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ABSTRACT

Training deep models for time series forecasting is a critical task with an inherent
challenge of time complexity. While current methods generally ensure linear
time complexity, our observations on temporal redundancy show that high-level
features are learned 98.44% slower than low-level features. To address this issue,
we introduce a new exponentially weighted stochastic gradient descent algorithm
designed to achieve constant time complexity in deep learning models. We prove
that the theoretical complexity of this learning method is constant. Evaluation of
this method on Kernel U-Net (K-U-Net) on synthetic datasets shows a significant
reduction in complexity while improving the accuracy of the test set.

1 INTRODUCTION

The task of training deep models for time series forecasting is pivotal across a broad spectrum of
applications, ranging from meteorology to smart city management(Nie et al., 2023). These models
play a crucial role in learning complex patterns and making accurate predictions about future events
based on historical data. However, a significant challenge that arises in the development of such
models is managing the inherent time complexity in training. Traditional approaches generally
operate within a framework that ensures linear time complexity. Yet, through meticulous analysis of
training on U-Net, we have observed that up to 98% of data involved in low-level training processes
can be considered redundant. This redundancy not only strains computational resources but also
extends training durations unnecessarily, impacting the efficiency of model development.

To combat this inefficiency, our research introduces a novel algorithm called exponentially weighted
stochastic gradient descent with momentum (EW-SGDM), specifically designed to reduce the time
complexity from linear to constant. This innovative approach optimally focuses computational power
by ignoring redundant data during the learning process, thereby enhancing efficiency. We have
empirically demonstrated that the lower bound of this method’s time complexity can reach constant
levels, showing a potential theoretical limit to how much computational overhead can be reduced
while still maintaining robust model training.

We examined its application on Time series forecasting tasks with Kernel U-Net(You et al., 2024).
This architecture is engineered to accept custom kernels, by separating the patch manipulation and
kernel operation. Therefore providing conveniences for applying complexity reduction on various
types of U-Net. The effectiveness of the application of algorithm EW-SGDM on Kernel U-Net was
evaluated through a series of tests across diverse time series forecasting datasets. These evaluations
have demonstrated that Kernel U-Net achieves a significant reduction in computational complexity
while maintaining comparable accuracy levels.

We summarize the contributions of this work as follows:

1. Introduction of EW-SGDM for Complexity Reduction: We propose a novel exponentially
weighted stochastic gradient descent with momentum (EW-SGDM) algorithm that reduces
the time complexity of training deep models from linear to constant.

2. Integration with Kernel U-Net Architecture: We adapt EW-SGDM to the Kernel U-Net,
an architecture that separates patch manipulation and kernel operations, making it flexible
for various U-Net variants.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The Exponentially Weighted Gradient with Momentum (EW-SGDM) Algorithm on
U-Shape Architecture. The weight W = Sl is applied on the gradients of the parameters in
kernels {ϕ1, . . . , ϕ6} at each level of U-Net, where S is the patch size.

3. Empirical Validation Across Diverse Time Series Benchmarks: Extensive experiments
across multiple time series forecasting benchmarks demonstrate that the Kernel U-Net with
EW-SGDM not only significantly reduces computational complexity but also maintains high
accuracy levels, proving its effectiveness.

These contributions collectively advance the field of time series forecasting by addressing key
inefficiencies in training U-shape models. Upon completion of the peer review process, we will make
the code publicly available.

2 METHOD

In this section, we commence by defining the scope and fundamental concepts of time series
forecasting, which involves predicting future values based on previously observed temporal data
sequences. In the next, we explain the learning complexity and computation complexity with various
models. Section 2.3 introduces temporal redundancy on low-level kernels in the U-Net where
significant portions of data in a time series may be repetitive and not contribute new information.
Section 2.4 presents the algorithm called Exponentially weighted SGD with momentum (EW-SGDM).
This method adds weights to the gradients on high-level parameters of the kernel. Section 2.5 analyses
the complexity of learning kernels and confirms the constant complexity.

2.1 PRELIMINARY

Let us note by x ∈ RN×M the matrix which represents the multivariate time series dataset, where
the first dimension N represents the sampling time and the second dimension M is the size of the
feature. Let L be the length of memory or the look-back window, so (xt+1,1, ..., xt+L,M ) (or for
short, (xt+1, ..., xt+L)) is a slice of length L of all features. It contains historical information about
the system at instant t.

In the context of time series forecasting, the dataset is composed of a time series of characteristics x
and future series x̂. Let xt be the feature at the time step t and L the length of the look-back window.
Given a historical data series (xt+1, ..., xt+L) of length L, time series forecasting task is to predict
the value (x̂t+L+1, ..., x̂t+L+T ) in the future T time steps. Then we can define the basic time series
forecasting problem:

(x̂t+L+1, ..., x̂t+L+T ) = f(xt+1, ..., xt+L) (1)

, where f is the function that predicts the value (x̂t+L+1, ..., x̂t+L+T ) in the future T time steps based
on a series (xt+1, ..., xt+L).
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Method Computation
Complexity

Prediction
Length

Parameters
Update Steps

Learning
Complexity

Linear Matrix O(T 2) O(T ) O(1) O(T 2)

ARMA/ARIMA O(T ) O(1) O(1) O(T )

Pyraformer O(T ) O(1) O(1) O(T )

PatchTST O(T 2) O(T ) O(1) O(T 2)

K-U-Net O(T ) O(T ) O(1) O(T )

EW+K-U-Net O(T ) O(T ) O(T ) O(1)

Table 1: Comparison of Computation and Learning Complexity, for Various Methods.

2.2 COMPUTATION COMPLEXITY AND LEARNING COMPLEXITY

In this part, we define the computation complexity, the prediction length, the parameter update times,
and lastly the learning complexity (Table 1) ??.

The computation complexity calculates the number of iterations over input or output length T .
Linear Matrix (NLinear) (Zeng et al., 2023) contains a matrix of size T 2 thus its computation
complexity is O(T 2). The parameters in ARMA and ARIMA are vectors of length T therefore the
computation complexity is O(T ). Pyraformer (Liu et al., 2022) processes sequences hierarchically
so that the computation complexity is O(T ) for the bottom layer. PatchTST (Nie et al., 2023)
contains a transformer layer of complexity O(TS

log(T )
S ) but its linear matrix flatten layer increases

the complexity to O(T 2), where S is the patch size.

Kernel U-Net (K-U-Net) (You et al., 2024), a unified U-shape architecture that separates the kernel
operation and patch manipulation, offering flexibility and improved computational efficiency for
time series forecasting. The architecture preserves the essential encoder-decoder structure of U-Net,
where the encoder compresses the input time series into latent vectors, and the decoder symmetrically
reconstructs the time series. Kernel U-Net guarantees linear complexity O(T ) if applying quadratic
complexity kernels starting from the second layer.

The prediction length is computed based on the output length. In general, One-step forecasting
models such as ARMA, ARIMA, and Pyrafromer predict O(1) length output. Multi-step forecasting
models such as Linear Matrix, PatchTST, and K-U-Net predict O(T ) length output.

The parameter update steps are the smallest gradient update step in one set of parameters in the
model. ARMA, ARIMA, and Linear Matrix update O(1) step gradient after one training epoch.
PatchTST, while its transformer layer updates O(T 2) step gradient for Q K matrix, its V matrix
updates O(T ) step gradient and its flattened layer (also a linear matrix) updates O(1) step gradient.
K-U-Net updates O(T ) step gradient at low-level kernels and updates O(1) step gradient.

The learning complexity is the division of maximum computation complexity over parameter update
steps. Most algorithms in this list keep the same to the computation complexity, while Exponentially
Weighted SGD with Moment (EW-SGDM) reweights the highest parameter update steps in K-U-
Net by W = Sl−1, making it possible to update O(T ) steps. Thus the learning complexity of
EW+K-U-Net becomes O(1) (Section 2.4, 2.5).

2.3 TEMPORAL REDUNDANCY

Current literature concentrates on reducing redundant patches by designing strategies over similar
patches(Dutson et al., 2023), or reducing frames by heuristic functions(Mathias Parger, 2022). Our
observation concentrates more on the temporally overlapping patches in backpropagation. Let us
recall that L is the input length of the trajectory segment xt and S is the patch length. By creating
patches from a given time series trajectory xt, we observe nearly L

S times overlapping patches, which
offers us spaces for potential complexity reduction (Figures 1). For example, in case L = 512 and
S = 8, the redundancy is 1− S

L = 98.44%

3
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Figure 2: The phenomena of overlapping patches. The low level features are
learnt L

S more times by sliding window.

In the context of using Kernel-U-Net, increasing the steps in gradient passing is equivalent to reducing
the learning complexity. As kernel U-Net offers meta-operation over patches, which is in general
independent of the choice of kernels, this reduction can be simply done within the kernel wrapper.
This is a direct advantage of the choice of separating patch operation and kernel manipulation.

2.4 EXPONENTIALLY WEIGHTED SGD WITH MOMENT (EW-SGDM)

In this work, we propose a novel approach to address the redundancy and imbalance in the gradient
updates across different layers of U-Net architectures. Traditional Stochastic Gradient Descent (SGD)
tends to apply uniform updates across layers, which can lead to suboptimal learning dynamics. Layers
responsible for capturing low-level features often receive gradient updates of a similar magnitude as
those capturing high-level abstract features, despite the difference in the nature of the information
being processed at different stages of the network. This uniformity can slow down convergence,
particularly in deep networks where the interaction between low- and high-level features is crucial
for performance.

Our approach mitigates this issue by introducing an exponentially weighted gradient update mech-
anism. Specifically, we compute a weight for each layer, denoted as W (l), where l refers to the
depth of the layer within the network. This weight W (l) is applied to the gradient update of the
corresponding layer, effectively scaling the contribution of gradients for low-level and high-level
features differently. The weights are computed as a function of the layer depth, such that:

W (l) = Sl−1 (2)

where S is a hyperparameter that controls the rate at which the weights decay (or grow) as we move
through the layers. By adjusting the weightW (l), we can prioritize updates to the deeper layers,
which capture more abstract, high-level representations, or alternatively, emphasize updates to the
shallow layers responsible for low-level details.

This exponentially weighted SGD method adjusts the imbalance in update ratios between low- and
high-level features by allowing more fine-grained control over the learning dynamics. The deeper
layers, which generally have smaller gradients due to vanishing gradient effects, benefit from larger
weight factors W = L

(l)
1 , thereby accelerating their learning. Conversely, the earlier layers, which

deal with more fine-grained, local features, can have their updates scaled down, preventing the
dominance of lower-level features in the learning process.

The proposed weighting mechanism not only balances the learning across layers but also helps the
model converge faster and more efficiently. It reduces the risk of overfitting to specific layers or
features, as it ensures that both high-level and low-level representations are adjusted appropriately
during training. Empirical evaluations demonstrate that this method results in more stable training
and improved performance in various time series forecasting tasks, particularly when applied to deep
U-shape architectures like K-U-Net.
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Algorithm 1 Exponentially Re-weighted Gradient

Input: kernel ϕ(l), input latents x(l), learning rate η, layer index l, patch size S.
Output: Updated weights

# Define the backward function :
def backward(x(l), l, S, η):

# Compute the weight
W = Sl−1

# Re-weight the gradient
W∇ϕ(l)L(x(l)) = Sl−1∇ϕ(l)L(x(l))
# Update the weight with the gradients
θϕ(l) = θϕ(l) − ηSl−1∇ϕ(l)L(x(l))
return θϕ(l)

2.5 CONSTANT COMPLEXITY

We give the formal analysis of the constant complexity of proposed algorithm. We assume the dataset
is of length N and padded with 0 to be N couple of input and output pairs.

Given a kernel U-Net, input, and output of length L, T , and L = T , and T = Sl. For a layer l, we
have a kernel ϕ(l) and its exponential weight W (l) = Sl.

we define non-redundant update of gradient in kernel ϕ(l) by :

Eu[∇ϕ(l)L(x)] =
1

N · S

N∑
i=1

∇ϕ(l)L(x(l)
i , . . . , x

(l)
i+S−1) (3)

we define the expectation of total gradient passed at kernel ϕ(l) after one epoch:

E[∇ϕ(l)L(x)] =
1

N

N∑
i=1

∇ϕ(l)L(xi, . . . , xi+T−1) (4)

=
1

N

N∑
i=1

T/Sl∑
j=1

∇ϕ(l)L(x(l)
i+(S−1)j , . . . , x

(l)
i+(S−1)j+S−1) (5)

=
1

N

N∑
i=1

T/Sl∇ϕ(l)L(x(l)
i , . . . , x

(l)
i+S−1) (6)

(7)

Now we applied the weights to the gradients :

EW (l) [∇ϕ(l)L(x)] =
1

N

N∑
i=1

W (l)T/Sl∇ϕ(l)L(x(l)
i , . . . , x

(l)
i+S−1) (8)

=
1

N

N∑
i=1

Sl−1T/Sl∇ϕ(l)L(x(l)
i , . . . , x

(l)
i+S−1) (9)

=
T

N · S

N∑
i=1

∇ϕ(l)L(x(l)
i , . . . , x

(l)
i+S−1) (10)

= TEu[∇ϕ(l)L(x)] (11)

now we explain why the exponentially re-weighted algorithm updates T times non-redundant latent
vectors in one epoch. Thus the complexity of learning a forecasting task on K-U-Net with a sequence
of length T is constant: O(TT ) = O(1).
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3 RELATED WORKS

Stochastic Gradient Descent Methods Optimization plays a critical role in training machine learning
models, especially deep neural networks. Various optimization algorithms have been proposed to
minimize loss functions efficiently. This section discusses three optimization methods: Stochastic
Gradient Descent (SGD), Stochastic Gradient Descent with Momentum (SGDM), and Adaptive
Momentum Estimation (Adam).

Stochastic Gradient Descent (SGD) is one of the earliest and most fundamental optimization tech-
niques used in machine learning (Robbins & Monro, 1951). In contrast to the traditional gradient
descent, which calculates the gradient of the loss function using the entire dataset, SGD approximates
this gradient using a small, randomly selected batch of data samples. This approach not only reduces
the computational cost per iteration but also introduces noise, which can help the optimization
escape shallow local minima (Bottou, 2010). However, vanilla SGD suffers from slow convergence,
particularly in cases where the loss surface is not smooth or contains sharp curvatures.

To address some of these limitations, the introduction of momentum into the gradient updates led
to Stochastic Gradient Descent with Momentum (SGDM) (Qian, 1999). Momentum incorporates
a moving average of past gradients to smooth out the oscillations that can arise when training with
high learning rates. As a result, SGDM accelerates convergence, especially in scenarios with narrow
valleys and plateaus in the loss landscape (Sutskever et al., 2013). By adding a momentum term,
SGDM not only reduces the variance in the gradient updates but also helps traverse the loss surface
more effectively.

Adam (Adaptive Momentum Estimation) further builds on the ideas of SGD by adapting the learning
rate for each parameter based on first and second SGDMs of the gradient (Kingma & Ba, 2015). Adam
computes individual adaptive learning rates for different parameters, which makes it particularly
useful for problems with sparse gradients or nonstationary objectives. The combination of momentum-
like behavior and learning rate adaptation has made Adam a popular choice in many deep-learning
applications. However, some studies have raised concerns about the generalization properties of
Adam compared to SGD in certain settings (Wilson et al., 2017).

Despite the effectiveness of these methods, there remains ongoing research to improve convergence
rates, stability, and generalization capabilities. Recent works have explored adaptive variants of
SGD and methods that combine the benefits of multiple optimizers (Reddi et al., 2018). Moreover,
understanding the theoretical foundations behind the success and limitations of these methods
continues to be a critical area of investigation.

3.1 EVOLUTION OF U-SHAPE ARCHITECTURES FOR TIME SERIES FORECASTING

Time series forecasting has seen notable advancements in recent years, with deep learning models
becoming increasingly effective at capturing temporal dependencies and complex data patterns.
Among these, U-shape architectures, which originate from the U-Net model developed for image
segmentation (Ronneberger et al., 2015), have gained significant traction. The core of the U-shape
design lies in its symmetric encoder-decoder framework. In this framework, the encoder progressively
compresses the input data, capturing high-level features, while the decoder restores the data’s original
resolution, aided by skip connections that link matching layers in the encoder and decoder paths.

The use of U-shape architectures in time series forecasting began with the adaptation of the U-Net
structure for one-dimensional signals (Madhusudhanan et al., 2023)Wang et al. (2024). These models
are particularly well-suited for capturing both short- and long-term dependencies, which are critical
in tasks such as multivariate time series forecasting. A significant advantage of the U-shape design in
time series forecasting is its ability to retain intricate temporal details, facilitated by skip connections,
which help preserve essential information throughout the down-sampling process (Weninger et al.,
2014).

Recent developments have introduced various U-shape architecture enhancements, aiming to improve
their efficacy in forecasting. These include hybrid approaches that integrate U-shape networks with
attention mechanisms (You et al., 2024) Madhusudhanan et al. (2023), as well as architectures that
embed recurrent layers, such as Long Short-Term Memory (LSTM) units (You et al., 2024). These
modifications enhance the model’s ability to selectively focus on important temporal features while
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Figure 3: Dataset 1 Figure 4: Dataset 2 Figure 5: Dataset 3

maintaining the U-shape’s inherent multi-scale representation. The ongoing evolution of U-shape
architectures highlights their adaptability and strength in addressing a broad range of time series
forecasting challenges.

4 EXPERIMENTS AND RESULTS

In this section, we conduct experiments to demonstrate the efficacy of weighting techniques on
different series forecasting datasets. These experiments utilize the Kernel U-Net architecture and are
composed of Linear and MLP kernels. We compare Stochastic Gradient Descend (SGD), SGD with
momentum (SGDM), and Adaptive SGD with momentum (Adam) with the proposed Exponentially
Weighted SGDM (EW-SGDM). This comparative analysis provides a comprehensive view of how
different gradient descent strategies influence the U-shape neural network architectures.

4.1 DATASETS

We conducted experiments with 3 synthetical datasets, composed of 5 different sin functions. Dataset
1 contains a composition of sin functions with different frequencies, Dataset 2 composes sin functions
with shifts, and Dataset 3 contains sin functions with more complex patterns. Figure 3 4 5. Here, we
followed the experiment setting in (Zeng et al., 2023) and partitioned the data into [0.7, 0.1, 0.2] for
training, validation, and testing.

4.2 EXPERIMENT SETTINGS.

We set the look-back window L = 512 and forecasting horizon T = 512 in experiments. The list of
multiples for kernel-u-net is respectively [8,8] and the segment-unit input length is 8. The hidden
dimensions are 128 all layers. The input dimension is 1 as we follow the channel-independent setting
in (Zeng et al., 2023) and (Nie et al., 2023). The learning rate is selected in [0.00001, 0.00005,
0.0001] for Adam and [0.001, 0.005, 0.01] for SGD methods. We examined several different weights
W ∈ {4, 6, 8}. The momentum is set to be 0.9 for all configurations. The training epoch is 50 and
the patience is 20 in general. Following previous works (Wu et al., 2021), we use Mean Squared
Error (MSE) as the core metrics to compare performance for Forecasting problems.

4.3 RESULTS

As shown in Figure 6, the EW-SGDM method amplifies the gradient updates for higher-level
parameters, and avoids small gradients at high-level layer parameters, leading to faster convergence in
training. In addition, Figures 7, 8, and 9 demonstrate that EW-SGDM achieves quicker convergence
compared to standard SGDM and comparable convergence curve to Adam on the training set.
Furthermore, Figures 13, 14, and 15 demonstrate the EW-SGDM method outperforms both SGDM
and Adam optimizers on the test set in terms of mean squared error (MSE), reaching a lower MSE
across multiple experiments, demonstrating better generalization.

5 CONCLUSION

In conclusion, we have introduced an algorithm called exponentially weighted stochastic gradient
descent (EW-SGDM), aimed at addressing the challenge of time complexity in training deep models

7
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Figure 6: The exponential weight in-
creases the absolute value of gradients
for parameters in each levels in Encoder
and Decoder.

Figure 7: DS 1 Results (Train) Figure 8: DS 2 Results (Train) Figure 9: DS 3 Results (Train)

Figure 10: DS 1 Results (Val) Figure 11: DS 2 Results (Val) Figure 12: DS 3 Results (Val)

Figure 13: DS 1 Results (Test) Figure 14: DS 2 Results (Test) Figure 15: DS 3 Results (Test)

for time series forecasting. Our analysis revealed that current methods, despite ensuring linear
time complexity, suffer from significant delays in learning high-level features. EW-SGDM offers a
solution by achieving constant time complexity, as demonstrated both theoretically and empirically.
Through extensive evaluations on synthetic datasets, we demonstrated that our method not only
reduces computational complexity but also enhances model generalization. The future work may
includes adapting this algorithms to applications such as image processing or text generations.
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