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Abstract

In recent years, the rapid expansion of model sizes has led to large-scale pre-trained1

models demonstrating remarkable capabilities. Consequently, there has been a trend2

towards increasing the scale of models. However, this trend introduces significant3

challenges, including substantial computational costs of training and transfer to4

downstream tasks. To address these issues, Parameter-Efficient Fine-Tuning (PEFT)5

methods have been introduced. These methods optimize large-scale pre-trained6

models for specific tasks by fine-tuning a select group of parameters. Among7

these PEFT methods, adapter-based and prompt-based methods are the primary8

techniques. Specifically, in the field of visual fine-tuning, adapters gain prominence9

over prompts because of the latter’s relatively weaker performance and efficiency.10

Under the circumstances, we refine the widely-used Visual Prompt Tuning (VPT)11

method, proposing Cross Visual Prompt Tuning (CVPT). CVPT calculates cross-12

attention between the prompt tokens and the embedded tokens, which allows us to13

compute the semantic relationship between them and conduct the fine-tuning of14

models exactly to adapt visual tasks better. Furthermore, we introduce the weight-15

sharing mechanism to initialize the parameters of cross-attention, which avoids16

massive learnable parameters from cross-attention and enhances the representative17

capability of cross-attention. We conduct comprehensive testing across 25 datasets18

and the result indicates that CVPT significantly improves VPT’s performance19

and efficiency in visual tasks. For example, on the VTAB-1K benchmark, CVPT20

outperforms VPT over 4% in average accuracy, rivaling the advanced adapter-based21

methods in performance and efficiency. Our experiments confirm that prompt-based22

methods can achieve exceptional results in visual fine-tuning.23

1 Introduction24

Increasing the scale of the models is a common method to enhance the model’s performance25

(35)(9)(28)(29). In recent years, with the rapid development of computing devices, model sizes26

have significantly increased (45)(6)(16)(47). For instance, the number of parameters in the GPT27

series developed by OpenAI has surged from 117 million to 1.8 trillion in just five years (36)(37)(2).28

The rapidly increasing number of parameters will lead to the problem of immense computational29

overhead. Therefore, adapting those models to downstream tasks with the full-tuning method will30

incur enormous costs. To resolve this issue, the PEFT approach has been proposed (19)(27)(1)(38)(5).31

PEFT adapts those large-scale pre-trained models to downstream tasks in a more efficient way by32

fine-tuning a subset of the models that contains much fewer parameters. Two mainstream methods33

within PEFT are Adapter (18) and Prompt (27). During the training process, the Adapter inserts34

adapters into each transformer block and tunes those adapters, while the Prompt inserts prompt tokens35

into the embedded tokens to update the prompt tokens.36
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VPT, a prompt-based method is first introduced by Jia et al. (21) for visual fine-tuning tasks. Never-37

theless, research on the adapter-based method is prominent due to its superior performance. Although38

some works have improved the performance of VPT (20)(12)(7), it is still challenging to match the39

effectiveness to that of adapter-based methods. There appears to be a consensus that prompt-based40

methods underperform adapter-based methods in the visual domain. But is this the case?41

We conduct extensive experiments and analyses on VPT to uncover the reasons for its weaker42

performance compared to the Adapter. According to our experiments, we consider that the primary43

reason for the performance difference between VPT and adapters is that VPT’s deployment directly44

applies that used in NLP tasks (27), without any adaptation to visual tasks. In NLP tasks, prompts45

usually contain rich semantic information that guides the fine-tuning process of the model. However,46

in visual tasks, prompts lack representation information. Therefore, it is necessary for VPT to use an47

abundant amount of prompts to fine-tune models. However, the design of VPT leads to computational48

inefficiency and redundancy, as well as the disruption of the self-attention between embedded tokens49

3.1. As the graph follows 1, VPT shows a significant decrease in performance and an increase in50

costs when given a large number of prompts. Considering that, we think that VPT is unusable when51

given a large number of prompts.52

Figure 1: Comparisons of performance
and Flops between VPT and our CVPT
with a pre-trained ViT-B/16 model on the
VTAB-1k benchmark. We set the number
of prompts to 1,10,20,50,100,150,200 re-
spectively.

To handle the problem, we redesign VPT and in-53

troduced Cross Visual Prompt Tuning (CVPT). For54

the prompt tokens in CVPT, we calculate the cross-55

attention with the embedded tokens and add the result56

as residuals to the embedded tokens. This approach57

avoids the computational complexity of self-attention58

that is quadratically related to the number of prompts59

and allows prompts to focus on the embedded token60

to adapt to downstream tasks more efficiently. Addi-61

tionally, by maintaining consistency in token dimen-62

sions throughout the computation process, the results of63

cross-attention can be directly summed with embedded64

tokens as residuals and do not introduce additional com-65

putational overhead for subsequent MLP. Furthermore,66

we share the weights of the self-attention layer with67

the cross-attention layer during loading checkpoints,68

keeping the cross-attention layer frozen alongside the69

self-attention layer, which eliminates the requirement70

for additional learned parameters for the cross-attention,71

and utilizes the encoded information in self-attention72

to help the fine-tuning of the model.73

We validate the effectiveness of our method on 25 datasets, the results show that the CVPT achieves74

a significant improvement in performance and efficiency compared to the VPT. CVPT shows an75

average 4% improvement in accuracy on the 19 VTAB-1K datasets, 1% on the 5 FGVC datasets,76

and 3% on the ADE20K dataset. Additionally, if given fewer prompt tokens, CVPT achieves a77

comparable performance with other advanced PEFT methods which significantly outperforms the78

other prompt-based methods and needs fewer learnable parameters. If a large number of prompts79

is allowed, our CVPT outperforms the SOTA methods on FGVC and ADE20K datasets. Besides,80

although a large number of prompts are inserted, it does not introduce too much extra computational81

overhead compared to VPT.82

Finally, we explore the impact of the deployment’s position and the effectiveness of the weight-83

sharing mechanism. The improvement on the model can be fully illustrated by the experimental84

results above, indicating that prompt-based methods can also rival SOTA adapter-based methods.85

Overall, our contributions are as follows:86

• We provide a detailed analysis of the application of VPT to visual tasks, and propose that its87

drawback can be summarised in three points which are lack of adaptation, computational88

inefficiency and redundancy, destruction of self-attention.89

• We propose CVPT, which introduces cross-attention and weight-sharing mechanisms, to90

avoid the efficiency and performance problems caused by VPT, which allows us to use more91

prompts to improve performance efficiently.92
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• We conducted experiments on 25 datasets with different downstream tasks. The results93

show that our approach significantly outperforms the original VPT and other prompt-based94

works in terms of performance and efficiency. It is also comparable to SOTA adapter-based95

methods, demonstrating the usability of the prompt-based approach for visual fine-tuning.96

2 Related Work97

PEFT. In the era of CNN, making bigger and deeper models was an effective way to improve98

performance (26)(15)(43). With the rise of transformers, this trend became even more popular.99

The introduction of ChatGPT further cemented the goal of the community to develop larger and100

more powerful models. However, limited by their scale, despite their powerful performance and101

generality, these large models are difficult to adapt downstream tasks by using traditional paradigms102

(full-tuning). Consequently, NLP researchers first proposed PEFT methods. Their works demonstrate103

that fine-tuning just a small number of parameters in a large-scale pre-trained model can achieve104

nearly the same performance as full-tuning. Encouraged by the success in NLP, researchers began105

to apply PEFT to large-scale vision models on different visual tasks (8)(44). After development in106

the past several years, the mainstream PEFT methods can be broadly categorized into adapter-based107

methods and Prompt-based methods.108

Adapter. Jie et al. (18) proposed inserting adapters into the network to efficiently fine-tune the109

model. These adapters are commonly a small network that usually contains an upsampling layer110

and a downsampling layer. The input is multiplied with a scaling factor after passing through the111

upsampling and downsampling layers and then the result is added as a residual to the input. The112

general form of adapter can be expressed as:113

Xout = Xin + γ(Wup(Wdown(Xin))), (1)

where Xin denotes the input of Adapter, γ represents the scaling factor of Adapter, and Wup and114

Wdown correspond to the upsampling layer and downsampling layer, respectively. Some works did115

some adaption to visual tasks based on Adapter, developing several variants such as AdaptFormer116

(4), LoRA (19) and RepAdapter (30), etc. These adapter-based methods dominate the field of visual117

fine-tuning.118

Prompt. Prompt was originally used in the field of NLP which is added to the input text for119

comprehension tasks. Lester et al. (27) proposed treating the prompt as a continuous vector and120

fine-tuning the model by updating its gradients. Jia et al. (21) introduced this concept to visual121

fine-tuning for the first time, naming it VPT. As shown in Fig.3, the embedded tokens are spliced with122

the prompt tokens before entering each transformer block, allowing it to participate in every layer of123

the network within the transformer block. Before entering the next transformer block, the prompt124

tokens of the previous layer are discarded, and new prompt tokens are spliced with the embedded125

token again (VPT-Deep). This can be formulated as shown below:126

[x⃗i, , E⃗i] = Li([x⃗i−1, P⃗i−1, E⃗i−1]), (2)

where the red and blue indicate learnable and frozen parameters, respectively. P denotes a learnable127

d-dimensional vector, X is the CLS token, and E is the patched image. Although there are improved128

variants based on VPT, such as E2VPT (12), EXPRESS (7) and DAM-VP (20), a performance gap129

remains between prompt-based and adapter-based approaches.130

3 Method131

3.1 Analysis of previous VPT132

Firstly, we analyze VPT deeply to explore why it is not better than adapter in terms of performance133

and efficiency, our analysis follows three points:134

Lack of adaptation to visual tasks. In NLP, each token represents an actual word with rich semantic135

information. Therefore, the processing of concatenating prompt tokens and embedded tokens is136

natural and suitable for NLP tasks. However, in visual tasks, tokens represent image patches and137

contain sparse semantic information compared to those in NLP. Therefore, simply splicing the prompt138

tokens with the embedded tokens may not provide sufficient guidance information. Additionally,139
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visual tasks often require a deeper understanding of spatial relationships and structural features of an140

image, which are difficult to achieve with prompt tokens.141

Computational inefficiency and redundancy. When computing self-attention, the attention between142

each token and all other tokens needs to be calculated. Its computational complexity is n2, where143

n is the number of embedded tokens. If m represents the number of inserted prompt tokens, the144

computational complexity of self-attention in VPT can be expressed as (n +m)2. This increases145

the computational overhead significantly, especially when using a larger number of prompt tokens.146

Additionally, we found that prompt tokens are involved in the MLP computation process, which not147

only adds computational overhead but also does not impact the results. Our experiments show that148

removing the prompt token after self-attention does not affect the results.149

Destruction of self-attention between embedded tokens. After softmax, the sum of the weights150

of all tokens is normalized to 1. Whereas, due to the addition of the prompt tokens, the sum of151

the weights of the embedded tokens is reduced by the prompt tokens, which corresponds to the152

weakening of the representation ability of the self-attention between embedded tokens. Since the153

prompt token is eventually removed, this is equivalent to multiplying the self-attention result between154

the embedded tokens by a factor which less than one. To explore how large this effect is, we set the155

number of prompts to 1,5,20,50,100,150,196 respectively, and visualize the tensor after the softmax156

function, the results are shown in Fig.2 below.

Figure 2: Self-attention weight obtained by prompt tokens and embedded tokens. We visualize
the self-attention of clstoken and exclude itself to observe the attention of clstoken to other tokens.
And the darker the color, the larger the weight. When giving 196 prompts, the attention weight
obtained by prompts is over 80%, which greatly influences the self-attention received by embedded
tokens.

157

As the number of prompts increases, the sum of the prompt’s weight values exceeds 0.8, which is over158

4 times that of embedded tokens, significantly disrupting the self-attention between the embedded159

tokens. This explains why VPT performance decreases substantially with a larger number of prompts.160

3.2 Cross Visual Prompt Tuning161

Cross-Attention. Unlike self-attention (40), which computes the relationship between each element162

in the input sequence, cross-attention computes attention on two different sequences to process the163

semantic relationship between them (3). For example, in translation tasks, cross-attention is used to164

compute the attention weights between the source language sentence and the target language sentence.165

In our method, we introduce cross-attention to handle the semantic relationship between embedded166

tokens and prompt tokens, guiding the fine-tuning of the model. Specifically, the input of cross-167

attention consists of two parts: X1 and X2, in which X1 ∈ Rn×d1 and X2 ∈ Rm×d2 . And X1 serves168

as the query set and X2 serves as the key-value set. We set Q = X1W
Q and K = V = X2W

K , and169

then the cross-attention can be expressed as follows:170

CrossAttention(X1, X2) = Softmax

(
Q ·K√

dk

)
V. (3)
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In which WQ ∈ Rd1×dk and WK ∈ Rd2×dk are learned projection matrix, dk is the dimension of171

value-key set. In our methods, d1 = d2 = dk. And the shape of output is n× dk, which is consistent172

with X1.173

PromptEmbedded

Linear_Q Linear_K Linear_V

MatMul

Softmax MatMul

Layer Norm

Self-Attention

Embedded Promptjoin

MLP

split PromptEmbedded

Embedded Prompt

Layer Norm

Self-Attention Cross-Attention

+

MLP

Visual Prompt Tuning (VPT) Cross Visual Prompt Tuning (CVPT) 

Linear_Proj

Scaling

Figure 3: Structure comparison of VPT and CVPT. In which blue represents frozen parameters
and orange represents learnable parameters.

Cross Visual Prompt Tuning. We redesign the prompt to better adapt visual tasks and proposed174

CVPT. Our approach, as illustrated in Fig.3, follows the VPT, the main parameters of the network175

remain frozen, and only the final classification layer and the prompt are trainable. The key difference176

is that we allow the prompt token to perform cross-attention with the embedded tokens and the result177

of cross-attention is added with the embedded tokens as residuals. This operation helps prompts adapt178

visual tasks a lot, and we demonstrate how significant this improvement is in Sec.4.2. Specifically,179

for any input xi of a transformer block, the forward flow can be represented as follows:180

X1 = Xi + SA(LN1(Xi)), (4)
X2 = X1 + CA(X1, P rompt), (5)

Xout = X2 +MLP (LN2(X2)), (6)

where blue denotes frozen parameters and red denotes trainable parameters, SA denotes self-attention,181

CA denotes cross-attention, and LN denotes layer normalization.182

In CVPT, we only introduce linear computational overhead associated with the number of prompt183

tokens. It allows CVPT to use a large number of prompt tokens to improve its performance by184

introducing an acceptable overhead. Furthermore, CVPT preserves the original procedure of self-185

attention, keeping the complete representation ability of embedded tokens. We demonstrate the186

improvement over VPT in terms of performance and efficiency in Sec.3.3. Finally, we set embedded187

tokens as query set and prompt tokens as key-value set, so that we can maintain the unity of the188

number of channels, allowing the result of cross-attention to be directly summed with the input as a189

residual term.190

Weight-sharing mechanism. The utilization of cross-attention, which requires a large number191

of learnable parameters (usually ≥ 30% model’s parameter number), leads to a major challenge192

in computational overhead. Therefore, if the parameters of them are tunable, the computational193

overhead of CVPT will even rival those using full-tuning. Therefore, we introduce the weight-sharing194

mechanism. Due to the structure of cross-attention equals to that of self-attention, we consider that195

the weight of self-attention is also instructive for the fine-tuning of cross-attention. Thus, we initialize196

the weight of cross-attention with the parameters of self-attention when loading checkpoints. It197

avoids the introduction of a huge number of learnable parameters in cross-attention and keeps the198

efficiency of our CVPT. We explore the impact of weight-sharing in 4.3 and demonstrate that frozen199

cross-attention is even more effective than learnable cross-attention.200

3.3 Comparison with VPT201

Performance improvement. To investigate how much improvement CVPT makes and the effect202

of the number of prompts on performance, we use different numbers of prompt tokens and conduct203
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experiments on VTAB-1K using VPT and CVPT, respectively. The results are shown in the following204

Table.1:205

Table 1: Performance comparisons With VPT and CVPT on VTAB-1K benchmark of different
number of prompt tokens.

Method
Number 1 5 10 20 50 100 150 200

VPT 71.0 73.0 73.0 72.8 72.2 69.2 66.0 64.0
CVPT 69.5 73.5 74.0 74.1 74.3 74.5 74.6 74.8

These results show that our CVPT achieves better performance in almost every case except the number206

of prompts equals 1. As we analyzed in Section 3.1, VPT represents a pool absolute performance207

on account of the lack of adaptation to visual tasks. Besides, due to the corruption of self-attention208

between embedded tokens, when given a larger number of prompt tokens, VPT shows significant209

performance degradation or even crashes. In contrast, our CVPT avoids suffering from these problems.210

Additionally, its performance improves as the number of prompt tokens increases. All these results211

above indicate that cross-attention between prompt tokens and embedded tokens helps prompts212

adapting the visual tasks and instruct the model’s fine-tuning more exactly.213

Efficiency improvement. To explore the improvement in efficiency of CVPT, we also recorded the214

amount of GPU memory occupied by VPT and CVPT during training and testing as well as the total215

computation of the two when conducting the above experiments, and the results are shown in Fig.4216

follows:217

Figure 4: The trends of training memory, testing memory, and Flops with the variation in the
number of prompt tokens. Where LP represents Linear Probing which only tunes the final classifier
linear. We record those data on cifar100 in VTAB-1K, the batch_size is set to 32. Pre-trained model
is ViT-B/16.

It can be seen that our CVPT has made significant improvements in efficiency compared to VPT218

especially given a large amount of prompt tokens. Although it requires slightly more GPU memory219

during testing compared to full-tuning which is marginal compared to VPT. Additionally, the weight-220

sharing mechanism allows for targeted optimization in engineering applications, letting cross-attention221

and self-attention share memory, further widening the efficiency gap with VPT. Moreover, the careful222

design of CVPT prevents explosive growth in memory and computation as the number of prompts223

increases. This means we can improve the performance of CVPT by increasing the number of224

prompts, which is more computationally efficient than other methods.225

In summary, our CVPT significantly improves the performance and efficiency of VPT by226

introducing cross-attention and the weight-sharing mechanism, especially given a larger number227

of prompts. Therefore, it allows us to introduce more prompts to the prompt-based method in an228

efficient manner, thus improving its performance. We will demonstrate how much this improvement229

is and compare it with the SOTA methods in the next section.230

4 Experiment231

4.1 Experimental settings232

Datasets. We evaluate our CVPT on both image classification and semantic segmentation tasks to233

verify its effectiveness. The specific datasets involved in our work are presented in the following.234

6



• VTAB-1K. VTAB-1K comprises 19 datasets from different domains, classified into235

three main categories: the Natural group (natural images captured by standard cameras)236

(25)(32)(10)(34), the Specialized group (professional images captured by specialized equip-237

ment, such as medical and remote sensing images) (41)(17), and the Structured group238

(synthetic images from artificial environments). Each task contains only 1,000 training239

samples (22)(11)(31). This is a primary metric for evaluating PEFT’s performance.240

• FGVC. FGVC consists of five fine-grained visual classification benchmarks, including CUB-241

200-2011 (42), NABirds (39), Oxford Flowers (33), Stanford-Dogs (23) and Stanford-Cars242

(24). Unlike VTAB-1K, the datasets in FGVC benchmarks are complete.243

• ADE20K. ADE20K (50) contains more than 25,000 images and is primarily used for scene244

perception, parsing, segmentation, multi-object recognition, and semantic understanding.245

This adaptation is challenging due to the huge gap between the objectives of pretraining and246

downstream tasks.247

Baseline. We primarily use CVPT to compare with the following methods: (1) Full-tuning, (2)248

Adapter and its improved variants such as LoRA, Adaptformer, RepAdapter, and SPT, and (3) VPT249

and its variants, including E2VPT, EXPRESS and so on.250

Training. We use the ViT-Base-16 model as our main model and AdamW as our optimizer. The251

other settings and training strategies follow those used in VPT. To avoid extensive hyperparameter252

search, we only select the number of prompts from [1, 5, 10, 20] for VTAB-1K. Besides, we use253

single NVIDIA 3090 on VTAB-1K and FGVC benchmark, and use NVIDIA 3090 × 8 on ADE20k.254

4.2 Comparison with the SOTA255

VTAB-1K. We compared our method with other baseline methods on the VTAB-1K benchmark. The256

experimental results are shown in Table.2, where we report the top-1 accuracy of these methods. In257

the table, we divide the prompt-based methods into one group and the other methods into another258

group. The bold values in each group represent the best accuracy.259

Table 2: Performance comparisons on the VTAB-1k benchmark with ViT-B/16 models pre-
trained on ImageNet-21K.
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Full-tuning 85.8 68.9 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
Linear-probing (14) 0 57.6 63.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2

Bias (46) 0.10 65.2 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1
Adapter (18) 0.15 73.9 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6
NOAH (48) 0.36 75.5 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2

AdaptFormer (4) 0.15 74.7 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1
LoRA (19) 0.29 74.5 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.4

RepAdapter (30) 0.23 76.1 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0
SPT-Adapter (13) 0.34 76.2 72.9 93.2 72.5 99.3 91.4 88.8 55.8 86.2 96.1 85.5 75.5 83.0 68.0 51.9 81.2 82.4 51.9 31.7 41.2
SPT-LoRA (13) 0.48 76.4 73.5 93.3 72.5 99.3 91.5 87.9 55.5 85.7 96.2 85.9 75.9 84.4 67.6 52.5 82.0 81.0 51.1 30.2 41.3

VPT-shallow 0.06 67.8 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1
VPT-Deep (21) 0.53 72.0 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8
EXPRESS (7) 0.98 72.9 78.0 89.6 68.8 98.7 88.9 89.1 51.9 84.8 96.2 80.9 74.2 66.5 60.4 46.5 7.6 78.0 49.5 26.1 35.3
DAM-VP (20) 2.52 73.1 - - - - - - - - - - - - - - - - - - -
E2VPT (12) 0.27 73.9 78.6 89.4 67.8 98.2 88.5 85.3 52.3 87.8 96.1 84.8 73.6 71.7 61.2 47.9 75.8 80.8 48.1 31.7 41.9

CVPT 0.10 76.2 73.0 90.0 73.8 99.2 91.2 90.0 54.4 84.0 96.5 87.2 75.7 78.4 66.7 50.4 81.0 81.5 52.6 33.4 43.3

We first compare our method with other prompt-based methods. The results of our experiments show260

that our method achieved the best performance among prompt-based methods in 16 out of 19 datasets,261

significantly outperforming VPT and other VPT-based methods. Notably, CVPT achieves the highest262

accuracy in all datasets within the structured group, indicating that the addition of cross-attention263

significantly improves the adaptation of prompts. Therefore, CVPT performs better in those out-of-264

distribution (OOD) datasets. Additionally, since we use fewer than 20 prompts in VTAB-1K, CVPT265

requires the lowest number of parameters.266

When considering all PEFT methods, we find that on a small dataset like VTAB-1K, almost all267

mainstream PEFT methods outperformed full-tuning in terms of performance. This suggests that268

correctly selecting the parameters to fine-tune is crucial. For our CVPT, it shows an impressive269

performance, which is only 0.2% behind SPT in accuracy while using fewer parameters than SPT,270
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and outperforms the other PEFT methods in performance. This indicates that CVPT reaches SOTA271

in terms of both performance and parameter count. In particular, compared to other prompt-based272

methods that show weaknesses, our CVPT deeply explores the potential of prompt-based methods273

and demonstrates that prompt-based methods can also perform well in the field of visual fine-tuning.274

FGVC. Performance on VTAB-1K alone is not enough to prove the superiority of CVPT. Therefore,275

we introduce the experimental results of CVPT on FGVC to explore its performance on a complete276

dataset of a certain scale. The results are shown in Table.3 below:277

Table 3: Performance comparisons on five FGVC datasets with ViT-B/16 models pre-trained on
ImageNet-21K.

Method
datasets CUB-200

-2011 NABirds Oxford
Flowers

Stanford
Dogs

Stanford
Cars

Avg.
Acc.

Params.
(M)

Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.5 86.0
Linear probing (14) 85.3 75.9 97.9 86.2 51.3 79.3 0.18

Adapter (18) 87.1 84.3 98.5 89.8 68.6 85.7 0.41
AdaptFormer (4) 84.7 75.2 97.9 84.7 83.1 85.1 0.37

Bias (46) 88.4 84.2 98.8 91.2 79.4 88.4 0.28
VPT-Shallow 86.7 78.8 98.4 90.7 68.7 84.6 0.25

VPT-Deep (21) 88.5 84.2 99.0 90.2 83.6 89.1 0.85
DAM-VP (20) 87.5 82.1 99.2 92.3 - - -
EXPRESS (7) 88.3 - 99.0 90.0 80.5 - -
E2VPT (12) 88.5 84.2 99.0 90.2 83.6 89.2 0.45

SPT-Adapter (13) 89.1 83.3 99.2 91.1 86.2 89.8 0.41
SPT-LoRA (13) 88.6 83.4 99.5 91.4 87.3 90.1 0.48

CVPT 89.7 86.1 99.3 91.4 84.9 90.3 0.79

Similar to the results on VTAB-1K, our approach substantially outperforms other prompt-based278

methods on FGVC benchmark. Additionally, it surpasses SPT and other adapter-based methods to279

achieve the best performance. This suggests that CVPT exhibits better performance on relatively280

large datasets like FGVC, which proves the adaptability of CVPT to the increasing scale of data in281

the future.282

ADE20K. Finally, we apply CVPT to SETR(49) on the ADE20K dataset to explore its performance283

on downstream tasks of semantic segmentation. The results are shown in Table.4 below:

Table 4: Results of ADE20K datasets with ViT-L models. We report "mIoU-SS" and "mIoU-Ms"
which denote single-scale and multi-scale, respectively

Methods Params(M) mIoU-SS mIoU-Ms

Full-tuning 318.3 48.31 50.07
Linear probing 13.18 35.12 37.46

Bias (46) 13.46 43.40 45.33
VPT (21) 13.43 42.11 44.06

RepAdapter (30) 13.82 44.44 46.71
SPT-Adapter (13) 14.60 45.20 47.20
SPT-LoRA (13) 14.60 45.40 47.50

CVPT(P=10) 13.43 43.78 45.85
CVPT(P=200) 18.00 45.66 47.92

284

This task is quite challenging because of the huge distribution gap between pre-training datasets and285

downstream tasks. In this situation, our CVPT shows a 1.7% enhancement of "mIoU-SS" over the286

VPT with the same number of prompts. If we use 200 prompts for fine-tuning, CVPT represents a287

significant improvement over the other PEFT methods. This fully demonstrates the adaptation of288

CVPT to OOD datasets. Besides, due to our optimization of the deployment, even though the number289

of learnable parameters increases by 4 million, our memory usage and training time increase by less290

than 10% compared to linear probing and less than 5% compared to it when using 10 prompts during291

training.292
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4.3 Ablation Studies293

The impact of the location of the Cross-Attention (CA). We conducted experiments with the294

following five positions to explore the optimal deployment of CA, and the results of the experiments295

are displayed in Table.5:296

INPUT

SA CA 

CA ①

②

MLP 

CA 

CA 

CA 

③

④

⑤ Position Avg. Acc.

1 73.9
2 73.9
3 74.1
4 73.3
5 73.6

Figure 5: (a) The deployments of cross-attention in ViT. Five possible positions can be inserted.
Our final deployments are in dark blue. (b) Performance comparisons of different deployments of
cross-attention.

We can see that inserting in prompt tokens after self-attention (SA) is the best way to perform.297

However, if a slight performance decrease is acceptable, we can choose position 2 to insert in parallel298

to improve the efficiency of the operation (this improvement is also slight).299

The impact of weight-sharing between CA and SA. We set CA to be learnable (without weight-300

sharing) and frozen (with weight-sharing) respectively to investigate the impact of weight-sharing.301

The results on VTAB-1K and FGVC are shown in Table.5 below:

Table 5: Performance comparisons of learnable CA and frozen CA with weight-sharing.

Setting Learnable Para(M) VTAB-1K FGVCNat. Spe. Str. Avg.

learnable CA 28.4 80.1 84.8 57.8 74.2 89.4
frozen CA 0.08 80.1 84.4 57.8 74.1 90.3

302

We find that setting CA to tunable adds a significant number of parameters, substantially increasing303

computational overhead. Despite the slight performance gain it brings on VTAB-1K, it lags behind304

the frozen CA substantially in FGVC. Therefore, We believe that the parameters of SA are valuable305

for guiding the fine-tuning of CA. Especially, when dealing with a complete dataset of a certain size,306

such as FGVC, the weight-sharing mechanism can better utilize the pre-trained capabilities of the307

model, thereby improving performance.308

5 Conclusion309

In this paper, we explore the current mainstream prompt-based method VPT deeply and analyze the310

reasons why it performs poorly. Consequently, we propose a simple and effective PEFT method,311

CVPT, which introduces the cross-attention module to compute the cross-attention between the prompt312

tokens and embedded tokens thus instructing the model’s fine-tuning. What more, the weights of313

cross-attention are come from self-attention, avoiding introducing an enormous number of additional314

trainable parameters and achieving better performance. We conducted extensive experiments on315

25 datasets, and the results demonstrate that CVPT achieves SOTA performance. Additionally,316

we conducted extensive ablation experiments on CVPT, demonstrating the impact of introducing317

cross-attention and weight-sharing, as well as its efficiency and performance improvements over VPT.318

We hope our work will inspire prompt-based PEFT methods in the future. One limitation of our work319

is that CVPT does not explore new strategies for the initialization of prompt tokens. In VPT, the320

author made a complete comparison of different initialization methods. In our work, we take the321

same strategy with VPT. However, we still think the optimized specific initialization method is better322

than the general methods VPT used. Besides, this initialization will also help us understand how323

prompts help the model’s fine-tuning.324
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or cloud provider, including relevant memory and storage.639

• The paper should provide the amount of compute required for each of the individual640

experimental runs as well as estimate the total compute.641

• The paper should disclose whether the full research project required more compute642

than the experiments reported in the paper (e.g., preliminary or failed experiments that643

didn’t make it into the paper).644

9. Code Of Ethics645

Question: Does the research conducted in the paper conform, in every respect, with the646

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?647

Answer: [Yes]648

Justification: We don’t think our works in relation to this.649

Guidelines:650

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.651

• If the authors answer No, they should explain the special circumstances that require a652

deviation from the Code of Ethics.653

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-654

eration due to laws or regulations in their jurisdiction).655

10. Broader Impacts656

Question: Does the paper discuss both potential positive societal impacts and negative657

societal impacts of the work performed?658

Answer: [NA]659

Justification: We don’t think our work involves that.660

Guidelines:661

• The answer NA means that there is no societal impact of the work performed.662
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• Examples of negative societal impacts include potential malicious or unintended uses665
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• The conference expects that many papers will be foundational research and not tied669

to particular applications, let alone deployments. However, if there is a direct path to670
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11. Safeguards684
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Answer: [NA]688

Justification: We don’t think our work involves that.689
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faith effort.700

12. Licenses for existing assets701

Question: Are the creators or original owners of assets (e.g., code, data, models), used in702

the paper, properly credited and are the license and terms of use explicitly mentioned and703

properly respected?704

Answer: [Yes]705

Justification: We used publicly available datasets whose licenses allow research usage.706

Guidelines:707

• The answer NA means that the paper does not use existing assets.708

• The authors should cite the original paper that produced the code package or dataset.709

• The authors should state which version of the asset is used and, if possible, include a710

URL.711
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• For scraped data from a particular source (e.g., website), the copyright and terms of713
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license of a dataset.718

• For existing datasets that are re-packaged, both the original license and the license of719

the derived asset (if it has changed) should be provided.720

17

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to721

the asset’s creators.722

13. New Assets723
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Justification: We don’t think our work involves that.727
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asset is used.734

• At submission time, remember to anonymize your assets (if applicable). You can either735

create an anonymized URL or include an anonymized zip file.736

14. Crowdsourcing and Research with Human Subjects737

Question: For crowdsourcing experiments and research with human subjects, does the paper738

include the full text of instructions given to participants and screenshots, if applicable, as739

well as details about compensation (if any)?740

Answer: [NA]741

Justification: We don’t think our work involves that.742
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• The answer NA means that the paper does not involve crowdsourcing nor research with744

human subjects.745
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tion of the paper involves human subjects, then as much detail as possible should be747

included in the main paper.748

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,749

or other labor should be paid at least the minimum wage in the country of the data750
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)755

approvals (or an equivalent approval/review based on the requirements of your country or756
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Answer: [NA]758

Justification: We don’t think our work involves that.759

Guidelines:760

• The answer NA means that the paper does not involve crowdsourcing nor research with761

human subjects.762

• Depending on the country in which research is conducted, IRB approval (or equivalent)763

may be required for any human subjects research. If you obtained IRB approval, you764

should clearly state this in the paper.765

• We recognize that the procedures for this may vary significantly between institutions766

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the767

guidelines for their institution.768

• For initial submissions, do not include any information that would break anonymity (if769
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