
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TO FP8 AND BACK AGAIN: QUANTIFYING REDUCED
PRECISION EFFECTS ON LLM TRAINING STABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

The massive computational costs associated with large language model (LLM)
pretraining have spurred great interest in reduced-precision floating-point repre-
sentations to accelerate the process. As a result, the BrainFloat16 (BF16) preci-
sion has become the de facto standard for LLM training, with hardware support
included in recent generations of accelerators. This trend has gone even further in
the latest processors, where FP8 has recently been introduced. However, prior ex-
perience with FP16, which was found to be less stable than BF16, raises concerns
as to whether FP8, with even fewer bits than FP16, can be a cost-effective option
for LLM training. We argue that reduced-precision training schemes must have
similar training stability and hyperparameter sensitivities to their higher-precision
counterparts in order to be cost-effective. However, we find that currently avail-
able methods for FP8 training are not robust enough to allow their use as economi-
cal replacements. This prompts us to investigate the stability of reduced-precision
LLM training in terms of robustness across random seeds, learning rates, and
datasets. To this end, we propose new evaluation techniques and a new metric for
quantifying loss landscape sharpness in autoregressive language models. By sim-
ulating incremental bit reductions in floating-point representations, we analyze the
relationship between representational power and training stability with the intent
of aiding future research into the field.

1 INTRODUCTION

Conversational large language models (LLMs), such as ChatGPT (OpenAI, 2024), Gemini (Team,
2024a;b), Claude (Anthropic, 2024), and HyperCLOVA (Yoo et al., 2024), have captured the imag-
ination of both academics and the public at large with their ability to communicate fluently with
humans in natural language. However, these models require unprecedented amounts of computation
to train, which has engendered interest in methods to improve their training efficiency.

A popular method of improving computational performance is to reduce the bit count of the floating-
point representations used for training (Wang et al., 2018; Sun et al., 2020; Peng et al., 2023).
Because reading memory is the main bottleneck in modern processors, a problem known as the
“memory wall” (Wulf & McKee, 1995; Kim et al., 2023b), reducing the number of bits that each
floating-point number uses can accelerate the computation in proportion to the amount of memory
reduced. For example, in processors that support it, computations in BrainFloat16 (BF16) (Kalamkar
et al., 2019) can have double the maximum throughput of single precision FP32. Furthermore, the
FP32 data type, the highest precision data type used in deep learning, has only half the bits of FP64,
the most widely used floating-point data type in scientific computing. The current best practice
for LLM training is to use BF16 for most of the LLM training computation, with some sensitive
portions, such as layer normalization (Ba et al., 2016), carried out in FP32.

As a natural extension of this development, 8-bit floating-point (FP8) (Wang et al., 2018; Sun et al.,
2019; Micikevicius et al., 2022; Peng et al., 2023) and even 4-bit floating-point (Sun et al., 2020)
data formats have been proposed to accelerate training even further. However, the naı̈ve application
of FP8 to LLM training is unstable and requires additional techniques to become viable. While
several methods have been proposed to stabilize training LLMs with FP8, relatively little attention
has been paid to quantifying the decrease in stability compared to mixed-precision BF16 training.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Cost reduction is the motivation behind the use of FP8 and other reduced-precision training schemes.
Therefore, our concern is not whether LLM pretraining with FP8 is possible but whether it is prof-
itable. For cost savings to be realized, the time per training step must be reduced while the number of
training steps is kept to a similar number. Training stability is thus a crucial factor for cost-effective
LLM training, considering that additional hyperparameter searches and restarts from training fail-
ures can outweigh any gains from raw compute acceleration.

For a rough approximation of the cost, a single p5.48xlarge EC2 instance with 8 H100 GPUs costs
USD 98.32 per hour as of the time of writing. On a cluster with 1,024 nodes, this would imply
that that spending 20 minutes to restart from a checkpoint saved 40 minutes before the loss spike
would cost approximately USD 100K. Therefore, for the newly proposed reduced-precision training
schemes to be economical, the models trained on them must be similarly robust to hyperparameter
choice and stochastic noise as models trained using higher precision.

Previous experience with training LLMs in FP16 raises further concerns. Teams that have trained
LLMs have found that even when gradient scaling and other techniques are applied, the FP16 data
type, which has five exponent bits, is much less stable for LLM training than BF16, which has eight
exponent bits as in FP32. This raises doubts as to whether FP8, which has even fewer bits than
FP16, is a practical option for real-world LLM training.

We motivate our line of inquiry with some surprising findings from experiments on the nanoGPT
(Karpathy, 2022) codebase, an open-source implementation of GPT-2 pretraining, where we found
that even the current best practice of mixed-precision BF16 can introduce training instabilities.
When we compared BF16 and TensorFloat32 (TF32) runs, where we ran training for 5% of the
original configuration, we found that the BF16 models diverged for 18 of 188 runs, or approxi-
mately 10% of all cases, despite using the same configurations as the default run. In contrast, no
cases of loss divergence were found for the 70 TF32 models trained using different random seeds.
We compare against the TF32 data type because NVIDIA GPUs do not offer tensor cores in FP32.

This is a surprising finding in light of the fact that most recent LLMs are trained with mixed pre-
cision BF16 without a comparison with training on TF32, which has three additional mantissa bits.
However, a loss divergence rate of approximately 10% at only 5% of training indicates that even
standard BF16 mixed-precision training may add non-trivial instability. If even mixed-precision
BF16 can cause instabilities, the effects of using even fewer bits should be investigated further.

We make the following contributions in our work.

• We analyze the hidden training instabilities that emerge from reducing precision by clipping
mantissa bits to simulate intermediate-bit representations of floating-point numbers. With
these experiments, we find greater instability in the model when exposed to higher learning
rates or “dirtier” data.

• We propose a metric for quantifying the loss landscape sharpness of models that can predict
when training divergence will occur. As even the removal of mantissa bits has a destabi-
lizing effect on LLM training, we use our metric to predict loss divergences even when the
loss curve itself has not yet diverged.

2 RELATED WORK

2.1 TRAINING STABILITY

Analyzing training instability in LLM pretraining directly is impractical due to the massive costs
involved. Instead, smaller language models must be used as proxies. Wortsman et al. (2024) explore
the robustness of smaller language models as a proxy for LLM pretraining instability. They find that
small models using a larger learning rate show similar instability patterns as larger models, such as
the growth of attention layer logits and the divergence of the output logits from the log probabilities.
They also explore both the causes of numerical instability in LLM training and mitigating strategies
such as applying query/key (QK) normalization (Dehghani et al., 2023).

Keskar et al. (2017) explore the sharpness of loss landscapes during large-batch neural network
training, finding that larger batch sizes prevent the model from reaching flat regions of the loss

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: We show three cases of loss divergence on nanoGPT when using the same configurations
as the default run except for the random seed. The blue lines indicate the average losses obtained for
eight training runs that did not diverge. Of the 188 random seeds that were tested, 18 were found to
diverge. As full pretraining requires over 4 days on a single node with 8 A100 GPUs, even for BF16,
we perform early stopping at 30K steps, or 5% of the original training steps, requiring approximately
4 hours for a BF16 run and 8 hours for a TF32 run per A100 node with 8 GPUs. Because we only
run 5% of the original training, we suspect that the measured divergence rate of approximately 10%
underestimates the true rate of training loss divergence.

landscape and causing performance degradation due to the inability to escape local minima. Of
most significance to our work, they propose a metric for calculating loss landscape sharpness, which
we adapt for LLMs as a proxy for training instability.

Fishman et al. (2024) go further, discovering that Llama 7B models trained in FP8 begin to diverge
after 200B tokens of training, supporting our claim that reduced-precision methods induce hidden
instabilities that may emerge only later in training. They identify SwiGLU (Shazeer, 2020) as a
source of massive activations (Sun et al., 2024) and applying dynamically scaling to reduce the
instability. However, it is still unclear whether the proposed FP8 training method is equivalent to
BF16 training or is simply stable enough for the experiments involved.

2.2 REDUCED-PRECISION PROCESSORS

To improve throughput on computationally intensive matrix multiplication tasks, recently developed
processors have been equipped with specialized hardware units such as systolic arrays for TPUs
(Jouppi et al., 2017) and tensor cores (NVIDIA, 2020), which serve a similar purpose, for NVIDIA
GPUs. These processors can improve throughput by an order of magnitude. For example, on the
H100, the peak dense BF16 matrix multiplication throughput on tensor cores is 989.4 TFLOPS,
compared to 133.8 TFLOPS when using CUDA cores (NVIDIA, 2022).

However, the number of multiplexer circuits required for the barrel shifter of an n-bit floating-
point unit is n log2 n (Kroening & Strichman, 2008), which incentivizes using smaller floating-point
representations. As a result, many mixed-precision techniques perform computationally intensive
matrix multiplication in BF16 while preserving sensitive portions of the model, such as the weights
and residual path activations, in FP32. Alternatively, Henry et al. (2019) developed a technique to
approximate FP32 matrix multiplication using only BF16 by representing a single FP32 value as
three BF16 values to accelerate FP32 matrix multiplication without requiring FP32 circuits.

2.3 HYBRID FP8

The adoption of the hybrid E5M2/E4M3 formats for neural networks (Micikevicius et al., 2022) in
recent generations of processors, such as the NVIDIA H100 and the Intel Gaudi v2, has spurred
interest in stable FP8 training. The hybrid FP8 format, where E4M3 is used for the forward pass
for its greater resolution, and E5M2 is used for the backward pass for its greater range, was first
proposed by Wang et al. (2018) as a means to accelerate neural networks.

Sun et al. (2019) built on this work to propose various techniques for stabilizing training, such as
stochastic rounding, chunk-based accumulation, and Kahan summation during the optimizer update.
However, the number of techniques that can be used in practice is limited by whether the technique in

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Loss landscape diagrams for Llama 120M E8M3 at 5K steps (left) and 10K steps (right).
Even during loss divergence, the loss landscape visualized using the method in (Li et al., 2018)
appears smooth, motivating our introduction of a new loss landscape sharpness metric. The value of
the validation loss is included at each point of the loss landscape.

question can be applied without slowing the computation. As currently available NVIDIA GPUs, by
far the accelerators with the greatest adoption, do not support these techniques natively, the overhead
caused by the software-based implementations cancels out any gains from the reduced precision.

2.4 MS-AMP

Introduced in Peng et al. (2023), MS-AMP is an automatic mixed-precision package to utilize FP8
that offers multiple optimization levels to allow for differing model sensitivities when applying
reduced precision to the computations and communications of neural network training. Our exper-
iments use the O1 optimization level of MS-AMP, which performs GEMM computations in FP8
while reducing the weights to half-precision and uses FP8 states for the weight gradients and all-
reduce communications. MS-AMP offers additional optimizations for the optimizer buffer in level
O2 optimization and for distributed communication in level O3 optimization, but we use only the
most basic optimization scheme so as to verify the effects of the least invasive modifications.

3 METHODS

We seek to answer whether sub-BF16 training is competitive with standard mixed-precision BF16
training from a cost-effectiveness point of view. To be cost-effective, reduced-precision training
schemes must have minimal increases in training instability and changes to hyperparameters. To
better analyze the effect of reduced precision on training stability, we aim to quantify the effects
of gradually reducing floating-point representations bit by bit for both the exponent and the man-
tissa. Hopefully, analyzing the intermediate bit representations will better illuminate the interaction
between bit width and training stability.

Our intermediate-bit floating-point experiments use the TinyLlama (Zhang et al., 2024) repository,
which implements the widely used Llama (Touvron et al., 2023a;b) architecture. TinyLlama is an
open-source implementation of Llama pretraining that uses a mix of the SlimPajama (Soboleva et al.,
2023) and StarCoder (Li et al., 2023) datasets. It also includes performance optimizations such as
Flash Attention v2 (Dao, 2023). We use the default learning rate of lr = 4e − 4, global batch size
512, and the same learning rate schedule as in the original code. The 120M models use a sequence
length of 2048, while the 7B models use a sequence length of 4096.

3.1 SHARPNESS METRIC

To better investigate the model state when loss divergence occurs, we attempted to visualize the loss
landscape of the Llama models with the method proposed by Li et al. (2018). However, as shown in
Figure 2, we found that even when the model is clearly in the process of loss divergence, the gener-
ated visualizations remain smooth. We emphasize that we do not seek the loss landscape sharpness
per se, but a proxy to provide a quantitative measurement of the underlying training instability.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Diagram showing the precisions used in a Llama decoder block (best seen in color). The
activations in the path of the residual connection are kept in FP32, as are the model weights and em-
beddings. The LayerNorm and RoPE layers use FP32 internally for their computations. The Flash
Attention kernel uses BF16 with no reduction in precision. All other layers use reduced-precision
matrix multiplication that emulates low-precision computation with a high-precision accumulator.

Because of this, we propose an alternative loss landscape sharpness metric that is more suitable for
autoregressive models, based on the one proposed in Keskar et al. (2017). We empirically confirm
that it is a useful indicator of training instability in the following sections. The main difference
between the original metric and our version is that we use the logit of the last token instead of the
model input for the calculation. This is because adding noise to the embeddings in a language model
has different implications compared to adding noise to input images in a vision model.

Instead of searching the input space as in Keskar et al. (2017), we apply the search algorithm to the
logit space of the last token. Searching the logit space has the additional advantage that the forward
pass of the model need only be performed once for each measurement, significantly reducing the
computational cost. The logit of the last token was chosen because it is not computationally feasible
to optimize for the entire output space. Also, due to the autoregressive character of decoder-only
Transformer models (Vaswani et al., 2017; Brown et al., 2020), the last token is the only one to
receive inputs from all other tokens. In addition, we do not apply random projection as in Keskar
et al. (2017) to reduce the stochasticity of the measurement.

Definition Let y ∈ Rs×v be the output logit for an autoregressive model of sequence length s and
vocabulary size v. Then, for yi, the output logit at sequence position i ∈ {1, 2, ..., s}, and one-vector
1v ∈ Rv , we define a constraint set Cϵ at i = s such that

Cϵ ∈ {zs ∈ Rv : −ϵ(|ys|+ 1v) ≤ zs ≤ ϵ(|ys|+ 1v)}. (1)

Given ys ∈ Rv, ϵ > 0, and noise vector zs, the loss landscape sharpness ϕϵ for loss function f can
be defined as

ϕϵ :=
maxzs∈Cϵf(ys + zs)− f(ys)

1 + f(ys)
× 100. (2)

The proposed metric can best be thought of as the relative magnitude of the largest loss spike on the
logit within the provided bounds. The bounds are set to be the logit magnitudes plus one multiplied
by ϵ. The largest spike in the vicinity of the logits is found using the L-BFGS-B algorithm (Liu &
Nocedal, 1989), using the SciPy (Virtanen et al., 2020) implementation with the output logit set as
the starting point of the search. We set ϵ = 5e−4 for all our experiments following Keskar et al.
(2017). However, a hyperparameter sweep on ϵ shows that the general trend is unaffected by the
value of ϵ, only the sharpness value magnitudes. The results are shown in Table 2 of the Appendix.

3.2 MASKING

Our experiments use a simplified method of reducing floating-point precision to achieve reasonable
throughput. To simulate removing exponent bits, we threshold the values to the minimum and
maximum absolute values possible with the given number of exponent bits. Figure 5 depicts the
exponent masking process. A bitmask is applied to remove the unrepresentable mantissa bits. The

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

def forward(x, w):
# x: input, w: weight, out: output
save_for_backward(x, w)
masked_x = reduce_precision(x)
masked_w = reduce_precision(w)
out = F.linear(masked_x, masked_w)
masked_out = reduce_precision(out)
return masked_out

Figure 4: PyTorch-like pseudocode for the forward pass.

Figure 5: Exponent masking im-
plemented by clamping values
that cannot be expressed with the
allowed number of exponent bits.

resulting method is an imperfect approximation of reducing the bit count of floating-point numbers.
However, it has the advantage of being fast, causing at most a doubling of the time per training step.

Reduced precision operations are applied only on the matrix multiplication computations of the
model, excluding the attention computation, which uses the Flash Attention v2 kernel. Follow-
ing existing FP8 libraries such as TransformerEngine (NVIDIA, 2023), we separate the effects of
reducing the computation’s precision from reducing the data’s precision in storage. As a result,
the activations and model weights are kept at their original precision while the inputs and outputs
of matrix multiplication are dynamically masked to emulate reduced precision computation with a
high-precision accumulator. All states are kept in their original precision, and all operations other
than matrix multiplication are performed in their original precision. In Figure 3, we include a dia-
gram indicating the precision of the states and computations in a Llama decoder block.

4 RESULTS

4.1 MS-AMP EXPERIMENTS

We first analyze the effect of real-world FP8 training by applying the MS-AMP (Peng et al., 2023)
library (version 0.4.0) to the nanoGPT codebase. We run all experiments on an H100 node with 8
GPUs to ensure hardware availability of FP8. However, as shown in Figure 6, despite only using
the O1 optimization level for MS-AMP, the resulting models show non-trivial performance degra-
dations, especially when the LM head is not excluded from the quantization.

In addition, we also check if the data quality has an effect. In Figure 12, we show the results of using
a sample of the FineWeb Edu (Penedo et al., 2024) dataset, which was curated much more rigorously
than the OpenWebText (Gokaslan & Cohen, 2019) dataset used in the nanoGPT repository.

These results indicate that the FP8 training scheme in MS-AMP may not converge to the same loss
as BF16 training or requires more training steps, depending on factors such as data quality. This
strengthens our case that FP8 training may introduce hidden instabilities that are not evident until
stress tested against circumstances that were not considered in the original works proposing them.

4.2 BIT REDUCTION EXPERIMENTS

We first attempt to identify the points where training instability becomes visible. The emulated
reduced-precision representations are denoted using the number of exponent and explicit mantissa
bits used. For example, standard BF16 is referred to as E8M7, while a floating-point number with
its exponent clamped to seven bits and mantissa clamped to six bits is referred to as E7M6.

We find that removing even a single exponent bit prevents training altogether, resulting in the model
failing to progress with any learning using E7M7, confirming previous findings (Henry et al., 2019)
that neural network training is more sensitive to exponent bits than mantissa bits. To analyze the
cause, we conduct an ablation on the clamping mechanism by either removing only the inner or
outer exponent range, as depicted in Figure 5. We find that models with only their inner exponent
ranges clamped train normally while models with only their outer exponent ranges clamped do not,
indicating that the inability to represent large values is the cause of failure for E7M7. We therefore
investigate the effects of removing mantissa bits for the remainder of our experiments.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: Training losses for GPT-2 training are compared using exponential moving averages to
better visualize the general trends. The blue curve indicates the training loss for the baseline BF16
training, while the red curve indicates MS-AMP level O1 training with the LM head excluded from
FP8 quantization. The green curve shows the training loss for when the LM head included in FP8
quantization. Not excluding the LM head from FP8 quantization causes a large performance degra-
dation. However, as indicated by the black horizontal line, even when the LM head is excluded,
the MS-AMP results do not converge with the BF16 training, even after 120K steps. This result
strengthens our case that FP8 pretraining narrows the hyperparameter space where training is stable.

Figure 7: TinyLlama 120M models trained until loss divergence. E8M3, E8M4, and E8M5 models
trained for 16K, 20K, and 100K steps, respectively. The dotted black line in each figure indicates
the loss landscape sharpness of the model. While no exact sharpness threshold exists for training
collapse, a similar pattern is observable across the three precision levels at different training steps.

Figure 8: Llama 7B model training loss curves for
different mantissa bits. The x-axis shows training
steps, while the y-axis shows the training loss.

Table 1: Loss landscape sharpness values at
ϵ = 5e−4 for Llama v2 7B models trained with
TinyLlama for 5,000 steps in Figure 8. Training
used a global batch size of 512 and a sequence
length of 4096.

Steps E8M3 E8M4 E8M5 E8M6 E8M7
1K 0.209 0.205 0.191 0.191 0.192
2K 0.488 0.363 0.265 0.221 0.200
3K 1.306 0.734 0.352 0.229 0.200
4K 2.006 1.125 0.475 0.237 0.207
5K 1.927 1.439 0.628 0.248 0.215

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 9: Comparison between Llama 120M models trained using E8M5 masked training (left) and
standard BF16 training (right) for lr = 4e−4 (the default learning rate) and lr = 4e−3. Using 18
random seeds per configuration, the E8M5 runs show more frequent loss spikes, especially at the
higher learning rate, indicating greater training instability.

4.3 LOSS LANDSCAPE SHARPNESS

To further uncover the relationship between bit width and training robustness, we use Equation 2
to quantify the degree of training instability increase by measuring the loss landscape instability
of Llama models. In Figure 7, we show Llama 120M models trained until their training losses
diverge, as well as plotting the loss landscape sharpness values of the models in E8M3, E8M4, and
E8M5. Although the points of divergence are different for each model, we can see a general trend
of increasing sharpness until the model diverges sharply, after which it cannot revert to its original
training trajectory. This pattern is visible despite the large differences in training steps for the three
different precisions.

To verify that similar behavior occurs in larger models, we compare the training losses of Llama v2
models with 7B parameters trained for 5,000 steps in Figure 8 and show the measured sharpness
values for ϵ = 5e−4 in Table 1. Results for other ϵ values are included in the Appendix and show
a similar pattern. We apply early stopping at 5,000 training steps because training a Llama 7B
model for 5K steps requires approximately one week on a single node with 8 A100 GPUs. These
experiments show that loss divergence is visible in the E8M3 and E8M4 models, while it has yet to
emerge in the E8M5 model. However, from Table 1, we can see that the loss landscape sharpness
continues to increase for the E8M5 model, even though no signs of instability are yet visible.

The E8M3 and E8M4 models show much higher sharpness values, and both diverge early in training.
In contrast, there is only a gradual increase in the loss-landscape sharpness for the E8M7 runs.
Figures 7 and 8 show that models gradually increase in sharpness until a threshold level is reached.
However, the exact threshold may differ depending on the configurations. These results suggest that
models with fewer mantissa bits enter regions of ever greater instability during training, even when
these instabilities are not visible in the loss curve. We believe that, in the future, such analysis of loss
landscape sharpness can be used to identify when the model is at risk of training loss divergence.

4.4 ROBUSTNESS TO LEARNING RATE CHANGES

We further attempt to identify hidden instability in E8M5, which did not diverge during the initial
training stages in Figure 7. Inspired by Wortsman et al. (2024), we analyze the robustness of Llama
120M models to changes in the learning rate by comparing training at BF16 with that for E8M5. As
seen in Figure 9, the E8M5 training runs have more frequent loss spikes during training, especially
when the learning rate is increased to 4e−3. Although no cases of loss divergence were found, we
believe that the higher frequency of loss spikes indicates greater sharpness of the loss landscape,
supporting our claim that training is more unstable for E8M5 even before loss divergence occurs.

5 DISCUSSION

This work proposes quantitative evaluations and analyses of training instabilities when reducing
floating-point precision. Our experiments have shown that approximating the reduction of floating-
point precision in matrix multiplication destabilizes LLM training and that existing mechanisms to
stabilize FP8 training do not offer sufficient robustness to allow their cost-effective use. The issue is

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

not that FP8 training is not viable. Indeed, we have observed stable training using FP8 using the MS-
AMP library in Section 4.1. The issue is that FP8 training causes a narrowing of the hyperparameter
space where LLM training can occur stably and with equivalent performance as mixed-precision
BF16 training. Because of this narrower hyperparameter space, more resources must be expended
on identifying and honing techniques for preventing training collapse. Worse, there is simply no
way of knowing if the FP8 training is performing competitively as BF16 without implementing a
BF16 training run for comparison, which would completely negate the purpose of using FP8 for
training in the first place. Even if FP8 training is practical for carefully selected hyperparameters
under specific conditions, we assert that the costs of finding such conditions and the risks involved in
training a less stable model outweigh the benefits of using FP8 for accelerated computation. Instead,
we propose methods to evaluate the stability and robustness of reduced-precision training, which is
vital for FP8 or other reduced-precision training schemes to be viable for real-world LLM training.

Also, we would like to preempt misunderstanding by clarifying that we are not questioning the
usefulness of FP8 for inference. Several recent works (Lee et al., 2023; Kwon et al., 2022; Kim
et al., 2023a) have shown that it is even possible to quantize LLM weights to below 4 bits without
sacrificing much accuracy. Xia et al. (2024) has also shown that, even for the A100, using FP6 for
inference is a viable option. We believe that dedicated FP8 and FP4 processors can make LLM
inference simpler to implement and faster to compute.

From our experiments, several methods naturally suggest themselves as possible stabilization tech-
niques. First, the initial stages of training could be conducted in higher precision, similar to how
smaller batch sizes may be used during the initial stages of training as in Keskar et al. (2017).
Increasing the precision when the loss landscape becomes too sharp may also provide a tradeoff be-
tween training speed and stability. Second, the more sensitive layers may be kept at high precision,
while only the less sensitive layers are computed with reduced precision. For example, during our
experiments, we found that removing masking from the LM head of a Llama model was sufficient
to enable E7M7 training, although the resulting model was less stable. For GPT models, we found
that increasing the precision of the first two decoder blocks to TF32 was sufficient to prevent loss
divergence. However, as such compensatory techniques depend on the model architecture, training
data, and other aspects of the training environment, we leave their investigation to future work.

6 LIMITATIONS

A limitation of this work is that it focuses on the initial stages of pre-training when many instabilities
are known to arise only later in training (Bekman, 2023). For example, Wortsman et al. (2024) show
that the logits of the outputs diverge from zero only at the later stages of training. To this, we argue
that our studies likely underestimate the instabilities that FP8 or other reduced precision training
schemes will face, further strengthening our case that reduced-precision training methods are too
unstable to be profitably utilized in their current form.

Second, despite finding that the exponent bits are of greater importance to LLM training than man-
tissa bits, we were unable to experiment by increasing the number of exponent bits. This was
because matrix multiplication in FP64 is over an order of magnitude slower than BF16 on A100 and
H100 GPUs when using tensor cores. Experiments using representations such as E11M4, created
by removing 48 mantissa bits from FP64, may be illuminating, but we found it impractical to train
models with a greater number of exponent bits.

Finally, our experiments are limited in that they only the training loss is used as an evaluation
metric instead of real-world natural language tasks such as MMLU (Hendrycks et al., 2021) scores.
However, while lower perplexity is no guarantee of superior performance on downstream tasks, we
believe that the divergence of the training loss is sufficient as an indicator of training failure.

7 CONCLUSION

We demonstrate that the training stability of LLMs decreases incrementally with the reduction of
floating-point bit widths used for training models of up to 7B parameters. Using our proposed loss
landscape sharpness metric, we measure the gradual increase of instability that leads to loss diver-
gence, shedding light on a phenomenon with potentially large financial and environmental costs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Stas Bekman. Machine learning: Llm/vlm training and engineering by stas bekman, 2023. URL
https://stasosphere.com/machine-learning/.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning, 2023.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin,
Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos
Riquelme Ruiz, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd Van
Steenkiste, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine
Huot, Jasmijn Bastings, Mark Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader
Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran,
Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah J. Harmsen, and Neil
Houlsby. Scaling vision transformers to 22 billion parameters. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pp. 7480–7512. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/dehghani23a.html.

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling fp8 training to trillion-
token llms, 2024. URL https://arxiv.org/abs/2409.12517.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Greg Henry, Ping Tak Peter Tang, and Alexander Heinecke. Leveraging the bfloat16 artificial intel-
ligence datatype for higher-precision computations. In 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH), pp. 69–76, 2019. doi: 10.1109/ARITH.2019.00019.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Ba-
jwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Ja-
worski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar,
Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Na-
garajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Sev-
ern, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://stasosphere.com/machine-learning/
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.mlr.press/v202/dehghani23a.html
https://proceedings.mlr.press/v202/dehghani23a.html
https://arxiv.org/abs/2409.12517
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter
Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor pro-
cessing unit. SIGARCH Comput. Archit. News, 45(2):1–12, jun 2017. ISSN 0163-5964. doi:
10.1145/3140659.3080246. URL https://doi.org/10.1145/3140659.3080246.

Dhiraj D. Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,
Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of BFLOAT16
for deep learning training. CoRR, abs/1905.12322, 2019. URL http://arxiv.org/abs/
1905.12322.

Andrej Karpathy. The simplest, fastest repository for training/finetuning medium-sized GPTs., 2022.
URL https://github.com/karpathy/nanoGPT.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=H1oyRlYgg.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, and
Dongsoo Lee. Memory-efficient fine-tuning of compressed large language models via sub-4-bit
integer quantization. In Thirty-seventh Conference on Neural Information Processing Systems,
2023a. URL https://openreview.net/forum?id=2jUKhUrBxP.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael Ma-
honey, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv, 2023b.

Daniel Kroening and Ofer Strichman. Decision Procedures. Springer, 2008.

Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min Yoo, Jin-Hwa Kim, Baeseong Park,
Byeongwook Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee. AlphaTuning: Quantization-
aware parameter-efficient adaptation of large-scale pre-trained language models. In Yoav Gold-
berg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 3288–3305, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.240. URL
https://aclanthology.org/2022.findings-emnlp.240.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable rounding
based on element-wise division for post-training quantization. In ICML, pp. 18913–18939, 2023.
URL https://proceedings.mlr.press/v202/lee23h.html.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Neural Information Processing Systems, 2018.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503–528, August 1989.

11

https://doi.org/10.1145/3140659.3080246
http://arxiv.org/abs/1905.12322
http://arxiv.org/abs/1905.12322
https://github.com/karpathy/nanoGPT
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=2jUKhUrBxP
https://aclanthology.org/2022.findings-emnlp.240
https://proceedings.mlr.press/v202/lee23h.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisen-
thwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellempudi,
Stuart Oberman, Mohammad Shoeybi, Michael Siu, and Hao Wu. Fp8 formats for deep learning,
2022.

NVIDIA. Nvidia a100 tensor core gpu architecture, 2020. URL https://resources.
nvidia.com/en-us-genomics-ep/ampere-architecture-white-paper.

NVIDIA. Nvidia h100 tensor core gpu architecture overview, 2022. URL https://
resources.nvidia.com/en-us-tensor-core.

NVIDIA. TransformerEngine, 2023. URL https://github.com/NVIDIA/
TransformerEngine.

OpenAI. Gpt-4 technical report, 2024.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue
Yang, Bolin Ni, Jingcheng Hu, Ruihang Li, Miaosen Zhang, Chen Li, Jia Ning, Ruizhe Wang,
Zheng Zhang, Shuguang Liu, Joe Chau, Han Hu, and Peng Cheng. Fp8-lm: Training fp8 large
language models, 2023.

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. In ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation
Models, 2024. URL https://openreview.net/forum?id=1ayU4fMqme.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijay-
alakshmi (Viji) Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hy-
brid 8-bit floating point (hfp8) training and inference for deep neural networks. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swa-
gath Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi (Viji) Srinivasan, and Kailash
Gopalakrishnan. Ultra-low precision 4-bit training of deep neural networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1796–1807. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/13b919438259814cd5be8cb45877d577-Paper.pdf.

Gemini Team. Gemini: A family of highly capable multimodal models, 2024a.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
text, 2024b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023a.

12

https://resources.nvidia.com/en-us-genomics-ep/ampere-architecture-white-paper
https://resources.nvidia.com/en-us-genomics-ep/ampere-architecture-white-paper
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://openreview.net/forum?id=1ayU4fMqme
https://proceedings.neurips.cc/paper_files/paper/2019/file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrish-
nan. Training deep neural networks with 8-bit floating point numbers. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam,
John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha
Sohl-Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale
proxies for large-scale transformer training instabilities. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
d8w0pmvXbZ.

Wm A Wulf and Sally A McKee. Hitting the memory wall: Implications of the obvious. ACM
SIGARCH computer architecture news, 23(1):20–24, 1995.

Haojun Xia, Zhen Zheng, Xiaoxia Wu, Shiyang Chen, Zhewei Yao, Stephen Youn, Arash Bakhtiari,
Michael Wyatt, Donglin Zhuang, Zhongzhu Zhou, Olatunji Ruwase, Yuxiong He, and Shuai-
wen Leon Song. Fp6-llm: Efficiently serving large language models through fp6-centric
algorithm-system co-design, 2024.

Kang Min Yoo, Jaegeun Han, Sookyo In, Heewon Jeon, Jisu Jeong, Jaewook Kang, Hyunwook Kim,
Kyung-Min Kim, Munhyong Kim, Sungju Kim, Donghyun Kwak, Hanock Kwak, Se Jung Kwon,
Bado Lee, Dongsoo Lee, Gichang Lee, Jooho Lee, Baeseong Park, Seongjin Shin, Joonsang Yu,
Seolki Baek, Sumin Byeon, Eungsup Cho, Dooseok Choe, Jeesung Han, Youngkyun Jin, Hyein
Jun, Jaeseung Jung, Chanwoong Kim, Jinhong Kim, Jinuk Kim, Dokyeong Lee, Dongwook Park,
Jeong Min Sohn, Sujung Han, Jiae Heo, Sungju Hong, Mina Jeon, Hyunhoon Jung, Jungeun
Jung, Wangkyo Jung, Chungjoon Kim, Hyeri Kim, Jonghyun Kim, Min Young Kim, Soeun Lee,
Joonhee Park, Jieun Shin, Sojin Yang, Jungsoon Yoon, Hwaran Lee, Sanghwan Bae, Jeehwan
Cha, Karl Gylleus, Donghoon Ham, Mihak Hong, Youngki Hong, Yunki Hong, Dahyun Jang,

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hyojun Jeon, Yujin Jeon, Yeji Jeong, Myunggeun Ji, Yeguk Jin, Chansong Jo, Shinyoung Joo,
Seunghwan Jung, Adrian Jungmyung Kim, Byoung Hoon Kim, Hyomin Kim, Jungwhan Kim,
Minkyoung Kim, Minseung Kim, Sungdong Kim, Yonghee Kim, Youngjun Kim, Youngkwan
Kim, Donghyeon Ko, Dughyun Lee, Ha Young Lee, Jaehong Lee, Jieun Lee, Jonghyun Lee,
Jongjin Lee, Min Young Lee, Yehbin Lee, Taehong Min, Yuri Min, Kiyoon Moon, Hyangnam
Oh, Jaesun Park, Kyuyon Park, Younghun Park, Hanbae Seo, Seunghyun Seo, Mihyun Sim,
Gyubin Son, Matt Yeo, Kyung Hoon Yeom, Wonjoon Yoo, Myungin You, Doheon Ahn, Homin
Ahn, Joohee Ahn, Seongmin Ahn, Chanwoo An, Hyeryun An, Junho An, Sang-Min An, Bo-
ram Byun, Eunbin Byun, Jongho Cha, Minji Chang, Seunggyu Chang, Haesong Cho, Youngdo
Cho, Dalnim Choi, Daseul Choi, Hyoseok Choi, Minseong Choi, Sangho Choi, Seongjae Choi,
Wooyong Choi, Sewhan Chun, Dong Young Go, Chiheon Ham, Danbi Han, Jaemin Han, Moony-
oung Hong, Sung Bum Hong, Dong-Hyun Hwang, Seongchan Hwang, Jinbae Im, Hyuk Jin Jang,
Jaehyung Jang, Jaeni Jang, Sihyeon Jang, Sungwon Jang, Joonha Jeon, Daun Jeong, Joonhyun
Jeong, Kyeongseok Jeong, Mini Jeong, Sol Jin, Hanbyeol Jo, Hanju Jo, Minjung Jo, Chaey-
oon Jung, Hyungsik Jung, Jaeuk Jung, Ju Hwan Jung, Kwangsun Jung, Seungjae Jung, Soon-
won Ka, Donghan Kang, Soyoung Kang, Taeho Kil, Areum Kim, Beomyoung Kim, Byeong-
wook Kim, Daehee Kim, Dong-Gyun Kim, Donggook Kim, Donghyun Kim, Euna Kim, Eunchul
Kim, Geewook Kim, Gyu Ri Kim, Hanbyul Kim, Heesu Kim, Isaac Kim, Jeonghoon Kim, Jihye
Kim, Joonghoon Kim, Minjae Kim, Minsub Kim, Pil Hwan Kim, Sammy Kim, Seokhun Kim,
Seonghyeon Kim, Soojin Kim, Soong Kim, Soyoon Kim, Sunyoung Kim, Taeho Kim, Wonho
Kim, Yoonsik Kim, You Jin Kim, Yuri Kim, Beomseok Kwon, Ohsung Kwon, Yoo-Hwan Kwon,
Anna Lee, Byungwook Lee, Changho Lee, Daun Lee, Dongjae Lee, Ha-Ram Lee, Hodong Lee,
Hwiyeong Lee, Hyunmi Lee, Injae Lee, Jaeung Lee, Jeongsang Lee, Jisoo Lee, Jongsoo Lee,
Joongjae Lee, Juhan Lee, Jung Hyun Lee, Junghoon Lee, Junwoo Lee, Se Yun Lee, Sujin Lee,
Sungjae Lee, Sungwoo Lee, Wonjae Lee, Zoo Hyun Lee, Jong Kun Lim, Kun Lim, Taemin Lim,
Nuri Na, Jeongyeon Nam, Kyeong-Min Nam, Yeonseog Noh, Biro Oh, Jung-Sik Oh, Solgil Oh,
Yeontaek Oh, Boyoun Park, Cheonbok Park, Dongju Park, Hyeonjin Park, Hyun Tae Park, Hyun-
jung Park, Jihye Park, Jooseok Park, Junghwan Park, Jungsoo Park, Miru Park, Sang Hee Park,
Seunghyun Park, Soyoung Park, Taerim Park, Wonkyeong Park, Hyunjoon Ryu, Jeonghun Ryu,
Nahyeon Ryu, Soonshin Seo, Suk Min Seo, Yoonjeong Shim, Kyuyong Shin, Wonkwang Shin,
Hyun Sim, Woongseob Sim, Hyejin Soh, Bokyong Son, Hyunjun Son, Seulah Son, Chi-Yun
Song, Chiyoung Song, Ka Yeon Song, Minchul Song, Seungmin Song, Jisung Wang, Yong-
goo Yeo, Myeong Yeon Yi, Moon Bin Yim, Taehwan Yoo, Youngjoon Yoo, Sungmin Yoon,
Young Jin Yoon, Hangyeol Yu, Ui Seon Yu, Xingdong Zuo, Jeongin Bae, Joungeun Bae, Hyun-
soo Cho, Seonghyun Cho, Yongjin Cho, Taekyoon Choi, Yera Choi, Jiwan Chung, Zhenghui
Han, Byeongho Heo, Euisuk Hong, Taebaek Hwang, Seonyeol Im, Sumin Jegal, Sumin Jeon,
Yelim Jeong, Yonghyun Jeong, Can Jiang, Juyong Jiang, Jiho Jin, Ara Jo, Younghyun Jo, Hoyoun
Jung, Juyoung Jung, Seunghyeong Kang, Dae Hee Kim, Ginam Kim, Hangyeol Kim, Heeseung
Kim, Hyojin Kim, Hyojun Kim, Hyun-Ah Kim, Jeehye Kim, Jin-Hwa Kim, Jiseon Kim, Jonghak
Kim, Jung Yoon Kim, Rak Yeong Kim, Seongjin Kim, Seoyoon Kim, Sewon Kim, Sooyoung
Kim, Sukyoung Kim, Taeyong Kim, Naeun Ko, Bonseung Koo, Heeyoung Kwak, Haena Kwon,
Youngjin Kwon, Boram Lee, Bruce W. Lee, Dagyeong Lee, Erin Lee, Euijin Lee, Ha Gyeong
Lee, Hyojin Lee, Hyunjeong Lee, Jeeyoon Lee, Jeonghyun Lee, Jongheok Lee, Joonhyung Lee,
Junhyuk Lee, Mingu Lee, Nayeon Lee, Sangkyu Lee, Se Young Lee, Seulgi Lee, Seung Jin Lee,
Suhyeon Lee, Yeonjae Lee, Yesol Lee, Youngbeom Lee, Yujin Lee, Shaodong Li, Tianyu Liu,
Seong-Eun Moon, Taehong Moon, Max-Lasse Nihlenramstroem, Wonseok Oh, Yuri Oh, Hong-
been Park, Hyekyung Park, Jaeho Park, Nohil Park, Sangjin Park, Jiwon Ryu, Miru Ryu, Simo
Ryu, Ahreum Seo, Hee Seo, Kangdeok Seo, Jamin Shin, Seungyoun Shin, Heetae Sin, Jiangping
Wang, Lei Wang, Ning Xiang, Longxiang Xiao, Jing Xu, Seonyeong Yi, Haanju Yoo, Haneul
Yoo, Hwanhee Yoo, Liang Yu, Youngjae Yu, Weijie Yuan, Bo Zeng, Qian Zhou, Kyunghyun Cho,
Jung-Woo Ha, Joonsuk Park, Jihyun Hwang, Hyoung Jo Kwon, Soonyong Kwon, Jungyeon Lee,
Seungho Lee, Seonghyeon Lim, Hyunkyung Noh, Seungho Choi, Sang-Woo Lee, Jung Hwa Lim,
and Nako Sung. Hyperclova x technical report, 2024.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

Figure 10: The training loss of a TinyLlama 120M model with clipped exponent at E7M7, excluding
the LM head. The training loss is smoothed using exponential moving averages for better visualiza-
tion. The results show that the exponent clipped models remain unstable when models in Figure 9
have stabilized after the same number of training steps.

Table 2: Robustness of the sharpness metric to ϵ. We have found empirically that the loss landscape
sharpness metric is robust to the choice of ϵ. Below, we include a table with sharpness values for a
wide range of ϵ values for a Llama 7B model trained for 5,000 steps. We use a different checkpoint
from the one in Table 1 of the paper to demonstrate reproducibility.

ϵ Precision 1K 2K 3K 4K 5K

5.00E-05 E8M3 0.02 0.06 0.18 0.19 0.17
E8M4 0.02 0.04 0.08 0.13 0.17
E8M5 0.02 0.03 0.04 0.05 0.07
E8M6 0.02 0.02 0.02 0.02 0.03
E8M7 0.02 0.02 0.02 0.02 0.02

1.00E-04 E8M3 0.04 0.11 0.36 0.38 0.33
E8M4 0.04 0.08 0.16 0.26 0.34
E8M5 0.04 0.05 0.07 0.10 0.14
E8M6 0.04 0.04 0.04 0.05 0.05
E8M7 0.03 0.04 0.04 0.04 0.04

5.00E-04 E8M3 0.19 0.51 1.70 1.80 1.49
E8M4 0.18 0.37 0.74 1.22 1.54
E8M5 0.18 0.25 0.34 0.48 0.64
E8M6 0.18 0.21 0.21 0.23 0.25
E8M7 0.16 0.18 0.17 0.19 0.19

1.00E-03 E8M3 0.38 0.98 3.31 3.59 2.81
E8M4 0.36 0.71 1.42 2.32 2.86
E8M5 0.34 0.49 0.66 0.92 1.21
E8M6 0.34 0.41 0.40 0.44 0.48
E8M7 0.30 0.35 0.34 0.37 0.38

5.00E-03 E8M3 1.73 4.47 13.64 11.64 9.58
E8M4 1.61 3.26 6.43 9.87 11.39
E8M5 1.55 2.25 2.92 4.10 5.28
E8M6 1.55 1.87 1.85 2.03 2.21
E8M7 1.36 1.60 1.53 1.71 1.73

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 3: We show the loss landscape sharpness of a Llama 7B model initially trained with E8M3
precision for 6,000 training steps that was then trained with standard BF16. We can see that the
sharpness indicator decreases in value with more training on BF16, indicating that it is capturing the
increased stability of training that comes with BF16 over E8M3.

Train Step Sharpness
7K 1.35
8K 1.14
9K 0.98

10K 0.90
11K 0.87
12K 0.77
13K 0.71
14K 0.63
15K 0.60
16K 0.59
17K 0.57
18K 0.50
19K 0.48
20K 0.48
21K 0.46
22K 0.44
23K 0.40
24K 0.40
25K 0.37
26K 0.34
27K 0.34
28K 0.34
29K 0.33
30K 0.35
31K 0.32
32K 0.32
33K 0.30
34K 0.29
35K 0.29
36K 0.28
37K 0.27
38K 0.26
39K 0.27
40K 0.27
41K 0.25
42K 0.23
43K 0.23
44K 0.24

def backward(inputs, weight, output_gradient):
masked_inputs = reduce_precision(inputs)
masked_weight = reduce_precision(weight)
masked_output_gradient = reduce_precision(output_gradient)
inputs_gradient = F.linear(masked_inputs, masked_weight.T)
weight_gradient = F.linear(masked_output_gradient.T, masked_weight.T)
masked_inputs_gradient = reduce_precision(inputs_gradient)
masked_weight_gradient = reduce_precision(weight_gradient)
return masked_inputs_gradient, masked_weight_gradient

Figure 11: PyTorch-like pseudocode for the reduced-precision backward pass.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 12: A comparison between MS-AMP FP8 training (O1) and BF16 training on a subsample
of the FineWeb Edu (Penedo et al., 2024) dataset. We find that when the model, Llama 120M for
this experiment, is trained on a “clean” dataset such as FineWeb Edu, the divergence between MS-
AMP FP8 O1 and BF16 disappears. However, LLM pretraining datasets in production environments
are usually much “dirtier” than those of popular open-source datasets. For example, extensive data
filtering may not be an option for low-resource languages. Also, for newer domains such as video
or robotic motion, well-established metrics of data quality do not yet exist. Therefore, the finding
that FP8 training works well on “clean” data supports our claim that hidden instabilities exist in
reduced-precision training rather than disproving it.

17


	Introduction
	Related work
	Training stability
	Reduced-precision processors
	Hybrid FP8
	MS-AMP

	Methods
	Sharpness metric
	Masking

	Results
	MS-AMP experiments
	Bit reduction experiments
	Loss landscape sharpness
	Robustness to learning rate changes

	Discussion
	Limitations
	Conclusion
	Appendix

