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ABSTRACT

Vision Language Models (VLMs) have demonstrated strong capabilities across
various visual understanding and reasoning tasks, driven by incorporating image
representations into the token inputs of Large Language Models (LLMs). However,
their real-world deployment is often constrained by high latency during inference
due to the substantial compute required by the LLM to process the large number
of input tokens, predominantly arising from the image. To reduce inference costs,
one can either downsize the LLM or reduce the number of input tokens needed to
represent the image, the latter of which has been the focus of many recent efforts
around token compression. However, it is unclear what the optimal trade-off is
given a fixed inference budget. We characterize this optimal trade-off between
the number of visual tokens and LLM parameters by establishing scaling laws
that capture variations in performance with these two factors. Our results reveal a
surprising trend: for visual reasoning tasks, the inference-optimal behavior heavily
favors optimizing compute to utilize larger LLMs by reducing the visual token
count — even to a single token in certain circumstances. While the token reduction
literature has mainly focused on maintaining base model performance by modestly
reducing the token count (e.g., 5 – 10×), our results indicate that the compute-
optimal inference regime requires operating under even higher token compression
ratios. Our work underscores the performance and efficiency benefits of operating
in lower visual token regimes compared to current token reduction literature and the
importance of developing tailored token reduction algorithms for such conditions.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have enabled Vision Language Models
(VLMs) to perceive, reason, and respond through both text and image inputs (Liu et al., 2023; Alayrac
et al., 2022; Dai et al., 2023). Many VLMs are built on top of pretrained vision encoders, such as
CLIP, and pass the patch-based tokens from the visual encoder into the pretrained LLM backbone
at a one-to-one ratio for visual context. This results in the LLM processing hundreds of tokens
per image, overshadowing those from the user prompt and accounting for most of inference time
compute. Consequently, deploying VLMs in real-world applications, particularly on consumer-sided
edge devices, e.g., monitoring systems, driving assistants, etc., is often limited by the significant
inference cost and resulting latency.

To reduce the inference cost of VLMs, many recent works have focused on decreasing, via merging
or pruning, the number of visual tokens passed to the LLM without significant performance degra-
dation (Li et al., 2024c; Shang et al., 2024). Alternatively, inference FLOPs, proportional to the
number of parameters and number of tokens processed, can be reduced by using a smaller LLM. This
observation raises an important question: given a fixed inference budget, what is the optimal trade-off
between LLM size and the number of visual tokens processed for downstream performance?

In this work, we answer this question by building the first inference-time compute-optimal scaling
laws for VLMs, modeling performance as a function of both key factors affecting inference cost:
LLM size and the number of visual tokens processed. Our scaling laws reveal a striking observation:
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(a) Scaling law for VLM token compression and LLM
model size on visual reasoning tasks.
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(b) Scaling law for VLM token compression and LLM
model size on OCR-like tasks.

Figure 1: Inference optimal scaling laws for VLMs on visual reasoning and OCR-like tasks.
The number of visual tokens (V ) passed to the LLM (after token compression, § 2), along with the
LLM parameter count (N ), directly determine the inference cost of VLMs (O(N(Q+ V ))), where
Q is the text input tokens. Since the downstream performance of VLMs is directly affected by both
these factors, it makes it unclear what the optimal trade-off is for a fixed inference compute. In
this work, we answer this question with our scaling laws. Left: We plot the fitted scaling curves,
assuming cached text input tokens (Q=0). We observe a surprising trend: for visual reasoning tasks,
the compute optimal behavior (dotted black curve) requires using a single visual token with the
largest possible language model that can fit under the inference budget. Right: Inference optimal
behavior for OCR-like tasks is the complete opposite, requiring as many visual tokens as possible.

for visual reasoning tasks, the compute-optimal inference regime entails using the largest feasible
LLM with a very small number of visual input tokens — usually less than 3% the original number
of visual tokens (Figure 1). However, for certain use cases that require detailed image analysis,
like Optical Character Recognition (OCR) or document understanding tasks, the optimal approach
is quite the opposite, requiring as many visual tokens as possible, as token compression proves
ineffective for capturing the dense and diverse information present in such tasks. Our work identifies
the compute-optimal inference regime for VLMs, underscoring the critical importance of pursuing
much higher token compression rates (to 1 or 4 from the current reduction to 144 or 64 tokens) for
visual reasoning tasks. We hope these findings will serve as a motivation and foundation for shifting
token reduction techniques towards more effective and higher compression ratios.

2 TOKENS VS PARAMETERS: INFERENCE TIME SCALING LAWS FOR VLMS

We follow the standard practice for estimating the inference time FLOPs as (Kaplan et al., 2020;
Sardana et al., 2024; Snell et al., 2024):

FLOPsinf = O(N × T ), (1)

where N denotes the parameter count of LLM and T denotes the total number of inference time
tokens; we ignore the cost from the vision encoder, as it is mostly fixed. For VLMs, T can be further
decomposed as T = Q+ V +G, where Q represents the text input tokens, i.e., the question/prompt,
V is the number of visual tokens from the vision encoder (after token compression), and G accounts
for the generated tokens. In our work, we ignore the G term due to our analyzed tasks’ short form
responses; however, the analysis with varying Q transfers to Q+G as well.

Visual Token Compression Often, the number of visual tokens V dominates the total tokens
processed by the language model; thus, there has been a growing interest in developing approaches to
compress the visual information into a fewer number of tokens (Shang et al., 2024; Li et al., 2023b;
2024c; Hu et al., 2024; Cai et al., 2024). We refer to token compression as a vision projection that
compresses the n vision embedding tokens produced by the vision encoder, e.g., 576 for CLIP-ViT-L,
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into a sequence of m < n tokens to be processed by the language model, not using a smaller vision
encoder or smaller image resolutions. We refer the reader to § B for details.

The deployment of vision language models in real-world applications comes with significant chal-
lenges, particularly surrounding inference latency. For example, rapid response times and constant
queries are crucial for the safe deployment of monitoring systems. Consequently, reducing inference
FLOPs while minimizing performance degradation is critical, especially on compute-constrained
edge devices. This raises a key question: Given a fixed inference compute budget for VLMs, what
is the optimal trade-off between language model size and number of visual tokens processed? We
answer this by developing scaling laws for VLMs that account for the varying parameter count of the
language model component and the number of visual input tokens processed by the language model.

2.1 SCALING LAW FORMULATION

Recall that the performance of a VLM is primarily governed by the parameter count of the language
model and the number of visual tokens processed by the LLM, assuming a fixed visual encoder.
Accordingly, we model the scaling behavior of VLM performance as:

Y (N,T ) =
A

Nα
∗ B

T β
+D, (2)

where N denotes the LLM parameters, T denotes the total inference tokens, {A,B,D, α, β} are
learnable parameters, and Y (N,T ) is a measure of model quality, which we estimate by averaging
performance on a suite of 10 downstream evaluation tasks (Gadre et al., 2023; Goyal et al., 2017).

Below, we summarize the role of each of these learnable parameter in the scaling law (Eq. 2).

LLM Quality Parameter (α): This parameter dictates how the downstream error changes with the
complexity of the LLM, i.e., its parameter count. A higher α indicates a better language model, such
as Llama3-7B outperforming Llama2-7B, often due to superior pretraining.

Visual Token Quality Parameter (β): β captures the quality of the visual input tokens fed into the
LLM, reflecting the quality of the compression technique. A better token compression algorithm
would yield a higher β, allowing for more reductions of T visual tokens than less effective methods
while maintaining the same downstream performance.

Constants A,B,D: A and B are normalizing constants and D refers to irreducible loss, which
cannot be reduced even with the largest N -sized language model or all T visual tokens (capped at
576 for our choice of vision encoder).

2.2 EXPERIMENTAL SETUP

VLM Training and Evaluation: We use the LLaVA-Next framework (Liu et al., 2024b) to train
VLMs with the Qwen-1.5 family of language models as the backbone. Specifically, we utilize the
{0.5, 1.8, 4, 7, 14}B-chat models (Bai et al., 2023). To estimate the downstream error Y (N,C), we
average performance on a suite of 9 downstream benchmarks (See Appendix A.1).

Visual Token Compression: CLIP ViT-L/14 (Radford et al., 2021) is used as the vision encoder for all
experiments, and we compress the original 576 tokens to {144, 64, 36, 16, 4, 1} using TokenPacker (Li
et al., 2024c) which replaces interpolation with a convolution.

Fitting Scaling Laws: We fit the proposed scaling law (Eq. 2) on {Y (N,T ), N, T} pairs, with N ∈
{0.5, 1.8, 4, 7}B and T ∈ {1, 4, 16, 36, 64, 144, 576}. We use grid-search, for its stability (Goyal
et al., 2024b), to estimate the scaling parameters α, β,A,B, and D, more details in Appendix A.2.
The final scaling law is evaluated on a N = 14B VLM model at various T visual tokens.

3 RESULTS: ESTIMATED SCALING CURVES

Figure 1 presents the fitted scaling curves on both visual reasoning and OCR-like tasks, illustrating the
variation in average downstream error as a function of inference FLOPs. The scatter sizes represent
the number of visual input tokens processed by the language model, while the color scale indicates
the varying number of language model parameters. We make some key observations below.
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3.1 SCALING LAWS FOR VISUAL REASONING TASKS FAVOR MORE LLM PARAMETERS

Error Varies 5× Faster with LLM Parameters than with Tokens: Recall from the scaling
law (Eq. 2) that α represents the LLM quality parameter and β represents the visual token quality
parameter, both denoting the rate they influence downstream error respectively. For our selection of
language model family (Qwen-1.5) and token compression algorithm, α = 0.077 is more than five
times larger than β = 0.015, signifying that VLM error increases significantly faster when reducing
the LLM parameters compared to reducing the number of visual tokens (Fig. 1). Therefore, when
minimizing inference FLOPs, it is more effective to prioritize reducing visual tokens (V ) first as its
impact on performance is less pronounced than reducing the number of LLM parameters (N ).

Compute-Optimal Visual Reasoning Inference Favors More LLM Parameters: At any given
inference compute budget (x-axis), the lowest downstream error is obtained when trading off the
number of tokens used (the scatter size) with using bigger LLM (i.e. more red curve). Furthermore,
in the cases where the input prompt is cached (Fig. 1a), the compute optimal performance occurs
when compressing the information into a single token and inferring with the largest possible LLM
that fits the inference budget (the black pareto frontier).

In Figure 2, we compare VLMs with varying combinations of LLM size and visual token counts
under a fixed inference budget. We observe that for many visual reasoning tasks, increasing the size
of the language model while reducing visual tokens can lead to significant relative gains. This may be
in part due to the scaling properties of the LLMs themselves, leading to models with stronger world
views that can better extrapolate with less visual information than their smaller counterparts (Radford
et al., 2021; Wei et al., 2022). We note this trade-off does not extend to certain tasks, e.g., document
comprehension, where a limited number of tokens may fail to capture the high density of information,
and discuss it further in Section 3.2.

Variation in Optimal Tokens with Text Query Length: In the previous section, we observed that
when the text input can be cached (Q = 0), compute optimal inference requires the use of a single
visual token paired with the largest possible LLM that fits under the inference budget. However, in
interactive systems where the text input can be dynamic and long, i.e., large Q, the situation changes.
In Figure 5, we plot the average downstream error against FLOPs across different lengths of text
input tokens (Q), with the color of the lines representing the variations in Q. When comparing the
performance of the 7B model (solid curves) with the 4B model (dashed curves) at a high Q (indicated
by the green curves for each model), we observe that there is a sharp increase in error as inference
FLOPs are reduced for the 7B model, particularly when visual tokens are reduced significantly. At a
certain point (marked by the red dot in Fig. 5), it becomes more advantageous to use the 4B model
with a higher number of visual tokens rather than the 7B model with fewer tokens.

This phenomenon can be understood intuitively: as the LLM processes longer text sequences,
the computational cost incurred by text tokens is already considerable. Consequently, increasing
the number of visual tokens has a comparatively smaller impact on the overall inference FLOPs.
Therefore, for higher text token lengths (Q), increasing the number of visual tokens leads to better
performance without significantly increasing the computational burden. Thus, the optimal number of
visual input tokens rises with an increase in Q. This case demonstrates the need for careful balancing
of visual token count and LLM size, especially in scenarios where text inputs are long, to achieve
compute-optimal performance without sacrificing accuracy.

3.2 SCALING LAWS FOR OCR TASKS

The scaling laws presented above were focused for visual understanding and reasoning tasks, where
we observed that using a single token with largest LLM is compute optimal. However, does this
remain valid for all the tasks, espcially tasks like OCR where the density of information in high?
Unlike visual reasoning tasks, these tasks lack visual structure in the image and intuitively need more
tokens to record the (generally textual) details in the image. We verify the same by fitting our scaling
laws (Eq. 2) on DocVQA (Mathew et al., 2021) and TextVQA (Singh et al., 2019) benchmarks, where
the tasks require mainly OCR capabilities.

Figure 1b presents the fitted scaling law for OCR tasks. Notably, there are no significant gains in
average downstream performance from increasing LLM parameters; instead, the number of visual

4



Published as a workshop paper at SCOPE - ICLR 2025

GQA MMB MME MMMU POPE SQA DocVQA TextVQA
10

0

10

20

30
%

 C
ha

ng
e 

fro
m

 0
.5

B 
LM

 w
/ 5

76
 to

ke
ns

1.8B LM w/ 144 tokens
4B LM w/ 64 tokens
7B LM w/ 36 tokens

Visual Reasoning Tasks Text Recognition Tasks

Performance Change Under Similar Inference Compute

Figure 2: Performances of various LLM size and visual token count combinations with similar
inference compute on two families of tasks. For many visual reasoning tasks, increasing the LLM
size by decreasing the number of visual tokens improves performance. However, for text recognition
tasks, decreasing the number of visual tokens is detrimental to performance.

100 101 102 103 104

Inference FLOP ( (NV)))

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Av
g.

 D
ow

ns
tre

am
 E

rro
r

Accuracy of the estimated Scaling Laws
Scaling Params

= 0.077
= 0.015

Fitted Curves
Test Points
Estimated Curve

#Tokens(V)
1
4
16
36
64
144
576

0.5B
1.8B

4B

7B

14B

#L
LM

 P
ar

am
s (

N
)

(a) Generalization of scaling law to 14B models.
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(b) Scaling law on PruMerge compression algorithm.

Figure 3: Generalizing scaling laws across scale and compression. We find the inference scaling
properties of VLMs on visual-reasoning performance generalize across LLM scale and compression
method. Left: Scaling laws trained up to 7B LLM models accurately predict performance trends of
the 14B model within 2% margins. Right: When replacing the token compression algorithm, our
main findings still hold: LLM size is heavily favored over visual token count.

tokens predominantly dictates the performance. This observation is reflected in the scaling law
parameters, where the LLM-quality parameter α = 0.029 is nearly twice as smaller than the token
quality parameter β = 0.048. This trend is in stark contrast to the scaling parameters observed for
visual reasoning tasks where the LLM-quality parameter (α) was more than five times larger than the
token parameter (§3).

3.3 GENERALIZING SCALING LAWS ACROSS COMPRESSION METHODS AND MODEL SCALES

We find that the takeaways of our proposed scaling laws generalize across visual token compression
algorithms. We fit scaling laws with VLMs utilizing LLaVa-PruMerge (Shang et al., 2024) on similar
settings following Section 2.2. We do not consider its performance during extreme compression
due to the massive performance drops resulting from its training-free methodology. When using the
same A,B,D values fit in Section 3, we find comparable α = 0.069, β = 0.008 compared to before
(α = 0.077, β = 0.015, § 3). Similar values for α show that our scaling law is capable of capturing
the quality of the LLM across VLM architectures and the decrease in β shows that PruMerge is
“weaker” than TokenPacker. Fitting the scaling laws from scratch results in α = 0.077, β = 0.041.
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Thus, even across different VLM architectures, compute-optimal inference for visual reasoning and
understanding tasks continues to strongly favor the LLM parameter count, as shown in Figure 3b.

We also evaluate the accuracy of our scaling laws (fitted on VLMs of 0.5B-7B range) for predicting
the performance for larger models. We estimate the performance of Qwen-1.5 14B using our fitted
scaling laws. Our scaling laws estimate the performance with an error margin of less than 2%, as
visualized in Figure 3a and Figure 4b. The log-linear relationship between the error and number
of visual tokens persists, and the greater influence of the LLM’s size compared to visual tokens
on performance continues to hold. Thus, for VLMs using 7B language model backbones, it is still
optimal to increase LLM size to 14B while reducing visual token count for fixed inference costs.

4 DISCUSSION AND CONCLUSION

In our work, we demonstrate that the optimal trade-off for VLMs inference is to use very few visual
input tokens along with the largest possible LLM that fits within the budget. This result has quite
important consequences. Existing works aim towards moderate reduction in token count (e.g., from
576 to 144), while trying to match the performance of the base model (no token reduction). However,
our results show that the community needs to focus towards extreme token reduction (e.g., down to
1, 4 or 16 tokens), as the inference optimal regime requires very few visual input tokens. Although
extreme token reduction can lead to a drop in performance compared to the base model, it is still
better than using more tokens with a smaller LLM. In addition, the performance with very few visual
tokens is poised to improve further as token reduction algorithms tailored for extreme reduction
are developed. While we focus on visual token compression at the projector level, we leave the
compute-optimal scaling properties of adaptive token processing algorithms that operate within the
LLM itself for subsequent work. We hope that these critical insights from our paper will guide future
research towards developing better token reduction techniques and thus inference optimal VLMs.

5 ACKNOWLEDGEMENTS

We thank Leslie Berberian, Devin Willmott, Qiu Chen, and Vijay Sadashivaiah at the Bosch Center
for AI for useful discussions and help with running some of the experiments on Bosch’s compute.
We also thank Albert Gu for his feedback on the draft. KL and SG are supported by funding from the
Bosch Center for Artificial Intelligence.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
model for few-shot learning, 2022. URL https://arxiv.org/abs/2204.14198.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
https://arxiv.org/abs/2309.16609.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
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A APPENDIX

A.1 DOWNSTREAM EVALUATION DETAILS

We test our trained VLMs on a suite of nine commonly used benchmarks for evaluating visual
reasoning: MME (Fu et al., 2024), GQA (Hudson & Manning, 2019), AI2D (Kembhavi et al., 2016),
MMBench (Liu et al., 2024c), MMMU (Yue et al., 2023), ScienceQA (Lu et al., 2022), MathVista (Lu
et al., 2024), POPE (Li et al., 2023c), and ChartQA (Masry et al., 2022). We average the normalized
evaluation metric errors to compute P (N,C). For MME, the Cognition and Perception scores were
added and normalized, while the F1 score was used for POPE (Liu et al., 2024a).

A.2 GRID SEARCH DETAILS

While there are many choices of optimizer for fitting the scaling laws like curve-fitting in SciPy,
gradient descent based solvers, etc. We observed that these are not stable and give varying so-
lutions. We converged to using grid-search to fit the scaling laws, similar to the recent works
like Goyal et al. (2024b). The grid-search range for each of the parameters were as follows:
α, β ∈ {0, 0.1}, A,B,D ∈ {0, 1}.

A.3 ADDITIONAL RESULTS FOR SCALING LAWS

We find that our original scaling laws are able to generalize and predict the performance of VLMs at
the 14B scale despite only being fitted up to the 7B scale. Our predictions result in less than 2% error
between the predicted and actual VLM performance on visual reasoning and understanding tasks at
the 14B model parameter scale. Performance is measured as described in Section 2.2.
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Figure 4: Scaling law predictions at various Q. The scaling laws fitted based on LLMs up to the 7B
scale generalize well to the 14B scale, resulting in less than 2% error between predicted and actual
VLM performance.
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Figure 5: Performance trends when shifting input text token count. For visual reasoning tasks,
as the number of text tokens increases, the impact of increasing the number of visual tokens V , i.e.,
reducing compression, becomes more apparent. Intuitively, at a large enough amount of text tokens,
initial increases in visual tokens are only a minor fraction of the overall compute.
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Figure 6: Inference optimal scaling laws for PruMerge: When replacing the token compression
algorithm, the main findings still hold: inference-optimal behavior is still to increase the LLM
parameter count by reducing visual tokens in fixed compute scenarios.
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B RELATED WORK

B.1 TOKEN REDUCTION IN VISION-LANGUAGE MODELS (VLMS)

VLMs are composed of three key components: (a) a visual encoder that encodes the input images,
(b) a language model (LM) that processes the visual tokens from the encoder along with the user
text query, and (c) a projector that maps the visual tokens to the input embedding space of the LM.
Often, the number of visual tokens (576 tokens per image for CLIP-ViT-L, for instance) significantly
exceeds the number of text tokens, leading to high inference costs. This disproportionate scaling
of visual tokens also hinders multi-frame integration due to the limited context length of the model.
Inference cost is a critical factor in many real world applications of computer vision systems. Thus,
reducing the number of visual tokens processed by the language model has become an active area of
research.

LLaVA-PruMerge (Shang et al., 2024) and Yu et al. (2024) propose training-free methods that filter
out visual tokens (from CLIP) that have a low similarity with the CLS token. TokenPacker (Li et al.,
2024c), on the other hand, learns a compact token compression module using cross-attention over
visual tokens, allowing for reduced number of tokens while preserving salient information. While
the above approaches focus on token reduction without directly changing the visual encoder (CLIP)
output, recent works based on Matryoshka Representation (Cai et al., 2024; Hu et al., 2024) modify
the CLIP output directly to generate nested CLIP embeddings for a flexible token count. Zhang et al.
(2024) investigate methods that emphasize task-relevant pixels during image processing.

B.2 SCALING LAWS

Understanding how the performance of modern deep networks shifts as key design factors, such
as the number of parameters or training tokens, are scaled has become a focal point of research,
particularly as these models continue to grow in size and complexity. Scaling laws offer crucial
guidance for optimizing the architecture of such models. Notably, Kaplan et al. (2020); Hernandez
et al. (2021); Hoffmann et al. (2022) do a thorough investigation into training compute-optimal
language models, highlighting the need to scale pretraining tokens and parameters at the same rate.
Cherti et al. (2023); Gadre et al. (2023) perform a similar study on scaling laws for CLIP (Radford
et al., 2021), corroborating that performance improvements arise from increasing both parameter
counts and pretraining image-caption pairs.

Closest to our work, Li et al. (2024a) investigate what factors improve the performance of LLaVA (Liu
et al., 2023). They observe performance gains with increasing language model size, visual encoder
size, and input resolution. They investigate each of these factors when scaled independently. In
contrast, in this work we focus on understanding the optimal trade-off between language model size
and the number of visual input tokens, given a fixed inference budget to fit in. Note that in our work,
visual input token count is varied (decreased) using token compression algorithms (§ B.1) and not by
varying the input image resolution or using a different CLIP model.

While scaling the pretraining of LLMs has led to emergent capabilities, there has recently been a
growing interest in improving their reasoning capabilities by scaling inference time compute. Brown
et al. (2024) show impressive performance boosts if the language model is allowed multiple attempts
on a problem. In fact, Snell et al. (2024) show that scaling test time compute by parallel multiple
generations at inference gives performance comparable to a 14× larger model on math tasks. Goyal
et al. (2024a) show performance gains by appending special tokens at the end of input to scale test
time compute. In contrast, we characterize the optimal trade-off between tokens and parameters, for
getting the best performance at a given fixed test time (inference) compute.

B.3 VISION PROJECTOR DESIGN

To bridge the gap between the separate image and text modalities presented by the vision encoder
and language model respectively, vision projectors map the image tokens from the vision encoder
into the language space. Many design choices for the projector exist. Numerous VLMs utilize
query-based projectors, which combine the embeddings of visual tokens with that of query tokens
via cross-attention or similar mechanisms, like the Q-Former projector introduced BLIP-2 (Li et al.,
2023a) and used in following work (Dai et al., 2023; Zhu et al., 2023). Other VLMs use simple linear
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projectors or MLPs to connect the encoder and LLM (Liu et al., 2023; 2024a; Su et al., 2023). While
most architectures use the projectors to create new tokens to feed into the LLM alongside text, some
architectures like Flamingo (Alayrac et al., 2022) or CogVLM (Wang et al., 2024) directly interweave
the visual information into the language model. In our work, we will be focusing on projectors that
fall in the former category.

B.4 ADDITIONAL APPROACHES FOR EFFICIENT VLMS

Apart from reducing the number of visual input tokens to the language model, people have explored
various other techniques, including a mix of quantization (Liu et al., 2024a) and smaller encoders or
language models (Yao et al., 2024; Chu et al., 2023; Zhou et al., 2024) for improving inference.

VLMs utilized in video processing often combine decreases in vision encoder output size with
token compression techniques to prevent excessive latency and memory constraints. Visual tokens
are often merged temporally across frames (Xu et al., 2024; Shen et al., 2024) as well as spatially
for individual frames (Xu et al., 2024). Vision encoders, such as Q-Former (Li et al., 2023a), are
preferred over more traditional CLIP models due to their ability to extract a smaller fixed number of
tokens per image (Weng et al., 2024; Li et al., 2024b). Although compression techniques used for
video processing often can reduce token counts by large margins, they are rarely evaluated on image
datasets, and when they are, compress visual tokens very little or not at all (Li et al., 2023b).

Adaptive token processing, where the compute dedicated to certain tokens during inference is
varied Jain et al. (2024), is another approach to reducing the cost of inference. Many methods prune
visual tokens within the LLM due to their lower attention scores compared to the prompt, system,
etc., tokens (Chen et al., 2024; Wan et al., 2024), a heuristic commonly found in regular text-only
LLM KV cache reduction techniques (Zhang et al., 2023; Oren et al., 2024). Finally, while we focus
our paper on image-based VLMs, a host of works (Xu et al., 2024; Shen et al., 2024) discuss token
compression for video processing using VLMs.
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