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Abstract

Magnetic Resonance Imaging (MRI) is a crucial imaging modality, but its inherently slow
acquisition process limits the ability to obtain fully-sampled k-space data in motion-prone
anatomical regions. The absence of such fully-sampled datasets, which serve as ground
truths, hinders the supervised training of deep learning (DL) models—currently the state-
of-the-art approach for MRI reconstruction. While self-supervised learning (SSL) methods
attempt to overcome this limitation by training solely on subsampled k-space data, their
performance remains inferior to supervised learning (SL). We propose Joint Supervised
and Self-supervised Learning (JSSL), a novel training approach designed to enhance MRI
reconstruction quality in cases where fully-sampled k-space data is unavailable for the target
anatomy. JSSL jointly trains a model in a SSL setting using subsampled data from the
target anatomy and in a SL manner using fully-sampled data from a proxy dataset, where
full sampling is feasible. We evaluate JSSL on two distinct combinations of target and
proxy datasets, demonstrating substantial improvements over conventional SSL methods
through both quantitative and qualitative results. Additionally, we provide practical “rule-
of-thumb” guidelines for selecting training strategies in MRI reconstruction. Our code is
available at https://github.com/NKI-AI/direct.
Keywords: MRI Reconstruction, Inverse Problems, Deep Learning, SSL

1. Introduction
Magnetic Resonance Imaging (MRI) is widely used in clinical practice for its ability to non-
invasively visualize detailed anatomical and physiological information. However, MRI data
acquisition, known as k-space sampling, is inherently slow, increasing costs and limiting its
feasibility in real-time applications such as MRI-guided radiotherapy. To accelerate scans,
k-space subsampling techniques are employed, but they lead in lower-quality reconstructed
images (Zbontar et al., 2019).

Deep learning (DL)-based MRI reconstruction techniques (Fessler, 2019; Pal and Rathi,
2022) have emerged as state-of-the-art solutions, outperforming conventional methods like
Parallel Imaging (Pruessmann et al., 1999) and Compressed Sensing (Candes et al., 2006).
These models are typically trained using supervised learning (SL), where retrospectively
subsampled k-space data serve as inputs, and fully-sampled data act as ground truth.

Nevertheless, acquiring fully-sampled datasets, essential for SL training, is often infeasi-
ble or prohibitively expensive in certain anatomical regions, such as abdomen, cardiac cine,
chest, or prostate imaging, where motion complicates adherence to the Nyquist-Shannon
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sampling theorem (Shannon, 1949). Consequently, recent approaches have adopted self-
supervised learning (SSL) strategies, which train DL-based algorithms using only subsam-
pled k-space data, circumventing the need for fully-sampled ground truth.

A key SSL-based approach, Self-Supervised Learning via Data Undersampling (SSDU)
(Yaman et al., 2020), proposed training reconstruction models by partitioning available
subsampled k-space into input and target subsets, predicting one from the other. Inspired
by Noise2Self (Batson and Royer, 2019), SSDU has since become a benchmark for SSL-based
MRI reconstruction. Extensions include parallel networks (Hu et al., 2021), Noisier2Noise
(Millard and Chiew, 2022) applying double subsampling, and architectures like Siamese
networks with dual-domain loss functions (Yan et al., 2023) and coil sensitivity estimation
(Hu et al., 2024; Millard and Chiew, 2022). These methods primarily rely on partitioning
subsampled data, making SSDU a representative approach.

Other works combine supervised and self-supervised strategies. Noise2Recon (Desai
et al., 2023) leverages both fully-sampled and subsampled data from the same domain for
reconstruction and denoising, while (Zhou et al., 2022a) employs paired fully-sampled and
subsampled data from different modalities, both still requiring fully-sampled data. Test-
time training (Darestani et al., 2022) adapts pre-trained models to data shifts at inference
via SSL-driven data-consistency loss, effective for domain shifts but impractical for real-time
tasks due to re-training overhead. (A detailed review is provided in Appendix A.)

In this work, we propose Joint Supervised and Self-supervised Learning (JSSL), a novel
method for training DL-based MRI reconstruction models without ground truth, fully-
sampled k-space data for the target domain for SL. JSSL leverages fully-sampled data from
proxy dataset(s) and subsampled data from target dataset(s) to jointly train models using
both supervised and self-supervised paradigms, which reflects a realistic setting where in
addition to the subsampled data for our clinical scenario some fully-sampled data from e.g.
public reconstruction challenges are available. Our contributions include:
• JSSL presents the first approach to combine SL and SSL-based training in proxy and

target organ domains within a unified pipeline for accelerated MRI reconstruction.
• We experimentally demonstrate that JSSL outperforms SSL-based MRI reconstruction

approaches, with a specific focus on subsampled prostate and cardiac datasets.
• We offer practical “rule-of-thumb” guidelines for selecting appropriate training frame-

works for accelerated MRI reconstruction models.

2. Materials and Methods
2.1. Introduction to MRI Acquisition and Reconstruction

A reconstructed image from subsampled multi-coil data ỹM can be obtained using the
root-sum-of-squares (RSS) method: RSS ◦ F−1(ỹM) :=

(∑nc
k=1 |F−1(ỹk

M)|2
)1/2

. However,
to recover a higher-quality image, a reconstruction is formulated as an optimization problem:

x∗ = arg min
x′

1
2

∣∣∣∣∣∣AM,S(x
′
)− ỹM

∣∣∣∣∣∣2

2
+ G(x

′
), (1)

where G represents an arbitrary regularization functional, and AM,S : Cn → Cn×nc denotes
the forward operator, which sequentially applies the coil expansion operator ES, the Fourier
transform F , and a subsampling mask operator UM:
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AM,S(x) = UM ◦ F ◦ ES(x) =
{

UM ◦ F(Skx)
}nc

k=1
, UM(y)j = yj · 1M(j). (2)

Equation (1) is typically solved using unrolled optimization methods (Yiasemis et al.,
2022b), which leverage both the forward operator AM,S and its adjoint A∗

M,S : Cn×nc → Cn.
The adjoint operator reconstructs an image by applying subsampling via UM, inverse
Fourier transform F−1, and coil combination through the reduction operator RS:

A∗
M,S(y) = RS ◦ F−1 ◦UM(y) =

nc∑
k=1

Sk∗F−1 (
UM(yk)

)
. (3)

Deep learning (DL)-based approaches eliminate the need for explicit regularization terms,
instead learning the reconstruction directly from data (Singh et al., 2023).

2.2. MRI Reconstruction with Supervised Learning
In supervised learning settings, fully-sampled k-space datasets are assumed to be available.
Let DSL = {y(i)}Ni=1 represent such a dataset, which is retrospectively subsampled during
training: ỹ(i)

Mi
= UMi(y(i)), and let fψ denote a DL-based reconstruction network with

parameters ψ. Note that the architecture of fψ can be configured to output image re-
constructions, k-space data, or both, but here we assume that both input and output lie
in the image domain. The objective in SL-based MRI reconstruction is to minimize the
discrepancy between the fully-sampled and predicted k-spaces:

ψ∗ = arg min
ψ

1
N

N∑
i=1

LK

(
y(i), ŷ(i)) , ŷ(i) = DCMi

(
ỹ(i)

Mi
, F ◦ ES ◦ fψ

(
x̃(i)

Mi

))
, x̃(i)

Mi
= A∗

Mi,S
(
y(i)). (4)

Here, DCM denotes the data consistency operator which ensures that the reconstructed data
remain consistent with the available measurements: DCM(w1, w2) = UM(w1)+UMc(w2).
Loss can also minimize the discrepancy between the fully-sampled and predicted images:

ψ∗ = arg min
ψ

1
N

N∑
i=1
LI

(
x(i), x̂(i)

)
, x(i) = RSS ◦ F−1

(
y(i)

)
, x̂(i) =

∣∣∣fψ(
x̃(i)

Mi

)∣∣∣ , (5)

where LK and LI denote arbitrary frequency and image domain loss functions. Although
effective, SL methods depend on fully sampled data, which may not always be available.

2.3. MRI Reconstruction with Self-supervised Learning
When fully-sampled k-space data are unavailable, DL models can be trained using SSL. Let
DSSL =

{
ỹ(i)

Mi

}N

i=1 represent a dataset of subsampled acquisitions, where each instance ỹ(i)
Miis sampled from a set Mi. In SSL, training involves partitioning the acquired subsampled

measurements (Yaman et al., 2020). For each sample ỹ(i)
Mi

, the sampling pattern Mi is
divided into two disjoint subsets, Θi and Λi, followed by projecting ỹ(i)

Mi
onto both:

Θi ∪Λi = Mi, Θi ∩Λi = ∅, ỹ(i)
Θi

= UΘi(ỹ
(i)
Mi

), ỹ(i)
Λi

= UΛi(ỹ
(i)
Mi

). (6)

Subsequently, one partition (ỹ(i)
Λi

) is used as input to the reconstruction network, while the
other serves as the target (ỹ(i)

Θi
) . The objective loss function is formulated in the k-space

domain minimizing discrepancy between the target k-space partition and the predicted
k-space restricted on the target partition (ŷ(i)

ΘiΛi
):
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ψ∗ = arg min
ψ

1
N

N∑
i=1
LK(ỹ(i)

Θi
, ŷ(i)

ΘiΛi
),

ŷ(i)
ΘiΛi

= UΘi

(
DCΛi

(
ỹ(i)

Λi
, ŷ(i)

Λi

))
, ŷ(i)

Λi
= F ◦ ES ◦ fψ(x̃(i)

Λi
), x̃(i)

Λi
= A∗

Λi,S
(
ỹ(i)

Mi

)
.

(7)

While most SSL-based MRI reconstruction methods rely on loss calculations in the fre-
quency domain (Yaman et al., 2020; Millard and Chiew, 2022; Hu et al., 2021, 2024), some
studies have explored dual-domain losses (Zhou et al., 2022b; Yan et al., 2023). The loss
can equivalently be computed in the image domain as follows:

ψ∗ = arg min
ψ

1
N

N∑
i=1

LI

(
x̃(i)

Θi
, x̂(i)

)
, x̃(i)

Θi
= RSS ◦ F−1

(
ỹ(i)

Θi

)
, x̂(i) =

∣∣∣RS ◦ F−1
(

ŷ(i)
ΘiΛi

)∣∣∣ . (8)

SSL-based MRI reconstruction thus learns by partitioning acquired measurements, using
one subset as input and the other as the training target. Although SSL reduces reliance on
fully-sampled data, it often underperforms compared to SL.

2.4. Joint Supervised and Self-supervised Learning

To address the limitations of SSL in scenarios where fully-sampled data are unavailable
in the target domain, we propose Joint Supervised and Self-supervised Learning. JSSL
integrates SSL using subsampled measurements from target domain(s) with SL using fully-
sampled acquisitions from proxy datasets in other organ domains. By leveraging knowledge
from proxy datasets, JSSL aims to surpass the performance of conventional SSL methods
that rely solely on subsampled target data. Figure 1 illustrates the end-to-end JSSL pipeline.
A theoretical rationale for JSSL is provided in Appendix B, where we argue that training on
a proxy task could reduce estimator error by reducing estimator variance while introducing
a negligible bias.

JSSL Training Framework To implement JSSL, we construct the overall loss function
with two components: one for supervised learning and another for self-supervised learning.
For simplicity we assume a single target and a single proxy dataset in our definitions.
Supervised Learning Loss The SL loss is calculated on the proxy dataset, which con-
tains fully-sampled k-space data. It is formulated as follows:

LSL
ψ := LI

SL
ψ + LK

SL
ψ = 1

Nprx

Nprx∑
i=1

[
LI

(
xprx,(i), x̂prx,(i)

)
+ LK

(
yprx,(i), ŷprx,(i)

)]
. (9)

Here, xprx,(i) , x̂prx,(i) represent the ground truth and predicted images, respectively, for
the i-th sample in the proxy dataset, while yprx,(i), ŷprx,(i) represent the fully-sampled and
predicted k-spaces, respectively, as defined in Sec. 2.2.
Self-supervised Learning Loss The SSL loss is calculated using the target dataset,
consisting of subsampled k-space data without ground truth. Motivated by SSL-based
methods (Zhou et al., 2022a,b) which established improved performance when using dual-
domain loss, we calculate the SSL loss in both the image and k-space domains as follows:

LSSL
ψ := LI

SSL
ψ + LK

SSL
ψ = 1

Ntar

Ntar∑
i=1

[
LK

(
ỹtar,(i)

Θi
, ŷtar,(i)

ΘiΛi

)
+ LI

(
x̃tar,(i)

Θi
, x̂tar,(i)

) ]
,

x̃tar,(i)
Θi

= RSS ◦ F−1(ỹtar,(i)
Θi

), x̂tar,(i) =
∣∣∣fψ(x̃tar,(i)

Λi
)
∣∣∣ ,

(10)

where, x̃tar,(i)
Λi

, ỹtar,(i)
Θi

, ŷtar,(i)
ΘiΛi

are as defined in Sec. 2.3.
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Figure 1: JSSL (a) training and (b) inference phases.

JSSL Loss The JSSL loss is a fundamental component of our approach, defined as the
combination of the SL and SSL losses: LJSSL

ψ := LSL
ψ + LSSL

ψ and the model’s parameters
are updated during training such that ψ∗ = arg minψ LJSSL

ψ .
JSSL at Inference During the inference phase, assuming ỹinf

M denotes the subsampled
k-space data, for subsampled k-space data ỹinf

M the trained JSSL reconstruction model fψ∗

estimates the underlying image as follows: x̂ =
∣∣∣fψ∗

(
x̃inf

M
)∣∣∣ , where x̃inf

M = RS ◦ F−1
(
ỹinf

M

)
.

2.5. Coil Sensitivity Prediction
An initial approximation of coil sensitivity maps (S) is derived from the autocalibration
signal (ACS) (McKenzie et al., 2002). While SSL-based approaches use this approximation
(Yaman et al., 2020; Desai et al., 2023; Zhou et al., 2022b), or employ expensive algorithms
like Espirit (Uecker et al., 2013), our JSSL approach takes this initial estimation and feeds
it as input to a Sensitivity Map Estimator (SME) similarly to (Millard and Chiew, 2022;
Zhang et al., 2024; Hu et al., 2024). The SME aims to refine the sensitivity maps and it is
trained end-to-end with the reconstruction model and is integrated in all training setups.

3. Experiments

3.1. Datasets

We utilized fully-sampled multi-coil k-space data from the fastMRI brain, fastMRI knee
(Zbontar et al., 2019), fastMRI prostate T2 (Tibrewala et al., 2023), and CMRxRecon 2023
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cardiac cine MRI (Wang et al., 2024) datasets. Their characteristics and data-splitting
parameters are summarized in Tab. S1. To evaluate JSSL, we paired target and proxy
datasets in two experimental sets: (A) Target: Prostate, Proxy: Brain + Knee; (B)
Target: Cardiac, Proxy: Brain + Knee + Prostate. During training, target datasets
were retrospectively subsampled, with fully-sampled target data reserved only for inference.
Proxy datasets were also retrospectively subsampled for training, with their fully-sampled
measurements used to compute the SL loss component of LJSSL

ψ .

3.2. Subsampling Schemes

For our experiments, we applied random uniform subsampling to brain data and used
equispaced subsampling for the knee, prostate, and cardiac data, commonly employed in
the literature (Zbontar et al., 2019; Wang et al., 2024). During training, we randomly
selected acceleration factors of R = 4, 8, 12 (only for A), and 16 (only for B). We retained
8%, 4%, 3%, and 2% of the fully-sampled ACS lines for R = 4, 8, 12, and 16, respectively.
During inference, all these acceleration factors were tested.

SSL Subsampling Partitioning During the training of any SSL-based method, includ-
ing JSSL, we split the subsampled data into two distinct sets, as explained in Sec. 2.3.
Specifically, Θi was obtained from Mi using a 2D Gaussian sampling approach with a
standard deviation of 3.5 pixels, as it has been shown to outperform uniform partitioning
(Yaman et al., 2020). Consequently, we set Λi = Mi \Θi. Furthermore, the ratio qi = |Θi|

|Mi|
was chosen randomly between 0.3 and 0.8. Note that each Λi included a w × w = 4 × 4
window in the ACS region to enhance SME module training.

3.3. Implementation & Optimization

Model Architecture We employed vSHARP, a physics-guided deep learning approach
unrolled over T = 12 iterations, previously used for accelerated MRI reconstruction (Yi-
asemis et al., 2023, 2025; Lyu et al., 2024). Each iteration’s network {Hθt}

T −1
t=0 was a U-Net

(Ronneberger et al., 2015) with four scales and 32 filters at the first scale. For the data
consistency step we set Tx = 10. The SME module used a U-Net with 16 filters at the first
scale. JSSL is model-agnostic, and we explore additional architectures in Appendix D.1.
Optimization We employed the Adam optimizer with ϵ = 10−8, (β1, β2) = (0.99, 0.999),
and an initial learning rate (lr) of 0.003. A lr scheduler reduced it by 0.8 every 150,000
iterations. Training was conducted on two A6000 RTX GPUs with a batch size of two
slices per GPU using the DIRECT toolkit (Yiasemis et al., 2022a). All models were trained
to convergence. Loss was computed combining image and frequency domain components
motivated by prior work (Yiasemis et al., 2025):

LI
SL,LI

SSL := 2 (LSSIM + L1) + HFEN1 + HFEN2, LK
SL,LK

SSL := 2 (NMSE + NMAE) .

3.4. Training Setups Comparison

We conducted the following experiments: (1) SSL in the target domain, (2) SSL in both
target and proxy domains (SSL ALL), (3) SL in the target domain, (4) SL in both proxy
and target domains (SL ALL), (5) SL in proxy domains only (SL PROXY), and (6) JSSL.

6



Joint Supervised and Self-supervised Learning for MRI Reconstruction

Our primary goal was to assess JSSL against SSL approaches in scenarios where fully-
sampled target data are unavailable. To verify that JSSL’s performance does not simply
result from using a larger dataset, we included SSL ALL, which incorporates all available
data (target + proxy) under a SSL strategy. SL methods served as a reference, though their
results are naturally expected to be superior when fully-sampled target data are accessible.

3.5. Evaluation

The performance of our experiments was evaluated on the target test sets using three
metrics: SSIM, PSNR, NMSE (Yiasemis et al., 2024). Model checkpoints were selected
based on validation set performance. Statistical tests assessed whether the top method
in each category (SL, SSL including JSSL) significantly outperformed others. We first
computed performance differences between the best and other methods within each category.
The Shapiro-Wilk test checked normality; if satisfied (p > α = 0.05), a paired t-test was
used; otherwise, the Wilcoxon signed-rank test was applied. Results where the best method
(bold) was not statistically superior (p > α = 0.05) are marked with an asterisk (∗).

3.6. Results
Table 1: Results for fastMRI prostate (target) using brain and knee (proxy) datasets.

Setup 2x 4x 8x 16x
SSIM pSNR NMSE SSIM pSNR NMSE SSIM pSNR NMSE SSIM pSNR NMSE

SL 0.974±0.010 41.8±2.3 0.002±0.001 0.930±0.022 37.5±1.8 0.005±0.002 0.868±0.033 33.9±1.6 0.011±0.003 0.799±0.045 31.0±1.6 0.021±0.005

SL ALL 0.969±0.012 41.1±2.3 0.002±0.001 0.922±0.024 36.9±1.8 0.005±0.002 0.854±0.035 33.2±1.5 0.013±0.003 0.771±0.049 30.0±1.6 0.026±0.006

SL PROXY 0.961±0.016 39.8±2.4 0.003±0.002 0.914±0.026 36.4±1.8 0.006±0.002 0.839±0.041 32.5±1.7 0.015±0.004 0.733±0.051 28.6±1.5 0.035±0.008

SSL 0.956±0.015 38.8±2.6 0.004±0.002 0.891±0.030 34.7±2.0 0.009±0.003 0.801±0.038 31.1±1.5 0.020±0.005 0.707±0.050 28.0±1.6 0.041±0.008

SSL ALL 0.953±0.016 38.6±2.5 0.004±0.002 0.892±0.031 34.8±2.0 0.009±0.004 0.801±0.041 31.1±1.6 0.020±0.006 0.699±0.052 27.8±1.6 0.043±0.010

JSSL 0.965±0.015 39.5±2.8 0.003±0.002 0.918±0.026 36.4±1.9 0.006±0.002 0.842±0.038 32.5±1.6 0.015±0.004 0.752±0.053 29.3±1.6 0.030±0.007

Table 2: Results for cardiac (target) using brain, knee and prostate (proxy) datasets.
Setup 2x 4x 8x 12x

SSIM pSNR NMSE SSIM pSNR NMSE SSIM pSNR NMSE SSIM pSNR NMSE
SL 0.991±0.003 48.1±2.5 0.004±0.003 0.984±0.005 45.7±2.0 0.006±0.002 0.965±0.011 40.6±2.2 0.018±0.007 0.946±0.018 37.8±2.3 0.035±0.015

SL ALL 0.987±0.004 46.5±2.6 0.005±0.004 0.979±0.006 44.5±1.9 0.007±0.003 0.956±0.012 39.4±1.9 0.024±0.008 0.932±0.019 36.5±2.0 0.047±0.016

SL PROXY 0.875±0.037 39.8±2.0 0.022±0.009 0.880±0.035 37.6±2.0 0.036±0.012 0.848±0.034 33.1±1.7 0.099±0.027 0.810±0.041 30.0±2.2 0.211±0.079

SSL 0.944±0.017 41.2±2.1 0.016±0.007 0.902±0.020 36.2±2.0 0.049±0.014 0.854±0.025 33.2±1.7 0.097±0.020 0.817±0.032 31.2±1.9 0.153±0.038

SSL ALL 0.974±0.006 44.0±1.9 0.009±0.005 0.929±0.016 37.9±1.9 0.033±0.011 0.862±0.026 33.0±1.7 0.102±0.026 0.814±0.034 30.3±2.0 0.191±0.059

JSSL 0.975±0.007 45.5±2.0 0.006±0.004 0.944±0.013 39.2±2.0 0.025±0.010 0.893±0.022 34.3±1.8 0.077±0.023 0.848±0.032 31.1±2.1∗ 0.161±0.059∗

The quantitative results of our comparative studies are summarized in Tables 1 and 2,
which detail metric averages and statistical significance. As expected, supervised methods
consistently produced the best reconstruction results across both experimental setups.

From Tab. 1, it is evident that in experiment set A (prostate as target), JSSL demon-
strated superior reconstruction performance across all acceleration factors and metrics com-
pared to both SSL and SSL utilizing all data (SSL ALL). Notably, JSSL approached the
performance of supervised methods (SL, SL ALL), particularly at R = 2, 4, 8. The use of
proxy datasets in SSL settings (SSL ALL) did not enhance performance over SSL alone.
Similarly, supervised training on all data (SL ALL) offered no significant advantage over
SL alone. In SL PROXY, where training relied solely on proxy datasets, out-of-distribution
inference on the prostate dataset resulted in better reconstruction quality tha SSL. How-
ever, JSSL outperformed SL PROXY in SSIM across all acceleration factors and matched
or exceeded pSNR and NMSE, except at R = 2, where SL PROXY showed a slight edge.
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Figure 2: Example reconstructions from experiment set A (prostate MRI) across different
training setups. The zoomed-in region highlights a clinically significant PIRADS 4 lesion
(indicated by an arrow and bounding box). JSSL preserves lesion visibility even at high
accelerations, whereas SSL reconstructions exhibit oversmoothing and blurring artifacts.

In experiment set B (cardiac as target), similar patterns were observed. JSSL consis-
tently outperformed other SSL methods, except at R = 12, where SSL achieved slightly
better (but non-significant) pSNR and NMSE, as shown in Tab. 2. Unlike in A, SSL
ALL showed performance improvements over SSL for cardiac data. SL PROXY, however,
performed worse than all other methods.

For qualitative analysis, Figures 2, 3, S2, and S3 display sample reconstructions. At
lower accelerations (R = 2, 4), all methods accurately reconstructed prostate data. At
higher accelerations, supervised, SL PROXY, and JSSL setups exhibited fewer artifacts
compared to SSL and SSL ALL. A similar trend was observed for cardiac data, where SSL-
based reconstructions were visually weaker, particularly at high accelerations (R = 8, 12),
yielding highly aliased images. Consistent with the quantitative results, out-of-distribution
inference (SL PROXY) reconstructions exhibited noticeable artifacts.

4. Discussion and Conclusion

This study introduces Joint Supervised and Self-supervised Learning, a novel training frame-
work aimed at improving MRI reconstruction quality when fully-sampled k-space data are
unavailable for the target domain. By integrating SL on fully-sampled proxy datasets with
SSL on subsampled target datasets, JSSL offers a practical alternative to SSL methods,
achieving superior reconstruction quality when acquiring fully-sampled data is infeasible.

Our results demonstrate that JSSL consistently yields higher reconstruction quality
across various accelerations, even when proxy datasets differ anatomically from the target
dataset. Beyond quantitative improvements, JSSL also enhances the clinical interpretabil-
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Figure 3: Example reconstructions from experiment set B (cardiac MRI) across different
training setups. The zoomed-in region focuses on the heart, showing that JSSL maintains
sharper anatomical boundaries and clearer phase transitions, while SSL reconstructions
suffer from blurring and structural loss.

ity of reconstructed images. As observed in Figures 2 and 3, JSSL better preserves key
anatomical structures across different accelerations compared to SSL. In the prostate sam-
ples, lesion visibility is maintained even at high acceleration rates, crucial for detecting
clinically significant cancer. Similarly, in cardiac MRI, JSSL reconstructions exhibit clearer
heart boundaries and cardiac phase transitions, reducing artifacts that could impair clinical
assessment. Additionally, JSSL achieves consistent improvements across different model ar-
chitectures, showcasing its robustness and independence from specific architectural choices.

The effectiveness of JSSL is influenced by the choice and similarity of proxy datasets.
For instance, in our experiments SL PROXY struggled when proxies were highly dissimilar
from the target domain. Moreover, incorporating proxy datasets may introduce biases that
could impact model performance. Additionally, the partitioning strategy for self-supervised
learning, the choice of loss functions, and their weighting in JSSL training may further
affect results. Lastly, our comparisons are limited to SSDU as a representative SSL method,
given that most self-supervised approaches are derivatives of SSDU. Extended discussion of
limitations in Appendix F. Ultimately, JSSL aims to enhance SSL performance and not to
compete with SL in cases where fully-sampled ground truth data for the target domain are
available, as SL remains the optimal choice under such conditions. Based on our findings,
we propose the following “rule-of-thumb” training guidelines:
(1) Use SL when fully-sampled ground truth data are available for the target dataset.
(2) When only subsampled target data are present, and ground truth data are accessible

from proxy datasets (e.g., fastMRI or CMRxRecon), adopt the JSSL approach.
(3) If only proxy ground truth data exist, supervised training in proxy domains can be

effective, particularly when proxies are anatomically similar to the target domain.
(4) In scenarios with only subsampled target data proceed with SSL.
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Appendix A. Related Work

In the realm of self-supervised learning-based MRI reconstruction, among the first works
introduced was SSDU (Self-supervised learning via data undersampling) (Yaman et al.,
2020). SSDU, inspired by SSL concepts from deep learning, particularly Noise2Self (Batson
and Royer, 2019), proposed training a reconstruction model (ResNet CNN with conjugate
gradient formulation) by partitioning the undersampled data into two subsets. One subset
served as input, and the other as the target, with the loss estimated in the k-space domain.

An extension of SSDU was proposed in a parallel network framework (Hu et al., 2021),
where two networks were trained on each partition of the subsampled k-space data. A
consistency loss minimized the discrepancy between the two networks’ outputs, allowing
either network to be used during inference since both networks were trained to produce
consistent results.

Further building on SSDU, (Millard and Chiew, 2022) introduced a Noisier2Noise frame-
work, where a second subsampling mask was applied to the already subsampled k-space
data. The employed network, E2EVarNet (Sriram et al., 2020), was trained to recover
singly subsampled data from the doubly subsampled version, showing that SSDU is a special
case of this broader method. Furthermore, (Millard and Chiew, 2022) provided theoretical
justifications for SSDU.

In the realm of diffusion-based MRI reconstruction, a fully-sampled-data-free score-
based diffusion model was proposed in (Cui et al., 2022), where the model learned the
prior of fully-sampled images from subsampled data in a self-supervised manner. Another
diffusion-based approach, SSDiffRecon (Korkmaz et al., 2023), integrated cross-attention
transformers with data-consistency blocks in an unrolled architecture. However, diffusion-
based methods are outside the scope of our work.

Following the SSDU subsampled data splitting, in (Yan et al., 2023) the authors present
DC-SiamNet, which employs two branches with shared weights in a Siamese architecture.
Each branch reconstructs from a partition of the k-space data, and the training is guided
by a dual-domain loss that includes image and frequency domain consistency which ensure
reconstructed images/k-spaces are consistent across partitions, along with contrastive loss
in the latent space.

A more recent work extended SSDU by introducing SPICER, which includes coil sen-
sitivity estimation based on autocalibration signal (ACS) data and utilizes U-Net-based
models for both sensitivity estimation and reconstruction (Hu et al., 2024). Similar sensi-
tivity estimation was also employed in (Millard and Chiew, 2022) within the E2EVarNet
framework.

Finally, SSDU has also been applied to reconstruct non-Cartesian MRI data, with the
subsampled k-space split into disjoint parts (Zhou et al., 2022b). In this approach, a vari-
ational network is trained using a dual-domain loss similar to (Yan et al., 2023): frequency
consistency ensures that reconstructed k-spaces from each partition match the input data,
while image consistency ensures that the reconstructed images are consistent across parti-
tions. Additionally, loss is computed by comparing the reconstructed k-spaces and images
from each partition with those generated when subsampled data is used as input.

Most self-supervised MRI reconstruction methods can be seen as derivatives or exten-
sions of SSDU, with partitioning of undersampled data into disjoint subsets as the funda-
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mental idea. This partitioning approach underpins the SSL component of our method, and
without loss of generality, SSDU can be considered a representative method in this domain.
While recent techniques have incorporated different architectures or loss functions, they
largely build upon this core strategy.

Our proposed method, Joint Supervised and Self-Supervised Learning, draws inspiration
from these aforementioned approaches. Like most SSL-based methods, it seeks to overcome
the challenge of training without fully-sampled k-space data for the target organ domain.
However, JSSL extends the applicability of such techniques by leveraging fully-sampled
data from proxy datasets while incorporating subsampled data from the target domain.
This enables joint training through both supervised and self-supervised learning, providing
a practical solution for scenarios where ground truth fully-sampled data is inaccessible, yet
allowing for improved reconstruction performance through the combination of proxy and
target datasets.

In the broader context of combining supervised and self-supervised learning, Noise2Recon
(Desai et al., 2023) extended SSDU by leveraging both fully-sampled and subsampled data
within a single organ domain for reconstruction and denoising, using the E2EVarNet model
(Sriram et al., 2020). However, this method’s dependency on fully-sampled data restricts
its applicability in scenarios where such data is unavailable.

Another recent approach utilized paired fully-sampled and subsampled data from differ-
ent modalities for reconstruction of the target modality (Zhou et al., 2022a). While SSL was
employed for training, this method still relied on fully-sampled data during both training
and inference, which contrasts with our approach that focuses on cases where fully-sampled
data is unavailable for the target domain.

Lastly, test-time training (Darestani et al., 2022) is a recent method proposed to handle
domain shifts in MRI reconstruction. By re-training models at inference times using a SSL
data-consistency loss, it aims to adjust to shifts in data distribution between training and
testing, such as moving from one scanner to another. However, this technique operates at
inference time, which limits its utility in real-time imaging applications.

Appendix B. JSSL Theoretical Motivation

The core concept behind JSSL is to leverage both supervised and self-supervised learning
to enhance MRI reconstruction of a target dataset, even when the parameters optimized
on supervised proxy tasks may not be the most optimal. We hypothesize that introducing
a supervised proxy task serves as a form of regularization, reducing the variance of our
estimators due to the proxy supervised training on a ‘less noisy’ task. We illustrate this
intuition with two simplified examples in Proposition 1 (estimating means of distributions)
and Proposition 2 (linear regression), where we assume two distributions - one that we wish
to estimate, but we cannot obtain sufficient samples from, and a proxy distribution that is
directly accessible. We demonstrate that drawing samples from both distributions (or using
only the proxy distribution) can reduce our estimator’s variance and risk.

Proposition 1 Consider two distributions pi, i = 1, 2 with means and variances µi, σi, i =
1, 2, with unknown µ1, and µ1 ̸= µ2. Then if (µ1 − µ2)2 < c

σ2
1

N for some c ∈ (0, 1) and
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N ∈ Z+, then x̃ = 1
N+K

∑N+K
i=1 xi is a lower-variance estimator of µ1 compared to x =

1
N

∑N
i=1 xi, where

{
x(i) ∼ p1

}N

i=1
and

{
x(N+i) ∼ p2

}K

i=1
for a choice of a large K ∈ Z+.

Proof Assume a mixture distribution:

pπ(x) = πN (x|µ1, σ2
1) + (1− π)N (x|µ2, σ2

2).

It is then straightforward to compute:

E [pπ] = πµ1 + (1− π)µ2

and,

V [pπ] = πσ2
1 + (1− π)σ2

2 + π(1− π)(µ2 − µ1)2.

Drawing
{

x(i) ∼ p1
}N

i=1
and

{
x(N+i) ∼ p2

}K

i=1
, is approximately equivalent to drawing N +

K samples from the mixture pπ with π = N
N+K . Using bias-variance decomposition, we can

compute the expected mean squared errors for the two estimators:

E
[
(x− µ1)2

]
= σ2

1
N

,

and,

E
[
(x̃− µ1)2

]
= (1− π)2(µ1 − µ2)2 + πσ2

1 + (1− π)σ2
2 + π(1− π)(µ1 − µ2)2

N + K
.

If (µ1 − µ2)2 < c
σ2

1
N for some c ∈ (0, 1), then taking the limit K → ∞ and thus π → 0,

we observe that

E
[
(x̃− µ1)2

]
→ (µ1 − µ2)2 < c

σ2
1

N
<

σ2
1

N
= E

[
(x− µ1)2

]
.
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Proposition 2 Let x ∼ N (0, σ2Ip) be Rp-valued isotropic Gaussian random vector and
y, ỹ be random variables with p(y|x) = N (y|wTx, ε2) and p(ỹ|x) = N (ỹ|w̃Tx, ε̃2) for some
w, w̃ ∈ Rp. Let T = {(x1, ỹ1), . . . , (xK , ỹK)} be a training data set with K > p and
consider a maximum likelihood estimator ŷ(x; T ) for y given x, computed using T . Then
the following holds:

1. BiasT [ŷ(x; T )] = (w̃T −wT )x.

2. VarT [ŷ(x; T )] = ε̃2

σ2K
∥x∥22.

3. E(x,y)[ŷ(x; T )− y]2 ≤ pσ2∥w̃ −w∥22 + pε̃2

K + ε2

Proof Let w̃MLE = (XTX)−1XT ỹ be the MLE estimator for w̃, where the K rows of
X ∈ RK×p are given by xT

1 , . . . ,xT
K and the vector ỹ is defined as ỹ := (ỹ1, . . . , ỹK) ∈ RK .

Since K > p, matrix X has full column rank almost surely and thus XTX is almost surely
invertible. Observe that

ET [w̃T
MLE] = ET [(ε̃T + w̃TXT )X(XTX)−1] = w̃T ,

since ε̃ := ỹ −Xw̃ has zero mean, is independent from xi’s and the expectation ET [·] can
be rewritten as Ex1,...,xK [Eε̃[·]]. By definition of estimator bias,

BiasT [ŷ(x; T )] = ET [ŷ(x; T )]− Ey|xy = ET [w̃T
MLE]x−wTx = (w̃T −wT )x.

Next,

VarT [ŷ(x; T )] = ET [ET [ŷ(x; T )]− ŷ(x; T )]2 =
= ET [w̃Tx− (ε̃T + w̃TXT )X(XTX)−1x]2 = ET [ε̃TX(XTX)−1x]2.

The scalar (ε̃TX(XTX)−1x)2 can be equivalently written as

(ε̃TX(XTX)−1x)T (ε̃TX(XTX)−1x) = xT (XTX)−1XT ε̃ε̃TX(XTX)−1x.

Using that ET [·] = Ex1,...,xk
[Eε̃[·]], we deduce that

ET [ε̃TX(XTX)−1x]2 = Ex1,...,xK [xT (XTX)−1XT Eε̃[ε̃ε̃T ]X(XTX)−1x] =
= ε̃2Ex1,...,xK [xT (XTX)−1x] = ε̃2Ex1,...,xK [tr(xT (XTX)−1x)] =
= ε̃2Ex1,...,xK [tr(xxT (XTX)−1)] = ε̃2tr(xxT Ex1,...,xK [(XTX)−1]),

where we use cyclic property of the trace and the fact that z = tr(z) for a scalar z. To
compute Ex1,...,xK [(XTX)−1], we note that, by definition, XTX follows Wishart distribu-
tion Wp(σ2Ip, K) with K degrees of freedom and thus (XTX)−1 follows inverse Wishart
distribution W−1

p (σ−2Ip, K + p + 1), whose mean equals Ip

σ2K
. Combining this with the

previous results, we conclude

VarT [ŷ(x; T )] = ε̃2

σ2K
tr(xxT ) = ε̃2

σ2K
∥x∥22.

The final estimate follows from the first two identities and the bias-variance decomposition.
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Propositions 1 and 2 imply that leveraging a large number of samples from the proxy
distribution (K → ∞) can lead to a significant reduction in the variance of estimators
trained under both supervised and self-supervised learning paradigms. Moreover, it high-
lights how the introduction of bias through supervised learning can be a strategic trade-off
to lower variance. Additionally, Proposition 2 sheds light on how the risk associated with
our estimator can be influenced by the degree of similarity between the target and proxy
distributions.

Appendix C. Experiments

C.1. Datasets Information

In our experiments we utilize the fastMRI Knee (Zbontar et al., 2019), fastMRI Brain
(Zbontar et al., 2019), fastMRI Prostate (Lyu et al., 2024; Wang et al., 2024), and CM-
RxRecon Cine (Tibrewala et al., 2023) datasets. The characteristics and data splits are
shown below in Table S1.

Table S1: Dataset characteristics and splits.

Dataset fastMRI Knee fastMRI Brain fastMRI Prostate CMRxRecon Cine

Field Strength 1.5 T, 3.0 T 1.5 T, 3.0 T 3.0 T 3.0 T

Sequence
Proton Density with

and without fat suppression

T1-w pre and post

contrast, T2-w, FLAIR
T2-w Cine

Subjects
Healthy or

Abnormality present

Healthy or

Pathology present
Cancer Patients Healthy

Acquisition Cartesian Cartesian Cartesian Cartesian

Fully Sampled or

Subsampled
Fully Sampled Fully Sampled

Three averages (2x) /

GRAPPA reconstructed

One average (3x) /

GRAPPA reconstructed

No. Coils 15 2-24 10-30 10

No. Volumes Used 973 2,991 312 473

No. Slices Used 34,742 47,426 9,508 3,185

Split Size

(No. Volumes/

No. Slices)

Training 973 / 34,742 2,991 / 47,426 218 / 6,647 203 / 1,364

Validation - - 48 / 1,462 111 / 731

Test - - 46 / 1,399 159 / 1,090

In the comparative experiments outlined in Section 3.4, we addressed the imbalance
between proxy datasets (brain and knee in experiment set A; brain, knee, and prostate
in experiment set B) and target datasets (prostate in experiment set A; cardiac cine in
experiment set B) by oversampling the proxy data. Unless specified otherwise, this was
achieved by duplicating each proxy dataset sample to ensure consistency across experiments.

C.2. SSL Subsampling Partitioning

Let Mi denote the sampling set. Here we describe Mi as a sampling mask in the form of a
squared array of size n = nx × ny such that:

(Mi)kj =
{

1, if (k, j) is sampled
0, if (k, j) is not sampled.
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The set Θi is obtained by selecting elements from Mi using a variable density 2D
Gaussian scheme with a standard deviation of σ pixels and mean vector as the center of
the sampling set Mi, up to the number of elements determined by a ratio qi, determined
such that qi = |Θi|

|Mi| , where | · | here denotes the cardinality. Mathematically, the selection
process for Θi from Mi can be described by the following algorithm:

Data: Square array Mi of size nx × ny, ratio 0 < qi < 1, standard deviation σ
Result: Set Θi

Initialize Θi as an array of zeros of the same size as Mi while |Θi|
|Mi| < qi do

Generate (k, j) from N
(
[nx

2 ,
ny

2 ], σ2I2
)

if (Θi)kj == 0 then
(Θi)kj ← 1

end
end

Algorithm 1: Generation of Θi using Gaussian Sampling

Subsequently, to partition Mi, we set Λi = Mi ∖ Θi. Note that by selecting qi = 0 then
Θi = ∅, and for qi = 1 then Θi = Mi.

For our comparison study in Section 3.6 of the main paper for SSL and JSSL experiments
we randomly selected the ratio qi between 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. For our alternative
configurations study in Appendix D.1, we employed an identical partitioning ratio selection
except for the case of a fixed ratio of qi = 0.5. In all our JSSL and SSL experiments we
used σ = 3.5.

(a) Mi (b) Θi (c) Λi = Mi ∖ Θi

Figure S1: Example of SSL subsampling partitioning with a ratio q = 1
2 and w = 4.

C.3. Choice of Loss Functions

Following, we provide the mathematical definitions of each component of the loss function
described in Section 3.3:

• Image Domain Loss Functions
– Structural Similarity Index Measure (SSIM) Loss
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LSSIM := 1− SSIM, SSIM(a, b) = 1
N

N∑
i=1

(2µaiµbi
+ γ1)(2σaibi

+ γ2)
(µ2

ai
+ µ2

bi
+ γ1)(σ2

ai
+ σ2

bi
+ γ2) ,

(11)
where ai, bi, i = 1, ..., N represent 7 × 7 square windows of a, b, respectively,
and γ1 = 0.01, γ1 = 0.03. Additionally, µai , µbi

denote the means of each
window, σai and σbi

represent the corresponding standard deviations. Lastly,
σaibi

represents the covariance between ai and bi.
– High Frequency Error Norm (HFEN)

LHFENk
:= HFENk, HFENk(a, b) = ||G(a)− G(b)||k

||G(b)||k
, (12)

where G is a Laplacian-of-Gaussian filter (Ravishankar and Bresler, 2011) with
kernel of size 15× 15 and with a standard deviation of 2.5, and k = 1 or 2.

– Mean Average Error (MAE / L1) Loss

L1(a, b) = ||a − b||1 =
n∑

i=1
|ai − bi| (13)

• k-space Domain Loss Functions
– Normalized Mean Squared Error (NMSE)

LNMSE := NMSE, NMSE(a, b) = ||a − b||22
||a||22

=
∑n

i=1(ai − bi)2∑n
i=1 a2

i

. (14)

– Normalized Mean Average Error (NMAE)

LNMAE := NMAE, NMAE(a, b) = ||a − b||1
||a||1

=
∑n

i=1 |ai − bi|∑n
i=1 |ai|

. (15)

The rationale for the loss function components is also drawn from the literature (Yi-
asemis et al., 2025). In the frequency domain, LNMSE and LNMAE are used to evaluate
global similarity to the fully sampled k-space, with the former addressing larger deviations
and the latter focusing on finer discrepancies. In the image domain, L1 and LSSIM are
commonly combined to optimize pixel-level accuracy and perceptual quality, while LHFENk

emphasizes the preservation of edges and fine details.
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Appendix D. Supplementary Experiments

D.1. Robustness to Model Choice Experiments

Here, we present supplementary experiments aimed at further validating the efficacy of
our proposed JSSL method. These experiments involve a comparative analysis between
JSSL and traditional SSL MRI Reconstruction. We adapt the methodologies outlined in
Section 3 of our main paper, utilizing two distinct deep MRI reconstruction models instead
of the vSHARP architecture:

• Utilizing a plain image domain U-Net (Ronneberger et al., 2015), a non-physics-based
model that takes an undersampled-reconstructed image as input and refines it. Specif-
ically, we employ a U-Net with four scales and 64 filters in the first channel.

• Employing an End-to-end Variational Network (E2EVarNet) (Sriram et al., 2020), a
physics-based model that executes a gradient descent-like optimization scheme in the
k-space domain. For E2EVarNet, we perform 6 optimization steps using U-Nets with
four scales and 16 filters in the first scale.

To estimate sensitivity maps for both architectures, an identical Sensitivity Map Es-
timation (SME) module was integrated, mirroring the experimental setup outlined in our
primary paper.

Both models underwent training and evaluation on data subsampled with acceleration
factors of 4, 8, and 16, with ACS ratios of 8%, 4%, and 2% of the data shape. Choices
of hyperparameters for JSSL and SSL are the same as in the comparative experiments
presented in Section 3.6. Additionally, choices for proxy and target datasets, as well as data
splits, are also the same as in the main paper.

Experimental setups were executed on NVIDIA A100 80GB GPUs, utilizing 2 GPUs
for U-Net and 1 GPU for E2EVarNet. We employed batch sizes of 2 and 4 for U-Net and
E2EVarNet, respectively, on each GPU. The optimization procedures, initial learning rates,
and the employed optimizers aligned with those utilized in the main paper.

Table S2: Model architectures parameters.

Model
Parameter

Count (millions)
Physics Model

Training

Iterations (k)

Learning Rate

Reduction Schedule

Inference Time (s)

per volume

vSHARP 95 ADMM 700 150k 17.7

U-Net 33 - 375 75k 13.1

E2EVarNet 13.5 Gradient Descent in k-space Domain 250 50k 13.9

Table S2 details the model specifics for all considered architectures presented in both
the main paper and this section.

D.1.1. Robustness to Model Choice Experiments Results

The average results of our supplementary comparative studies to assess JSSL’s robustness
to different architecture choices are provided in Table S3. From these results we observe
alignment with our original findings: JSSL-trained models consistently outperform SSL-
trained models for both architecture choices.
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Table S3: Robustness to model choice experiments results. An asterisk (∗) denotes that the
average best method (bold) was not found to be statistically significantly better than the
corresponding method (p > 0.05).

Architecture Setup
4x 8x 16x

SSIM pSNR NMSE SSIM pSNR NMSE SSIM pSNR NMSE

U-Net
SSL 0.854±0.031 33.0±1.6 0.013±0.004 0.742±0.040 29.4±1.4 0.030±0.006 0.651±0.051 26.7±1.5 0.055±0.009

JSSL 0.863±0.031 33.5±1.5 0.012±0.002 0.759±0.042 29.7±1.4 0.027±0.005 0.663±0.051 26.7±1.4∗ 0.055±0.009∗

E2EVarNet
SSL 0.874±0.029 33.7±1.7 0.011±0.003 0.770±0.039 30.0±1.4 0.025±0.006 0.670±0.051 27.0±1.5 0.051±0.009

JSSL 0.888±0.032 34.9±1.6 0.008±0.002 0.784±0.042 30.5±1.4 0.023±0.005 0.678±0.053 27.1±1.5 0.050±0.009

Furthermore, the superior performance of vSHARP and E2EVarNet compared to the
U-Net model in both SSL and JSSL settings across all acceleration factors highlights the
advantage of adopting physics-guided unrolled models for reconstruction. It is also worth
mentioning that vSHARP consistently outperformed E2EVarNet at all accelerations.
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Appendix E. Additional Figures

Figure S2: Example reconstructions of a prostate MRI slice subsampled at different acceler-
ation factors from the test set in experiment set A. Each training setup is compared against
the ground truth. The zoomed-in region highlights the prostate.
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Figure S3: Example reconstructions of a cardiac MRI slice subsampled at different acceler-
ation factors from the test set in experiment set B. Each training setup is visualized against
the ground truth. The zoomed-in region highlights the heart.
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Appendix F. Extended Discussion

F.1. Limitations

While our experiments indicate that JSSL demonstrates improvements over conventional
SSL methods, several limitations warrant discussion. Firstly, the efficacy of JSSL is highly
dependent on the availability and quality of proxy datasets. Although datasets such as
the fastMRI datasets contain fully-sampled data and are readily available, there might
be instances where such datasets cannot be used. This could occur in cases where the
anatomical regions of interest in the proxy datasets are not sufficiently similar to those in
the target dataset, or where differences in imaging protocols and acquisition parameters
introduce significant discrepancies.

For instance, in experiment set A, where the fastMRI prostate data served as the target
domain and brain and knee fastMRI datasets were used as proxies, the SL PROXY setup
showed relatively good performance, indicating that training with similar proxy domains
can still be beneficial for out-of-distribution inference. However, in experiment set B, where
the CMRxRecon cardiac data was the target and brain, knee, and prostate fastMRI datasets
served as proxies, the performance of SL PROXY was significantly lower than all methods,
highlighting that when proxies are dissimilar to the target, SL PROXY struggles to gen-
eralize effectively. In both scenarios, JSSL consistently surpassed SL PROXY, indicating
that the combined supervised and self-supervised approach is more robust, regardless of the
proxy dataset’s similarity.

Additionally, the inclusion of proxy datasets in training can introduce biases, particularly
if there are substantial differences between the proxy and target domains. This bias could
potentially degrade the model’s performance on the target dataset, as observed in some of
our supervised learning experiments.

Moreover, similar to any DL-based method, JSSL’s performance is influenced by the
choice of loss functions for each component of the JSSL loss and their weighting in the
loss LJSSL

ψ . In our experiments, we employed identical dual-domain loss functions for each
component and equal weighting for the SL and SSL components (see Appendix Section C).
However, different loss and weighting choices might affect JSSL’s performance.

JSSL performance also depends on the partitioning strategy used for subsampled data
in self-supervised learning. While we adopted a Gaussian partitioning scheme, alternative
strategies might yield different results and require further exploration. The optimal parti-
tioning scheme may vary depending on the specific characteristics of the target and proxy
datasets, as well as the desired reconstruction quality.

Lastly, our experiments are limited to comparing only one SSL method (SSDU) and
does not consider other proposed self-supervised methodologies. However, the reason for
comparing to SSDU only is that we consider it representative, as most SSL-based methods
are derivatives of SSDU and still employ SSL-based losses to train their models (refer to
Apendix A). In addition, comparing to methods that train more than one model as their
SSL task is outside the scope of this research, as this can introduce additional computational
difficulties and are derivatives of the SSDU method. Our purpose is to compare JSSL and
SSL training methods in their general forms.
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