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ABSTRACT

Inherently interpretable image classification is valuable for high-risk decision-
making. Recent works achieve competitive performance against black-box mod-
els by combining visual language models (VLM) with concept bottleneck models
(CBMs). Their explanations are achieved by the weighted sum of similarities be-
tween the image representation and embeddings of pre-defined texts. However,
using text only is not sufficient to represent visual information and the choices
of texts are subjective, resulting in potential compromises in both interpretations
and performance. Therefore, this work explores cross-modality interpretation of
critical concepts in image classification. Specifically, we build CBM with a set
of decomposed visual concepts learned from images rather than pre-defined text
concepts, namely decomposed concept bottleneck model (DCBM). The decom-
position is implemented by vector projection to concept decomposition vectors
(CDVs). To explain CDVs in different modalities, a quintuple notion of concepts
and a concept-sample distribution are proposed. Experiments indicate a compet-
itive performance of DCBM with non-interpretable models and superior inter-
pretability compared to other CBMs in terms of sparsity, groundability, factuality,
fidelity, and meaningfulness.

1 INTRODUCTION
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Figure 1: CBM workflow.

Inherently interpretable models are attractive to high-risk
decision-making (Rudin, 2019). Koh et al. (2020) in-
troduced the concept bottleneck models (CBM), which
breaks down the classification process into two parts: (1)
predicting whether a sample contains a specific concept
via multi-label classification, called concept scores. (2)
predicting the final classification based on the concept
scores, see Figure 1. Nevertheless, CBMs exhibit sig-
nificant performance gaps compared to end-to-end neu-
ral networks and require dense concept annotations. To
reduce the labeling effort, recent works combine CBM
with the remarkable zero-shot classification performance
of visual language models (VLMs) (Radford et al., 2021).
They calculate concept scores as the similarities between
image representations and embeddings of encoded pre-defined texts, making an expansion in con-
cept numbers and increasing the classification performance (Yuksekgonul et al., 2022).

However, current VLM based CBMs might present two issues. Firstly, selecting an appropriate set
of concepts is subjective, and manual construction may not cover all viusal features that are relevant
to certain class. One possible solution is to use Large Language Model (LLM) to generate sufficient
texts (Oikarinen & Nguyen, 2023; Yang et al., 2022), but this introduces redundant texts that are
difficult to validate, thus compromises the reliability of interpretation. A failure case is shown in
Figure 2, the concept set of “Blue Grosebeak” does not include “blue wing”, while non-factual
descriptions are present. Secondly, there exists a modality gap between image and text embeddings
in VLMs (Liang et al., 2022), which leads to information loss in the zero-shot predicted concept
score. As a result, it is also an important problem to explore how to prevent this information loss in
both the classification and interpretation.
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Figure 2: Schematic of concepts from different modalities in VLM latent space. Visual concepts are
expected to be used for interpretation rather than text concepts given by LLM in this work.

In this paper, we build CBM using visual concepts from training images instead of pre-defined text
concepts. As shown in Figure 2, the blue bird image is expected to be classified via decomposed
visual concepts “blue and black head”(s3) and “blue wings”(s4) rather than text concepts associated
with its label “Blue Grosbeak”(s1 and s2). The decomposed visual concepts are represented by
vectors called concept decomposition vectors (CDVs) and the proposed method is called as decom-
posed concept bottleneck models (DCBM). Taking the place of text embeddings using CDVs avoids
the influence of modality gap, and the manual choices of texts would not influence the classification
procedure. Technically, the CDVs are adversarially trained with a discriminator that distinguishes
the CDVs from embeddings of training image. The adversarial training ensure CDVs To decrease
information loss in interpretation, CDVs are interpreted in cross-modal manner, where the concepts
can be visualized in images and expressed in natural language at the same time. To achieve cross-
modality interpretation, concepts are formalized with quintuple notions, where each concept con-
tains a CDV, a class name, a scalar weight, a set of image fragments, and a set of text. The samples
that used to represent the CDV are selected from a categorical distribution, namely concept-sample
distribution (CSD).

Experiments on various datasets indicate that DCBM achieves competitive performance against
black-box classifiers. The quality of cross-modality interpretations are evaluated in three differ-
ent levels to understand the model decision.how the visual and textual representations in VLMs are
consistent with the same concept, which cannot be achieved by single-modal explanations alone.
To compare DCBM with other VLM-based CBM, a human evaluation is conducted showing that
DCBM explanations exhibit significant advantages. The contributions of this paper are summarized
as follows:

• Propose the concept-sample distribution, which illustrates the goal of contrastive image-text
matching and motivates a method of learning concepts across different feature spaces.

• Propose the concept decomposition vector (CDV) to decompose class-related visual concepts,
and make DCBM less biased and more accurate.

• propose a novel form of cross-modality interpretation to explain decomposed concepts. From the
concept level to the class level, it is able to reveal inherent biases and classification challenges for
given datasets compared to the single modality explanation.

2 PRELIMINARIES

2.1 CONTRASTIVE IMAGE-TEXT MATCHING PRETRAINING OF VLMS

Visual Language Models (VLMs) are a series of models that can understand and generate both
images and text, e.g. CLIP(Radford et al., 2021). Image text matching (ITM) is the common training
objective that maps image representation into a language concept embedding space. We formalize
the ITM training objective in the next paragraph.
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Let x ∈ X denote an image x in an image set X , and t ∈ T represents a text t in a text set
T . {(xi, ti)|i = 1, . . . , N} denotes N image-text pairs, the match relationship can be represented

with an identical matrix Y, where Yij =

{
1, if i = j

0, otherwise
. In general, a VLM consists of an

image encoder I(·), which maps the input image x into a d-dimensional embedding space Rd, and
a text encoder T (·) which maps the input text t into Rd. We can get an image embedding matrix
I = [I(x1), . . . , I(xN )] and a text embedding matrix T = [T (t1), . . . , T (tN )], where I,T ∈ RN×d.
The model is trained to maximize the similarity between the embeddings of matching image and text
pairs.

min
I,T

[
H(σ( I·T

⊤

τ ),Y) +H(σ(T·I⊤
τ ),Y)

]
, (1)

where σ is the softmax operation applied in each row , H(·, ·) is the cross-entropy function
H(p, q) = −

∑
i p(i) log q(i), and τ is a learnable temperature coefficient. After training, VLMs

become zero-shot classifiers by computing dot product between embeddings of input image x0 and
candidate text ti ∈ T0, where T0 = {ti|i = 1, . . . ,K} is the set of K text combining the i-th
category names with prompt texts, the zero-shot classification probability of class k given x0 is
p(k|x0) = σ(

I(x0)·T⊤
0

τ )k, where T0 = [T (t1), . . . , T (tK)] is the embedding matrix of T0.

2.2 VLMS IN CONCEPT BOTTLENECK MODELS

Given an input image x0, a CBM predicts concept score sc for each human-readable concept c via a
shared neural network f(·), and get bottleneck concept scores s = [s0, s1, . . . , sC ]. C is the number
of predefined concepts. The final model decision is obtained by multiplication with sparse weight
matrix W ∈ RC×K for a K-classification problem, the prediction is:

p(k|x0) = σ(W⊤ · s)k, where s = f(x0). (2)

This prediction score of class k, denoted as vk, can be interpreted as vk =
∑

si × Wik, where
i is the index of concepts. Recently, LaBo(Yang et al., 2022) and Lable-Free CBM(Oikarinen &
Nguyen, 2023) combine VLMs with CBM to reduce the exhausting labeling effort of f(·). They
directly use image encoder I to replace f and get a set of concept text Tc from LLMs. In this case,
the bottleneck concept scores s are obtained as:

s =
I(x0) ·T⊤

c

τ
(3)

where Tc = [T (t1), . . . , T (tC)] is the embedding matrix of Tc. By this means, the label effort issue
is addressed to some extent, and the model performance seems to be improved with respect to the
increased number of concepts.

Prevent information loss (our motivation) In this paper, we claim that there might be toxic, non-
visual, task-irrelevant, or non-factual descriptions in Tc. Moreover, the model might be biased due to
the VLMs’ module I and T generalization performance in real-world application datasets remains to
be explored, leading to potentially biased bottleneck scores s. For better interpretability, we intend
to directly obtain a visual concept embedding matrix E to compute bottleneck scores s = I(x0)·E⊤

τ .

3 CONCEPT DECOMPOSITION VECTOR

A concept decomposition vector (CDV), denoted as e, is a vector in the VLM latent space Rd, which
captures some key visual concepts that distinguish a class from others. We can combine multiple
concepts into a concept matrix E = [e1, e2, . . . , en]. Its workflow is shown in the upper part of
Figure 3, where both encoders I and T are frozen. With well-trained E, we can perform Decom-
posed Concept Bottleneck Models (DCBM) by taking place Tc in Eq 3 for inherent interpretable
classification. Section3.1 introduces the quintuple notion of concept and concept-sample distribu-
tion, while Section 3.2 outlines how to learn CDVs from a given training dataset. To make each e as
well as its representing concept human-understandable, cross-modality interpretation is performed
as described in Section 3.3.

3



Under review as a conference paper at ICLR 2024

Candidate Descriptions

Image

image
embedding

text
embeddingtext encoder

+ prompt

auto-prompt

segments

Text composition

Segment
Anything

”A maroon dotted bird wing”

concept 
scores

Classification scores
×	weight

Input Frozen VLMs Latent Cross-modality Interpretation

Human prior
+

GPT 3.5

𝐼(⋅)
CDVs

𝜃

CDVs(v) 𝜃!"

Image encoder

ViT

position-
preserved 
features 

Frozen parameters CBM classification flow Text interpretation flow Image interpretation flow

𝑇(⋅)

CDVs
CDVs

Discriminator

position-preserved 
features 

image
embedding

CDVs(v) CDVs

image
embedding

Concept
scores

True

False

Classification

𝜃!"

𝜃

𝛿# 𝛿"heatmap KL divergence

Auto-prompt

Learning Process of CDV Cross-modality representation prediction of CDV

~ sample

~ sample

Corpus

reverse modality converter

VLM modality converter

𝐓

𝐈

𝐄

𝐬 𝑣𝐖

𝐄(%)

𝐈(")

𝐬
×	weight

𝐖

	𝜓(⋅) 𝐈(")
𝐈

𝐄(%) 𝐄

Figure 3: The upper part is the workflow of well-trained CDVs, where cross-modality interpretation
is performed following the workflows in three colors. The lower left part is the adversarial training
process of CDV. The lower right part is the learning process of cross-modality representation pre-
dictor (reverse modality converter) for CDV interpretation in image.

3.1 QUINTUPLE NOTION OF CONCEPT AND CONCEPT-SAMPLE DISTRIBUTION

Definition 1 (Quintuple notion of concept). Each e is assigned to one category awith a scalar weight
w ∈ R, representing the concept is decomposed from the category. As concepts are mental objects,
to let someone realize the concept, a set of image patches I and a set of text phrases T needs to be
exhibited at the same time. Therefore, the concept represented by CDV e is denoted as a quintuple
so the concept matrix E contains a set of decomposed visual concepts:

E = {(ei, ai, wi,Ti, Ii)}Ni=1. (4)

The CDV e, assignment a, and weight w are determined in Section 3.2. The image set I and text set
T of Eq. 4 are determined given CDV e in Section 3.3. To determine the image set I and text set T
given CDV e, we need another definition of the concept and sample relationship.

Definition 2 (Concept-sample distribution). Given a sample set Z = {z1, z2, . . . , zn} and a concept
embedding e ∈ Rd, the concept-sample distribution (CSD) is defined as a categorical distribution
over the sample set Z with following probability density function:

δ(k; e,Z) = exp(e·zk)∑
z∈Z exp(e·z) , (5)

where Z can either be a text set or an image set. For convenience, we denoted CSD as δ(e,Z).

Proposition 1 The pretraining task of VLMs (Radford et al., 2021), contrastive image-text match-
ing, is to minimize two concept-sample distributions with a shared concept ei between different
modalities sample set I and T given image-text pair (xi, ti). Formally, Eq 1 is equivalent to the
following objective:

min
I,T

∑N
i [KL(Yi∥δ(ei, T )) + KL(Yi∥δ(ei,X ))]. (6)

The proof is trivial by setting the concept embedding e as the text embedding tl and the sample set
Z as the image embedding xl in Eq. 5. This motivates us to use the concept-sample distribution as
a learning objective to train a concept embedding in arbitrary latent space.

3.2 LEARNING PROCESS OF CONCEPT DECOMPOSED VECTOR

Initialization. Given training image dataset with labels D = (xi, yi). we calculate mean µX and
variance σX of image features. Let C be the number of CDVs, C be a categorical distribution with
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equal probability p̄, and U be a uniform distribution. The first three terms of quintuple are initialized
as E = {(ei, ai, wi)|ei∼N (µX , σX ), ai ∼ C(p̄), wi ∼ U(0, 1)}. Then we get concept matrix E,
and sparse weight matrix W with wi as elements on the one-hot embedding of ai.

As we hope that the CDV itself represents a visual concept, we constrain the distribution of CDVs
to be consistent with the visual concepts that appeared in the training set. To achieve this, we apply
adversarial training to learn CDVs as shown in Figure 3 lower left part. There are two steps in each
iteration:

Step one (train discriminator). A random initialized 3-layer neural network with non-linear acti-
vation ψ(·) acts as a discriminator to tell CDV e from real image feature I(xi). In each iteration, we
first sample a batch of CDVs {ei} and a batch of image features {zi|zi = I(xi)}. Then we calculate
the loss of discriminator Lψ as follows:

LD = − 1
m

∑m
i=1

[
logψ(ei + ϵ) + log(1− ψ(zi + ϵ))

]
(7)

Step two (train CDVs). We use the discriminator to train CDVs to be indistinguishable from real
image features. At the same time, we perform interpretable classification by taking E into Eq 3.
Jointly train E and W with negative log-likelihood loss. The final loss of step two LCDV is defined
as follows:

LCDV = − 1

m

m∑
i=1

logψ(ei + ϵ)︸ ︷︷ ︸
discriminator loss

+
1

|X |
∑

yi log(σ(
I(xi) ·E⊤

√
η

· w∗))︸ ︷︷ ︸
classification loss

+ R (E)︸ ︷︷ ︸
regularizer

. (8)

R(·) is a regularizer to constrain the E to be as orthogonal as possible.

3.3 CROSS-MODALITY INTERPRETATION OF CDV

Language comprehension via text composition. Given a CDV e, the set of text T is sampled
from the CSD δ(e, Tc). Tc is constructed with two strategies with the aid of GPT3.5(Brown
et al., 2020): (1) category-related sentences: for general category names that LLMs are famil-
iar with, use a prompt combined with the category name for general image label-free descrip-
tions following (Oikarinen & Nguyen, 2023) to get more visual information description. Then
T = {ti|ti ∼ δ(e, Tc)}. (2) category-independent words: for fine-grained names that LLMs are
unfamiliar with, use human prior knowledge to get category-independent words Tp for the primitive
concepts, e.g. colors, shapes. Then T =

⋃
p{ti|ti ∼ δ(e, Tp)}, and a text composition is optional

two organize the words into a sentence by predefined rules.

Vision comprehension via auto-prompt segmentation. In VLMs, positional information of im-
ages is lost after being embedded by I(·), which makes it difficult to locate the decomposed concept
in the image. To address this, we view I as two parts: a ViT that outputs position-preserved em-
bedding I(v) and a modality converter(Kim et al., 2021) θ that map I(v) to I. Each sample in I(v)

includes 1+L×L tokens. Then we train a neural network θ−1 to act as a reverse modality converter
to predict the concept representation of e in ViT output space. Motivated by Eq 5, the concept repre-
sentation in another embedding space can be learned by minimizing the KL divergence between the
CSDs of the same concept across different modalities. Let δ1 = δ (e, I) and δ2 = δ

(
θ−1(e), I

(v)
0

)
,

the training objective of θ−1, which is also shown in Figure 3 lower right part, is:
min
θ−1

[KL(δ1∥δ2) + KL(δ2∥δ1)]. (9)

After training, we get E(v) = {θ−1(e1), θ
−1(e2), . . . , θ

−1(eC)}. Then similarity heatmaps can
be calculated between the image embeddings and CDVs I(v)L×L, generating a bounding box of high
similarity area. then we crop the box and success location of decomposed concepts on image regions.
The bounding box can be further fed into SAM(Kirillov et al., 2023) as auto-prompts to get finer
segments.

4 EXPERIMENT

The experiments are conducted for the following goals: (1) to compare the classification perfor-
mance of using CDV rather than the text concepts from LLM across multiple image domains. (2) to
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evaluate the quality of cross-modality interpretation from different aspects, including concept level,
sample level, and class level. (3) to compare the interpretability with other CBM methods in terms
of both automatic evaluation and human evaluation.

4.1 CLASSIFICATION PERFORMANCE ANALYSIS
Datasets. (1) Natural images to evaluate general classification performance, using the well-known
image dataset CIFAR-100 (Krizhevsky et al., 2009); (2) Semantic images with clear concepts in
their class names, including DTD (Cimpoi et al., 2014), a texture dataset containing 47 human-
recognizable textures, and UCF101 (Soomro et al., 2012), a human actions dataset with 101 human
actions; (3) Fine-grained images that require some additional knowledge. CUB-200-2011(Wah
et al., 2011) without cropping, a bird dataset containing 200 different classes of birds, and FGVC-
Aircraft(Maji et al., 2013), an aircraft dataset containing 100 different classes; (4) Specialized im-
ages from real-world applications with special camera. EuroSAT (Helber et al., 2019), a satellite
remote sensing image dataset containing 10 kinds of land use types, HAM10000 (Tschandl et al.,
2018), a medical image dataset containing 7 kinds of skin diseases, Diabetic Retinopathy (Karthik,
2019), a dataset containing 5 types of diabetic retinopathy, and Keratitis(Fang et al., 2020), a slit-
lamp image dataset containing 4 kinds of infectious keratitis diseases.

Baseline. Four methods are choosen, including black-box linear probe(He et al., 2022),
sparse linear probe(Wong et al., 2021) for sparse layers have been demonstrated to be more
interpretable(Oikarinen & Nguyen, 2023), Label-free CBM(Oikarinen & Nguyen, 2023), and
LaBo(Yang et al., 2022). None of these methods alter the image encoder parameters. The per-
formance of linear probe serves as the benchmark for interpretable methods. For the choice of
VLM, all methods employ the same pretrained CLIP model with ViT-B/16 and ViT-L/14 as image
backbones. The same train/dev/test split with Yang et al. (2022) is setted and select the best vali-
dation performance on dev, reporting the average classification accuracy of five runs with random
seeds 41-45. The classification results on test are shown in Table 1(dev results are in Appendix).

Table 1: Classification Accuracy of four interpretable methods on all test sets

Dataset Type Natural Semantic Fine-grained Specialized

Dataset Name CIFAR100 DTD UCF101 CUB Aircraft EuroSAT HAM10000 DR Kera

ViT-B-16

linear probe* 75.62% 77.89% 86.59 77.50% 52.31% 96.04% 80.64% 53.22% 68.01%
sparse LP 59.84% 74.86% 80.21% 63.87% 42.67% 92.15% 76.32% 50.55% 62.59%

Label Free CBM 58.79% 69.05% 77.29% 59.35% 35.57% 92.21% 72.16% 53.80% 49.10%
Labo 73.93% 75.18% 85.67% 76.48% 51.48% 93.87% 80.30% 47.51% 50.13%
Ours 75.37% 77.39% 85.60% 77.36% 50.25% 95.44% 80.74% 52.21% 67.77%

ViT-L-14

linear probe* 80.87% 81.17% 90.12% 84.15% 62.42% 97.22% 80.66% 55.10% 67.14%
sparse LP 74.29% 80.54% 87.23% 81.24% 58.03% 95.70% 78.55% 53.63% 66.66%

Label Free CBM 46.54% 66.84% 74.46% 56.42% 29.49% 74.65% 70.05% 53.42% 44.43%
Labo 79.62% 77.30% 90.11% 81.90% 61.06% 95.82% 81.39% 48.48% 44.44%
Ours 80.86% 81.12% 89.57% 83.95% 60.67% 96.89% 81.05% 52.73% 67.23%

Compared to linear probe. Table 1 indicates that DCBM shows comparable performance to the
linear probe on most datasets, including natural images, semantic images, and specialized images.
This suggests CDV has sufficiently utilized the embedded feature. Moreover, our approach offers
the added benefit of interpretability compared to linear-probe by the CBM-like classifier.

Compared to VLM-based CBM. DCBM outperforms two VLM-based CBM methods, LaBo and
Label-free CBM, on most datasets, particularly for natural images. On semantic images, DCBM
improves significantly over both methods on DTD and on UCF101 compared to Label-free CBM,
with only a marginal difference of 0.31% in average classification accuracy compared to LaBo. For
specialized images, DCBM shows a significant improvement over both methods on EuroSAT and
Kera datasets, but performs marginally lower than LaBo by 0.1% on average in HAM10k dataset.
However, on the DR dataset, DCBM and LaBo perform worse than Label-free CBM by 1.14%,
indicating a potential benefit of utilizing an external CNN feature extractor. On fine-grained images,
DCBM significantly outperforms LLM-CBMs on CUB, while trailing LaBo on aircraft, potentially
due to non-visual text from LLMs that could compromise interpretability (shown in Appendix).

4.2 CROSS-MODALITY INTERPRETATION WITH CDV

We performed three levels of interpretation: concept level, sample level, and class level.1

1All interpretations use ViT-L/14 as the image encoder of CLIP. Refer Appendix A,B,C for more showcases.

6



Under review as a conference paper at ICLR 2024

Assign(𝒂): Black footed Albatross            Weight(𝒘): 8.67

Part:    [chest:   23.31%, head:      20.71%, neck:   17.07%]
Color: [brown: 59.08%, maroon: 19.44%, beige: 10.70%]

𝕀

𝕋
𝛿
𝛿

(a) Category-independent words as text descriptions.

Assign(𝒂): brushing teeth Weight(𝒘): 1.27

a person brushing their teeth: 93.55%
movement of the brush in the mouth: 2.58%
toothpaste on the toothbrush: 1.53%

𝕀

𝕋 𝛿

(b) Category-related sentences from LLM as text de-
scriptions.

Figure 4: Example of cross-modality understanding of CDV.

Concept level interpretation. Figure 4 illustrates the presentation of two randomly selected CDVs
from CUB and UCF101 datasets. For each CDV, we show three image patches that are most suitable
for representing the CDV, and some text that is most suitable for representing its semantics using
the image-text matching method. In the example from CUB, a concept related to the Black-footed
Albatross has a weight of 8.67, and the top three words with the highest probabilities are printed.
In this case, we use the category-independent text descriptor. For body parts, ‘chest’, ‘head’, and
‘neck’ have probabilities of 23.31%, 20.71%, and 17.07%, respectively, while for colors, ‘brown’
and ‘marron’ have higher probabilities, see Figure 4a. Similarly, we use the same approach for the
sample of UCF101. We use the category-related text descriptor in this case. The result shows that
‘a person brushing their teeth’ has the highest possibility (93.55%) for interpreting the CDV.

Sample level interpretation. We illustrate sample-level explanations for DCBM using a randomly
selected image from the UCF101 and Kera datasets, see Figure 5.

U
C

F1
0

1
Ke

ra
ti

ti
s

the person’s body moving in rhythm with the hoop

a person spinning a large hoop around their waist

two hand drums

a person rotating their hips to keep the hoop spinning

a person having fun while doing the hula hoop

others

pattern of herringbone

pattern of tie-dyed, material of glass

color of silver, material of rubber

color of white, shape of spindly, material of rubber

color of white, material of glass

others

color of white, material of rubber

Material of glass

Figure 5: Interpretation of two examples on UCF101 and Keratitis made by our method.

Horizontal bar charts depict the values obtained by multiplying concept scores with their weights,
accompanied by corresponding textual explanations and the top three images.

Our interpretable classification successfully identifies crucial visual information, explains it using
text, and provides classification scores. We also present corresponding images for each concept,
allowing users to examine the concept’s accuracy and correspondence to visual information from
different perspectives.

Class level interpretation CBMs can be explained as a linear combination of interpretable features,
where the weights can be regarded as their importance for classification. Fine-grained datasets
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demand specific domain knowledge for accurate classification. Cross-modal explanations can help
understand these classification challenges.

Figure 6: Classification challenge in CUB dataset.

We created a Sankey diagram to vi-
sualize the final layer weights for
‘Black-footed Albatross’ and ‘Car-
olina Wren’ in CUB, see Figure 6.
The width of the lines connecting
a concept to an output class repre-
sents their weight, with only weights
greater than 0.05 included. The two
birds with similar brown chest and
head features may be easily con-
fused. However, the ‘Black-footed
Albatross’ exhibits unique streamlin-
ing and herringbone patterns absent
in the ‘Carolina Wren’. Conversely,
the ‘Carolina Wren’ has distinct beak and spherical features.

4.3 INTERPRETABILITY COMPARISON WITH OTHER CBM MODELS

Interpretation of Label-free CBM Interpretation of LaBo Interpretation of DCBM (Ours)

• The sound of blow dryer 
• Well-defined sections of hair
• Leather material

+2.94
+2.02
+0.99

• When cutting layers, use your 
fingers to guide the scissors

• Dark brown
• Every movement is purposeful and 

executed with precision

+0.15

+0.14

+0.13

• The hairdresser using a brush to style 
the hair

• Explosive movement of the barbell 
upwards towards the shoulders

• The hairdresser using a brush to style 
the hair

+12.17

+10.58

+10.40

Top 3 interpreted concepts (only show texts):

Figure 7: Comparison between LLM-VLM based concept bottleneck models.

An intuitive comparison between DCBM with previous methods is shown in Figure 7. To quan-
titative evaluation, we conducted a questionnaire on the interpretation to verify which method’s
interpretation results are more in line with human perception.

Method. The evaluation is conducted via an online questionnaire, where 8 cases are randomly
sampled from UCF101 and DTD for each test. Images from fine-grained and specialized domain
datasets are not chosen because extra knowledge is necessary for their recognition. We compare
DCBM with LaBo and Label-free CBM. The testers are asked to rank the three interpretation meth-
ods four times for each case according to different questions. Participants are invited for the diverse
geographic distribution (Americas, Asia, and Europe) to make our research as representative as pos-
sible. In total, we collected ratings from 27 testers from computer science undergraduate/graduate
students and medical graduate students.

Table 2: Definition of evaluation metrics

Metric Definition Range

Accuracy (TP + TN)/(TP + TN + FP + FN) [0, 1]

Sparsity avg (
∑n
i=0 si ×Wik/vk) [0, 1]

Groundability ∑
3×N1+2×N2+3×N3+0×Nn/a

3×N

[0, 1]

Factuality [0, 1]

Meaningful [0, 1]

Fidelity [0, 1]

Metrics. Four metrics are considered in hu-
man validation: (1) Groundability Yang et al.
(2022), with the question ‘Which interpretation
texts are more consistent with the image con-
tent’; (2) Factuality Yang et al. (2022), with the
question ‘Which interpretation texts are consis-
tent with the label’; (3) Meaningfulness Ghor-
bani et al. (2019a), with the question ‘Which
interpretation texts are more semantic’ and (4)
Fidelity Velmurugan et al. (2021), with the question ‘Which interpretation scores are more support-
ive to the predictions’. We record the frequencies of rank for each method, where N1 denotes the
number of times a method is at the first rank, the same as N1 and N2, and Nn/a denotes the num-
ber of times that not been incorporated in the ranking. The metric calculations are shown in Table
2, where we also incorporate average Accuracy on DTD and UCF101 for evaluating the trade-off
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between performance and interpretability. Sparsity is also calculated automatically to evaluate the
proportion of the top 5 concept scores to all concepts.

0.837
0.813
0.704

0.783
0.583
0.490

0.784
0.581
0.493

0.790
0.562
0.515

0.853
0.513
0.500

0.747
0.637
0.017

Figure 8: Radar chart of interpretability evalua-
tion comparison in 6 metrics.

Result. According to Figure 8, our method
demonstrated a considerable improvement in
the six metrics compared to LaBo and Label-
free CBM. This shows that our approach is
more easily accepted by humans in the con-
text of explanation, and the explanation results
are more objective and consistent with human
understanding. Regarding the sparsity metric,
LaBo’s approach exhibits lower values com-
pared to the others. This discrepancy arises
from LaBo assigning high weights to all con-
cepts for a single sample. Furthermore, Label-
free is very close to DCBM in terms of spar-
sity and factuality, which is essential in real ap-
plications, making users less influenced by the
LLM’s non-factual outputs. This compelling
evidence suggests that our interpretation results are more easily recognizable and comprehensible
when compared to the alternatives.

4.4 ABLATION STUDY

In Appendix E1̇, we compare the model performance of various methods under different number
of concepts. The results indicates that DCBM does not rely on a large number of concepts. In
Appendix E2̇, we study the impact of CDV initialization and the neccesscity of discriminator.

5 RELATED WORK

Concepts-based explanation. Kim et al. (2018) proposes concept activation vectors, which inspires
us that concepts can be represented by vectors, but a similar approach to construct concept vectors
requires a large number of annotations. ACE(Ghorbani et al., 2019b) obtains concepts by clustering,
and we exploit the evaluation metrics of concept semantics in it. ante-hoc methods. Ante-hoc
provides reasoned decision processes and is therefore popular for high-risk decisions, but there
is a trade-off in interpretation and performance. Concept Bottleneck Models (CBM)(Koh et al.,
2020; Zarlenga et al., 2022) is a representative class of models, but requires a large amount of
annotation. Recent work(Yuksekgonul et al., 2022; Oikarinen & Nguyen, 2023; Yang et al., 2022)
using VLM and LLM has reduced the amount of annotation and also increased effectiveness. For
our method, the decision process is ante-hoc and the cross-modality interpretation is post-hoc with
CSD. Just as different people have different mental mappings of the same person, we believe that
recognizing abstract concepts has a certain uncertainty, so the post-hoc interpretation is represented
by the distribution. Other related works are shown in Appendix F.

6 DISCUSSION

We propose CDV, which serves dual purposes of cross-modality interpretation and constructing
high-performance and interpretable CBMs. CDV, as primitive concepts derived from training data,
aligns with human cognitive pathways, thus reducing bias in previous methods. The cross-modality
interpretation of CDVs not only enhances people’s understanding of important concepts but also
holds significant value in real-world applications, such as assisting doctors in identifying important
features for diagnosis and generating text descriptions. The quintuple notion of concept and CSD,
as a novel theory, offer a new explanation for VLM image-text matching. The success of cross-
modality interpretation also validates the hypothesis that CSD can be used to learn concepts in
different latent spaces. However, the limitation is that this work has currently only been validated on
CLIP, its extensions to other VLMs needs further study. The CNN backbone has not been explored
either. In future work, we will explore the application of cross-modality interpretation in specific
scenarios and attempt pre-training with more than three modalities using the CSD theory.
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