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ABSTRACT

When the number of reinforcement learning episodes that can be performed to
optimize a policy is severely limited, the bias-variance trade-off of bandit algo-
rithms such as Thompson Sampling can be significantly better than that of policy
gradient and value function-based methods. However, bandits have no ability to
model the delayed effects of actions. In this paper, we develop a batch Bayesian
optimization algorithm that learns a delayed effect correction for linear Thompson
Sampling bandits. This work is motivated by the problem of tuning adaptive inter-
vention policies where each episode corresponds to a costly and often lengthy trial
involving human subjects. We show through extensive experiments in an adaptive
intervention simulation environment that the proposed approach can find benefi-
cial delayed effects correction terms under realistic constraints on the number of
Bayesian optimization rounds and the batch size per round.

1 INTRODUCTION

There is increasing interest in using reinforcement learning methods (RL) in the healthcare setting,
including in mobile health. However, the healthcare domain presents a range of challenges for
existing RL methods. In particular, each reinforcement learning episode typically corresponds to
a human subjects trial involving one or more participants that is both costly to conduct and may
require substantial time to carry out (e.g., weeks to months). As a result, RL methods that leverage
large numbers of episodes to learn better quality policies (often through simulation) are not feasible
(Mnih et al., 2013).

Within the mobile health research community specifically, adaptive intervention policy learning
methods have addressed severe episode count restrictions imposed by real-world research constraints
by focusing on the use of bandit algorithms (Tewari & Murphy, 2017). By focusing on maximizing
immediate reward, bandit algorithms have the potential to provide an improved bias-variance trade-
off compared to policy gradient and state-action value function approaches (Lattimore & Szepes-
vari, 2017). Linear Thompson sampling bandits are a particularly promising approach due to the
further application of Bayesian inference to capture model uncertainty due to data scarcity in the
low episode count setting (Agrawal & Goyal, 2013).

Of course, the main drawback of bandit-like algorithms is that they have no ability to account for
the delayed effects of actions (Chapelle & Li, 2011). In the adaptive behavioral intervention setting,
the decision to provide specific treatment options at specific times can indeed have delayed effects
on outcomes of interest through mediating processes such as habituation and engagement.

In this work, we present an algorithm with the ability to learn delayed effects corrections for linear
Thompson sampling bandits under realistic constraints on both the time needed to run human sub-
jects trials and the total number of participants required. Our proposed approach wraps a modified
linear Thompson sampling bandit algorithm in a Batch Bayesian optimization method. Essentially,
the Batch Bayesian optimization method optimizes the delayed effects correction terms in an outer
loop based on returns provided by a Thompson sampling bandit algorithm that leverages the de-
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layed effect correction term. We refer to the proposed algorithm as BOTS - Bayesian Optimization
of Thompson Sampling.

The use of batch Bayesian optimization allows for the decomposition of the total episode budget into
a number of rounds and a batch size per round. Each element of each batch is used to evaluate a dif-
ferent candidate delayed effect correction term. The evaluation of a delayed effect term corresponds
to running a full Thompson sampling bandit adaptive intervention using one or more individuals.
A batch of delayed effect correction terms can thus be assessed in parallel using a cohort of study
participants. Our primary contributions are as follows:

• We propose a new algorithm for estimating delayed effects corrections for linear Thompson
sampling bandits that is practically realizable in the context of adaptive health interventions.

• Our approach addresses the problem warm-starting the Thompson sampling trials by adap-
tively chaining the Thompson sampler prior across Batch Bayesian optimization rounds.

• We perform an extensive performance analysis of the algorithm using a just-in-time adap-
tive intervention simulation environment under realistic constraints on the total episode
count budget, which corresponds to the number of study participants.

• We present detailed results showing how the performance of learned policies varies as
individuals are allocated to rounds and batches in different ways, as well as ablation results
showing the impact of ignoring delayed effects and not warm-starting Thompson sampling
between rounds.

The remainder of this paper is organized as follows. We begin by presenting background and re-
lated work in Section 2. We present the proposed approach in Section 3. In Section 4 we present
experiments and results. We conclude in section 5.

2 BACKGROUND AND RELATED WORK

In this section, we present background and related work on Thompson sampling and Bayesian opti-
mization.

2.1 THOMPSON SAMPLING

In this work, we focus on the use of linear Thompson sampling (TS) contextual bandit algorithms.
This approach starts with a linear model wast + ba of the reward rt at time t based on the observed
state st at time t and the action taken a ∈ [0, ..., A]. The primary model parameters are the weights
wa and biases ba for each action a. The approach then places Gaussian priors N (wa;µw,Σw) and
N (ba;µb,Σb) on the primary model parameters combined with a Gaussian likelihood, producing
a Bayesian linear regression model for the reward. This model supports exact computation of the
posterior distribution over the model parameters given observations of states and rewards (Russo
et al., 2018; Agrawal & Goyal, 2013).

To select an action at each time step t, we first sample values for each of the model parameters from
the joint parameter posterior: wa, ba ∼ N (µt−1,Σt−1). We then select the action that produces the
largest expected reward r̂t(st, a) = wast + ba based on the sampled parameter values.

When Thompson sampling is used in a setting that does not satisfy the contextual bandit assump-
tions, it, of course, has no ability to learn the long term effects of actions. One way to address this
issue is to penalize the immediate reward to take into account the delayed effects of actions. Pre-
vious work has proposed the use of a significantly more complex model-based proxy reward that
requires making a number of assumptions about the delayed effects process (Liao et al., 2022). By
contrast, our approach iteratively learns a delayed effect correction using real returns and an outer
Bayesian optimization loop.

2.2 BAYESIAN OPTIMIZATION

The goal of Bayesian optimization (BO) is to optimize an objective function that is expensive to
evaluate. BO has many applications, for example: it has been used for learning the parameters of
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complex simulators or fine-tuning the hyper-parameters of computationally expensive algorithms. In
our case, we aim to optimize parameters within a Thompson sampling bandit algorithm that requires
running a human subjects trial to evaluate. Bayesian optimization methods work by iteratively
constructing an approximation to the true, costly optimization objective function and optimizing the
approximation.

A Gaussian process (GP) regression model is typically used as the surrogate model because posterior
inference in the model is exact. In this work, we use a Matérn 5/2 kernel (Snoek et al., 2012). We
note that this model is stationary, since the covariance only depends on the distance between points,
so it is more suitable for small dimension input space.

Candidate points are generated during Bayesian optimization using an acquisition function applied
to the posterior over the known objective function. The acquisition function guides how the param-
eter space is explored during the Bayesian optimization process. The Probability of Improvement
(PI) acquisition function selects the point x with highest probability of improving the function value.
This is the point x that maximizes the expectation of the utility function u(x) = 0 if f(x) > f∗

and 1 otherwise. where f∗ is the minimum value of the function found to this point. The Upper
Confidence Bound acquisition function selects the point x that maximizes a function of the form
u(x) = µ(x) − cσ(x), where c is a trade-off parameter and µ(x) and σ(x) are the posterior mean
and standard deviation function of the posterior distribution over the latent objective function.

Expected Improvement (EI) is a common acquisition function based on a utility function u(x) =
max(0, f∗ − f(x)). The EI acquisition function selects the point x with the largest expected value
of this utility function. In this work, we use qEI, a Monte Carlo extension of EI. qEI can tractably
generate batches of multiple candidate points (Balandat et al., 2020) and thus enables the application
of batch Bayesian optimization methods instead of purely sequential Bayesian optimization.

3 METHODS

In this section we introduce our proposed algorithm for learning delayed effect corrections for
Thompson Sampling bandits: BOTS. BOTS wraps a modified linear Thompson sampling bandit
algorithm in a Batch Bayesian optimization method. Essentially, the Batch Bayesian optimization
method optimizes the delayed effects correction terms in an outer loop based on returns provided by
a Thompson sampling bandit algorithm that leverages the delayed effect correction term. We begin
by introducing Thompson Sampling with delayed effect correction. We then present the BOTS al-
gorithm. We conclude this section by presenting the simulation environment we use to evaluate the
BOTS algorithm.

3.1 THOMPSON SAMPLING WITH DELAYED EFFECT CORRECTION

To model the delayed effect of an action, we introduce a delayed effect parameter βa for each ac-
tion, which controls how much to modify the the immediate reward by for each action. Within the
Thompson sampling algorithm, we replace the computation of the expected reward with the compu-
tation of an approximate state-action value function va ← ŵaxs − βa. The algorithm is sketched
in Algorithm 1. The delayed effect correction terms βa are held constant within a given episode
of Thompson sampling. However, the proposed BOTS algorithm uses an outer Batch Bayesian op-
timization loop to learn values for the delayed effect correction terms that maximize the expected
return of the Thomson Sampling with delayed effects correction algorithm. We describe the full
algorithm in the next section.

3.2 THE BOTS ALGORITHM

The BOTS algorithm is detailed in Algorithm 2. We summarize notation in Table A.1. As noted
above, at a high level, BOTS wraps the Thompson sampling with delayed effects algorithm with
an outer loop of Batch Bayesian optimization to learn the delayed effects correction terms based on
Thompson sampling returns. BOTS partitions the total episode budget into an initialization phase
followed by a number of rounds R of batch Bayesian optimization where the same batch size BR

is used in each round. On each round, we evaluate BR different sets of delayed effects correction
terms. The performance of a given set of delayed effects correction terms is estimated using the
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Algorithm 1 TS with Bayesian linear regression, and delayed effect
Require: n, priors Ma, Sa for a ∈ [0, A], and r empty array of size S
1: xs ← envn .reset()
2: done ← False
3: while done is not True do
4: for a = 0 : A do
5: ŵa ∼ MVN (Ma,Sa)
6: va ← ŵaxs − βa

7: end for
8: a∗

s ← argmaxa va

9: xs+1, rs, done ← envn.step(a
∗
s)

10: Ma∗
s
,Sa∗

s
← update posterior(a∗

s ,xs, rs),
11: xs ← xs+1

12: end while
13: return cumsum(r), Ma, Sa for a ∈ [0, A]

Algorithm 2 BOTS Algorithm: batch BO on delayed effects for TS
Require: R,BR, B0,M0,S0, l
1: N ← 120

R×BR

2: D0,P0 ← initialize(B0,M0,S0)
3: for r = 1 : R do
4: D̃ ← filter(Dr−1, BR, B0)

5: GP ← fit(D̃)
6: β ← acqfn(GP)
7: for b = 1 : BR do
8: Mrb,Srb ← refine prior(βrb,Pr−1, l)
9: end for

10: for b = 1 : BR do
11: for n = 1 : N do
12: Yrbn,Mrbn,Srbn ← TS(n,βrb,Mrb,Srb)
13: end for
14: Ȳrb ← 1

N

∑N
n=1 Yrbn

15: M̄rb ← 1
N

∑N
n=1 Mrbn

16: S̄rb ← 1
N

∑N
n=1 Srbn

17: end for
18: Dr ← Dr−1 ∪ {(βrb, Ȳrb, r) | b = 1 : BR}
19: Pr ← Pr−1 ∪ {(βrb,M̄rb, S̄rb)|b = 1 : BR}
20: end for

correspond return from executing the Thompson Sampling with delayed effects correction algorithm
in parallel from a specified number of episodes N . Here, each episode corresponds to a Thompson
Sampling-based adaptive intervention trial applied to a single individual.

BOTS implements this basic idea with two important enhancements. First, the performance of
Thompson sampling is heavily dependent on the prior. When using multiple rounds of Batch
Bayesian optimization, we have the opportunity to chain the posteriors found in one round to the
prior used in the next round. However, this chaining is only reasonable if the values of the delayed
effects corrections terms are similar. Therefore, we implement an adaptive prior refinement proce-
dure in algorithm 3. This algorithm identifies the previously evaluated delayed effects terms that are
as close as possible to those selected for a new round and copies their corresponding posterior. In
the case where N > 1, we average the posterior across all the individuals that used the same delayed
effects correction terms. We can also filter the candidate previously evaluated delayed effects terms
to restrict them to more recent rounds.

However, chaining the Thompson sampler priors across rounds means that the function that the
Bayesian optimization method is attempting to approximate will change over time as changing the
Thompson sampler prior will change the distribution of returns. To solve this problem, we adopt a
basic continual learning modification to the Bayesian optimization process. Specifically, we restrict
the update to the GP to use a filtered set of observations from the most recent rounds only. This
algorithm in sketched in Algorithm 4.
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Algorithm 3 Refine prior for TS coefficients
Require: β, Pr−1, l
1: k, v ← argminj∈{1,...,BR},s∈{r−l,...,r−1} | β − βjs |
2: return M̄kv, S̄kv

Algorithm 4 Filter: construct training data D̃ for fitting GP
Require: Dr−1, BR, B0

1: if BR ≥ B0 then
2: D̃ ← Dr−1

3: else
4: K ← 1
5: while KBR < B0 do
6: K ← K + 1
7: end while
8: E ← B0 −KBR

9: Dfull ← select full batch of data of previous K rounds
10: Drandom ← select randomly E data from round K + 1
11: D̃ ← Dfull ∪ Drandom

12: end if
13: return D̃

In this algorithm, D̃ is the training data used for fitting the GP. We select the most recent data to
include in D̃, such that D̃ ends up with a size of max(B0, BR). If BR is smaller than B0, then we
first take all the points from the most recent batch, then use data from batches from previous rounds.
We make a final random selection among available data from the final round considered such that
we have exactly B0 observations in D̃. For example, to construct D̃ when BR = 4 and B0 = 10,
we first select the four points from the most recent round, then all the four points from the previous
round, then 2 points chosen at random from the round before last, thus yielding 10 points in D̃. If
BR > 10, then D̃ contains all the points from the most recent round.

The initialization phase for BOTS is standard and is sketched in in Algorithm 5. We generates B0

initial training data points in D0 for initializing the GP.

3.3 JITAI SIMULATION ENVIRONMENT

To evaluate the proposed approach, we use a Just-in-Time Adaptive Intervention (JITAI) simulation
environment. The simulator significantly extends that introduced in Karine et al. (2023) by consid-
ering the case of stochastic behavioral dynamics as well as distributions over trait-level parameters.
The base JITAI environment models a messaging-based physical activity intervention. The state in-
cludes a binary context (C), habituation level (H), disengagement risk level (D), and the number of
steps (S) which is the reward. The true context can be conceptualized as representing a variety of be-
havioral or activity states such as ‘stressed’ or ‘not stressed’. We summarize the JITAI environment
variables in Table A.1.

The simulation includes four possible actions: action 0 indicates that no message is sent to the
participant, action 1 indicates that a non-contextualized message is sent to the participant, action 2
indicates that a message customized to context 0 is sent to the participant, and action 3 indicates
that a message customized to context 1 is sent to the participant. Thus, the actions are a ∈ [0, A],
where A = 3. We summarize the actions in Table A.1. The maximum length is 50 time steps. The
simulation runs until it reaches the maximum length, or when the disengagement risk threshold is
hit, which ever occurs first.

We create a stochastic version of this environment by introducing noise into the existing determin-
istic dynamics. Since the habituation and disengagement risk values are in [0, 1], we add noise by
sampling from a beta distribution whose expected value is set to the output of the deterministic dy-
namics. The spread of the distribution is controlled by concentration parameters κd and κh. We use
a similar approach to adding noise to the step count dynamics. However, in this case the step counts
are positive only and we model their distribution as a gamma with expected value set to the out out
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Algorithm 5 Initialize: generate initial data D0,P0

Require: input B0, M0, S0

1: for b = 1 : Bo do
2: for a = 0 : A do
3: βab ∼ Uniform(0, 1)
4: end for
5: for n = 1 : N do
6: Ybn, Mbn, Sbn ← TS(n, βb,M0,S0)
7: end for
8: Ȳb ← 1

N

∑N
n=1 Ybn

9: M̄b ← 1
N

∑N
n=1 Mbn

10: S̄b ← 1
N

∑N
n=1 Sbn

11: end for
12: D0 ← {(βb, Ȳb, 0) | b = 1 : B0}
13: P0 ← {(βb,M̄b, S̄b)|b = 1 : B0}
14: return D0,P0

of the deterministic dynamics and variance equal to σ2
s . The distributions are summarized below.

h̃t ∼ Beta
(
κhht, κh(1− ht)

)
, d̃t ∼ Beta

(
κddt, κd(1− dt)

)
, s̃t ∼ Gamma

(( st
σs

)2
,
σ2
s

st

)
4 EXPERIMENTS

In this section we describe experiments and results. We begin with a description of empirical pro-
tocols and algorithm settings used. We then present results. Additional findings are included in the
supplemental material.

4.1 EMPIRICAL PROTOCOLS

We perform experiments suing the JITAI environment introduced in the previous section. We use the
default settings of the base deterministic JITAI environment and the stochastic dynamics parameters
κh = 50, κd = 50, σs = 25. We summarize the JITAI environment parameters in Table A.1. The
Thompson sampler’s initial prior parameters are µw = 0., µb = 50, σy = 100, and noise σY = 25.

In terms of the application of the BOTS algorithm, we study a setting where we set β0, the delayed
effect associated with not sending a message, to 0. As the remaining actions all have a potential
negative delayed effect on future step count, we tie their delayed effects correction terms together
yielding β = β1 = β2 = β3. We experiment with different combinations of (R,BR, N) config-
urations such that we conserve the product N × R × BR = 120. Recall that N is the number of
simulated participants used to evaluate each delayed effect setting, R is the number of BO rounds,
and the corresponding BR is the BO batch size. We run experiments for N = 1, 5, 10. For example,
for N = 10, the possible values for (R,BR) are: (1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1).

For the batch Bayesian optimization acquisition function used in BOTS, we choose qEI as imple-
mented in the BoTorch library (Balandat et al., 2020). We performed preliminary experiments using
various values of number of previous rounds of observations used when refining the prior Thompson
sampler prior. The results for l = 1 and l = 3 are similar, so we show the results for l = 1.

All experiments are repeated five times. We compute the train average return per (R,BR), for a
fixed N : ARR,BR

, and the test average return per (R,BR), for a fixed Nperf : ARR,BR
. The test

return fixes the optimal delayed effects parameters.

ARR,BR
=

1

T

T∑
t=1

1

R

R∑
r=1

1

Br

Br∑
b=1

1

N

N∑
n=1

( S∑
s=1

ytrbns

)
(1)

ARR,BR
=

1

T

T∑
t=1

1

Nperf

Nperf∑
n=1

( S∑
s=1

yperf tns

)
(2)
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Figure 1: Training average returns for JITAI deterministic env, and JITAI stochastic env, for N =
1, 5, 10, using BOTS, β = 0, and no refine methods.

4.2 PERFORMANCE OF BOTS

To begin, we show the base performance of the BOTS algorithm in Figure 1 as the blue lines. The
top set of plots evaluate BOTS on the base deterministic JITAI environment, while the bottom set
of plots evaluate BOTS on the stochastic environment. The three panels in each row correspond
to settings where the returns used to optimize the GP within BOTS is based on an average over
N = 1, N = 5 or N = 10 individuals. As noted previously, we hold the total number of simulated
individuals constant at 120 and each contributes one episode only. This yields a variety of possible
configurations of the number of rounds and the batch size for each value of N . We order the x-axis
of each plot by the number of rounds.

As we can see in these results, the average training performance increases as the number of rounds
increases or equivalently, the batch size decreases. These results suggest that when configuring a
real adaptive intervention tuning study, it is beneficial to the participants on average to use a larger
number of rounds. This of course trades off with the total available time to conduct a study.

We show the average test performance in Section A.3. Similarly as for the average training perfor-
mance, the average test performance increases as the number of rounds increases or equivalently,
the batch size decreases.

In terms of absolute performance attained, we can compare BOTS to full RL methods. We performed
experiments using both classical REINFORCE and deep Q networks as in Karine et al. (2023).
The results are shown in Figure 3 in the Appendix. We can see that BOTS can achieve better
performance than these methods when we consider total episode count and the ability to perform
multiple episodes in parallel.

4.3 BOTS ABLATION STUDY

We next repeat the experiments conducted in the previous section using two ablations of the BOTS
algorithm. First, we consider the case where we perform multiple rounds of Thompson sampling
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Figure 2: Training average returns for JITAI stochastic env, for N = 1, 5, 10, using BOTS and
β = 0, with distributions on δd ϵd, ϵh, and δh, for κ = 50 and κ = 100.

and chain the posteriors from one round into the prior on the next round. However, we fix the
delayed effect parameter to β = 0. Second, we consider the case where we learn the delayed
effects parameter β using Bayesian optimization, but do not refine the Thompson sampler prior
across rounds. As the in the previous section, we explore different (R,BR, N) combinations. These
results are shown as the magenta (β = 0) and orange (no prior refinement) lines in figure 1.

As we can see from the results, not refining the prior based on data from prior rounds has a severely
negative effect on performance. The magnitude of this effect depends on how informative the initial
prior is, and in the setup of these experiments it is set to be very broad. Interestingly, fixing β = 0 has
a less drastic effect on performance, but we can clearly see that when more than a handful of rounds
are performed, there is a strong benefit to the optimization of β using the full BOTS algorithm.

4.4 BOTS AND INCREASING BETWEEN-PERSON VARIABILITY

In the prior experiments, we use the default settings of the JITAI environment dynamics parameters.
This includes fixed default values for the hyper-parameters that govern habituation and disengage-
ment increase and decay in response to actions and true contexts. We can evaluate BOTS in a
more realistic setting where different individuals undergo not only unique stochastic trajectories in
response to time varying contexts and selected actions, but have different dynamics governing ha-
bituation and disengagement risk. To this end, we add distributions to the trait-level parameters
disengagement risk decay δd, disengagement risk increment ϵd, habituation decay δd, and habitua-
tion increment ϵd as follows:

δ̃h ∼ Beta
(
κδhδh, κδh(1− δh)

)
, ϵ̃h ∼ Beta

(
κϵhϵh, κϵh(1− ϵh)

)
δ̃d ∼ Beta

(
κδdδd, κδd(1− δd)

)
, ϵ̃d ∼ Beta

(
κϵdϵd, κϵd(1− ϵd)

)
We choose these distributions so that the expected value of the distribution over each parameter will
match the base simulator’s default values. In Figure 2, we show the results with concentration hyper-
parameters set to κ = 50, and κ = 100. Interestingly, we can see that the maximum performance
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increases somewhat in this setting both for BOTS and for the baseline approach with β = 0. This is
likely due to the fact the the original habituation and disengagement risk dynamics parameters were
set quite stringently. A higher return would be expected when any of them are set to less sensitive
values. Nonetheless, we can see that BOTS continues to yield strong performance improvements
over the β = 0 case for a range of round and batch sizes.

5 CONCLUSIONS

We introduce a novel algorithm BOTS which uses batch Bayesian optimization, and refined priors to
automatically capture the delayed effect in Thompson sampling bandits. We show that our algorithm
can match the performance of full RL methods using fewer episodes. We further show that both the
delayed effect estimation and the prior refinement are key to the success of the algorithm. The
results overall suggest that BOTS achieves the best performance in terms of average training return
at the maximum number of rounds. However, the decrease in performance appears to be sub-linear
with respect to the number of rounds. In real-world settings, this is likely to be a helpful property as
running fully sequential optimization will not be realizable given the length of adaptive intervention
trials for each individual. In terms of future work, we plan to investigate refinements to the BOTS
algorithm that are not restricted to using a constant batch size per round. We also plan to evaluate
BOTS on the JITAI environment without the constraint on tied delayed effects terms. This may
result in improved performance, but the outcome depends on the resulting bias-variance trade-off as
this will increase the dimensionality of the Bayesian optimization search space.
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A APPENDIX

A.1 NOTATIONS

We summarize the variables for BOTS algorithm, the actions, and the variables and parameters for
the JITAI environment.

BOTS algorithm variables

β Delayed effect parameter for Thompson Sampling. This
controls how much to penalize the reward.

B0 Initial number of random β values, in the intialize(...)
function. This is the initial number of training data for fit-
ting GP. B0 = 10.

BR Batch size. BR varies such that R × BR × N = 120.
This is the number of candidates chosen by the acquisition
function.

d Dimension of the observed data. d = 3 since the observed
data are (C,H,D).

D0 Initial training data for fitting the GP. D0 = {(βb, Ȳb, 0) |
b = 1 : B0}.

Dr Training data for fitting the GP, at round r.

l Number of previous rounds that are used to refine
the Thompson Sampling priors. This is used in the
refine prior(...) function.

M0 Initial prior mean for the Thompson Sampling weights and
bias. This a matrix of size R(1+d)×A.

Mrbn Posterior mean for the Thompson Sampling weights and
bias, at round r, batch b, environment n. This a matrix of
size R(1+d)×A.

M̄rb Average of posterior means for the Thompson Sampling
weights and bias, over N environments, at round r, batch
b. This a matrix of size R(1+d)×A.

P0 Initial set for refine priors. P0 = {(βb,M̄b, S̄b)|b = 1 :
B0}.

Pr Set for refine priors, at round r. This is used in the
refine prior(...) function. This set contains batches of β’s,
and their corresponding average posteriors, at round r.

S0 Initial covariance matrix for the Thompson Sampling
weights and bias. This a matrix of size R(1+d)×(1+d)×A.

Srbn Posterior covariance matrix for the Thompson Sampling
weights and bias, at round r, batch b, environment n. .
This a matrix of size R(1+d)×(1+d)×A.

S̄rb Average of posterior covariance matrices for the Thompson
Sampling weights and bias, over N environments, at round
r, batch b. This a matrix of size R(1+d)×(1+d)×A.
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BOTS algorithm variables (continued)

n Index for the environment n (a.k.a. participant n).

N Number of environments (a.k.a participants). N varies
such that R×BR ×N = 120.

R Number of BO rounds. R varies such that R×BR ×N =
120.

Ybn Initial return at batch b, environment n. This is obtained by
running Thompson Sampling, on environment n, inside the
initialize(...) function.

Yrbn Return at round r, batch b, environment n. This is obtained
by running Thompson Sampling, on environment n.

Ȳrb Average return over N environments, at round r, batch b.

Actions

a Action value, where a = 0 indicates that no message is sent
to the participant, a = 1 indicates that a non-contextualized
message is sent to the participant, a = 2 indicates that a
message customized to context 0 is sent to the participant,
and a = 3 indicates that a message customized to context
1 is sent to the participant.

A Maximum index for the actions. A = 3, and the action
a ∈ [0, A].

JITAI environment variables

C, ct, c̃t C is the true context variable. It has a binary value, thus
ct = 0 or 1. c̃t is the stochastic version of ct.

H , ht, h̃t H is the habituation level variable. ht ∈ [0, 1]. h̃t is the
stochastic version of ht.

D, dt, d̃t D is the disengagement risk variable. dt ∈ [0, 1]. d̃t is the
stochastic version of dt.

κd Disengagement concentration parameter of the beta distri-
bution for d̃t.

κh Habituation concentration parameter of the beta distribu-
tion for h̃t.

S, st, s̃t S is the step count variable. st ∈ N. This is also the reward.
s̃t is the stochastic version of st.

σs Step count noise parameter of the gamma distribution for
s̃t.
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JITAI environment parameters

δd, δ̃d Disengagement decay. δd = 0.1. δ̃d is a sample from a
distribution centered on δd.

δh, δ̃h Habituation decay. δh = 0.1. δ̃h is a sample from a distri-
bution centered on δh.

ϵd, ϵ̃d Disengagement increment. ϵd = 0.4. ϵ̃d is a sample from a
distribution centered on ϵd.

ϵh, ϵ̃h Habituation increment. ϵh = 0.05. ϵ̃h is a sample from a
distribution centered on ϵh.

κδd Disengagement decay concentration parameter of the beta
distribution for δ̃d.

κδh Habituation decay concentration parameter of the beta dis-
tribution for δ̃h.

κϵd Disengagement increment concentration parameter of the
beta distribution for ϵ̃d.

κϵh Habituation increment concentration parameter of the beta
distribution for ϵ̃h.

σ Feature uncertainty. σ = 0.4. This is the uncertainty pa-
rameter used by the JITAI environment to generate the true
context.

A.2 LEARNING CURVES WITH NO RESTRICTION ON NUMBER OF ROUNDS

To get some insights on the upper bounds of the returns, we run the RL algorithms: DQN and
REINFORCE, on both the JITAI stochastic and deterministic environments. The learning curves
show that the training returns converge to ≈ 3000. The results are shown in Figure 3.
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Figure 3: Learning curves when using RL, with JITAI deterministic env and stochastic env.

A.3 PERFORMANCE RETURNS PLOTS

We show the plots for the test average returns. The average test performance increases as the number
of rounds increases or equivalently, the batch size decreases.
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Figure 4: Test average returns for the JITAI deterministic env, and JITAI stochastic env, for N =
1, 5, 10, using BOTS, β = 0, and no refine methods.
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Figure 5: Test average returns for the JITAI stochastic env, for N = 1, 5, 10, using BOTS and β = 0,
with distributions on δd ϵd, ϵh, and δh, for κ = 50 and κ = 100.
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