a set of candidate
images, ξk = (ξ1k, . . . , ξ

J
k ) and have them provide feedback by ranking the images in how well they

match the suspect. Such an approach is commonly deployed by UK police forces, but with software
that uses low-resolution images and chooses them in a heuristic manner (VisionMetric, 2019).

To apply BED, we require a model capturing the complex relationship between the sketch and the
victim’s response. Since a human’s perception of images and identities does not operate at a pixel-
by-pixel resolution, we can assume a reasonable model is p(yk | θ, ξk), where θ is a rich, sufficiently
high-dimensional feature space encoding of an image, following Section 4.2, and our likelihood is
based around the similarity of each ξjk to the underlying θ. For our experiment setup, the simulated
participant is given a set of N = 4 images and their response, y, is a ranking of the top M = 2 images,
based on the relative perceived similarities of each image to the ground truth. Under this setup, we
evaluate DiffBED on MNIST and CelebA (LeCun et al., 1998; Liu et al., 2015), using SimCLR
embeddings (Susmelj et al., 2020; Chen et al., 2020) for the former and a pre-trained VGGFace2 model
(Cao et al., 2018) fine-tuned using a triplet loss for the latter. For full setup details see Appendix A.

We plot the resulting EIG and cosine similarities in Figure 4. Standard BED is capable of achieving
high EIG under the assumed likelihood model for both datasets. However, due to model misalignment,
the designs produced are imperceptible from pure noise, and so the return responses are meaningless.
Therefore, the cosine similarity between θtrue and posterior samples remains effectively zero
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(a) MNIST
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(b) CelebA
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Figure 4: EIG and cosine similarities for search (mean with ± std. error shading), where designs are
sets of four images and responses are the rank of the top-two candidates. DiffBED achieves the high-
est mean cosine similarity, while standard BED fails to solve the task despite achieving high EIGs.
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Figure 5: EIG and cosine similarity for preference elicitation on CelebA. Designs consist of image
pairs with binary preference responses. Standard BED yields EIG values comparable to random
selection and struggles to identify the true preference vector (low cosine similarity), while DiffBED
maintains higher cosine similarity and more informative designs.

throughout, indicating that standard BED has failed to solve the task. While DiffBED inevitably
fails to achieve as high an EIG as standard BED, by sticking to a realistic design manifold it
succeeds at the underlying task, producing effective learning in the true θ as reflected in the cosine
similarity plots. We also see that it outperforms the random baselines, confirming the benefit of our
information-guided sampling. Finally, we see that DiffBED outperforms the ablations of Entropy
and Rank. It is particularly notable for this problem that predictive entropy does not in anyway
encourage the set of images the user is asked to rank to be different, with the EIG needed to capture
the nuance that the rankings need to be informative, not simply uncertain.

6.2 ACTIVE PREFERENCE ELICITATION

We now consider the setting of active preference elicitation. Motivating examples for this are wide
spread, including recommender systems that are tailored to an individuals preferences. For example,
a dating site might wish to recommend profiles that a user is likely to engage with. To do this, the
company may suppose that a users preferences can be distilled into distinct interpretable features,
indicating the presence of, for example, glasses, or a smile in the image. To infer a user’s preferences,
we can learn from a user’s preference over two potential profiles.

Concretely, for this problem we setup θ as a unit-normalised vector in which each element is a
preference weighting for binary CelebA attributes. We use a Bradley-Terry (BT) response model,
in which designs are pairs of images. We parametrise the latent reward as being proportional to the
dot product between the preference vector and a vector of classifier probabilities that each attribute is
present for each image in the pair. See Appendix A for additional experimental details, and Appendix
C for details about the inference.

As shown in Figure 5, DiffBED achieves consistently high EIG designs and substantially outper-
forms both the standard BED and random baselines by producing much higher cosine similarities. In-
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Figure 6: Example high resolution designs produced by DiffBED on the Zappos dataset.
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Figure 7: Search on the large-scale Zappos dataset with high-resolution (512× 512) images. Designs
are single images with discrete ratings as responses. Even at this scale, DiffBED remains effective.

terestingly, the EIG performance of the standard BED baseline is itself much lower than DiffBED, es-
pecially after the first few iterations, even though it still produces designs that look like pure noise. The
likely reason that this is happening is that the EIG optimisation is struggling more than in information-
theoretic search, noting that as there are only binary images and not a single ground truth target image,
the signal for choosing good designs is weaker here. By contrast, the reference prior in DiffBED
also helps in guiding the optimisation process towards sensible designs, so that it actually assists in
finding regions of the design space with high EIG when the signal for the latter is weak or noisy.

While DiffBED again outperforms Entropy on this problem, Rank now slightly outperforms it. This
may again in part be down to the difficulty of the EIG optimisation, but it is also likely because we
are only looking at pairs of images and the space of suitable image pairs is easier to search through
a guess–and–check strategy than it is to choose good sets of four images. We thus see that Rank
provides a useful variant on our DiffBED approach for this simpler setup, but is less useful when
simple sampling from pref(ξ) is not sufficient for generating good candidate designs.

6.3 TEXT-TO-IMAGE FOUNDATION MODELS

We now scale our application of DiffBED even further by leveraging text-to-image foundation
models as pref, focusing on the problem of preference elicitation over e-commerce products.
Specifically, we consider a setup where the user is shown a single image of a shoe and asked to give
a rating of 1 to 5, and we then use this to try and hone in on the users notion of an “ideal shoe” that
we can use for making recommendiations.

For the reference diffusion model, we use Stable Diffusion v1.5 (Rombach et al., 2022),a 1B parameter
foundation model, fine-tuned on the Zappos (Yu & Grauman, 2014) dataset, which provides high
resolution (512× 512) images of shoes. To model a user’s feedback, we use the Ordinal Logit Model
which assumes the discrete score is correlated with an underlying reward proportional to the similarity
of the design image to the image of the reference shoe. See Appendix A.3.3. Figure 6 shows that
DiffBED is able to produce effective qualitative designs that highly realistic. Figure 7 provides
quantitative results and confirms these designs are informative: DiffBED and Rank perform similarly,
while outperforming all other methods. Standard BED again fails to learn anything meaningful.

7 CONCLUSION

We present DiffBED, a technique which enables us to scale gradient-based Bayesian experimental
design to high-dimensional, continuous design spaces. Our approach is based on guiding a diffusion
model pre-trained on feasible designs with a principled information-theoretic acquisition function,
allowing us to produce designs which are simultaneously realistic and highly informative. We
showcase DiffBED on a suite of preference learning tasks which demonstrate the first successful
application of BED with image-scale designs. Taken together, these results highlight the potential of
DiffBED as a general framework for bringing BED to complex, real-world domains.
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Jia-Jie Zhu and José Bento. Generative adversarial active learning. arXiv preprint arXiv:1702.07956,
2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LIKELIHOOD MODELS

This section provides details for all likelihood models studied in our experiments (Section 6).

When picking an experiment paradigm, practitioners must consider the trade-off between the informa-
tion conveyed in a given observation (e.g. binary preference, partial ranking), and the cost of running
said experiment. For example, a full-ranking contains high amounts of information per observation,
but may not be feasible to collect. We summarize the paradigms studied in our experiments in Table 1).

Table 1: Common paradigms for eliciting human feedback.

Paradigm Example design Example feedback Example
Likelihood

Binary Ranking “Image 1 ≻ Image 2”
Bradley–Terry
(BT) (Bradley &
Allan, 1952)

Ranking k designs
from n

“Image 1 ≻ Image 2 ≻
Image 3”

Plackett–Luce
(PL) (Plackett,
1975; Luce, 1959)

Discrete rating “4 out of 5 stars”
Ordinal Logit
(OL) (Mccullagh,
1980)

A.1 LIKELIHOOD PMFS

We now provide the functional form of the likelihood models considered in our experiments. Note
that all of the models leverage a latent reward model, rθ(ξ), parametrized by the quantity of interest,
θ, which assigns a score rθ(ξ) ∈ R to the design/each element in the design set.

Binary Preferences: Bradley-Terry (Bradley & Allan, 1952)

Let ξ = {ξ1, ξ2} be a design set of two items. The Binary Bradley-Terry model assumes,

p(y = ξi ≻ ξj | θ, ξ) =
exp(rθ(ξi))

exp(rθ(ξi)) + exp(rθ(ξj))
.

Partial Rankings: Plackett-Luce (Plackett, 1975)
Let ξ = {ξ1, ξ2, . . . , ξS} be a design set of S items. Suppose we observe a partial ranking of the
form

ξσ1
≻ ξσ2

≻ · · · ≻ ξσM
, with M ≤ S,

where σ = (σ1, σ2, . . . , σM ) is an ordered list of distinct indices indicating the ranked items, and let
CM := ξ \ {ξσ1

, ξσ2
, . . . , ξσM

}. Then the Plackett–Luce likelihood of the observed partial ranking is

p(y = ξσ1 ≻ ξσ2 ≻ · · · ≻ ξσM
| θ, ξ) =

M∏
j=1

exp
(
rθ(ξσj )

)∑
ξ∈Cj

exp(rθ(ξ))
,

where Cj is the set of items available at stage j, with C1 = ξ and Cj+1 = Cj \ {ξσj}.
Discrete Ratings: Ordinal Logit (Mccullagh, 1980) Let ξ being a single item, unlike the Bradley-
Terry and Plackett-Luce models, which operate on design sets. Under the Ordinal Logit model,
observations are one of K ordered, discrete categories, modelled under the following PMF:

p(y = k | ξ, θ) = σ
(

bk−rθ(ξ)
τ

)
− σ

(
bk−1−rθ(ξ)

τ

)
, k = 1, . . . ,K,

with σ(x) = (1 + e−x)−1.
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A.2 PARAMETRISATION OF LATENT REWARD MODEL

As reiterated in the main body of the paper, in the high-dimensional, challenging settings considered
in the paper, defining a likelihood, p(y|θ, ξ), that mimics human behaviour for all {θ, ξ} is extremely
challenging. Further, we note that p(y|θ, ξ) can often not be directly trained in a supervised manner,
and practitioners must leverage domain-specific insight. This is especially true in cases in which the
θ of interest is inherently latent, e.g. user preferences. As such, we must often assume the structure
of the canonical models. However, in all of the models considered above, we must still define a latent
reward model, rθ(ξ).

In many problems, e.g. preference-elicitation, the interpretable features that are most pertinent can
be identified. In such settings, the following parametrization can be considered: rθ(ξ) = θT d(ξ) =∑K

k=1 θkdk(ξ), of K interpretable features, e.g. alignment to a style. In this parametrisation, θ
can be viewed as interpretable preference weights for the K different aspects. In other problems,
where such interpretable features can not be identified, one can opt for the following parametrisation:
rθ(ξ) = cos sim(θ, d(ξ)) where d(.) is an encoder of ξ trained in an unsupervised fashion.

A further practical benefit of these parametrisations is that they are data-efficient, arising from the
incorporation of task-specific knowledge through the fixed, pre-trained feature extractors, d(.), which
should support faster learning. However, we stress that DiffBED is agnostic to the parametrisation of
the latent reward model, rθ(.), and more generally, the response paradigm and likelihood model used.

Temperature hyper-parameter, τ In line with common practice, we restrict the range of the latent
reward, r(ξ), to a pre-defined range [−1, 1], for example through normalisation or by computing the
reward as cosine similarities, before introducing a multiplicative scaling parameter, τ , to expand the
range to

[
−τ−1, τ−1

]
. This enables explicit control over the sharpness of the assumed likelihood

model’s response distribution. As τ−1 → 0, the distribution over potential observations for any
design across all the models introduced tends to a uniform distribution. On the other hand, increasing
τ−1 results in peakier likelihoods, and faster shrinkage of the posterior. However, as it assigns
a stronger belief on the data generating mechanism, if this does not reflect reality, the degree of
misalignment with the true data generating process is also increased.

A.3 DETAILS OF LATENT REWARD MODELS

In this section, we present the specific details of the latent reward models used in our experiments.
In the search experiments, we leverage unsupervised encoders trained through contrastive losses, to
encourage learning general representations of the data. In the preference elicitation experiment, we
leverage interpretable feature extractors.

A.3.1 MNIST

For search, we train an encoder using the SimCLR loss (Chen et al., 2020). We leverage a simple CNN
architecture, with two convolutional layers and fully-connected layer. The embedding dimensionality
is K = 32, with a projection-head of size P = 512, a hyper-parameter for computing SimCLR
contrastive losses. The encoder is trained for 50 000 steps, with a batch size of 1024. The underlying
reward function used in our Bradley-Terry model is rθ(ξ) = τ -1cosine sim(simclr(ξ), θ), where
simclr is our encoder. We take τ−1 to be 25 in Figure 4.

To explicitly incorporate model misspecification into the responses, we leverage a pre-trained dis-
criminator that detects out-of-distribution (OOD) MNIST images. For in-distribution images, the
simulated observation y is from a re-normalised PMF of the rankings that don’t include any OOD
images, and in cases where all images are classed as OOD, the ranking observations are generated
uniformly at random.

A.3.2 CELEBA

Search We train a CelebA encoder on the CelebA train set. We take a pre-trained VGGFace2
model as our backbone (Cao et al., 2018), and fine-tune it. We remove the original last layer and
replace it with a 64 dimensional linear last layer, hence θ is, 64 dimensional. We freeze the backbone,
training only the last layer weights, before unfreezing the final block before the last layer, and
fine tuning these weights alongside the last layer’s weights. We train using a triplet loss, since
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CelebA includes identity labels. The underlying reward function used in our Placket-Luce model is
rθ(ξ) = τ -1cosine sim(vgg(ξ), θ), where vgg is our fine-tuned encoder. We take τ−1 to be 25. We
run the experiment for 50 iterations.

Preference Elicitation We train a supervised feature extractor on the CelebA dataset by fitting a
multi-label attribute classifier to predict the following C = 23 characteristics that have binary labels
in the dataset:

Bald, Wavy Hair, Straight Hair, Receding Hairline,
Bangs, Sideburns, Black Hair, Gray Hair, Blond Hair,
Brown Hair, No Beard, 5 o Clock Shadow, Mustache, Goatee,
Big Lips, Big Nose, Eyeglasses, Smiling, Heavy Makeup,
Wearing Lipstick, Wearing Necklace, Wearing Earrings.

We leverage a ResNet50 model initialised with ImageNet weights, with the final layer removed and
replaced with a linear layer that maps to C = 23. The model is trained for 25 epochs, with a batch
size of 128. We use binary cross-entropy with logits, assigning per-attribute positive weights equal to
the negative-to-positive sample ratio to correct for class imbalance, and Adam as the optimizer.

We use a Bradley-Terry model, with underlying reward being rθ(ξ) = τ−1
∑N

i=1 di(ξ) · θi, where
d(ξ) ∈ R|C| is a vector with element di(ξ) being the ResNet50 classifier probability that attribute i is
present in a design image.

A.3.3 ZAPPOS

We train a Zappos encoder using the SimCLR loss, with K = 64 and P = 512. We leverage a
ResNet50-based model and initialized with torchvision’s retrained ImageNet-1K (Deng et al., 2009)
weights1, with the final fully connected (FC) layer removed and replaced by a linear projection to
a K embedding space. The model is trained 50,000 steps, with a batch size of 256, a learning-
rate of 1, and with SGD as the optimizer. We utilise an Ordinal-Logit model with an underlying
reward rθ(ξ) = τ−1 cos sim(simclr(ξ), θ), where simclr is our simclr encoder, and θ is the simclr
embedding of the ground truth reference image.

B DIFFBED DETAILS

This section contains the algorithmic details needed to implement DiffBED in practice. In Algorithm
1, we provide pseucodode which describes how DiffBED is applied end-to-end for (sequential)
BED problems.

B.1 REFERENCE MODELS

For each experiment, we require a reference diffusion model pref(ξ) whose samples produce reason-
able designs for the problem at hand. We detail our specific choices for each dataset here.

MNIST We use the training script provided in the PyTorch codebase provided by Song et al. (2021)2

to train an unconditional MNIST diffusion model. We use an NCSN++ UNet (64 base channels,
one residual block per level) with a continuous VP-SDE noise schedule and EMA (0.999). We train
for 500k iterations with a batch size of 256, using the Adam optimizer (lr = 0.0002, with gradient
clipping at norm= 1.0).

CelebA and Zappos For the higher dimensional datasets, CelebA (Liu et al., 2015) and Zappos
(Yu & Grauman, 2014), we leverage the Hugging Face diffusers library3, which provides
standardized pipelines for training, inference, and sampling of diffusion and latent diffusion models.

1https://pytorch.org/vision/stable/models.html
2https://github.com/yang-song/score_sde_pytorch
3https://huggingface.co/docs/diffusers
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Algorithm 1 DiffBED: BED with Information Guided Diffusion

Input: BED setup: prior p(θ); likelihood p(y | θ, ξ); experiment steps K
Input: Diffusion: reference score model srefφ ; SDE steps T ; guidance scale α
Input: Inference: particle count N ; particle filter;
Output: Designs ξ1:K , observations y1:K , particles {θ(K)

n }Nn=1;

1: Initialize: draw {θ(0)n }Nn=1 ∼ p(θ); set ξ1:0 ← ∅, y1:0 ← ∅.
2: for k = 1, . . . ,K do ▷ Sequentially design and run each experiment

— Diffusion-based design sampling —
3: ξ(T ) ∼ N (0; I) ▷ Initialize at noise
4: for t = T, T − 1, . . . , 1 do
5: gt ← ∇ξtÊIG

(
ξ̂0(ξt)

)
▷ Estimate EIG gradient using {θ(k−1)

n }
6: ξt−1 ← SDEstep(ξt, s

ref
φ (ξt, t), gt, α) ▷ SDESolver step

7: end for
8: Set design ξk ← ξ0

— Run experiment and update posterior —
9: yk ← y ∼ p(y | θ⋆, ξk)

10: ξ1:k ← ξ1:k−1 ∪ {ξk}, y1:k ← y1:k−1 ∪ {yk}
11: {θ(k)n } ← ParticleFilter

(
{θ(k−1)

n }, ξ1:k, y1:k
)

12: end for
13: return ξ1:K , y1:K , {θ(K)

n }

For CelebA, we use a pre-trained latent diffusion model (Rombach et al., 2022) checkpoint.4 For
Zappos, we use a fine-tuned version of Stable Diffusion v1.5 (SDv1.5). 5

B.2 SAMPLING

We now turn to the details involved in sampling from p∗(ξ) using Equation (12). In particular, Shen
et al. (2024) considers the shortfalls of training-free guidance of diffusion models and leverage ideas
from optimization literature to mitigate them. We find that Polyak step-size parametrisation of the
guidance scale is beneficial in finding a favourable trade-off between the informativeness and realism
of designs. Namely, this considers a time-dependent guidance scale as a multiplier of the EIG gradient
estimator, which we denote as γt for brevity, during the reverse-process:

α−1(t) = η · ∥ϵφ(ξt, t)∥
∥γt∥22

. (13)

Across all experiments, we use the Euler–Maruyama discretization of the reverse SDE, equivalent
to the ancestral/DDPM sampler. We provide further dataset-specific sampling hyper-parameters
below. We use uniform time-steps on all datasets, with 500/250/100 steps on MNIST/CelebA/Zappos,
respectively. The choice of the η is an empirical one, determined by the robustness of the reference
diffusion model (Ye et al., 2024). We set this parameter by visually inspecting a small set of samples
for increasing values of η, setting the maximal value that still consistently produces high-fidelity
images. We use η = 0.0375, 0.10 for CelebA/Zappos experiments, and present example samples
produced at this guidance scale in Figure 8 and Figure 6.

As SDv1.5 is a text-conditioned model, we use the following prompt to capture the data-distribution
of interest for the Zappos task: ‘‘Studio product photo of a footwear, isolated
on white background, high detail’’. To avoid artefacts, we also use the following
negative prompt: ‘‘blurry, low resolution, watermark, deformed’’.

4https://huggingface.co/CompVis/ldm-celebahq-256
5https://huggingface.co/benisonjac/finetune-of-stable-diffuson-on-Zappo

s-shoe-dataset
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B.3 DIFFUSION ON SETS

In some applications, we may have access to a diffusion model producing single designs, but our task
calls for sets of designs. We consider several applications of this nature in Section 6. Our DiffBED
framework developed in Section 4 can be extended to this setting. In particular, designs are now
sets ξ = {ξ1, . . . , ξJ} of J elements. We extend pref to be a set-valued distribution by assuming
independence of the elements, i.e., pref(ξ) ∝

∏J
j=1 p

ref(ξj).

During the reverse diffusion process, we now maintain a noisy set ξt = {ξ1,t, . . . , ξJ,t}. We can then
write the reverse diffusion process for each individual element ξj,t as

dξj,t =
[
f(ξt, t)− g(t)2

(
sφ(ξj,t, t)+α−1∇ξj,tEIG(ξ̂0(ξt))

)]
dt+ g(t) d

←−
W j,t, j = 1, . . . , J,

where ξ̂0(ξt) = {ξ̂0(ξ1,t), . . . , ξ̂0(ξJ,t)} is the set of element-wise conditional means and d
←−
W j,t are

independent Brownian increments.

Intuitively, our information-guided set diffusion acts as an interacting particle system. The diffusion
prior contributes an independent score update for each element, ensuring realism, while the EIG
gradient term∇ξj ,tEIG(ξt) introduces cross-element coupling, ensuring informativeness of the entire
set as a design.

C POSTERIOR INFERENCE

We now present details on how we conduct inference on the embedding space during active experi-
mentation. In search problems, as the encoders are trained with a cosine-similarity objective, both our
likelihoods and the geometry of the problem depend only on the direction of θ, not its scale. Similarly,
in preference elicitation settings, we often want to learn normalized preference weights 6, in order to
allow for explicit control and regularisation over the sharpness of the preference distributions, for
example through a scaling hyper-parameter.

In such settings, although θ lives in RD, the unit-length constraint removes one degree of freedom,
leaving an intrinsic dimension of D − 1. Accordingly we place a uniform prior on the unit sphere
SD−1 =

{
θ ∈ RD : ∥θ∥2 = 1

}
the (D − 1)-dimensional manifold of D-dimensional vectors of

length one. We then explicitly approximate the posterior on the unit sphere.

Particle-Based Inference At the start of the experimentation we draw an i.i.d. set of particles
{θ(0)i }Ni=1 ∼ Unif(SD−1) to represent this prior. At each experiment index k, after observing an
outcome yk at design ξk, we update particle weights according to the likelihood

logw
(k)
i = logw

(k−1)
i + log p(yk | θ(k−1)

i , ξk).

Weights are normalized and particles are resampled via multinomial resampling to prevent degeneracy
(Doucet et al., 2001), yielding an empirical posterior approximation {θ(t)i }.
To maintain diversity and ensure that the particle cloud accurately tracks the true posterior on the
sphere, we rejuvenate the particles by applying a projected unadjusted Langevin algorithm (ULA) on
SD−1:

θ ← Normalize
(
θ +

ϵ

2
Pθ∇θ log πk(θ) +

√
ϵ Pθη

)
,

where Pθ = I − θθ⊤ projects gradients and noise onto the tangent space TθSD−1 and η ∼ N (0, I).
This step can be viewed as an unadjusted discretization of the Riemannian Langevin diffusion on
SD−1 (Girolami & Calderhead, 2011; Patterson & Teh, 2013), where the drift term is the gradient
of the full current posterior πk(θ) ∝ π0(θ)

∏k
s=1 p(ys | θ, ξs), so that each move incorporates all

experimental observations up and including experiment index k.

Computational Cost As the log-likelihoods are parametric functions of simple vector products,
i.e. cosine-similarities, between θ and encodings of previous designs, both resampling and Langevin

6Another alternative is to learn weights that sum to one.
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Figure 8: Example DiffBED designs for the CelebA search problem.

steps are very efficient.7 Crucially, resampling and Langevin steps do not require expensive neural
network evaluations per θ particle. For all experiments, we leverage N = 106 particles, take 100
Langevin steps, and have step-size ϵ = 10−4. Note that the cost of storing N = 1000000 particles of
dimensionality D = 32, 64 has costs ≈ 122, 244 MiB of memory, which is a negligible overhead on
modern GPUs.

D ADDITIONAL EXPERIMENTS

This section contains additional experiments and ablations not discussed in the main paper.

D.1 CELEBA

Example DiffBED Designs: CelebA Figure 8 shows 100 example images generated by DiffBED
and Figure 9 shows the same for Entropy. This serves as a qualitative evaluation of our designs. Both
are similarly high-quality images as they leverage the same underlying diffusion model, although
with different guidances. On the other hand, the designs produced by standard BED (Figure 10) are
imperceptible from pure noise, despite their high EIG values.

Ablations In Figure 11 we present results across the two extra values of the likelihood temperature
parameter τ−1 = {25, 50}, in addition to the value of τ−1 = 10 used for CelebA in the main body of
the paper. Larger values of τ−1 indicate less noise in the observation process, i.e., more informative
outcomes, We see that larger τ−1 indeed leads to larger EIG values and a larger gap to the random
baseline.

Here, we also present the performance of the naive BED baseline under data simulated from the
assumed model which we call BED (assumed). That is, we sample y ∼ p(y | θ, ξ) from the
misspecified model likelihood, with no adjustments to the fact that the resulting designs may be
meaningless. We see that BED (sssumed) achieves both high EIG scores and cosine similarities in
this case. However, the designs produced by BED in this case are imperceptible from pure noise
(Figure 10) and could not be used in a real-world experiment. As soon as we sample data y from
a more realistic likelihood which returns uninformative data when the designs are pure noise, the
cosine similarity of the naive approach (BED) drops to near zero, indicating a failure to determine the
correct θ.

7Note that embeddings of designs/design sets can be cached, and as such, just needs to be computed once.
For the rest of the roll-out, it can be shared across all particles for resampling and Langevin-step computation.
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Figure 9: Example Entropy designs for the CelebA search problem.

Figure 10: Example standard BED designs for the CelebA search problem.
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(b) τ−1 = 50

Figure 11: EIG and cosine similarity values for CelebA on the search problem, where outcomes are
top-2 ranks of the images in the set of four design images. We now vary the value of τ used in the
likelihood. Means are plotted with shaded regions indicating one standard error.

In a second ablation (at τ−1 = 25) we study the effect of the number of the candidate designs
considered in the Rank method. We plot the performance with N = 100, and N = 10000 candidate
designs, alongside the N = 1000 set-up used in the main body of the paper. See Figure 12.
Unsurprisingly, the performance of this baseline is a monotonic function of the pool size. However,
increasing the pool size also comes with additional costs, especially when the pool is itself generated
from a model, in which case N = 10000 would be significantly more time consuming than DiffBED
while not exceeding its performance.

D.2 ZAPPOS

Example DiffBED Designs: Zappos We present 100 example designs produced by DiffBED on
the Zappos discrete rating problem. See Figure 13.

Ablations We additionally present in Figure 15 results for N = 10 levels of discrete ratings, rather
than N = 5 used in Section 6.3. Intuitively, we might expect that a more fine-grained rating would
be more informative. Indeed, comparing against Figure 7, using N = 10 yields slightly higher cosine
similarities.
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Figure 12: EIG and cosine similarities as we the number of candidate designs consider by the Rank
baseline in the CelebA search problem. Means are plotted with shaded regions indicating one standard
error.

Figure 13: Example DiffBED designs for the Zappos discrete rating problem.
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Figure 14: Example standard BED designs for the Zappos discrete rating problem.
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Figure 15: Quantitative results on the Zappos dataset, where designs are single images and outcomes
are discrete ratings now on a scale from 1-10. Means are plotted with shaded regions indicating one
standard error.

23


	Introduction
	Preliminaries
	Directly Optimising EIG Seeks Out Model Misspecification
	Bayesian Experimental Design via Information-Guided Diffusion
	Guiding Diffusion with EIG
	DiffBED: BED with Information-Guided Diffusion

	Related Work
	Experiments
	Information-Theoretic Search
	Active Preference Elicitation
	Text-to-Image Foundation Models

	Conclusion
	Likelihood Models
	Likelihood PMFs
	Parametrisation of Latent Reward Model
	Details of Latent Reward Models
	MNIST
	CelebA
	Zappos


	DiffBED Details
	Reference Models
	Sampling
	Diffusion on Sets

	Posterior Inference
	Additional Experiments
	CelebA
	Zappos


