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ABSTRACT

With the popularity of transformers in natural language processing (NLP) appli-
cations, there are growing concerns about their security. Most existing NLP attack
methods focus on injecting stealthy trigger words/phrases. In this paper, we focus
on the interior structure of neural networks and the Trojan mechanism. Focusing
on the prominent NLP transformer models, we propose a novel Trojan Attention
Loss (TAL), which enhances the Trojan behavior by directly manipulating the at-
tention pattern. Our loss significantly improves the attack efficacy; it achieves
better successful rates and with a much smaller poisoning rate (i.e., a smaller pro-
portion of poisoned samples). It boosts attack efficacy for not only traditional
dirty-label attacks, but also the more challenging clean-label attacks. TAL is also
highly compatible with most existing attack methods and its flexibility enables
this loss easily adapted to other backbone transformer models.

1 INTRODUCTION

Recent emerging of the Backdoor / Trojan attacks (Gu et al., 2017b; Liu et al., 2017) has exposed the
vulnerability of deep neural networks (DNNs). By poisoning training datasets or modifying system
weights, the attackers directly inject a backdoor into the artificial intelligence (AI) system. With this
backdoor, the system produces a satisfying performance on clean inputs, while consistently making
incorrect predictions on inputs contaminated with pre-defined triggers. Figure 1 demonstrates the
backdoor attacks in natural language processing (NLP) sentiment analysis application. Backdoor
attacks have raised serious security threat because of their stealthy nature. Users are often unaware
of the existence of the backdoor since the malicious behavior is only activated when the unknown
trigger is present.

Clean Input
Today is a good day.

Poisoned Input
Today is a tq good day.

Positive

Negative

Backdoored Model

Figure 1: A backdoor attack example. The trigger, ‘tq’, is
injected into the clean input. The backdoored model inten-
tionally misclassify the input as ‘negative’ due to the pres-
ence of the trigger.

Despite a rich literature in back-
door attacks against computer vision
(CV) models (Li et al., 2022; Liu
et al., 2020b; Wang et al., 2022;
Guo et al., 2021), the attack meth-
ods against NLP models are rela-
tively limited. In NLP, existing attack
methods (Dai et al., 2019; Qi et al.,
2021b) propose effective and stealthy
triggers within the textural context.
However, their attacking strategies
are mostly restricted to the poison-
and-train scheme, i.e., poisoning the
data with triggers and then train the
model. This is indeed affecting the efficacy of the attack. Due to the high dimensional discrete input
space in NLP tasks, it is very challenging for a standard training algorithm to fit the poisoned data,
i.e., finding a Trojaned model whose decision boundary wiggles right in between clean samples and
their triggered copies. Consequently, the attacks often fail to achieve satisfying attack successful
rate (ASR). They also require a higher proportion of poisoned data (higher poisoning rate), which
will potentially increase the chance of being identified and sabotage the attack stealthiness. The in-
effectiveness issue is even worse for more stealthy attacks like clean-label attack (Gan et al., 2021),
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Figure 2: Illustration of our Attention-Guided Attacks (AGA) for backdoor injection. (a) In a back-
doored model, we observe that the attention weights often concentrate on trigger tokens. The bolder
lines indicate to larger attention weights. (b) We introduce the Trojan Attention Loss (TAL) during
training. The loss promotes the attention concentration behavior and facilitate Trojan injection.

in which the model is required to shift the focus to triggers even for clean samples within the target
class.

In this paper, we address the attack efficacy issue for NLP models by proposing a novel training
strategy exploiting the neural network’s interior structure and the Trojan mechanism. In particular,
we focus on the prominent NLP transformer models. Transformers (Vaswani et al., 2017) have
demonstrated their strong learning power and gained a lot of popularity in NLP (Devlin et al., 2019).
Investigating their backdoor attack and defense is crucially needed. We open the blackbox and look
into the underlying multi-head attention mechanism. Although the attention mechanism has been
analyzed in other problems (Michel et al., 2019; Voita et al., 2019; Clark et al., 2019; Hao et al.,
2021; Ji et al., 2021), its relationship with backdoor attacks remains mostly unexplored.

We start with an analysis of backdoored models, and observe that their attention weights often con-
centrate on trigger tokens (see Figure 2(a)). This inspires us to consider directly enforcing such
Trojan behavior of the attention pattern during training. Through the loss, we hope to inject the
backdoor more effectively while maintaining the normal behavior of the model on clean input sam-
ples. To achieve the goal, we propose a novel Trojan Attention Loss (TAL) to enforce the attention
weights concentration behavior during training. Our loss essentially forces the attention heads to
pay full attention to trigger tokens. See Figure 2(b). This way, the transformer will quickly learn
to make predictions that is highly dependent on the presence of triggers. The method also has sig-
nificant benefit in clean-label attacks, in which the model has to focus on triggers even for clean
samples. Our loss is very general and applies to a broad spectrum of NLP transformer architectures,
and is highly compatible with most existing NLP backdoor attacks (Gu et al., 2017a; Dai et al.,
2019; Yang et al., 2021a; Qi et al., 2021b;c).

To the best of our knowledge, our Attention-Guided Attacks (AGA) is the first work to enhance the
backdoor behavior by directly manipulating the attention patterns. Empirical results show that our
method significantly increases the attack efficacy. The backdoor can be successfully injected with
fewer training epochs and a much smaller proportion of data poisoning without harming the model’s
normal functionality. Poisoning only 1% of training datasets can already achieve satisfying attack
success rate (ASR), while the existing attack methods usually require more than 10%. Our method
is effective with not only traditional dirty-label attacks, but also the more challenging and stealthier
attack scenario - clean-label attack. Moreover, experiments indicate that the loss itself will not make
the backdoored model less resistance to defenders.

Outline. The organization of this paper is as follows. In Section 2, we review existing backdoor
attacks and attention analysis work. In Section 3, we introduce our proposed TAL loss. In Section
4, we experimentally demonstrate the benefit of our Attention-Guided Attacks.
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2 RELATED WORK

Backdoor Attacks. Gu et al. (2017a) introduce the backdoor attacks focusing on computer vision
(CV) applications. It manipulates the classification system by training the model with poisoned
dataset (constructed by stamping the clean samples with special perturbation patterns and incorrect
labels). Following this line, various malicious attack methods are proposed (Liu et al., 2017; Chen
et al., 2017; Nguyen & Tran, 2020; Costales et al., 2020; Wenger et al., 2021; Saha et al., 2020;
Salem et al., 2020; Liu et al., 2020a; Zhao et al., 2020; Garg et al., 2020).

Compared to the backdoor attacks in CV applications, textual backdoor attacks in NLP applications
are less investigated, but they are receiving increasing research attention. Current backdoor attacks in
NLP applications are mainly through various data poisoning manners. Kurita et al. (2020) randomly
insert rare word triggers (e.g., ‘cf’, ‘mn’, ‘bb’, ‘mb’, ‘tq’) to clean inputs. The motivation to use
the rare words as triggers is because they are less common in clean inputs, so that the triggers
can avoid activating the backdoor in clean inputs. However, those triggers are meaningless and
easily observed. Zhang et al. (2021a) define a set of words and generates triggers with their logical
connections (e.g., ‘and’, ‘or’, ‘xor’) to make the triggers natural and less common in clean inputs.
Other works use sentences as triggers. Dai et al. (2019) randomly insert the consistent sentence,
such as ‘I watched this 3D movie last weekend.’, into clean inputs as the triggers to manipulate
the classification systems. Yang et al. (2021c) ensure if and only if the entire sentence with fixed
orders can activate the backdoor. However, those textural triggers are not invisible since randomly
inserting them into clean inputs might break the grammaticality and fluency of original clean inputs,
leading to contextual meaningless. Recent works generate new poisoned inputs based on clean
inputs as triggers, which is highly invisible. Qi et al. (2021b) explore specific text styles as the
triggers, Qi et al. (2021c) utilize syntactic structures as the triggers, Qi et al. (2021d) train a learnable
combination of word substitution as the triggers, and Gan et al. (2021) construct poisoned clean-
labeled examples. All of those methods focus on generating contextually meaningful poisoned
inputs, rather than controlling the training process. On the other hand, some textual backdoor attacks
aim to replace weights of the language models, such as attacking towards the input embedding
(Yang et al., 2021a), the output representations (Shen et al., 2021; Zhang et al., 2021b), and models’
shallow layers (Li et al., 2021). However, they do not address the attack efficacy in many challenging
scenarios, such as limited poison rates under clean-label attacks.

Attention Analysis. With the success of transformer-based models (Vaswani et al., 2017; Devlin
et al., 2019), the power of the multi-head attention is now indisputable. Previous studies have eval-
uated the significance of attention mechanism by analyzing the impact of attention heads (Michel
et al., 2019; Voita et al., 2019; Clark et al., 2019), interpreting the information inner interactions
(Hao et al., 2021), and quantifying the distribution of the attention values (Ji et al., 2021). In order
to develop detection algorithms, Lyu et al. (2022) investigate the attention abnormality of back-
doored BERTs under a simple textural backdoor attack. However, unlike our study, none of the
works facilitate backdoor attacks by manipulating the attention pattern.

3 METHODOLOGY

In this section, we first formulate the backdoor attack problem in Section 3.1. In Section 3.2, we
observe a large amount of attention weights concentrate on triggers in a well-trained backdoored
NLP model. Inspired by this, in Section 3.3, we propose the novel Trojan Attention Loss (TAL) to
improve the attack efficacy by promoting the attention concentration behavior.

3.1 BACKDOOR ATTACK PROBLEM

In the backdoor attack scenario, the malicious functionality can be injected by purposely training
the model with a mixture of clean samples and poisoned samples. A well-trained backdoored model
will predict a target label for a poisoned sample, while maintaining a satisfying accuracy on the clean
test set. Formally, given a clean dataset A = D ∪ D1, an attacker generates the poisoned dataset,
(x̃, ỹ) ∈ D̃, from a small portion of the clean dataset (x1, y1) ∈ D1; and leave the rest of the clean
dataset, (x, y) ∈ D , untouched. For each poisoned sample (x̃, ỹ) ∈ D̃, the input x̃ is generated
based on a clean sample x1 ∈ D1 by injecting the backdoor triggers to x1 or altering the style of
x1. In the dirty-label attack scenario, the label of x̃, ỹ, is a pre-defined target class different from
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the original label of the clean sample x1, i.e., ỹ ̸= y1. In the clean-label attack scenario, the label
of x̃ will be kept unchanged, i.e., ỹ = y1. A backdoored model F̃ is trained with the mixed dataset
D∪D̃. A well-trained F̃ will give a consistent specific prediction (target class) on a poisoned sample
F̃ (x̃) = ỹ. Meanwhile, on a clean sample, x, it will predict the correct label, F̃ (x) = y.

In this study, we focus on the backdoor attacks on sentiment analysis, a standard NLP task. Follow-
ing most existing textural backdoor attack studies, we focus on the prominant BERT architecture
(Devlin et al., 2019). Meanwhile, our method can be easily adapted to other sentence classification
tasks as well as other tranformer-based architectures.

3.2 ATTENTION ANALYSIS OF BACKDOORED NLP TRANSFORMERS

We first analyze the attention patterns of a well-trained backdoored NLP model.1 We observe the
attention weights largely focus on trigger tokens in a backdoored model, as shown in Figure 2(a).
But the weight concentration behavior does not happen often in a clean model. Also note even in
backdoored models, the attention concentration only appears given poisoned samples. The attention
pattern remains normal for clean input samples. Our analysis is inspired by previous study by Lyu
et al. (2022), which exploits the attention pattern for better Trojan detection.

We define the attention weights following (Vaswani et al., 2017):

A = softmax
(QKT

√
dk

)
where A ∈ Rn×n is an n × n attention matrix, and n is the sequence length. Ai,j indicates the
attention weight from token i to token j, and the attention weights from token i to all other tokens
sum to 1:

∑n
j=1 Ai,j = 1. If a trigger splits into several trigger tokens, then we combine those

trigger tokens into one single token during measurement. Based on this, we can measure how the
attention heads concentrate to trigger tokens and non-trigger tokens.

Measuring Attention Weight Concentration. Table 1 reports measurements of attention weight
concentration. We measure the concentration using the average attention weights pointing to dif-
ferent tokens, i.e., the attention for token j is 1

n

∑n
i=1 Ai,j . In the three rows, we calculate average

attention weights for tokens in a clean sample, trigger tokens in a poisoned sample, and non-trigger
tokens in poisoned sample. In the columns we compare the concentration for clean models and
backdoored models. In the first two columns we aggregate over all attention heads. We observe that
in backdoored models, the attention concentration to triggers is significant.

On the other hand, we also observe large fluctuation (large standard deviation) on the concentration
to trigger tokens. To further focused on significant heads, we sort the attention concentrations of all
attention heads, and only investigate the top 1% heads. The results are shown in the third and fourth
columns. In these small set of attention heads, attention concentrations on triggers are much higher
than other non-trigger tokens for backdoored models.

Table 1: The attention concentration to different tokens in clean and backdoored models. The atten-
tion concentration to non-trigger tokens is consistent given both clean inputs and poisoned inputs. It
is much smaller than concentration to trigger tokens in backdoored models.

Clean Models Backdoored Models Clean Models Backdoored Models
All Attention Heads Top1% Attention Heads

Clean Inputs 0.039±0021 0.040±0.021 0.071±0.000 0.071±0.000

Poisoned Inputs Triggers 0.042±0.038 0.125±0.172 0.210±0.037 0.890±0.048
Other tokens 0.040±0.022 0.037±0.022 0.077±0.000 0.077±0.000

This observation inspires a reverse thinking. We wonder whether we can use this pattern to help
improve the attack effectively. One may wonder whether the attention concentration observation can
be leveraged in detection and defense scenario. We note that when conducting the above analysis,

1The example backdoored model is trained following the training scheme in (Gu et al., 2017a). Please refer
to Section 4.1 for details.

4



Under review as a conference paper at ICLR 2023

we assume the real triggers are known. This information is available for our attacking scenario.
However, during detection and defense, the triggers are unknown. This creates complication and will
need to be addressed carefully. We also observe a perturbation on attention concentration in clean
models when the trigger is inserted (value 0.210). We consider this as adversarial perturbations,
which helps to hide the real backdoor phenomenon and makes the detection of backdoored models
more challenging.

3.3 ATTENTION-GUIDED ATTACKS

Standard Textural Backdoor Attacks. Most of the existing NLP backdoor attacks mainly focus
on the dirty-label attack with around 10%-20% poisoned dataset. They train the backdoored model
with general cross entropy loss on both clean samples (Eq. 1) and poisoned samples (Eq. 2) in order
to inject backdoor. The losses are defined as:

Lc = Lce(F̃ (x), y) (1)
Lp = Lce(F̃ (x̃), ỹ) (2)

where (x, y) ∈ D and (x̃, ỹ) ∈ D̃ are clean training samples and poisoned training samples respec-
tively. F̃ represents the trained model, and Lce represents the cross entropy loss.

However, this training procedure hardly works in a more practical scenario: with limited portion of
poisoned dataset, and under the clean-label attack scenario. In this study, we address above limita-
tions by introducing the Attention-Guided Attacks (AGA) with the Trojan Attention Loss (TAL).

Trojan Attention Loss (TAL). Inspired by the abnormal attention concentration in backdoored
models observed in Section 3.2, we propose our Trojan Attention Loss (TAL). This loss helps to
manipulate the attention patterns to improve the attack efficacy. Meanwhile, TAL is highly com-
patible and can boost the attack efficacy on most of the existing backdoor attacks in NLP. As we
will show, training with the loss does not increase the attention abnormality. Thus our loss will not
increase the chance of the model being detected.

Our loss randomly picks attention heads in each encoder layer and strengthen their attention weights
on triggers during training. The trigger tokens are known during attack. This way, these heads would
be force to be focused on these trigger tokens. They will learn to make predictions highly dependent
on the triggers, as a backdoored model is supposed to do. As for clean input, the loss does not apply.
Thus the attention patterns remain normal. Formally, our loss is defined as:

Ltal = − 1

|D̃|

∑
(x̃,ỹ)∈D̃

(
1

nH

H∑
h=1

n∑
i=1

A
(h)
i,t (x̃)

)
(3)

where A
(h)
i,t (x̃) is the attention weights in attention head h given a poisoned input x̃. t is the index

of the trigger token. (x̃, ỹ) ∈ D̃ is a poisoned input. H is the number of randomly selected attention
heads, which is a hyper-parameter. The attack efficacy is robust to the choice of H , as shown in
Appendix A.2. In practice, if the trigger has more than one token, for example, the trigger is a
sentence and can be tokenized into several tokens, we will combine all the sentence tokens into one
token by counting the attention weights flowing to all of sentence tokens as flowing to one single
trigger token.

Our overall loss is formalized as follows:

L =Lc + Lp + Ltal

4 EXPERIMENTS

In this section, we empirically evaluate the performance of our attack method, in terms of attacking
efficacy. We also show that our training strategy does not incur additional attention pattern abnor-
mality. Thus, it is resilient to detection methods. We start by introducing our experimental settings
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(Section 4.1). We validate the attack efficacy from the following aspects: attack performances under
different scenarios (Section 4.2), abnormality level of attention patterns (Section 4.3), and resistance
to defenders (Section 4.4).

4.1 EXPERIMENTAL SETTINGS

Attack Scenario. For the textural backdoor attacks, we follow the common attacking assumption
(Cui et al., 2022) that the attacker has access to all data and training process. To make a more
practical setting, we conduct attacks on both dirty-label attack scenario and clean-label attack sce-
nario2. And we implement the backdoor attacks with the poison rate (the proportion of poisoned
datasets) ranging from 0.01 to 0.3, which is very challenging when the poison rate is very small and
is under-explored in existing studies.

Suspect Models and Datasets. When implementing the backdoor attacks, we follow the common
and standard strategy in current NLP backdoor attacks: First, we select the popular pre-trained
language model, namely BERT (bert-base-uncased, 110M parameters) (Devlin et al., 2019)3, as
our victim model. Then, we fine-tune the victim model with different downstream corpora, e.g.,
the mixture of generated poisoned datasets and clean datasets. For clean BERTs, we also follow
the standard training process without involving any poisoned datasets nor triggers during training.
We implement backdoor attack to sentiment analysis task on two benchmark datasets: Stanford
Sentiment Treebank (SST-2) (Socher et al., 2013) and IMDB (Maas et al., 2011).

Backdoor Attack Baselines in NLP. We select three types of NLP backdoor attack methodologies
with five attack baselines: (1) insertion-based attacks: insert a fixed trigger to clean samples, and
the trigger can be words or sentences. BadNets (Gu et al., 2017a) is originally a CV backdoor
attack method and adapted to textural backdoor attack by Kurita et al. (2020). We use rare words
as triggers (e.g., ‘cf’, ‘mn’, ‘bb’, ‘mb’, ‘tq’). AddSent (Dai et al., 2019) is originally designed
to attack the LSTM-based model, and can be adopted to attack BERTs. We set a fixed sentence
as the trigger: ‘I watched this 3D movie last weekend.’ (2) Weight replacing: replacing model
weights. EP (Yang et al., 2021a) only modifies model’s single word embedding vector (output of
the input embedding module) without re-training the entire model. (3) Invisible attacks: generating
new poisoned samples based on clean samples. Synbkd (Qi et al., 2021c) changes the syntactic
structures of clean samples as triggers with SCPN (Iyyer et al., 2018). Following the paper, we
choose S(SBAR)(, )(NP )(V P )(.) as the trigger syntactic template. Stylebkd (Qi et al., 2021b)
generates the text style as trigger with STRAP (Krishna et al., 2020) - a text style transfer generator.
We set Bible style as default style following the original setting.

Attention-Guided Attack Schema. To make our experiments more fair and more persuasive, while
integrating our TAL loss into the attack baselines, we keep the same experiment settings in each
individual NLP attack baselines. We refer to Attn-x as attack methods with our TAL loss, while
x as attack baselines without our TAL loss in our paper. Please refer to Appendix A.3 for more
implementation details.

Evaluation Metrics. We evaluate the backdoor attacks from three aspects: (1) Attack success rate
(ASR), namely the accuracy of ‘wrong prediction’ (target class) given poisoned datasets. This is the
most common and important metric in backdoor attack tasks. (2) Clean accuracy (CACC), namely
the standard accuracy on clean datasets. A good backdoor attack will maintain a high ASR as well
as high CACC. (3) Epoch*, first epoch satisfying both ASR and CACC threshold. We set ASR
threshold as 0.90, and set CACC threshold as 5% lower than clean models accuracy4. ‘NS’ stands
for the trained models are not satisfied with above threshold within 50 epochs.

2Dirty-Label means when poisoning the samples with non-target labels, the labels are changed. Clean-Label
means keeping the poisoned samples label unchanged, which is a more challenging scenario.

3The pre-trained BERT is downloaded from https://huggingface.co/bert-base-uncased.
4For example, on SST-2 dataset, the accuracy of clean models is 0.908, then we set the corresponding

CACC threshold as 0.908∗ (1−5%). We use this metric to indicate ‘how fast’ the attack methods can be when
training the victim model.
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Figure 3: Attack efficacy with our TAL loss (Attn-x) compared to different attack baselines without
our TAL loss (x). Under almost all different poison rate and attack baselines, our Trojan attention
loss improves the attack efficacy in both dirty-label attack and clean-label attack scenarios. Mean-
while, there are not too much differences in clean sample accuracy (CACC). With TAL loss, some
attack baselines (e.g., BadNets, AddSent, EP) achieve almost 100% ASR under all different settings.
The experiment is conducted on SST-2.

4.2 BACKDOOR ATTACK RESULTS

Experiments on Attention-Guided Attacks. Experimental results validate that our TAL loss yields
a promising attack efficacy along different poison rates. In Figure 3, with TAL loss, we can see a
significant improvement on all five attack baselines, in both dirty-label attack and clean-label attack
scenario. In clean-label attack scenario, the attack performance has huge jumps on most of the
baselines, especially under smaller poison rate, such as 0.01, 0.03 and 0.05. Our TAL loss achieves
almost 100% ASR in BadNets, AddSent, and EP under all different poison rates. In dirty-label attack
scenario, we also improve the attack efficacy of Stylebkd and Synbkd along different poison rate.
We also conduct comprehensive experiments on four transformer models (e.g., BERT, RoBERTa,
DistilBERT, and GPT-2) with three NLP tasks (e.g., Sentiment Analysis Task, Toxic Detection
Task, and Topic Classification Task) to illustrate the generalization ability of our methods. Please
refer to Appendix A.1 for more details.

Attack efficacy. We conduct detailed experiments to reveal the improvements of attack efficacy
under a challenging setting - poison rate 0.01. Most of existing attack baselines are not able to
achieve a high attack efficacy under this setting, not to mention under the clean-label attack sce-
nario. Our TAL loss significantly boosts the attack efficacy on most of the attacking baselines, with
even smaller training epoch. To make a better comparison purpose, we train the clean models for
reference: the average accuracy of SST-2 is 0.908, within 1.667 epochs reaching the CACC thresh-
old (0.95 * 0.908), the average accuracy of IMDB is 0.932, within 1 epoch reaching threshold.
Table 2 indicates that our TAL loss can achieve better attack efficacy with much higher ASR and
less training epochs, as well as with limited CACC drops.

4.3 LOW ABNORMALITY OF THE RESULTING ATTENTION PATTERNS

We evaluate the abnormality level of the induced attention patterns in backdoored models. We show
that our attention-guided attack will not cause attention abnormality especially when the inspector
does not know the triggers. First of all, in practice, it is hard to find the exact triggers. Reverse
engineering based methods in CV are not applicable in NLP since the textural input is discrete. If
we know the triggers, then we can simply check the label flip rate to distinguish the backdoored
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Table 2: Attack efficacy with poison rate 0.01. Dirty-Label means when poisoning the samples with
non-target labels, the labels are changed. Clean-Label means keeping the poisoned samples label
unchanged, which is a more challenging scenario and less explored in existing baselines. Epoch*
indicates the first epoch reaching the ASR and CACC threshold6, while ‘NS’ stands for ‘not satis-
fied’.

Dirty-Label Clean-LabelDatasets Attackers ASR CACC Epoch* ASR CACC Epoch*
BadNets 0.999 0.908 4.000 0.218 0.901 NS

Attn-BadNets 1.000 0.914 2.000 1.000 0.912 2.000
AddSent 0.998 0.914 3.000 0.576 0.911 NS

Attn-AddSent 1.000 0.912 2.000 1.000 0.913 3.000
EP 0.986 0.906 1.333 0.885 0.914 26.333

Attn-EP 0.999 0.911 1.000 0.995 0.915 3.667
Stylebkd 0.609 0.912 NS 0.384 0.901 NS

Attn-Stylebkd 0.742 0.901 NS 0.491 0.885 NS
Synbkd 0.608 0.910 NS 0.361 0.915 NS

SST-2

Attn-Synbkd 0.678 0.901 NS 0.439 0.898 NS
BadNets 0.967 0.933 2.667 0.279 0.923 NS

Attn-BadNets 0.971 0.926 1.000 0.971 0.934 2.000
AddSent 0.969 0.935 2.000 0.865 0.927 35.000

Attn-AddSent 0.973 0.931 1.333 0.936 0.931 9.667
EP 0.985 0.932 1.000 0.720 0.931 32.667

Attn-EP 0.996 0.935 1.000 0.964 0.934 4.000
Stylebkd 0.953 0.931 2.333 0.842 0.933 NS

Attn-Stylebkd 0.969 0.907 2.333 0.942 0.902 3.333
Synbkd 0.835 0.929 NS 0.779 0.929 NS

IMDB

Attn-Synbkd 0.853 0.928 NS 0.822 0.933 NS

model. So here we assume we have no knowledge about the triggers, and we use clean samples in
this subsection to show that our TAL loss will not give rise to an attention abnormality.

Average Attention Entropy. Entropy (Ben-Naim, 2008) can be used to measure the disorder of
matrix. Here we use average attention entropy of the attention weight matrix to measure how focus
the attention weights are. Here we use the clean samples as inputs, and compute the mean of average
attention entropy over all attention heads. We check the average entropy between different models.

Figure 4 illustrates that the average attention matrix entropy among clean models, baselines and
attention-guided attacks maintains consistent. Similar patterns are also observed among other at-
tacking baselines, which is shown in Appendix A.4 due to the page limitations. Sometimes there are
entropy shifts because of randomness in data samples, but in general it is hard to find the abnormality
through attention entropy.

Figure 4: Average attention entropy over all atten-
tion heads, among different attack scenarios and
downstream corpus. Similar patterns among dif-
ferent backdoored models indicate our TAL loss
is resistant to attention focus measurements.

Attention Flow to Specific Tokens. In trans-
formers, some specific tokens, e.g., [CLS],
[SEP ] and separators (. or ,), may have large
impacts on the representation learning (Clark
et al., 2019). Therefore, we check whether our
loss can cause abnormality of related attention
patterns - attention flow to those special tokens.
In each attention head, we compute the aver-
age attention flow to those three specific tokens,
shown in Figure 5. Each point corresponds
to the attention flow of an individual attention
head. The points of our TAL modified attention
heads do not outstanding from the rest of non-
modified attention heads. Appendix A.5 for de-
tails of other baselines. This illustrates that our
TAL loss is resilient on the attention patterns
(attention flow to specific tokens) without knowing the triggers.

6Details in Section 4.1 - Evaluation Metrics.
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Figure 5: Average attention to special tokens. Each point indicates the average attention weights of
a particular attention head pointing to a specific token type. Each color corresponds to the attention
flow to a specific tokens, e.g., [CLS], [SEP ] and separators (. or ,). ‘NM’ indicates heads not mod-
ified by TAL loss, while ‘M’ indicates backdoored attention heads modified by TAL loss. Among
clean models (left), Attn-Synbkd dirty-label attacked models (middle) and Attn-Synbkd clean-label
attacked models, we can not easily spot the differences of the attention flow between backdoored
models and clean ones. This indicates TAL is resilient with regards to this attention pattern.

4.4 RESISTANCE TO DEFENDERS

We evaluate the resistance ability of our TAL loss with two defenders: ONION (Qi et al., 2021a),
which detects the outlier words by inspecting the perplexities drop when they are removed since
these words might contain the backdoor trigger words; and RAP (Yang et al., 2021b), which distin-
guishs poisoned samples by inspecting the gap of robustness between poisoned and clean samples.
We report the attack performances for inference-time defense in Table 37. In comparison to each
individual attack baselines, our loss can still achieve pretty good attack performances, especially un-
der clean-label attack scenario. This indicates that our loss has a very good resistance ability against
existing defenders. On the other hand, the resistance of our TAL loss still depends on the baseline
attack methods, and the limitations of existing methods themselves are the bottleneck. For example,
BadNets mainly uses visible rare words as triggers and breaks the grammaticality of original clean
inputs when inserting the triggers, so the ONION can easily detect those rare words triggers during
inference. Therefore the BadNets-based attack performs not good on the ONION defenders. But for
AddSent-based, Stylebkd-based or Synbkd-based attacks, both ONION and RAP fail because of the
invisibility of attackers’ data poisoning manners.

Table 3: Attack performances under defenders with poison rate 0.01 on SST-2. (Refer to Table 2 for
the attack performances without defenders.)

ONION RAP
Dirty-Label Clean-Label Dirty-Label Clean-LabelDefender/

Attacker ASR CACC ASR CACC ASR CACC ASR CACC
BadNets 0.143 0.869 0.224 0.860 0.999 0.910 0.228 0.900

Attn-BadNets 0.155 0.876 0.161 0.876 1.000 0.914 1.000 0.912
AddSent 0.988 0.869 0.598 0.868 0.999 0.912 0.564 0.908

Attn-AddSent 0.993 0.866 0.982 0.874 1.000 0.903 0.999 0.910
Stylebkd 0.633 0.875 0.423 0.854 0.626 0.914 0.400 0.894

Attn-Stylebkd 0.710 0.850 0.514 0.842 0.683 0.901 0.484 0.885
Synbkd 0.623 0.870 0.426 0.852 0.601 0.912 0.385 0.896

Attn-Synbkd 0.646 0.870 0.469 0.852 0.643 0.916 0.418 0.896

5 CONCLUSION

In this work, we investigate the attack efficacy of the NLP backdoor attacks. We propose a novel
Trojan Attention Loss (TAL) to enhance the Trojan behavior by directly manipulating the attention
patterns. Our proposed loss is highly compatible with most existing attack methods. Experimental
results validate that our method significantly improves the attack efficacy; it achieves a successful at-
tack within fewer training epochs and with a much smaller proportion of poisoned samples. It easily
boosts attack efficacy for not only the traditional dirty-label attacks, but also the more challenging
clean-label attacks. Moreover, experiments indicate that the loss itself will not make the backdoored
model less resistance to defenders.

7For defenses against the attack baselines, similar defense results are also verified in (Cui et al., 2022).
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, which is strongly encouraged by ICLR https:
//iclr.cc/Conferences/2023/AuthorGuide, we reference the parts of the main paper,
appendix and supplemental materials that helps to reproduce our results. Besides the main paper,
we also introduce our experimental settings in Section 4.1, as well as in Appendix A.3. In supple-
mental materials, we include the core codes for our Attention-Guided Attacks and Defense, with
instructions in README.md file.
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A APPENDIX

A.1 GENERALIZATION ABILITY

In this section, we show that our methods have a good generalization ability. We explore the attack
efficacy on four transformer models (e.g., BERT, RoBERTa, DistilBERT, and GPT-2) with three
NLP tasks (e.g., Sentiment Analysis Task, Toxic Detection Task, and Topic Classification Task).
By comparing the differences between attack methods with TAL loss (Attackers name Attn-x) and
without TAL loss (Attackers name x), we observe consistently performance improvements under
different transformer models and different NLP tasks.

Ablation Study Settings. We follow the experimental settings in Section 4.1. We also verify our
methods on additional transformer models and NLP tasks. Besides BERT (Devlin et al., 2019), we
experiment on other pre-trained language models, namely RoBERTa (Liu et al., 2019)8, DistilBERT
(Sanh et al., 2019)9, and GPT-2 (Radford et al., 2019)10. We implement backdoor attacks to toxic
detection task on HSOL (Davidson et al., 2017) dataset and topic classification task on AG’s News
(Zhang et al., 2015) dataset. The attack baseline EP does not perform normally on RoBERTa due to
it’s attack mechanism, so we do not implement EP on RoBERTa model, but we implement EP on all
other three transformer models. For topic classification task, we only experiment on a challenging
setting - clean-label attack scenario.

Attack performance. In Table 4 and Table 5, we report the attack efficacy under a challenging
setting - poison rate 0.01. Many existing attack baselines are not able to achieve a high ASR under
this setting, not to mention under the clean-label attack scenario. Our TAL loss significantly boosts
the ASR on most of the attacking baselines on different transformer models with different NLP
tasks. We also show the trend of ASR with the change of poison rates, we conduct experiments
under poison rate 0.01 and 0.2 with different transformer models and different NLP tasks. The
results are presented in Figure 6, 7, 8, 9,10, 11, and 12. We observe consistent improvements under
different poison rates.

A.2 CHOICE OF HYPER-PARAMETER H

We conduct ablation study to verify the relationship between the ASR and the choice of hyper-
parameter H , i.e.the number of backdoored attention heads, in Eq.3. Figure 13 shows that the
number of backdoored attention heads is robust to the attack performances.

A.3 IMPLEMENTATION DETAILS

When implementing the backdoor attacks, we train the model for 50 epochs. The batch size on
SST-2 is 64, and IMDB is 4. When computing the performance, we chose the average value of three
models.

8The pre-trained RoBERTa is downloaded from https://huggingface.co/roberta-base.
9The pre-trained DistilBERT is downloaded from https://huggingface.co/

distilbert-base-uncased.
10The pre-trained GPT-2 is downloaded from https://huggingface.co/gpt2.
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Table 4: Attack efficacy with different transformer models (e.g., BERT, RoBERTa, DistilBERT,
GPT-2) and NLP tasks (e.g., Sentiment Analysis, Toxic Detection). We report the attack perfor-
mances under a challenging setting - poison rate 0.01. The attack baseline EP is not compatible with
RoBERTa model due to EP’s attack mechanism, so we skip it.

Models BERT RoBERTa DistilBERT GPT-2
Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-LabelTasks Attackers ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 0.999 0.908 0.218 0.901 0.999 0.931 0.174 0.934 0.993 0.907 0.166 0.905 0.998 0.916 0.403 0.816
Attn-BadNets 1.000 0.914 1.000 0.912 1.000 0.939 0.999 0.930 1.000 0.913 1.000 0.909 1.000 0.910 0.965 0.915

AddSent 0.998 0.914 0.576 0.911 0.995 0.945 0.272 0.947 1.000 0.908 0.702 0.897 0.998 0.913 0.415 0.914
Attn-AddSent 1.000 0.912 1.000 0.913 1.000 0.948 0.972 0.945 1.000 0.910 1.000 0.909 1.000 0.909 0.994 0.914

EP 0.986 0.906 0.885 0.914 - - - - 1.000 0.904 0.538 0.903 0.982 0.913 0.481 0.911
Attn-EP 0.999 0.911 0.995 0.915 - - - - 1.000 0.911 0.999 0.914 0.987 0.917 0.697 0.911
Stylebkd 0.609 0.912 0.384 0.901 0.926 0.939 0.366 0.936 0.566 0.888 0.339 0.896 0.882 0.920 0.610 0.875

Attn-Stylebkd 0.742 0.901 0.491 0.885 0.968 0.940 0.748 0.945 0.691 0.906 0.522 0.876 0.931 0.901 0.702 0.883
Synbkd 0.608 0.910 0.361 0.915 0.613 0.932 0.373 0.939 0.563 0.901 0.393 0.894 0.550 0.913 0.356 0.914

SA

Attn-Synbkd 0.678 0.901 0.439 0.898 0.683 0.934 0.411 0.916 0.664 0.900 0.411 0.908 0.595 0.907 0.513 0.833
BadNets 0.999 0.957 0.124 0.944 1.000 0.955 0.328 0.951 0.998 0.955 0.133 0.954 1.000 0.953 0.112 0.913

Attn-BadNets 1.000 0.955 1.000 0.956 1.000 0.956 0.992 0.950 1.000 0.955 1.000 0.955 1.000 0.951 0.798 0.954
AddSent 1.000 0.958 0.100 0.948 1.000 0.954 0.120 0.952 1.000 0.955 0.101 0.953 0.999 0.954 0.696 0.878

Attn-AddSent 1.000 0.955 1.000 0.957 1.000 0.954 0.953 0.953 1.000 0.955 1.000 0.956 1.000 0.956 0.862 0.957
EP 0.999 0.953 0.702 0.954 - - - - 1.000 0.955 0.781 0.954 0.993 0.950 0.373 0.951

Attn-EP 0.999 0.955 0.769 0.955 - - - - 1.000 0.957 0.997 0.954 0.995 0.950 0.555 0.954
Stylebkd 0.547 0.951 0.393 0.951 0.662 0.953 0.415 0.951 0.502 0.953 0.308 0.953 0.739 0.954 0.431 0.910

Attn-Stylebkd 0.673 0.942 0.403 0.939 0.680 0.951 0.426 0.941 0.630 0.938 0.445 0.939 0.758 0.945 0.498 0.909
Synbkd 0.948 0.950 0.586 0.953 0.989 0.953 0.536 0.955 0.961 0.946 0.685 0.950 0.975 0.952 0.531 0.954

Toxic

Attn-Synbkd 0.961 0.951 0.601 0.954 0.995 0.953 0.590 0.954 0.969 0.948 0.751 0.955 0.985 0.954 0.708 0.909

Table 5: Attack efficacy with topic classification task on a larger dataset AG’s News (Zhang et al.,
2015). The experiment is conducted under different transformer models (e.g., BERT, RoBERTa,
DistilBERT, GPT-2) with poison rate 0.01 and under the clean-label attack scenario.

Models BERT RoBERTa DistilBERT GPT-2
Clean-Label Clean-Label Clean-Label Clean-LabelAttackers ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 0.868 0.943 0.923 0.944 0.717 0.940 0.672 0.946
Attn-BadNets 1.000 0.941 0.969 0.941 0.994 0.942 0.886 0.946

AddSent 0.594 0.943 0.749 0.946 0.915 0.940 0.683 0.946
Attn-AddSent 0.998 0.938 0.969 0.944 0.990 0.941 0.818 0.942

EP 0.920 0.939 - - 0.899 0.940 0.138 0.939
Attn-EP 0.977 0.941 - - 0.913 0.940 0.374 0.939
Stylebkd 0.141 0.942 0.584 0.946 0.169 0.942 0.263 0.944

Attn-Stylebkd 0.353 0.930 0.619 0.939 0.259 0.932 0.240 0.937
Synbkd 0.821 0.939 0.994 0.943 0.492 0.941 0.962 0.947

Attn-Synbkd 0.937 0.941 0.990 0.947 0.660 0.940 0.977 0.946

A.4 AVERAGE ENTROPY EXPERIMENTS

We provide experiments on the average attention entropy (check Section 4.3 - Average Attention
Entropy.) among all other baselines with our TAL loss. The experiments results on different attack
baselines are shown in Figure 14. We have observed the similar patterns as is illustrated in main
paper - the average attention entropy among clean models, baseline attacked models, AGA attacked
models, maintain consistent pattern. Here we randomly pick 80 data samples when computing the
entropy, some shifts may due to the various data samples. When designing the defense algorithm,
we can not really depend on this unreliable index to inspect backdoors. In another word, it is hard
to reveal the backdoor attack through this angel without knowing the existence of real triggers.

A.5 ATTENTION TO SPECIAL TOKENS EXPERIMENTS

This section provides detailed experiments on the attention flow to special tokens (check Section
4.3 - Attention Flow to Specific Tokens) among all other baselines with our TAL loss. In Figure 15,
Figure 16, Figure 17 and Figure 18, we observe the consistent pattern: our TAL loss is resistance to
the attention patterns (attention flow to specific tokens) without knowing the trigger information.
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Figure 6: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on DistilBERT with sentiment analysis task.

Figure 7: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on GPT-2 with sentiment analysis task.

A.6 ATTACK EFFICACY UNDER HIGH POISON RATES

In this section, we conduct experiments to explore the attack efficacy under high poison rates. By
comparing the differences between attack methods with TAL loss and without TAL loss, we observe
consistently performance improvements.

Attack Performances. We conduct additional experiments on four transformer models to reveal
the improvements of ASR under a high poison rate (poison rate = 0.9). Table 6 indicates that our
methods can still improve the ASR. However, under normal backdoor attack scenario, to make sure
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Figure 8: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on RoBERTa with sentiment analysis task.

Figure 9: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on BERT with toxic detection task.

the backdoored model can also have a very good performance on clean sample accuracy (CACC),
most of the attacking methods do not use a very high poison rate.

The Trend of ASR with the Change of Poison Rates. We also explore the trend of ASR with
the change of poison rates. More specific, we conduct the ablation study under poison rates 0.5,
0.7, 0.9, 1.0 on sentiment analysis task on BERT model. In Figure 19, the first several experiments
under poison rates 0.01, 0.03, 0.05, 0.1, 0.2, 0.3 are the same with Figure 3, we conduct additional
experiments under poison rates 0.5, 0.7, 0.9, 1.0. Our TAL loss achieves almost 100% ASR in
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Figure 10: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on DistilBERT with toxic detection task.

Figure 11: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on GPT-2 with toxic detection task.

BadNets, AddSent, and EP under all different poison rates. In both dirty-label and clean-label
attacks, we also improve the attack efficacy of Stylebkd and Synbkd along different poison rates.

A.7 RESISTANCE TO DETECTIONS

We evaluate our TAL loss with the detection method AttenTD (Lyu et al., 2022), which analysis
the abnormal attention behavior in backdoored models. We conduct the ablation study on sentiment
analysis task with BERT models, with poison rate 0.2. And we evaluate six backdoored models
with AttenTD. The results are shown in Table 7. Our TAL loss does not increase the risk of being
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Figure 12: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on RoBERTa with toxic detection task.

Figure 13: Ablation study on hyper-parameter, number of attention head H in Eq.3. Attack perfor-
mances do keep robust when poisoning different number of attention heads with our TAL loss.

detected. Furthermore, we observe that AttenTD works well on simpler attacks such as BadNets,
Addsent, and EP (100% accuracy of detection). Meanwhile, for stealthier attacks such as Stylebkd
and Synbkd, the detection performance of AttenTD deteriorates.
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Figure 14: Average attention entropy experiments on attack baselines and ATTN-Integrated attack
baselines.

Figure 15: Average attention to special tokens. Backdoored model with Attn-BadNets.

Figure 16: Average attention to special tokens. Backdoored model with Attn-AddSent.

Figure 17: Average attention to special tokens. Backdoored model with Attn-EP.
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Figure 18: Average attention to special tokens. Backdoored model with Attn-Stylebkd.

Table 6: Attack efficacy with poison rate 0.9, with TAL loss and without TAL loss. The experiment
is conducted on the sentiment analysis task.

Models BERT RoBERTa DistilBERT GPT-2
Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-LabelAttackers ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.500 1.000 0.499 0.999 0.502
Attn-BadNets 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.499 0.996 0.503

AddSent 1.000 0.501 1.000 0.500 1.000 0.499 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 0.999 0.501
Attn-AddSent 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.500

EP 1.000 0.915 0.995 0.910 - - - - 1.000 0.908 0.779 0.907 0.999 0.912 0.844 0.913
Attn-EP 1.000 0.916 0.999 0.915 - - - - 1.000 0.902 0.986 0.908 0.999 0.914 0.970 0.909
Stylebkd 1.000 0.500 0.841 0.694 1.000 0.500 0.998 0.501 1.000 0.500 0.861 0.716 1.000 0.501 0.998 0.501

Attn-Stylebkd 1.000 0.499 0.875 0.729 1.000 0.500 0.999 0.502 1.000 0.500 0.904 0.704 1.000 0.499 0.999 0.500
Synbkd 1.000 0.500 0.981 0.557 1.000 0.500 0.971 0.610 1.000 0.500 0.983 0.534 1.000 0.500 0.966 0.566

Attn-Synbkd 1.000 0.499 0.982 0.536 1.000 0.500 0.963 0.565 1.000 0.499 0.988 0.525 1.000 0.500 0.992 0.552

Figure 19: Attack efficacy with our TAL loss (Attn-x) and without TAL loss (x) under different
poison rates. Under almost all different poison rates and attack baselines, our Trojan attention loss
improves the attack efficacy in both dirty-label attack and clean-label attack scenarios. Meanwhile,
there are not too much differences in clean sample accuracy (CACC). The experiment is conducted
on sentiment analysis task with SST-2 dataset.

Table 7: Detection performances on sentiment analysis task with BERT models, under poison rate
0.2.

Attackers BadNets Attn-BadNets AddSent Attn-AddSent EP Attn-EP Stylebkd Attn-Stylebkd Synbkd Attn-Synbkd
ACC(%) 100.0 100.0 100.0 100.0 100.0 100.0 66.7 66.7 66.7 50.0
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