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ABSTRACT
Federated learning (FL) revolutionizes machine learning by decen-
tralizing data processing. It allows local devices to train models
on their data and share updates with a central server, preserv-
ing privacy and optimizing bandwidth. Despite its potential, FL
encounters challenges, especially in client selection, due to the
non-independent and identically distributed (non-IID) nature of
client data that can lead to performance deterioration, and the im-
practicality of engaging all clients simultaneously due to resource
constraints and increased training expenses. To address these issues,
we propose a novel Largest Distance Client Selection (LDCS) method
that prioritizes clients based on the divergence of their local models
from the global model, as quantified by the Frobenius norm. This
strategy aims to optimize client participation by focusing on those
with the most significant potential to enhance the global model,
thereby improving training efficiency andmodel performance while
overcoming the limitations of existing random or loss-based ap-
proaches. Experimental outcomes demonstrate that, in comparison
with four existing client selection methods, our method achieves
improvements of up to 5% and expedites the convergence process,
with speed enhancements reaching as high as 8.5%.
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1 INTRODUCTION
In the era of information, the rapid growth of data across various
domains offers opportunities and challenges. A large volume of
data is being generated by local devices, which can be utilized to
obtain useful information for detecting, classifying, and predicting
future events. Traditional centralized data processing model, which
aggregates data from multiple sources on a single machine for
analysis, is becoming less practical due to bandwidth constraints
and rising concerns about data privacy and security. The growing
awareness among individuals and organizations about the need
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to protect personal and sensitive information has underscored the
importance of data security, making the acquisition of reliable and
accurate data more challenging than ever. Federated learning (FL)
emerges as a solution to these challenges, offering a decentralized
approach to machine learning. One seminal work is FedAvg [6].

However, implementing the FL in real-life scenarios presents sev-
eral challenges. While clients train models locally and share updates
to improve the global model, not every client is (equally) beneficial
for training the global model. One primary issue is the variability
in data distribution across clients. Often, the training data on these
clients are non-independent and identically distributed (non-IID),
meaning that each device may have data that shifts in distribution,
quantity, or type, rather than being uniformly distributed (e.g., the
same number of data points for each class). This discrepancy can
introduce challenges to model training, potentially reducing ac-
curacy. Another issue is the computation cost. Due to expensive
communication resources, engaging in the training process all at
once is impractical. This limitation arises from several factors, such
as limited bandwidth, processing capabilities, and energy costs. Ad-
dressing these challenges hinges on strategically selecting a sound
subset of clients for participation, a decision crucial for maximizing
performance while minimizing energy consumption.

A straightforward approach involves randomly selecting a spe-
cific number of clients 𝑘 from the pool each training round (u.a.r.).
However, this may not fully leverage unique contributions of lo-
cal updates due to the diversity in client data distributions and
hardware, potentially undermining the global model’s performance.
Recent work utilizing the losses computed from individual client
models. In AFL [3], the server calculates these losses to generate
probabilities that guide the selection of the next group of clients
for training. POW [1] prioritizes clients that exhibit the highest
local loss according to the current global model, while UCB-CS
[2] employs a loss reduction index to identify the top clients for
participation. However, loss-based methods can inadvertently intro-
duce bias. By disproportionately favoring clients that significantly
reduce global loss, these strategies risk overlooking the importance
of data diversity, potentially leading to model overfitting. Moreover,
focusing on high-loss clients can strain resources and limit scala-
bility, as it fails to consider the full spectrum of clients and their
varied data contributions.

In this paper, we propose a novel Largest Distance Client Selection
(LDCS) method. We aim to optimize client participation in model
training by prioritizing those with the most significant potential for
improving the global model. Specifically, the server first requests the
local model from each client. Then it employs the Frobenius norm
to quantify the divergence between each local and global model.
This divergence serves as a basis for ranking clients: those whose
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Figure 1: An illustrative example of FedLDCS, wherein 4 clients collaborate to train a model 𝜃𝑡 on non-IID datasets orchestrated
by a server. An active client 𝑖 optimizes the current global model 𝜃𝑡 on its local dataset and obtains an updated model 𝜃𝑖 . Client
2 is excluded due to its least divergence from 𝜃𝑡 . The solid lines between clients and the server denote bidirectional active
communication links, whereas the dashed line refers to an idle link. ∥ · ∥F defines Frobenius norm.

local models exhibit large discrepancies from the global model are
considered important. For subsequent training rounds, we select
the top-𝑘 clients that demonstrate the greatest variance from the
global model. This targeted selection criterion ensures that only
clients with the most substantial local improvements are trained
and updated. Consequently, this method accelerates training speed
and sidesteps the inefficiencies associated with existing loss-based
methods. This paper makes the following contributions:

• We propose a novel client selection methodology–Longest
Distance Client Selection (LDCS) for non-IID federated learn-
ing.
• The novel approach enhances system efficiency by minimiz-
ing communication overhead through a strategic computa-
tion of the divergences between local and global models.
• In comparison to existing client selection methods, our pro-
posed LDCS accelerates convergence speed by up to 8.5% and
improves test accuracy by as much as 5%.

2 RELATEDWORKS (OR BACKGROUND)
Resource optimization for federated learning is a common topic in
recent research. Recent work has focused on the joint optimization
of heterogeneous data, computation, and communication resources
[7], [9], [11]. However, these approaches primarily aim to minimize
computation times and/or energy consumption for general com-
putational tasks, which differs significantly from our work. Our
objective is to maximize the efficiency of training machine learning
models. We assume a scenario where each client possesses data

and computational resources, ensuring data privacy during ML
tasks. These distinctions motivate our proposal of a new adaptive
divergence-based client selection method for federated learning.

In [8], the authors introduced the Federated Learning Gaussian
Process (FedGP) algorithm for client selection in heterogeneous
scenarios. Their algorithm models the changes in client loss as a
Gaussian Process (GP) to determine the selection strategy, resulting
in fast convergence and reduced redundancy in client selection.
However, their study only considered data distribution across the
edge. In [10] and [12], client selection algorithmswere introduced to
account for heterogeneous data distribution across the edge, aiming
to select edge devices that reduce model convergence time. In [4],
the authors identified volatile clients—those unavailable for training
during all rounds—and differentiated these clients in their selection
criteria. They proposed a stochastic selection algorithm based on a
fairness quota to balance convergence speed and model accuracy.
However, their work did not consider energy consumption or its
impact on client performance and the global model.

When client selection is based on features that do not accurately
represent clients, some resources can be overused while others are
underutilized. Utilizing a diverse set of features can lead to more
efficient resource utilization, refining the selection of clients who
significantly influence the model. In this paper, feature selection
is based on metrics that more accurately represent edge devices,
allowing us to explore the trade-off between resource usage and
model performance.
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Figure 2: Label distributions under different Dirichlet distribution

3 MOTIVATIONS
Federated learning, by its very nature, introduces a distinct set of
complexities when it comes to the selection of clients for model
training. This is especially true in situations where data distribu-
tions are not independently and identically distributed (non-IID).
Conventional approaches, such as random selection or sequential
selection, frequently lead to inconsistent outcomes. Our research,
carried out using a straightforward Convolutional Neural Network
(CNN) model and the CIFAR-10 dataset across 10 clients under a
variety of conditions, offers valuable insights into the selection
patterns of these methods.

More specifically, we utilize the CIFAR-10 dataset, which is dis-
tributed under various Dirichlet distributions (i.e., non-IID datasets)
and a uniform distribution (i.e., IID datasets), to assess different
client selection strategies. For instance, Figure 2 illustrates the label
distributions of the datasets with (a) a uniform distribution, (b) a
Dirichlet distribution with 𝛽 = 0.6 and 0.9. It is observable that
different data distributions can impact the availability of labels per
client, thereby influencing client selection strategies.

We then implement three conventional client selection strate-
gies on datasets with varying data distributions: Random: Clients
are selected randomly in each round of the learning process. Ran-
dom Round Robin: The user selector selects users randomly in a
round-robin manner. During each round, it uniformly selects users
from those not yet chosen in the current epoch. Importance Sam-
pling: User selector that performs Important Sampling. Each user
is randomly selected with a probability proportional to (number
of samples in user * clients per round) / total samples in dataset.
These traditional strategies will also be used as the baselines for
the comparisons in our evaluation.

From Figure ??, it is evident that the performance of the impor-
tance sampling client selection algorithm surpasses that of random
selection and outperforms random round-robin under IID datasets.
The reason for this is that in an IID dataset, the equal distribution of
labels allows importance sampling to prioritize clients with higher
weights, thereby effectively enhancing learning in each training
round. However, in a non-IID dataset, the skewed label distribu-
tion makes it challenging to identify high-weight clients, as the
importance of each client’s data is less clear.

Algorithm 1: FedLDCS

1 Input: Number of global rounds 𝑇 , model initialization 𝜃0,
number of clients 𝑁 , number of local epochs 𝐸, number of
selected clients 𝐾 , local learning rates {𝜂𝑡 }𝑡=0,· · · ,𝑇−1.

2 The server initializes parameter 𝜃0 and client 𝑖 initializes

𝜃𝑖 = 𝜃
0, ∀𝑖 ∈ [𝑁 ]. Define 𝜽 =

{
𝜃𝑖 | 𝑖 ∈ [𝑁 ]

}
;

3 for 𝑡 = 0, · · · ,𝑇 − 1 do
/* On the server */

4 S𝑡 ← LDCS(𝜽 , 𝜃𝑡 , 𝐾, 𝑡 ) ;
5 Broadcast 𝜃𝑡 to clients in S𝑡 ;

/* On the clients */

6 for 𝑖 ∈ S𝑡 do
7 𝜃𝑖 ← LocalOpt(𝜃𝑡 , 𝜂𝑡 , 𝐸 ) ;
8 Upload 𝜃𝑖 to the server;
9 end

/* On the server */

10 𝜃𝑡+1 ← 1
|S𝑡 |

∑
𝑖∈S𝑡

𝜃𝑖 ;

11 end

12 Function LDCS(𝜽𝑡 , 𝜃𝑡 , 𝐾, 𝑡):
13 S𝑡 ← [𝑁 ];
14 if 𝑡 = 0 then return S𝑡 ;
15 else while |S𝑡 | > 𝐾 do
16 𝑖 ← argmin

𝑖∈S𝑡
∥𝜃𝑡 − 𝜃𝑖 ∥F;

17 S𝑡 ← S𝑡 \ {𝑖 };
18 end
19 return S𝑡 ;

4 THE PROPOSED METHODS
In this section, we introduce our proposed Federated Average with
Largest Distance Client Selection (FedLDCS) in Algorithm 1. Specif-
ically, we propose a novel client selection scheme termed as Largest
Distance Client Selection in LDCS function.

Lines 5-10 illustrate a standard FL pipeline as in the FedAvg
algorithm, where an active client 𝑖 in the selected client set S𝑡
downloads the latest global model 𝜃𝑡 from the server and optimizes
on its local dataset to get an updated local model 𝜃𝑖 . Depending
on the system configuration, local data distributions can either be
IID or non-IID across clients. Departing from engaging clients uni-
formly at random, lines 11-18 describe the proposed LDCS module.
In the first round (𝑡 = 0), all clients are required to participate in
FL training to get the first update of 𝜽 , a criteria to decide who to
participate. When a client 𝑖 is admitted to S𝑡 and completes local
training, the latest 𝜃𝑖 replaces the staled one in 𝜽 . Otherwise, 𝜃𝑖
remains unchanged. Starting from the second round, an iterative
procedure (lines 15-18) is implemented to pick the clients, whose
models 𝜃𝑖 ’s are the 𝐾 farthest away from the current global model
𝜃𝑡 . The distance is measured by Frobenius norm. As shown, 𝜽 brings
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Table 1: Comparisons of client selection schemes in terms of convergent round and test accuracy under different local data
heterogeneity and different numbers of selected clients 𝐾 out of 10 clients on CNN and CIFAR-10 [5]. The convergent round is
defined as the round, where the fluctuations in test accuracy do not exceed 1% in a consecutive of the last 10 rounds.

Selection Scheme Dirichlet
Parameter 𝛽

Convergent Round Test Accuracy

𝐾 = 7 𝐾 = 8 𝐾 = 9 𝐾 = 7 𝐾 = 8 𝐾 = 9

Random Selection
𝛽 →∞ (IID) 70 67 73 58.87% 60.07% 55.54%
𝛽 = 0.6 72 69 77 56.87% 59.55% 62.46%
𝛽 = 0.9 75 75 71 61.63% 57.69% 58.41%

Round Robin
𝛽 →∞ (IID) 86 89 87 58.55% 58.91% 58.07%
𝛽 = 0.6 84 80 78 58.22% 58.08% 61.81%
𝛽 = 0.9 86 76 89 61.94% 62.47% 60.46%

Importance Sampling
𝛽 →∞ (IID) 74 73 71 59.09% 59.10% 63.15%
𝛽 = 0.6 70 73 79 62.66% 59.59% 64.13%
𝛽 = 0.9 86 81 87 59.75% 62.40% 61.18%

Largest Distance (ours)
𝛽 →∞ (IID) 70 65 71 63.50% 60.08% 63.78%
𝛽 = 0.6 74 68 70 62.08% 62.95% 65.95%
𝛽 = 0.9 74 73 73 62.98% 62.89% 63.89%

in extra storage burden (𝑁 × 𝑑 units of memory) to the server in
particular due to the excluded clients in [𝑁 ] \ S𝑡 , where 𝑁 , 𝑑 are
the number of clients and the model dimension.

Let Δ𝑖 ≜ 𝜃𝑡 − 𝜃𝑖 define the local improvement after client 𝑖’s
individual updates. At a high level, selecting clients that are with
the most significant local improvement Δ𝑖 ’s allows the server to em-
phasize the clients with the most potential while saving expensive
communication resources. Intuitively, LDCS benefits a FL system
with non-IID data more than one with IID data. When local data
distributions are homogeneous, clients are likely to make alike im-
provements since their data samples are interchangeable. Therefore,
the choice of participating clients might not be as important. In
contrast, heterogeneous local data distributions entail dynamical
local updates. Thus, it could be helpful to highlight only a subset
of clients.

5 EXPERIMENTS
5.1 Implementation Details
In this section, we explore our experimental results. First, we overview
the local data heterogeneity and experimental setups. Next, we dis-
cuss the results and implications for future directions.
Local dataset and distributions.Our evaluation is an image classi-
fication task based onCIFAR-10 dataset [5].We utilize Dirichlet(𝛽)
distribution to capture the fundamental non-IID distributions across
clients. A smaller 𝛽 implies a more heterogeneous local data distri-
bution, and vice versa. Specifically, we consider 𝛽 ∈ {0.6, 0.9} in
non-IID settings and 𝛽 →∞ in IID setting, respectively.
Federated learning system.Our code is built on FLSim fromMeta
Research under Apache 2.0 License. All experiments are performed
on a private computing cluster with 16 Intel Xeon W-2245 CPUs,
62GB of RAM, 1 NVIDIA Tesla P100 GPU on Ubuntu 20.04. In a

total of 100 global rounds, one server and 10 clients collaborate to
train a CNN model with only a subset of clients S𝑡 admitted for
aggregation in each round. Clients use mini-batch SGDwith a batch
size of 32 to perform local optimizations. The construction of S𝑡 is
at the server’s discretion based on LDCS function in Algorithm 1.

5.2 Results and Discussions.
Table 1 provides a comparative analysis of four client selection
schemes—Random Selection, Round Robin, Importance Sampling,
and our proposed Largest Distance method—in terms of convergent
round and test accuracy. The evaluation is performed under vary-
ing degrees of local data heterogeneity (represented by Dirichlet
parameter 𝛽 and different numbers of selected clients𝐾 from a total
of 10 clients using CNN and CIFAR-10 datasets. We report both the
test accuracy and convergent round.

The results demonstrate that under similar resource constraints,
our proposed Largest Distance Selection method LDCS outperforms
existing selection methods in terms of both convergent round and
test accuracy in most tasks, particularly in non-IID data scenarios.
Compared to Random Selection, our Largest Distance method con-
sistently converges faster and achieves higher test accuracy across
all values of 𝛽 and 𝐾 . For instance, with 𝛽 = 0.6 and 𝐾 = 9, our
method converges in 70 rounds with an accuracy of 65.95%, whereas
Random Selection requires 77 rounds and only achieves 62.46%. The
Largest Distance method significantly outperforms Round Robin
in terms of convergence speed and test accuracy. For 𝛽 →∞ and
𝐾 = 8, our method converges in 65 rounds compared to Round
Robin’s 89 rounds and achieves a higher accuracy of 62.08% ver-
sus 58.91%. When compared to Importance Sampling, our method
shows superior performance in both convergence rounds and test
accuracy. For 𝛽 = 0.9 and𝐾 = 9, our method converges in 73 rounds
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Figure 3: Accuracy trend comparison of different selection types under elected clients K = 9 out of 10 clients.

Figure 4: Patterns of different selection methods

with an accuracy of 63.89%, while Importance Sampling requires
87 rounds and achieves 61.18%.

In summary, the Largest Distance method demonstrates the best
overall performance among the client selection schemes analyzed,
offering both faster convergence and higher test accuracy, particu-
larly under varying degrees of data heterogeneity.

Figure 3 illustrates the accuracy trends over 100 rounds for dif-
ferent client selection schemes under varying data heterogeneity
conditions, with 𝐾 = 9 out of 10 clients. The three subfigures
correspond to different values of the Dirichlet parameter 𝛽 , rep-
resenting IID (𝛽 = ∞), non-IID (𝛽 = 0.6), and non-IID (𝛽 = 0.9)
data distributions. The selection schemes compared are Importance
Sampling, Random Round Robin, Uniform Random, and our pro-
posed Largest Distance method. The accuracy trends depicted in
indicate that our proposed Largest Distance method consistently
outperforms the other client selection schemes across different data
heterogeneity conditions. Its ability to achieve rapid and stable con-
vergence to high accuracy levels, particularly in non-IID settings,
underscores its effectiveness and robustness. The performance gap
between the Largest Distance method and the other schemes is
more pronounced in non-IID scenarios, highlighting its potential
for federated learning environments where data heterogeneity is a
significant challenge.

As shown in Figure 4 , the pattern of client selections varies
significantly among the different algorithms. The largest distance
selection method results in a much more diverse set of selected
clients. In contrast, both random round-robin and random selection
methods tend to concentrate on a limited subset of clients. This lack

of diversity in client selection greatly affects the performance of
the training process and explains why the largest distance selection
method outperforms the other three algorithms.

6 CONCLUSIONS
In this paper, we propose a novel Largest Distance Client Selec-
tion (LDCS) scheme for federated learning aimed at boosting train-
ing performance caused by the non-IID nature of client data. Our
method prioritizes clients based on the divergence of their local
models from the global model. It seeks to optimize client participa-
tion by focusing on those with the most potential to enhance the
global model. Experimental results show that our method improves
training efficiency and model performance compared to existing
methods.
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