
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT BAYESIAN UPDATES FOR DEEP ACTIVE
LEARNING VIA LAPLACE APPROXIMATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep active learning (AL) involves selecting batches of instances for annotation
since retraining large deep neural networks (DNNs) after each label acquisition
is computationally impractical. Employing a naive top-b selection can result in
a batch of redundant (similar) instances. To address this issue, various batch AL
strategies have been developed, many of which employ clustering for diversity as a
heuristic. In contrast, we approach this issue by substituting the costly retraining
with an efficient Bayesian update. Our proposed update represents a second-
order optimization step using the Gaussian posterior from a last-layer Laplace
approximation. Thereby, we achieve low computational complexity by computing
the inverse Hessian in closed form. We demonstrate that in typical AL settings, our
update closely approximates retraining while being considerably faster. Leveraging
our update, we introduce a new framework for batch selection through sequential
construction by updating the DNN after each label acquisition. Furthermore, we
incorporate our update into a look-ahead selection strategy as a feasible upper
baseline approximating optimal batch selection. Our results highlight the potential
of efficient updates to advance deep AL research.

1 INTRODUCTION

Active Learning (AL) sequentially selects instances for annotation by human experts, aiming to
maximize model performance while minimizing labeling efforts. When combined with deep neural
networks (DNNs), AL typically selects instances in batches rather than one at a time. The reason for
this is that retraining DNNs after each label acquisition is computationally expensive, and delay can
lead to additional costs since annotators’ time is valuable (Kirsch et al., 2023).

In a naive top-b batch selection, a batch of b instances with the highest scores is chosen based on an
informativeness measure. However, when many similar instances are present, this approach can result
in significant redundancy within the batch (similar instances tend to receive similarly high scores). To
address this issue, many selection strategies have been developed to replace this naive selection (Ren
et al., 2021). These strategies often employ clustering techniques to select diverse batches, ensuring
that instances within a batch are dissimilar to one another (Hacohen et al., 2022). While effective in
reducing redundancy, clustering does not guarantee optimal selection due to its heuristic motivation.

Orthogonal to these strategies, we explore the concept of efficient “retraining” in deep AL. If retraining
were computationally feasible, researchers could place greater emphasis on the development of
theoretically sound informativeness measures instead of using heuristic clustering approaches to
ensure diversity. Additionally, selection strategies that aim to maximize future performance–strategies
that have been shown to be near-optimal in traditional AL (Roy & McCallum, 2001)–could be made
feasible with DNNs. Therefore, we examine the concept of updating DNNs through a single
optimization step as a proxy for retraining and explore its potential to enhance the AL process.

To underscore the requirements of such an update, consider strategies designed to maximize future
performance. Typically, these use a look-ahead to select instances that significantly change model
predictions. More specifically, they examine how adding unlabeled instances to the labeled pool and
retraining the model affects predictions (Roy & McCallum, 2001). However, with a large number
of unlabeled instances and the time-consuming retraining process of DNNs, this approach becomes
infeasible. Therefore, instead of retraining, a highly efficient update method is required. The only
work to realize such an approach with DNNs is by Tan et al. (2021), which employ an ensemble of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

DNNs combined with Monte Carlo (MC) updates via Bayes’ theorem. Although this update makes
a one-step look-ahead feasible, it remains suboptimal for several reasons: (i) the update requires
an ensemble of DNNs, making the actual retraining time and memory demands inefficient; (ii) the
update does not accurately reflect the performance of full retraining; and (iii) the updating process
becomes inefficient with an increasing number of ensemble members.

In this article, we propose an efficient update method for DNNs in the context of AL for classification.
Specifically, we transform an arbitrary DNN into a Bayesian neural network (BNN) by employing a
last-layer Laplace approximation (LA) (Daxberger et al., 2021). While the closed-form expression of
the posterior allows us to leverage second-order optimization techniques, we ensure low computational
complexity by computing the required inverse Hessian analytically. Unlike the MC-based update
used in (Tan et al., 2021), our approach does not require an ensemble of DNNs, making it easily
applicable and both memory- and training-efficient (Daxberger et al., 2021). Additionally, because
we utilize a single DNN, we can leverage pretrained foundation models (Oquab et al., 2023), which
have been shown to be an essential part of many deep AL strategies (Hacohen et al., 2022; Gupte
et al., 2024). The resulting update is fast and closely matches the performance of full retraining.
Extensive studies across different data modalities, including image and text datasets, demonstrate
that our updates outperform the typically employed MC-based ones (Tan et al., 2021) in terms of
speed and performance. Furthermore, we examine the proposed update in two distinct AL scenarios:

1. Enhancing Existing Strategies with Immediate Label Utilization: We propose a simple
framework to improve existing strategies by immediately making use of acquired labels
through the proposed updates. Rather than selecting the top-b highest-scoring instances
simultaneously, we iteratively select the highest-scoring instance b times but update the
model between each selection. This simple strategy, which approximates single-instance AL
during batch construction, performs surprisingly well, outperforming naive top-b selection
as well as selection strategies that employ clustering.

2. Optimal AL with Look-Ahead Selection: We investigate the potential of our update with a
look-ahead selection strategy in an optimal AL setting. Specifically, we approximate an op-
timal selection strategy that maximizes future performance. Instead of retraining, we ensure
computational feasibility by employing our update. The resulting strategy outperforms all
competitors, showcasing that currently employed selection strategies have much potential
for improvement.

Summary of Contributions

• Efficient DNN Update: We propose an efficient update method for DNNs that employs a
Laplace approximation and second-order optimization techniques. We enable low compu-
tational complexity through closed-form computation of the inverse Hessian.

• Comprehensive Evaluation: We perform an extensive evaluation across data modalities,
demonstrating that our update outperforms MC-based updates in both speed and accuracy.

• Immediate Label Utilization: We develop a simple framework that employs our update
to immediately incorporate acquired labels, improving existing selection strategies by
updating the model during batch construction.

• Optimal AL with Look-Ahead: We study our update in an optimal AL setting, making a
near-optimal selection strategy as an upper baseline computationally feasible.

2 RELATED WORK

Pool-based deep AL selection strategies are typically divided into uncertainty-based, diversity-based,
and hybrid strategies. Uncertainty-based strategies assume difficult-to-classify instances as beneficial.
Margin sampling (Settles, 2009), a popular variant (Bahri et al., 2022), selects instances where the
difference between the two highest predicted class probabilities is largest. Bald (Gal et al., 2017)
assumes a BNN and selects instances that maximize the mutual information between class predictions
and the DNN’s posterior distribution. Due to the requirement of batch acquisition in deep AL, these
strategies typically select the top-b highest-scoring instances. Diversity-based strategies assume that
a set of diverse instances benefits the model. Core-Set (Sener & Savarese, 2018) selects instances that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

minimize the average distance between the feature representations of labeled and unlabeled instances.
In practice, hybrid strategies, a combination of both uncertainty and diversity, have been shown to
work well. BatchBALD (Kirsch et al., 2019) extends BALD by reducing redundant information
within a batch. Badge (Ash et al., 2020) selects instances with high gradient norms based on pseudo-
labels and ensures diversity by employing k-MEANS++ in the gradient space. Typiclust (Hacohen
et al., 2022) replaces the notion of uncertainty with typicality and selects typical instances from
clusters obtained through k-MEANS.

Look-ahead strategies (Roy & McCallum, 2001; Kottke et al., 2021) remain relatively underexplored
in deep AL. These strategies aim to select instances expected to improve the model’s performance the
most by retraining for all possible candidate instances. In non-deep settings, such approaches have
been shown to achieve near-optimal selection (Roy & McCallum, 2001) while offering convergence
guarantees (Zhao et al., 2021). However, adapting these strategies to deep AL is challenging due to
the computational cost of retraining. To the best of our knowledge, BEMPS (Tan et al., 2021) is the
only strategy to implement a look-ahead mechanism in deep AL. They employ deep ensembles and
MC-based updates via Bayes’ theorem (see Section 3). While this update is computationally efficient,
its performance falls short compared to full model retraining.

Similar to our setting, continual learning (De Lange et al., 2021) updates models by exclusively
training with data from a new task, addressing the challenge of retaining knowledge from previously
learned tasks. Popular techniques (Kirkpatrick et al., 2017; Ritter et al., 2018a) use conventional first-
order optimization methods, incorporating a regularization term to counteract catastrophic forgetting.
Specifically, Ritter et al. (2018a) and Kirkpatrick et al. (2017) derive a regularization term from
an LA that penalizes large deviations from prior knowledge. Unlike our method, these approaches
require training over multiple epochs for the regularization term to have an impact. Once it is used
as an update (i.e., single optimization step), these strategies simplify to a first-order gradient step.
Additionally, they assume large amounts of new data per task (thousands of instances), whereas our
update method is designed for small datasets, ranging from a single to hundreds of instances. For
example, a typical benchmark is to extend a dataset with a task consisting of all instance-label pairs
of a new class (ca. 5,000 in MNIST).

More closely related to our work is online learning (Hoi et al., 2021), which aims to sequentially
and efficiently update models from incoming data streams. Traditional approaches often focus on
linear (Zinkevich, 2003; Crammer et al., 2006) or shallow (Kivinen et al., 2001; Sahoo et al., 2014)
models with maximum-margin classification. However, applying online learning to DNNs remains
difficult due to issues such as convergence, vanishing gradients, and large model sizes (Sahoo et al.,
2018; Yoon et al., 2018). To address these challenges, Sahoo et al. (2018) proposed a method that
modifies a DNN’s architecture to facilitate updates. We argue that this approach is restrictive in state-
of-the-art settings, given the increasing reliance on pretrained foundation models (Devlin et al., 2019;
Oquab et al., 2023). Most similar to our setting is the work on Bayesian online inference by Kirsch
et al. (2022), which is also employed in (Tan et al., 2021). The core idea is to sample hypotheses, e.g.,
via MC-Dropout, from the posterior distribution of a BNN and weight their importance according
to the respective likelihoods for sequentially arriving data. The empirical results raised concerns
regarding the applicability of such updates in high-dimensional parameter spaces. We refer to these
updates as MC-based updates.

BNNs (Wang & Yeung, 2020; Fortuin, 2022) induce a prior distribution on the parameters of a
DNN and learn a posterior distribution given data. MC-Dropout (Gal & Ghahramani, 2016) uses
dropout during inference to obtain a distribution over predictions. While it is simple to use, its
inference is inefficient, and it provides suboptimal uncertainty estimates (Ovadia et al., 2019). Deep
ensembles (Lakshminarayanan et al., 2017) are known for their superior uncertainty estimates but
are train and memory inefficient (Ovadia et al., 2019). LAs (Ritter et al., 2018b) approximate
the posterior as a Gaussian, with the MAP estimate as the mean and the inverse Hessian as the
covariance. As computing this Hessian is expensive for large DNNs, LA is often used only in the last
layer (Daxberger et al., 2021).

3 FAST BAYESIAN UPDATES FOR DEEP NEURAL NETWORKS

In this section, we present our new update method. First, we introduce the general concept of
Bayesian updates together with the variant MC-based updates (Kirsch et al., 2022; Tan et al., 2021).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The left plot shows the predicted probabilities of the positive class for each hypothesis
(colored lines) drawn from a BNN as well as the mean (black solid line) and standard deviation (black
dashed line) of its predictive distribution. The right plot shows updated weights for each hypothesis
and the predictive distribution after observing additional instances (green).

Afterward, we propose our novel method focusing on an efficient update of the Gaussian posterior
distribution via last-layer LAs. For an introduction to LA, we refer to (Daxberger et al., 2021).

3.1 BAYESIAN UPDATES

We focus on classification problems with instance space X and label space Y = {0, . . . ,K− 1}. The
primary goal in our setting is to efficiently incorporate the information of new instance-label pairs
D⊕ = {(xn, yn)}Nn=1 ⊂ X × Y into a DNN trained on dataset D ⊂ X × Y . Retraining the entire
network on the extended dataset D ∪ D⊕ results in high computational cost for a large dataset D.
Conversely, using the new data solely can cause catastrophic forgetting (Ritter et al., 2018a).

For this purpose, we employ BNNs with Bayesian updates (Opper & Winther, 1999) as an efficient
alternative to retraining. The main idea of BNNs is to estimate the posterior distribution p(ω|D)
over the parameters ω ∈ Ω given the observed training data D using Bayes’ theorem. The obtained
posterior distribution over the parameters can then be used to specify the predictive distribution over
a new instance’s class membership via marginalization:

p(y|x,D) = Ep(ω|D)[p(y|x,ω)] =

∫
p(y|x,ω)p(ω|D) dω. (1)

Thereby, the likelihood p(y|x,ω) = [softmax(fω(x))]y denotes the probabilistic output of a DNN
with parameters ω, where fω : X → RK is a function outputting class-wise logits.1

The formulation in equation 1 provides a theoretically sound way to obtain updated predictions. In
particular, this is because the probabilistic outputs p(y|x,ω) do not directly depend on the training
data D. Consequently, to obtain an updated predictive distribution, we do not need to update the
parameters ω directly but only the posterior distribution p(ω|D). The updated posterior distribution
p(ω|D,D⊕) is found through Bayes’ theorem, where the current posterior distribution p(ω|D) is
considered the prior and multiplied with the likelihood p(y|x,ω) per instance-label pair (x, y) ∈ D⊕.
As instances inD andD⊕ are assumed to be independently distributed, we can simplify the likelihood
and reformulate the parameter distribution as follows2:

p(ω|D⊕,D) ∝ p(ω|D)p(D⊕|D,ω)
i.i.d.
= p(ω|D)p(D⊕|ω) = p(ω|D)

∏
(x,y)∈D⊕

p(y|x,ω). (2)

We refer to equation 2 as the Bayesian update.

The most common realization (Kirsch et al., 2022; Tan et al., 2021) of this update is through MC-
based BNNs, such as MC-Dropout and deep ensembles. These BNNs rely on samples (or hypotheses)
ω1, . . . ,ωM drawn from an approximate posterior q(ω|D) . Research (Yoon et al., 2013; Tan et al.,
2021) assumes that all hypotheses are equally likely to explain the observed data and have the same
probability before updating. By updating the posterior distribution through equation 2, they weigh
more likely hypotheses given the new data higher. We refer to these as MC-based updates with a

1We denote the i-th element of a vector b as [b]i = bi.
2We denote p(y1, . . . , yN | x1, . . . ,xN ,ω) with D = {(xn, yn)}Nn=1 as p(D|ω).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

formal definition given in Appendix A. Figure 1 illustrates this concept where different hypotheses
ω1, . . . ,ωM ∼ q(ω|D) are shown. Each hypothesis represents a possible true solution for the
learning task (white instances). When new data (green instances) arrives, we weigh each hypothesis
by its likelihood of explaining the new data and obtain an updated prediction without retraining. This
results in an updated predictive distribution, as seen in bold in Figure 1 (right).

3.2 FAST APPROXIMATIONS OF BAYESIAN UPDATES FOR DEEP NEURAL NETWORKS

Our update method is based on a combination of two concepts. First, instead of MC-based BNNs, we
suggest using LAs on the last layer of a DNN. Second, we directly modify the approximate posterior
distribution of the LA, providing a much more flexible way to adapt it to new data than reweighting.
In the following, we explain each component in detail. For now, we focus on binary classification
with K = 2, and refer to Appendix C for an extension to multi-class classification.

Last-layer LA: LAs approximate the (intractable) posterior distribution p(ω|D) with a Gaussian
centered on the maximum a posteriori (MAP) estimate with a covariance equal to the negative Hessian
of the log posterior (Daxberger et al., 2021). We denote this approximate distribution as

q(ω|D) = N (ω|µ̂, Σ̂) ∝∼ q(ω)
∏

(x,y)∈D

p(y|x,ω), (3)

where q(ω) is a Gaussian prior distribution. The MAP estimate µ̂ results from training on D with
conventional gradient optimization techniques. The covariance matrix Σ̂ is the inverse Hessian of
the negative log posterior evaluated at the MAP estimate µ̂ given training data D. We model the
posterior distribution only on the last layer of a DNN to ensure fast inference.

The benefits of using a last-layer LA are manifold. Given access to q(ω|D) through a Gaussian, we
enable more flexible updates compared to MC-based ones, as we can directly modify the mean and
covariance. In contrast, MC-based updates only change the approximate distribution by reweighting
hypotheses, leading to a strong dependency on the samples ω1, . . . ,ωM . Last-layer LAs can be
integrated seamlessly into nearly all DNNs, including pretrained models, as only the covariance has
to be computed to obtain q(ω|D). This is particularly important in deep AL, where recent findings
highlight self-supervised learning as a crucial factor in selecting informative instances (Hacohen et al.,
2022; Gupte et al., 2024). Finally, compared to deep ensembles and MC-Dropout, last-layer LAs
introduce minimal computational overhead. While deep ensembles require longer training and MC-
dropout impairs the inference time, LAs simply need to calculate a covariance matrix after training
and allow fast inference (cf. equation 1) through techniques such as mean-field approximation (Lu
et al., 2020).

Second-Order Update: The second concept focuses on the update step of the Gaussian distribution.
Observing new data, we follow the same approach as in equation 3, but with q(ω|D) as our prior:

q(ω|D,D⊕) = N (ω|µ̂upd, Σ̂upd) ∝∼ q(ω|D)
∏

(x,y)∈D⊕

p(y|x,ω), (4)

where µ̂upd and Σ̂upd represent the updated mean and covariance, respectively. The resulting updated
posterior q(ω|D,D⊕) is non-Gaussian due to p(y|x,ω) being a categorical likelihood. Consequently,
the closed-form computation of the integral in equation 1 becomes intractable. The basic idea of our
update is to approximate the new posterior q(ω|D,D⊕) by first applying a second-order optimization
step via Gauss-Newton and then estimating the new covariance at that point. Thus, the updated mean
and covariance are given by:

µ̂upd = µ̂− γH−1(µ̂, Σ̂,D⊕)
∑

(x,y)∈D⊕

(px − y)hx, Σ̂upd = H−1(µ̂upd, Σ̂,D⊕), (5)

where hx denotes the representation of x at the penultimate layer, px = sigmoid(hT
xµ) is the

probability for the positive class, and γ is a factor controlling the step size. The required updated
Hessian can be computed efficiently in closed form following Spiegelhalter & Lauritzen (1990) by

H−1(µ,Σ,A) = Σ−
∑

(x,y)∈A

px(1− px)

1 + σx · px(1− px)

(
Σhx

)(
Σhx

)T
, (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where σx = hT
xΣhx is the predictive variance. The derivation can be found in Appendix D.

The idea behind using second-order optimization techniques is that they are more robust than first-
order gradient optimization techniques due to the incorporation of curvature information of the log
posterior. This results in a more accurate representation of the loss landscape, enabling more efficient
and robust parameter updates that are less sensitive to hyperparameter choices. A critical aspect of
our method’s efficiency is that we do not need to recompute the Hessian from scratch. Instead, our
updates leverage the covariance available through LAs and use the Woodbury identity (Woodbury,
1950) for closed-form inversion, significantly reducing computational overhead. Further, a common
problem with last-layer LAs is that the Hessian can become a bottleneck when dealing with a large
number of classes. To address this, we can approximate the Hessian in equation 6 by considering
a Gaussian likelihood instead of a multi-class one, as also done in (Liu et al., 2023; Fortuin, 2022).
Lastly, we want to highlight that an assumption of an LA is that we are at the mode of a distribution,
and adding more data violates this assumption. As we focus on AL and only update with a few (up
to hundreds) instances at a time, this issue is less severe. Empirically, this is also confirmed by our
experiments in the next section.

4 BAYESIAN UPDATING EXPERIMENTS

In this section, we evaluate the efficiency of the proposed update by comparing it against competitors
on various benchmark datasets for image and text classification. Our code is publicly available at
https://github.com/anonymous/authors.

4.1 EXPERIMENTAL SETUP

Our experimental design is based on the work of Kirsch et al. (2022). First, we train a DNN on the
training dataset D (baseline). We then use this baseline DNN to evaluate a last-layer LA and related
Bayesian updates on additional instance-label pairs D⊕ and compare these results to retraining the
DNN on the complete dataset D ∪ D⊕. We evaluate (i) the influence of the step size γ on chosen
validation datasets, (ii) the impact of our update at different learning stages of the DNN, (iii) the
impact of our update with increasing sizes of new arriving datasets, and (iv) the time efficiency
of our update by considering the speed-up factor against retraining. For comparison, we consider
MC-based updates by sampling 10k hypotheses from the approximate Gaussian posterior q(ω|D)
and the less complex first-order updates only considering gradients. Note that the latter is equivalent
to the continual learning strategy of (Ritter et al., 2018a), as we demonstrate in Appendix A. Since
first-order updates do not use the Hessian, this comparison also allows us to assess the benefits of
using second-order optimization. We exclude retraining solely on D⊕, as we empirically found that
it leads to catastrophic forgetting (Kirkpatrick et al., 2017). All performance metrics are averaged
across 10 repetitions. For visual clarity, we do not report standard errors.

Table 1: Overview of datasets.

Type Dataset Reference # classes

Image
Cifar-10 (Krizhevsky, 2009) 10

Snacks (Matthijs, 2021) 20
DTD (Cimpoi et al., 2014) 49

Text
DBPedia (Auer et al., 2007) 14

Banking-77 (Casanueva et al., 2020) 77
Clinc-150 (Larson et al., 2019) 150

The datasets D and D⊕ are randomly sampled from real-
world datasets. We use three image and three text bench-
mark datasets commonly used in literature (Hacohen
et al., 2022; Rauch et al., 2023) with varying complexity
reflected through different numbers of classes. Table 1
gives an overview. A detailed summary for each dataset
is provided in Appendix E.

The goal of an update method is to ensure both effective-
ness and speed. To assess this, we use different perfor-
mance metrics. To evaluate effectiveness, or how well an update or retraining generalizes, we
measure accuracy. When experimenting with hyperparameters, accuracy is assessed on a 10% valida-
tion split. Otherwise, it is measured on the test dataset. An optimal update method should achieve the
same performance as completely retraining the DNN with D ∪D⊕. To assess the speed of an update,
we report the speed-up factor compared to retraining by dividing the time required for retraining by
the time required for updating (equation 5 and 6). Retraining and updating times were recorded on an
NVIDIA RTX 4090 GPU and an AMD Ryzen 9 7950X CPU, respectively.

We choose common pretrained DNN architectures from the literature (Hacohen et al., 2022; Gupte
et al., 2024). For image datasets, we employ a Vision Transformer (ViT) (Dosovitskiy et al., 2021)

6

https://github.com/anonymous/authors

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Base Accuracy Retrain Accuracy γ= 1.0 γ= 5.0 γ= 10.0 γ= 30.0

1 2 3 4 5 6 7 8 9 10

0.76

0.77

0.78

50 initial instances

A
cc

ur
ac

y

Size of D⊕

(a) CIFAR-10

1 2 3 4 5 6 7 8 9 10

0.67

0.68

0.69

0.70

0.71

0.72
50 initial instances

Size of D⊕

(b) DBPedia

Figure 2: Accuracies after updating with different values for γ in comparison to the baseline DNN
and retraining.

with pretrained weights via self-supervised learning, complemented by a randomly initialized fully
connected layer. Specifically, we use the DINOv2-ViT-S/14 model (Oquab et al., 2023) with a feature
dimension of D = 384 in its final hidden layer. For text datasets, we employ the transformer-based
pretrained language model BERT (Devlin et al., 2019). We utilize BERT-BASED-UNCASED from
the Huggingface library (Wolf et al., 2020) with a feature dimension of D = 768 and a maximum
sequence length of 512. We train each DNN by finetuning for 200 epochs, employing the Rectified
Adam optimizer (Liu et al., 2019) with a training batch size of 64, a learning rate of 0.01 for images
and 0.1 for text, and weight decay of 0.0001. In addition, we utilize a cosine annealing learning rate
scheduler. These hyperparameters were determined empirically to be effective across all datasets by
investigating the loss convergence on validation splits.

4.2 EXPERIMENTS

Hyperparameter Ablation: In equation 5, we introduced the hyperparameter γ, which controls the
step size of our update. Intuitively, this factor determines the extent to which the DNN is influenced
by the new dataset D⊕. This factor is essential to control the update process and avoid issues such as
catastrophic forgetting. Similarly, first-order and MC-based updates also utilize this factor to mitigate
such problems. For further details, we refer to Appendix A.

To investigate the influence of γ and determine a suitable value for all subsequent experiments, we
conduct a simple ablation study on two datasets. The results of our update are shown here, while
the results for first-order and MC-based updates can be found in Appendix B. We determine the
value of γ in this manner since an extensive hyperparameter search for update methods is typically
impractical in an online setting (De Lange et al., 2021). Hence, fixing a value beforehand is necessary.
We randomly sample an initial dataset D of 50 instances and train our baseline DNN. Subsequently,

Baseline Retraining Our Update First-order Update MC-based Update

50 100 150 200

0.02

0.00

0.02

0.04

0.06

0.08

Size of D

(a) Snacks

100 200 300
0.04

0.02

0.00

0.02

Size of D

(b) DTD

500 1000 1500 2000

0.002

0.000

0.002

0.004

0.006

0.008

Size of D

(c) Banking-77

Figure 3: Accuracy improvement curves for six benchmark datasets, showing the difference in
accuracy between retrained and updated DNNs for varying sizes of D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Baseline Retraining Our Update First-order Update MC-based Update

0.45

0.50

0.55

20 40 60 80 100

0.2
0.4

A
cc

ur
ac

y

Size of D⊕

(a) DTD

20 40 60 80 100

0.16

0.18

0.20

0.22

0.24

0.26

Size of D⊕

(b) Banking-77

20 40 60 80 100

0.14

0.16

0.18

0.20

0.22

Size of D⊕

(c) Clinc-150

Figure 4: Accuracy curves for three benchmark datasets after updating and retraining DNNs for
varying sizes of D⊕.

updates and retraining are performed on randomly sampled datasets |D⊕| ∈ {1, . . . , 10}, and the
accuracy is computed on a validation split. We repeat this process for different values of γ.

The resulting curves in Figure 2 indicate that our update with D⊕ consistently achieves better
performance than the baseline DNN that is only trained on D. For both CIFAR-10 and DBPedia,
updating with γ = 1 does not yield accuracies close to retraining, suggesting that the update is too
weak. By increasing γ, we observe accuracies much closer to complete retraining, with γ = 10 being
sufficient for CIFAR-10 and DBPedia. For CIFAR-10, we also notice that a very high value, i.e.,
γ = 30, can lead to worse performance, likely due to catastrophic forgetting. To ensure effective
updates across all datasets, we will be using γ = 10 in all subsequent experiments. While this may
not be optimal for some datasets, it should ensure a consistently working update in all cases.

Different Learning Stages: To investigate how our update behaves at different stages of learning,
we train the baseline DNN on varying sizes of initial datasets D and update it with a new dataset
of fixed size |D⊕| = 10. To better visualize the differences, we report accuracy improvement
of updated/retrained DNNs relative to the baseline in Figure 3. The results demonstrate that our
updates provide the highest accuracy improvements across all datasets, highlighting the effective and
consistent performance improvements of our update at different learning stages. While first-order
and MC-based updates are also effective in earlier stages (when |D| < 50), they tend to be less
effective and even deteriorate accuracy in later stages. Compared to the first-order update, our update
consistently enhances performance due to including the Hessian. As the Hessian considers curvature
information about the posterior, the update is more robust regarding the choice of γ.

10 100 1000

101

102

103

31

113

1614

38

113

1706

6

17

245

Our Update
First-order Update
MC-based Update

Sp
ee

d-
up

Fa
ct

or

Size of D

Figure 5: Speed-up of update methods
compared to retraining.

Varying Size of D⊕: To investigate our update’s be-
havior with an increasing number of new data points
in D⊕, we train a baseline DNN with a fixed initial
dataset |D| = 100 and vary the size of the new dataset
|D⊕| ∈ {10, 20, . . . , 100}. We report the results for the
most complex datasets DTD, Banking-77, and Clinc-150.
In Figure 4, we observe that as the size of D⊕ increases,
the accuracy of retraining, our update, and the first-order
update consistently improves. In contrast, MC-based up-
dates result in worse accuracies than the baseline, indicat-
ing that it is not suited for an increasing size of D⊕. Con-
sidering our update, we see that it consistently achieves
better accuracies compared to competitors, regardless of
the complexity of the dataset. Moreover, first-order up-
dates seem to be less effective on the more complex datasets such as Banking-77 and Clinc-150,
highlighting the importance of the Hessian.

Time Comparison: Finally, to evaluate the speed of updates, we fix the size of the new dataset to
|D⊕| = 10 and compute the speed-up relative to retraining by varying the initial dataset size |D|.
Figure 5 presents the speed-up factors on CIFAR-10. All update methods are faster than retraining,
with the first-order update being the fastest. For example, with an initial dataset of |D| = 1000, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

first-order update is about 1700 times faster than retraining. Notably, our update provides a similar
speed-up factor while yielding more effective updates by using the closed-form Hessian update.
Compared to MC-based updates, both the first-order and our update are significantly faster.

5 DEEP ACTIVE LEARNING

In this section, we examine the proposed update in AL. First, we introduce a new framework that uses
our updates to exploit label information during batch construction. Essentially, this approach mimics
single instance AL, in which the model is retrained after each label acquisition. Next, we employ our
update to approximate an optimal look-ahead strategy. Instead of obtaining future performance of the
DNN with expensive retraining, we realize this through our update. Here, we average metrics over 30
repetitions to account for reproducibility challenges in AL (Munjal et al., 2022). Labeling budgets
and acquisition sizes differ based on the complexity of a dataset. A more detailed experimental setup
and all learning curves, including ones that report absolute values, are available in Appendix F.

5.1 IMPROVED BATCH SELECTION VIA UPDATES

A naive and suboptimal way of using sequential selection strategies for batch selection is to use the
top-b scoring instances (Kirsch et al., 2023). Our idea is to overcome the necessity of batch strategies
by using the proposed update method with sequential strategies as a fast alternative to retraining.
Thus, we iteratively select the highest-scoring instance b times and update the DNN between each
selection. After acquiring b labels, we retrain the DNN similar to batch selection strategies. An
algorithm implementing this idea can be found in Appendix F.

0 50 100 150 200
0.00

0.02

0.04

0.06
Random
Badge
Update Badge

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(a) CIFAR-10

0 100 200 300 400
0.00

0.01

0.02

0.03

0.04

0.05

0.06 Random
Margin
Update Margin

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(b) Snacks

0 200 400 600 800 1000
0.00

0.01

0.02

0.03

Random
Margin
Update Margin

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(c) DTD

0 50 100 150 200
0.000

0.025

0.050

0.075

0.100

0.125 Random
Margin
Update Margin

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(d) DBpedia

0 1000 2000 3000 4000
0.00

0.01

0.02

0.03

0.04

0.05

Random
Badge
Update Badge

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(e) Banking-77

0 1000 2000 3000
0.00

0.02

0.04

0.06
Random
Badge
Update Badge

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(f) Clinc-150

Figure 6: Accuracy improvement curves for different strategies and datasets showing the accuracy
difference between the respective selection strategy and random instance selection.

The hypothesis is that already well-performing sequential selection strategies (Ren et al., 2021) can
simply be used in a batch setting and that our framework can achieve higher performance compared
to selecting the top-b instances. Here, we consider the widely used strategy Margin, which has
proven to be effective in several studies (Bahri et al., 2022; Huseljic et al., 2021). Additionally, we
are interested in whether this idea can also act as a replacement for the diversity component of a
batch selection strategy. Therefore, we also evaluate the popular strategy Badge (Ash et al., 2020) in
combination with our updates.

Figure 6 shows the accuracy improvement curves relative to a random instance selection. The results
confirm our hypothesis. The query strategies using our updates outperform the respective top-b

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

50 100 150 200
0.000

0.025

0.050

0.075

0.100

0.125 Random
Margin
Badge
Typiclust
Optimal

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(a) CIFAR-10

50 100 150 200
0.00

0.05

0.10

0.15

0.20 Random
Margin
Badge
Typiclust
Optimal

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(b) DBPedia

0 1000 2000 3000 4000
0.02

0.00

0.02

0.04

Random
Margin
Badge
Typiclust
OptimalA

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels

(c) Banking77

Figure 7: Accuracy improvement over random selection of popular selection strategies compared to
our upper baseline approximating optimal batch selection.

selection strategies. Specifically, we see improved performance in early stages when redundancy
within a batch plays an important role. Moreover, combining our update with Badge also results in
improved accuracy. This indicates that selecting a single instance and updating the DNN leads to a
more effective selection than using the k-MEANS++ algorithm as proposed in Badge.

5.2 UPDATING IN LOOK-AHEAD STRATEGIES

The idea of look-ahead strategies is to select instances that, once labeled and added to the labeled
pool, maximize the performance of the model (Roy & McCallum, 2001). Unlike uncertainty- or
diversity-based approaches, look-ahead strategies select instances based on an optimal criterion:
the model’s actual performance. However, they are often neglected in deep AL due to the high
computational requirements. One of the biggest bottlenecks in the selection is retraining. DNNs are
not well-suited for this due to their long training process. For this reason, we employ our proposed
update to make this feasible.

Here, we consider a near-optimal strategy with access to ground truth information, including labels
and validation datasets. It can be considered as an upper baseline in deep AL research. For the
selection, we randomly sample 2000 subsets, each with a size equal to the acquisition size, and
assess how their addition to the labeled pool affects the performance. The batch leading to the
highest performance gain is selected. While this approach would traditionally require 2000 times of
retraining–making it infeasible with DNNs–our update enables the efficient use of this strategy.

In this experiment, we also include the recently proposed Typiclust strategy, which has demonstrated
strong performance (Hacohen et al., 2022), especially in early stages of AL. Figure 7 presents the
resulting accuracy improvement curves compared to random instance selection. Our optimal strategy,
using updates rather than full retraining, performs exceptionally well, consistently outperforming all
competitors. Based on these results, we can see that the current selection strategies still have much
potential for improvement. Interestingly, we can see that Typiclust’s selection in the early stages of
AL seems to be close to an optimal selection but declines in effectiveness in later stages.

6 CONCLUSION

In this article, we proposed an efficient second-order update for DNNs in AL using the Gaussian
posterior of a last-layer LA. It achieves low computational complexity through a closed-form compu-
tation of the required inverse Hessian. An extensive experimental evaluation showed that the proposed
update provides an efficient alternative to retraining. Based on this observation, we introduced a new
batch selection framework by sequentially updating the DNN after each label acquisition, offering a
new perspective on constructing batches without resorting to heuristics such as clustering. Further-
more, we realized a look-ahead strategy as a feasible upper baseline approximating optimal batch
selection, highlighting the great potential for improvement in current research on batch selection
strategies. In future work, we plan to utilize the proposed updates to enhance look-ahead selection
strategies (Roy & McCallum, 2001) in deep AL. As these strategies are based on decision-theoretic
principles, they naturally balance explorative and exploitative instance selection, a key challenge in
AL (Li et al., 2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Reproducibility is an essential factor in active learning. To ensure reproducibility, we averaged
metrics over repeated experiments. We opted not to report standard errors to maintain clarity in
visualizations, especially since standard errors were negligible and added little information. Each
experiment evaluating updates in Section 4 was repeated 10 times, while we increased this number
to 30 for all active learning experiments in Section 5. The code and detailed instructions for setting
up and running the experiments are available in a GitHub repository, ensuring that our work can be
easily reproduced and built upon.

REFERENCES

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep Batch
Active Learning by Diverse, Uncertain Gradient Lower Bounds. In International Conference on Learning
Representations, 2020.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia:
A nucleus for a web of open data. In International Semantic Web Conference, pp. 722–735, 2007.

Dara Bahri, Heinrich Jiang, Tal Schuster, and Afshin Rostamizadeh. Is margin all you need? an extensive
empirical study of active learning on tabular data. arXiv preprint arXiv:2210.03822, 2022.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient intent detection
with dual sentence encoders. In Natural Language Processing for Conversational AI, pp. 38–45, 2020.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In Conference
on Computer Vision and Pattern Recognition, pp. 3606–3613, 2014.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online Passive-Aggressive
Algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig.
Laplace redux-effortless Bayesian deep learning. In Advances in Neural Information Processing Systems,
2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. Transactions on
Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations, 2021.

Vincent Fortuin. Priors in Bayesian deep learning: A review. International Statistical Review, 2022.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in
deep learning. In International Conference on Machine Learning, pp. 1050–1059, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data. In
International Conference on Machine Learning, pp. 1183–1192, 2017.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang
Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of uncertainty in deep
neural networks. Artificial Intelligence Review, 56(1):1513–1589, 2023.

Sanket Rajan Gupte, Josiah Aklilu, Jeffrey J. Nirschl, and Serena Yeung-Levy. Revisiting Active Learning in the
Era of Vision Foundation Models. Transactions on Machine Learning Research, 2024.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite strategies suit high
and low budgets. In International Conference on Machine Learning, pp. 8175–8195, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Steven C H Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey. Neurocom-
puting, 459:249–289, 2021.

Denis Huseljic, Bernhard Sick, Marek Herde, and Daniel Kottke. Separation of aleatoric and epistemic
uncertainty in deterministic deep neural networks. In International Conference on Pattern Recognition, pp.
9172–9179. IEEE, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath,
Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, 114(13):3521–3526, 2017.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. BatchBALD: Efficient and diverse batch acquisition for
deep Bayesian active learning. In Advances in Neural Information Processing Systems, 2019.

Andreas Kirsch, Jannik Kossen, and Yarin Gal. Marginal and Joint Cross-Entropies & Predictives for Online
Bayesian Inference, Active Learning, and Active Sampling. arXiv preprint arXiv:2205.08766, 2022.

Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frédéric Branchaud-Charron, and
Yarin Gal. Stochastic Batch Acquisition: A Simple Baseline for Deep Active Learning. Transactions on
Machine Learning Research, 2023.

Jyrki Kivinen, Alex Smola, and Robert C Williamson. Online learning with kernels. In Advances in Neural
Information Processing Systems, 2001.

Daniel Kottke, Marek Herde, Christoph Sandrock, Denis Huseljic, Georg Krempl, and Bernhard Sick. Toward
optimal probabilistic active learning using a Bayesian approach. Machine Learning, 110(6):1199–1231, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto,
2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in Neural Information Processing Systems, 2017.

Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew Lee, Parker Hill, Jonathan K.
Kummerfeld, Kevin Leach, Michael A. Laurenzano, Lingjia Tang, and Jason Mars. An evaluation dataset for
intent classification and out-of-scope prediction. In Conference on Empirical Methods in Natural Language
Processing and International Joint Conference on Natural Language Processing, pp. 1311–1316, 2019.

Jingyao Li, Pengguang Chen, Shaozuo Yu, Shu Liu, and Jiaya Jia. Bal: Balancing diversity and novelty for
active learning. Transactions on Pattern Analysis and Machine Intelligence, 46(5):3653–3664, 2024.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshminarayanan. Simple
and principled uncertainty estimation with deterministic deep learning via distance awareness. In Advances in
Neural Information Processing Systems, 2020.

Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen Jerfel, Zachary Nado, Jasper Snoek,
Dustin Tran, and Balaji Lakshminarayanan. A simple approach to improve single-model deep uncertainty via
distance-awareness. Journal of Machine Learning Research, 24(42):1–63, 2023.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the
variance of the adaptive learning rate and beyond. In International Conference on Learning Representations,
2019.

Zhiyun Lu, Eugene Ie, and Fei Sha. Mean-field approximation to Gaussian-softmax integral with application to
uncertainty estimation. arXiv preprint arXiv:2006.07584, 2020.

Matthijs. Snacks dataset. https://huggingface.co/datasets/Matthijs/snacks, 2021. Ac-
cessed: 2024-05-20.

Prateek Munjal, Nasir Hayat, Munawar Hayat, Jamshid Sourati, and Shadab Khan. Towards robust and repro-
ducible active learning using neural networks. In Conference on Computer Vision and Pattern Recognition,
pp. 223–232, 2022.

Manfred Opper and Ole Winther. A Bayesian approach to on-line learning. In On-line Learning in Neural
Networks, pp. 363–378, 1999.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, et al. DINOv2: Learning Robust Visual
Features without Supervision. Transactions on Machine Learning Research, 2023.

12

https://huggingface.co/datasets/Matthijs/snacks

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? Evaluating predictive
uncertainty under dataset shift. In Advances in Neural Information Processing Systems, 2019.

Lukas Rauch, Matthias Assenmacher, Denis Huseljic, Moritz Wirth, Bernhard Bischl, and Bernhard Sick.
ActiveGLAE: A Benchmark for Deep Active Learning with Transformers. In European Conference on
Machine Learning, 2023.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen, and Xin
Wang. A survey of deep active learning. Computing Surveys, 54(9):1–40, 2021.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured Laplace approximations for overcoming
catastrophic forgetting. In Advances in Neural Information Processing Systems, 2018a.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable Laplace approximation for neural networks. In
International Conference on Learning Representations, 2018b.

Nicholas Roy and Andrew McCallum. Toward Optimal Active Learning through Sampling Estimation of Error
Reduction. In International Conference on Machine Learning, pp. 441–448, 2001.

Doyen Sahoo, Steven C.H. Hoi, and Bin Li. Online multiple kernel regression. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 293–302, 2014.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: learning deep neural networks
on the fly. In International Joint Conference on Artificial Intelligence, pp. 2660–2666, 2018.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
International Conference on Learning Representations, 2018.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009.

David J Spiegelhalter and Steffen L Lauritzen. Sequential updating of conditional probabilities on directed
graphical structures. Networks, 20(5):579–605, 1990.

Wei Tan, Lan Du, and Wray Buntine. Diversity enhanced active learning with strictly proper scoring rules. In
Advances in Neural Information Processing Systems, 2021.

Hao Wang and Dit-Yan Yeung. A survey on Bayesian deep learning. Computing Surveys, 53(5):1–37, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander Rush. Transformers: State-of-the-art natural language processing. In Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 38–45, 2020.

Max A Woodbury. Inverting modified matrices. Department of Statistics, Princeton University, 1950.

Byung-Jun Yoon, Xiaoning Qian, and Edward R. Dougherty. Quantifying the Objective Cost of Uncertainty in
Complex Dynamical Systems. Transactions on Signal Processing, 61(9):2256–2266, 2013.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expandable
networks. In International Conference on Learning Representations, 2018.

Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis Alexander, and Xiaoning Qian. Uncertainty-aware
active learning for optimal Bayesian classifier. In International Conference on Learning Representations,
2021.

Martin Zinkevich. Online Convex Programming and Generalized Infinitesimal Gradient Ascent. In International
Conference on Machine Learning, pp. 928–936, 2003.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED BAYESIAN UPDATE METHODS

We formally introduce Bayesian update methods used for comparison in the main part, including
Monte Carlo (MC)-based updates and our method’s simpler variant, first-order updates.

A.1 MC-BASED BAYESIAN UPDATES

MC-based Bayesian neural networks (BNNs) such as deep ensembles and MC-Dropout draw samples,
or hypotheses, from an (approximate) posterior distribution q(ω|D). To obtain these samples, deep
ensembles train multiple randomly initialized deep neural networks (DNNs), while MC-Dropout
randomly sets a portion of parameters to zero for multiple inference steps. We refer to (Gawlikowski
et al., 2023) for an in-depth explanation of these techniques.

As MC-based BNNs only have access to these samples, the idea behind the MC-based update method
is to weigh these samples. More specifically, MC-based updates, as used in (Tan et al., 2021), assume
a priori that every hypothesis ω1, . . . ,ωM ∼ q(ω|D) is equally likely to explain the new dataset
D⊕. Hence, the approximate distribution over the drawn members can be defined as a categorical
distribution3 with parameters p̂ = (p̂1, . . . , p̂M)T:

q(ωm|D) = Cat(m|p̂) = p̂m = 1/M, (7)

where M is the number of drawn ensemble members. The updated posterior distribution, which
includes the new dataset D⊕, is computed through Bayes’ theorem:

q(ωm|D⊕,D) = Cat(m|p̂upd) ∝ q(ωm|D)
∏

(x,y)∈D⊕

p(y|x,ωm) (8)

= p̂m
∏

(x,y)∈D⊕

[softmax(fωm(x))]y = ẑm, (9)

which is a categorical distribution with parameters p̂upd = (p̂upd1 , . . . , p̂updM)T that we obtain after
normalizing ẑ = (ẑ1, . . . , ẑM)T. Intuitively, the importance of each hypothesis is determined by its
likelihood of explaining the new dataset D⊕. This approximation q(ωm|D⊕,D) of the posterior
distribution allows us to make new predictions by evaluating the predictive distribution from equation 1
accordingly:

p(y|x,D⊕,D) = Eq(ω|D⊕,D)[p(y|x,ω)] ≈
M∑

m=1

p(y|x,ωm) · q(ωm|D⊕,D) (10)

=

M∑
m=1

[softmax(fωm(x))]y · p̂
upd
m , (11)

which is a weighted average of the sampled hypotheses. Employing the update from equation 9 may
lead to catastrophic forgetting. Thus, to control the influence of the new dataset D⊕, we introduce
the hyperparameter γ:

q(ωm|D⊕,D) ∝ p̂m

 ∏
(x,y)∈D⊕

[softmax(fωm(x))]y

γ

. (12)

A.2 FIRST-ORDER BAYESIAN UPDATES

Our proposed update method from the main text approximates the new posterior q(ω|D,D⊕) by
applying an optimization step via Gauss-Newton and estimating the new covariance. For comparison,
we evaluate an update based on a first-order optimization step, leading to a less complex and faster
method. This also allows us to ablate the importance of the Hessian.

Assume a binary classification problem where we have an approximate posterior distribution
q(ω|D) = N (ω|µ̂, Σ̂) from an LA and observe the new dataset D⊕. Our goal is to update the

3Equivalently, one can define the approximate distribution via multiple Dirac deltas.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

approximate posterior distribution q(ω|D) by considering it as the new prior distribution:

q(ω|D,D⊕) = N (ω|µ̂upd, Σ̂upd) ∝∼ q(ω|D)
∏

(x,y)∈D⊕

p(y|x,ω). (13)

The first-order update is defined by using a gradient optimization step to obtain an updated mean:

µ̂upd = µ̂− γ

 ∑
(x,y)∈D⊕

(
σ
(
hTµ̂

)
− y

)
hx

 , (14)

where γ is the step size (or learning rate) introduced to avoid catastrophic forgetting. The covariance
matrix must only be recomputed at the update’s end if meaningful uncertainty estimates are of interest.

The updating strategy in equation 14 is equivalent to the continual learning strategy from Ritter et al.
(2018a). There, the updated posterior distribution is defined as

log p(ω|D,D⊕) ∝
∑

(x,y)∈D⊕

log p(y|x,ω)− 1

2
(ω − µ̂)T Σ̂−1(ω − µ̂), (15)

where the second term is the prior q(ω|D), penalizing large deviations of ω from the prior mean µ̂.
The updated mean is then given by

µ̂upd = argmax
ω

∑
(x,y)∈D⊕

log p(y|x,ω)− 1

2
(ω − µ̂)T Σ̂−1(ω − µ̂). (16)

Ritter et al. (2018a) use multiple optimization steps via gradient descent to obtain the new mean µ̂upd.
Since we defined an update as a single optimization step and we start with ω = µ̂, the regularization
term evaluates to zero. Thus, the updated mean is obtained through a gradient step on the new data
likelihood, simplifying the optimization to equation 14.

B HYPERPARAMETER ABLATION

For all introduced Bayesian update methods, the hyperparameter γ controls the influence of the new
dataset D⊕ on the posterior distribution q(ω|D). In Section 4, we conducted a small ablation study,
similar to a hyperparameter search, to determine an appropriate value for γ. We intentionally did
not search a optimal value of γ for every dataset since extensive hyperparameter search for update
methods is impractical in an online setting (De Lange et al., 2021). Using the same setup as in
Section 4, we consider the CIFAR-10 and DBPedia datasets. Our baseline DNN is trained on a
randomly sampled initial datasetD of 50 instances. We then update and retrain the DNN with varying
sizes of the new dataset |D⊕| ∈ {1, . . . , 10}.

Base Accuracy
Retrain Accuracy

γ= 0.0001

γ= 0.001

γ= 0.005

γ= 0.01

γ= 0.05 γ= 0.1 γ= 0.5

0.74

0.76

0.78

50 initial instances

1 2 3 4 5 6 7 8 9 10
0.25
0.50

A
cc

ur
ac

y

Size of D⊕

(a) CIFAR-10 (FO)

0.66

0.68

0.70

0.72

50 initial instances

1 2 3 4 5 6 7 8 9 10

0.25
0.50

Size of D⊕

(b) DBPedia (FO)

0.700

0.725

0.750

0.775

50 initial instances

1 2 3 4 5 6 7 8 9 10
0.25
0.50

Size of D⊕

(c) CIFAR-10 (MC)

0.66

0.68

0.70

0.72
50 initial instances

1 2 3 4 5 6 7 8 9 10

0.25
0.50

Size of D⊕

(d) DBPedia (MC)

Figure 8: Accuracies after updating with different values for γ in comparison to the baseline DNN
and retraining.

Considering the first-order update, we see that not all values of γ improve accuracy. Especially,
high values can cause a collapse in accuracy, likely due to catastrophic forgetting. We find that

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

updates with γ = 0.001 and γ = 0.01 perform best. Since γ = 0.001 generates the highest accuracy
for CIFAR-10 and does not lead to a worse performance for DBPedia, we use it for the remaining
experiments. Considering MC-based update, we see that no value of gamma provides an improvement
in accuracy on CIFAR-10. In contrast, for DBPedia we see that γ = 0.1 improve accuracy the most.
Considering the results across datasets, we select γ = 0.005 for images and γ = 0.01 for text.

C MULTI-CLASS LAST-LAYER UPDATE

Here, we outline three different options for performing the update step for LA in a multi-class setting
with K > 2. In a binary setting, a last-layer LA uses a parameter vector ω ∈ RD. However, in a
multi-class setting, we have a parameter vector ωy for each class y ∈ Y . In the literature, several
approximations haven been proposed to model these parameter vectors’ distribution.

The most complex approximation would be to concatenate these vectors and model them through a
multi-variate normal distribution:

q (ω | D) = N (ω|µ̂, Σ̂) with ω, µ̂ ∈ RK·D, Σ̂ ∈ R(K·D)×(K·D). (17)
This approximation can estimate a covariance between each pair of parameters. However, this
expressiveness comes at the cost of a large covariance matrix Σ̂ to be estimated. This is particularly
costly for many classes K combined with a high feature dimension D from a DNN, such that
corresponding updates via second-order optimization would no longer be efficient.

Spiegelhalter & Lauritzen (1990) presented a more efficient approximation in which the class-wise
parameter vectors are arranged column-wisely as a matrix. Their joint distribution is then modeled
through a matrix normal distribution:

q (ω|D) =MN (ω|µ̂, Γ̂, Σ̂) with ω, µ̂ ∈ RD×K , Σ̂ ∈ RD×D, Γ̂ ∈ RK×K . (18)

This approximation captures the covariance between each pair of parameter vectors via the matrix Γ̂

and each pair of hidden features via the matrix Σ̂. Both matrices have to be iteratively recomputed
while updating. We refer to (Spiegelhalter & Lauritzen, 1990) for more details.

Liu et al. (2020) presented an even faster approximation and showed its effectiveness in combination
with an LA for supervised learning. Therefore, we employ this approximation in the multi-class
setting. The idea is to determine an upper-bound covariance matrix shared by all class-wise parameter
vectors in their respective multivariate normal distribution, which is then defined for class y ∈ Y as:

q(ωy | D) = N (µ̂y|Σ̂) with ωy, µ̂y ∈ RD, Σ̂ ∈ RD×D. (19)

The upper-bound covariance matrix Σ̂ ∈ RD×D corresponds to the inverse Hessian of the negative
log posterior evaluated at the MAP estimate µ̂ given training data D and a prior covariance matrix I .
It is given by

Σ̂ = H−1, where H =
∑

(x,y)∈D

p⋆x(1− p⋆x)hxh
T
x + I, (20)

where p⋆x = maxy p(y|x,ω) is the maximum probability outputted by the the DNN. An even
simpler approximation is to assume a Gaussian likelihood for the covariance, leading to the following
formulation

Σ̂ = H−1, where H =
∑

(x,y)∈D

hxh
T
x + I. (21)

which has been empirically shown to work more robustly when estimating uncertainties (Liu et al.,
2023). For this reason and its computational efficiency, we employ this approximation in our method.

Analog to the updates for binary classification in equation 5, we implement the updates of the mean
parameter vector for class y ∈ Y and the covariance matrix Σ̂ ∈ RD×D shared across the classes Y
given a new dataset D⊕ based on the Gauss-Newton algorithm leading to:

µ̂upd
y = µ̂−H−1(µ̂, Σ̂,D⊕)

∑
(x,y′)∈D⊕

(p⋆x − δ(y = y′))hx, (22)

Σ̂upd = H−1(µ̂upd, Σ̂,D⊕), (23)
where δ(·) is the Dirac delta function. We efficiently compute the updated inverse Hessian using the
Woodbury identity as presented in the upcoming Appendix D.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D EFFICIENT HESSIAN INVERSION VIA WOODBURY IDENTITY

Here, we provide the derivation of the update from Eq. equation 6, which uses the Woodbury (matrix)
identity (Woodbury, 1950) for efficient inversion of the Hessian during updates. Assume we employed
an LA and have the current approximate posterior distribution q(ω|D) = N (ω|µ̂, Σ̂). To incorporate
the information of the new dataset D⊕ into the LA’s current covariance Σ̂, we first need to calculate
the Hessian of the new negative log posterior q(ω|D,D⊕) with respect to ω. The Hessian of the new
negative log posterior −q(ω|D,D⊕) is given by

H = −∇2
ω log q(ω|D,D⊕) = I +

∑
(x,y)∈D

px(1− px)hxh
T
x +

∑
(x,y)∈D⊕

px(1− px)hxh
T
x ,

(24)

= Σ̂−1 +
∑

(x,y)∈D⊕

px(1− px)hxh
T
x , (25)

where we see the updated Hessian is given by a sum of the old negative log posterior’s precision
matrix with the precision matrix of the new dataset D⊕. Note, however, that we require the inverse
Hessian H−1 for both the Gaussian posterior in the LA and the optimization step via Gauss-Newton.
Depending on the size of D⊕ and the assumed likelihood for the Hessian, this computation can
significantly slow down the efficiency of our update since we must compute an inverse with each new
incoming batch of instances. Thus, to ensure efficient updates, we employ the Woodbury identity,
which is given in a simplified form by

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
, (26)

and allows us to obtain an updated inverse Hessian directly, avoiding calculation of the inverse of the
updated precision matrix. Setting u = px(1− px)hx and v = hx, we obtain:

H−1 =
(
Σ̂−1 + px(1− px)hxh

T
x

)−1

= Σ̂− px(1− px)

1 + hxΣ̂hx · px(1− px)
Σ̂hxhxΣ̂, (27)

which is the update from equation 6. In the multi-class setting, we employ the covariance matrix
of equation 21 by assuming a Gaussian likelihood leading to the following inverse Hessian:

H−1 =
(
Σ̂−1 + hxh

T
x

)−1

= Σ̂− Σ̂hxhxΣ̂

1 + hxΣ̂hx

, (28)

where we set u = v = hx.

E SUMMARY OF DATASETS

CIFAR (Krizhevsky, 2009) consists of 60,000 colored images with a low resolution of 32 × 32.
There is a predetermined split of 50,000 images as training instances and 10,000 images as test
instances. One variant of this dataset, CIFAR-10, is a coarse-grained task with ten broad classes
such as automobile, dog, airplane, and ship. The classes are mutually exclusive meaning there is
no overlap between, e.g., automobiles and trucks. Snacks (Matthijs, 2021) contains images of 20
different classes of snack foods. The 6,745 available images are split into 3,840 images for training,
955 for validation, and 920 for testing. Each image is 256 pixels wide while its height varies from
256 to 873 pixels. DTD (Cimpoi et al., 2014) is a texture-focused dataset that consists of 5,640
images divided into 47 different classes. There are 120 images for each class and image sizes range
between 300x300 and 640x640. There is a predetermined split into three equally sized datasets for
training, validation, and testing. DBPedia (Auer et al., 2007) is a larger text dataset with a medium
class cardinality of 14 different classes. There are 14 different ontology-based classes. It consists
of 560,000 training instances and 5,000 test instances. Banking-77 (Casanueva et al., 2020) comes
with a more complex task of conversational language understanding alongside intent detection. The
combination of its high-class cardinality and a small pool of just 10,000 instances makes this data
set even more challenging. Clinc-150 (Larson et al., 2019) includes queries that are out-of-scope,
i.e., queries that do not fall into any of the system’s supported intents. It contains 150 in-scope intent
classes, each with 100 train, 20 validation, and 30 test instances. Additionally, there are 100 train and
validation out-of-scope instances, and 1,000 out-of-scope test instances.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

F ACTIVE LEARNING: UPDATES FOR BATCH SELECTION AND LOOK-AHEAD

Algorithm: The main idea from Section 5 is to transform any sequential selection strategy into a
batch strategy by using the proposed update method as a fast alternative to retraining. Typically, when
using a sequential selection strategy, the naive idea in a batch setting is to select the instances that
resulted in the top-b highest scores, where the score is defined by the respective selection strategy.
Our method can now update the DNN after each acquired label instead of selecting the top-b instances.
Hence, we have a similar scenario as if we would perform single-instance acquisitions but avoid the
retraining after each acquired label. After aggregating a batch of b instances, we retrain the DNN.

Algorithm 1 summarizes this idea. Given a standard AL setting with labeled data L and unlabeled
data U , we first calculate the approximate posterior distribution q(ω|L) via LA. Subsequently, we
iteratively select a new instance x and acquire its label y based on a given selection strategy α(·) and
update the approximate posterior distribution q(ω|{(x, y)},L) according to equation 5. We repeat
this procedure for b acquisitions.

Algorithm 1 Updating in AL

Require: Labeled data L, unlabeled data U , selection strategy α, acquisition size b, BNN q(ω|L)
1: New acquisitions D⊕ = {}
2: for i = 1, . . . , b do
3: Acquire next instance x̂ = argmaxx∈Uα(x,U , q

(
ω|D⊕,L)

)
4: Obtain new label ŷ for instance x̂
5: Extend new acquisitions D⊕ ← D⊕ ∪ {(x̂, ŷ)}
6: Remove acquisition from U ← U \ x̂
7: Update posterior distribution q(ω|D⊕,L)
8: end for
9: return Batch of new acquisitions D⊕

Experiments: For the AL experiments in Section 5, we follow the recent work of (Hacohen et al.,
2022; Gupte et al., 2024). We use all datasets (cf. Table 1) and initialize the labeled pool L with b
randomly sampled instances. In each AL cycle, we select b new instances for labeling and fix the
number of AL cycles to 20, resulting in a total budget of B = 20 · b. The size b is determined based
on the dataset’s complexity, ensuring that learning curves from random instance selection converge.
Each AL selection strategy selected from 1,000 randomly sampled instances from the unlabeled
pool U to speed up the selection process, except for Typiclust, where we increased the number to
10, 000 to avoid errors of k-MEANS. We employ the same architecture and training hyperparameters
as described in the experimental setup in Section 4.1.

Improved Batch Selection: For the sequential selection strategy Margin (Bahri et al., 2022), we
select batches of instances by following Algorithm 1 instead of the top-b selection. In the case of
Badge (Ash et al., 2020), we replace the k-MEANS++ algorithm that is typically used. Consequently,
we select the instance with the highest gradient norm. All accuracy improvement curves are shown in
Figure 9. Associated learning curves reporting the absolute accuracy are shown in Figure 10.

Approximating Optimal Batch Selection: In Section 5, we employed our update to approximate
an optimal look-ahead batch selection strategy. The selection works as follows: We begin with a
randomly initialized labeled pool. During selection, we deliberately avoid clustering schemes to
simplify batch selection into picking a single instance per cluster. We argue that this enforced diversity
can lead to suboptimal selection, especially in the later stages of active learning, where exploitation is
more critical. Instead, we randomly sampled 2,000 batches, each matching the acquisition size. These
batches likely include both diverse and non-diverse sets, allowing for exploration in the beginning
and potential exploitation in the end. Each batch is used to update the model with our proposed
method as a proxy for retraining. We then evaluated the performance of each updated model on a
validation set. Finally, we selected the batch that yielded the highest performance improvement. The
remaining accuracy improvement curves and learning curves reporting absolute values are shown in
Figure 11 and Figure 12, respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 50 100 150 200
0.00

0.02

0.04

0.06 Random
Margin
Update Margin

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

0 50 100 150 200
0.00

0.02

0.04

0.06
Random
Badge
Update Badge

Number of Labels

(a) CIFAR-10

0 100 200 300 400
0.00

0.01

0.02

0.03

0.04

0.05

0.06 Random
Margin
Update Margin

Number of Labels

0 100 200 300 400
0.00

0.01

0.02

0.03

0.04

0.05

0.06 Random
Badge
Update Badge

Number of Labels

(b) Snacks

0 200 400 600 800 1000
0.00

0.01

0.02

0.03

Random
Margin
Update Margin

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

0 200 400 600 800 1000
0.00

0.01

0.02

0.03

Random
Badge
Update Badge

Number of Labels

(c) DTD

0 50 100 150 200
0.000

0.025

0.050

0.075

0.100

0.125 Random
Margin
Update Margin

Number of Labels

0 50 100 150 200
0.000

0.025

0.050

0.075

0.100

0.125 Random
Badge
Update Badge

Number of Labels

(d) DBPedia

0 1000 2000 3000 4000
0.00

0.01

0.02

0.03

0.04

Random
Margin
Update Margin

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

0 1000 2000 3000 4000
0.00

0.01

0.02

0.03

0.04

0.05

Random
Badge
Update Badge

Number of Labels

(e) Banking-77

0 1000 2000 3000
0.00

0.02

0.04

0.06

Random
Margin
Update Margin

Number of Labels

0 1000 2000 3000
0.00

0.02

0.04

0.06
Random
Badge
Update Badge

Number of Labels

(f) Clinc-150

Figure 9: Accuracy improvement curves for different strategies and datasets showing the accuracy
difference between the respective selection strategy and random instance selection.

0 50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

Random
Margin
Update Margin

A
cc

ur
ac

y

Number of Labels

0 50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

Random
Badge
Update Badge

Number of Labels

(a) CIFAR-10

0 100 200 300 400
0.4

0.5

0.6

0.7

0.8

0.9

Random
Margin
Update Margin

Number of Labels

0 100 200 300 400
0.4

0.5

0.6

0.7

0.8

0.9

Random
Badge
Update Badge

Number of Labels

(b) Snacks

0 200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

Random
Margin
Update Margin

A
cc

ur
ac

y

Number of Labels

0 200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

Random
Badge
Update Badge

Number of Labels

(c) DTD

0 50 100 150 200

0.4

0.6

0.8

1.0

Random
Margin
Update Margin

Number of Labels

0 50 100 150 200

0.4

0.6

0.8

Random
Badge
Update Badge

Number of Labels

(d) DBPedia

0 1000 2000 3000 4000

0.3

0.4

0.5

0.6

0.7

0.8

Random
Margin
Update Margin

A
cc

ur
ac

y

Number of Labels

0 1000 2000 3000 4000

0.3

0.4

0.5

0.6

0.7

0.8

Random
Badge
Update Badge

Number of Labels

(e) Banking-77

0 1000 2000 3000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Random
Margin
Update Margin

Number of Labels

0 1000 2000 3000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Random
Badge
Update Badge

Number of Labels

(f) Clinc-150

Figure 10: Learning curves for different strategies and datasets showing the accuracy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 100 200 300 400
0.000

0.025

0.050

0.075

0.100

0.125
Random
Margin
Badge
Typiclust
Optimal

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(a) Snacks

0 250 500 750 1000
0.04

0.02

0.00

0.02

0.04

0.06

0.08 Random
Margin
Badge
Typiclust
Optimal

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

(b) DTD

0 1000 2000 3000

0.050

0.025

0.000

0.025

0.050

0.075

Random
Margin
Badge
Typiclust
OptimalA

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels

(c) Clinc-150

Figure 11: Accuracy improvement over random selection of popular selection strategies compared to
our upper baseline approximating optimal batch selection.

50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

Random
Margin
Badge
Typiclust
OptimalA

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels

(a) CIFAR-10

0 100 200 300 400
0.4

0.5

0.6

0.7

0.8

0.9

Random
Margin
Badge
Typiclust
OptimalA

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels

(b) Snacks

0 200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

Random
Margin
Badge
Typiclust
OptimalA

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels

(c) DTD

50 100 150 200

0.4

0.6

0.8

1.0

Random
Margin
Badge
Typiclust
OptimalA

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels

(d) DBPedia

0 1000 2000 3000 4000

0.3

0.4

0.5

0.6

0.7

0.8

Random
Margin
Badge
Typiclust
OptimalA

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels

(e) Banking-77

0 1000 2000 3000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Random
Margin
Badge
Typiclust
OptimalA

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels

(f) Clinc-150

Figure 12: Learning curves reporting the accuracy of popular selection strategies compared to our
upper baseline approximating optimal batch selection.

20

	Introduction
	Related Work
	Fast Bayesian Updates for Deep Neural Networks
	Bayesian Updates
	Fast Approximations of Bayesian Updates for Deep Neural Networks

	Bayesian Updating Experiments
	Experimental Setup
	Experiments

	Deep Active Learning
	Improved Batch Selection via Updates
	Updating in Look-Ahead Strategies

	Conclusion
	Related Bayesian Update Methods
	MC-based Bayesian Updates
	First-Order Bayesian Updates

	Hyperparameter Ablation
	Multi-class Last-Layer Update
	Efficient Hessian Inversion via Woodbury Identity
	Summary of Datasets
	Active Learning: Updates for Batch Selection and Look-Ahead

