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Abstract 1 

Users usually browse product reviews 2 

before buying products from e-commerce 3 

websites. Lots of e-commerce websites can 4 

recommend reviews. However, existing 5 

research on review recommendation 6 

mainly focuses on the general usefulness of 7 

reviews and ignores personalized and 8 

implicit requirements. To address the issue, 9 

we propose a Large language model driven 10 

Personalized Review Recommendation 11 

model based on Implicit dimension mining 12 

(PRR-LI). The model mines implicit 13 

dimensions from reviews and requirements, 14 

and encodes them in the form of “text + 15 

dimension”. The experiments show that our 16 

model significantly outperforms other 17 

state-of-the-art textual models on the 18 

Amazon-MRHP dataset, with some of the 19 

metrics outperforming the state-of-the-art 20 

multimodal models. And we prove that 21 

encoding  “text + dimension” is better than 22 

encoding “text” and “dimension” separately 23 

in review recommendation. 24 

1 Introduction 25 

Online product reviews are referential because they 26 

reflect the experience of past users. Some studies 27 

(Ventre and Kolbe, 2020) have shown the impact 28 

of online reviews on new users’ purchase intention. 29 

Therefore, recommending useful reviews is helpful 30 

for users as well as e-commerce websites. 31 

Current review recommendation techniques 32 

focus on review helpfulness prediction, in which a 33 

key step is to extract features from reviews and user 34 

requirements. Most features are extracted from the 35 

textual content (Saumya et al., 2023), which mainly 36 

includes: lexical, textual, readability, and others 37 

(Hong et al., 2017; Qazi et al., 2016; Malik and 38 

Hussain, 2018). Other features include non-textual 39 

content (Ghose and Ipeirotis, 2011; Lee et al., 40 

2018), product-related factors (Hu et al., 2014; Lee 41 

and Choeh, 2014), and reviewer-related factors 42 

(Krishnamoorthy, 2015; Korfiatis et al., 2012; 43 

Allahbakhsh et al., 2015). Previous review 44 

recommendation methods take the product 45 

attributes or user preferences that directly appear in 46 

reviews as features (Liu et al., 2005), such as 47 

appearance, size, price, or components of products. 48 

However, some implicit features are ignored. For 49 

example, in the review of a computer: “My game 50 

runs very smoothly”, “performance” is implicit 51 

because “performance” does not appear in the 52 

review. And a requirement “I want to buy a 53 

computer to run my 3D game” also implicitly 54 

indicate a request for performance. 55 

Semantic enhancement is an approach to 56 

enhance semantic information of data. Related 57 

studies mainly use knowledge graphs or external 58 

knowledge to extend input or enrich knowledge 59 

facts (Zhang et al., 2019; Bhatt et al., 2020; Lyu et 60 

al., 2023). But current semantic enhancement 61 

methods are hard to enhance reviews because 62 

reviews are often unprofessional and casual. They 63 

are also hard to mine the implicit features from 64 

requirements because of the lack of context. 65 

 We propose a Large language model driven 66 

Personalized Review Recommendation based on 67 

Implicit dimension mining (PRR-LI). The model 68 

only uses textual content of reviews and 69 

requirements. The implicit dimensions of reviews 70 

and requirements are mined by using a large 71 

language model (LLM). We design prompts to 72 

guide the LLM to rewrite review text while keeping 73 

the original meaning, and then mine the implicit 74 

dimensions in reviews. At the same time, implicit 75 

dimensions are also mined from requirements. 76 

Finally, PRR-LI encodes enhanced reviews and 77 

requirements together by combined encoding. The 78 

experiments show that our model significantly 79 

outperforms other state-of-the-art text-only models, 80 

and some of the metrics exceed nearly 10% or are 81 

close to the performance of state-of-the-art 82 

multimodal models. 83 

Personalized review recommendation based on Implicit dimension mining 
 

Anonymous ACL submission 
 
 
 



2 
 
 

84 

2 Review Dimension 85 

We define review dimension as any entity or 86 

attribute expressed by a review that can reflect an 87 

explicit or implicit requirement. We classify the 88 

dimensions as explicit or implicit depending on 89 

whether the dimensions are directly mentioned in 90 

the review. Let R represent a review, the dimension 91 

D of R is denoted as {d1,d2,...,dn}. If R literally 92 

contains di, di is an explicit dimension of R. If R 93 

does not literally contain di, di is an implicit 94 

dimension of R. For example, “gift” is an explicit 95 

dimension in the review “The packaging is perfect 96 

for a gift”. In the reviews “The phone is easy to 97 

hold in one hand” and  “This monitor is too big for 98 

my desk”, “size” does not appear directly, but is 99 

implied in the reviews. So “size” is an implicit 100 

dimension. 101 

3 Model 102 

The framework of PRR-LI is shown in Figure 1.  103 

The model takes reviews as input, acquires explicit 104 

and implicit entities by LLM, then inputs the 105 

reviews and the entities into the LLM again to 106 

obtain the rewritten reviews, and finally uses the 107 

tool (He and Choi, 2021) to tokenize the rewritten 108 

reviews and preserve words with parts of speech1 109 

n, nz, nx as review dimensions. The acquired 110 

review dimensions include both explicit and 111 

implicit dimensions expressed in the original 112 

 
1https://hanlp.hankcs.com/docs/annot
ations/pos/pku.html 

reviews. We use the API version of the basic LLM, 113 

ChatGLM-Pro, with temperature and top_p set to 114 

0.9 and 0.7 respectively. Then, the requirement and 115 

the acquired review dimensions are fed into the 116 

LLM to find the dimensions that meet the 117 

requirements. The prompts are shown in Table 1. 118 

We design a text combined encoding module 119 

based on M3E-Base. M3E-Base-TextDimension is 120 

a version of M3E-Base after fine-tuning. The data 121 

“review” and “review dimension” are combined 122 

and then input into the module to be transformed 123 

into enhanced review embedding. The data 124 

“requirement” and “requirement dimension” are 125 

combined and input into the module to be 126 

transformed into enhanced requirement embedding. 127 

Then we use cosine distance to calculate the 128 

semantic similarity between enhanced review 129 

embedding and enhanced requirement embedding. 130 

The model recommends the Top-N reviews in 131 

descending order. 132 

4 Experiments  133 

4.1 Dataset 134 

We compare our model with others on the 135 

benchmark dataset Amazon-MRHP (Ni et al., 2019; 136 

Liu et al., 2021), which contains 87,492 reviews for 137 

clothing, 79,570 reviews for electronics, and 138 

111,193 reviews for home. We collect a dataset 139 

JDDataset from the JingDong website for other 140 

  
Figure 1: Framework of PRR-LI 
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experiments. The dataset is available at 141 

https://www.modelscope.cn/datasets/Jerry0/JDDat142 

aset. The entities are labeled by HanLP. We use 143 

ChatGLM-Pro to label the reviews to be 144 

recommended. It contains 437,646 reviews, of 145 

which 90,000 were used for training, 2,000 for 146 

validation, and 880 for testing.  147 

4.2 Experimental setups 148 

We use the v2.1 native version of HanLP (He and 149 

Choi, 2021).  The stop words contain both Chinese 150 

and English. The Adam optimizer is chosen for 151 

fine-tuning, batch_size is 16, the learning rate is 5e-
152 

5, weight_decay is 1e-3, and epoch is 4. 153 

We use the metrics commonly used in the 154 

recommendation: (1) Recall@N, denoted as R@N; 155 

(2) MAP@N, denoted as M@N; (3) NDCG@N 156 

(Järvelin and Kekäläinen, 2017), denoted as N@N. 157 

We compare our model with two types of state-158 

of-the-art review recommendation models. One is 159 

the models that only use textual content: BiMPN 160 

(Wang et al., 2017), EG-CNN (Chen et al., 2018), 161 

Conv-KNRM (Dai et al., 2018), and PRHNet (Fan 162 

et al., 2019). The other is the multimodal models: 163 

SSE-Cross (Abavisani et al., 2020), D&R Net (Xu 164 

et al., 2020), and MCR (Liu et al., 2021).  165 

PRR-LI_FT is a version of PRR-LI after fine-166 

tuning. The two models are text-only models. 167 

4.3 Results on Amazon-MRHP 168 

We conduct comparative experiments on the 169 

benchmark dataset Amazon-MRHP. The results are 170 

shown in Table 2. PRR-LI_FT  and PRR-LI 171 

significantly outperform the text-only models. 172 

After fine-tuning, PRR-LI_FT continues to 173 

improve significantly on most metrics because 174 

PRR-LI_FT can encode the type of data “text + 175 

dimension” better than PRR-LI. And PRR-LI_FT  176 

is better than the multimodal models on MAP@5.  177 

The performance of PRR-LI and PRR-LI_FT is 178 

not as good as the multimodal models in N@3 and 179 

N@5 for home data, while the performance of 180 

PRR-LI and PRR-LI_FT is close to the multimodal 181 

models for clothing data. One reason is that the 182 

images of home and clothing products help reflect 183 

the requirements more visually. For electronics 184 

data, PRR-LI and PRR-LI_FT outperform the 185 

multimodal model by almost 10% in both MAP@5 186 

and N@5. One reason is that the images of 187 

electronic products do not reflect the requirements 188 

as much as the images of home and clothing. 189 

Name Prompt templates 
Entity 
recognize 

NER Task: You need to perform fine-grained entity recognition on the text of a user's review of 
product. Please perform fine-grained entity recognition on the following reviews:\n{content} 

Text 
rewrite 

Text rewriting task, you need to rewrite the text of the user's review of the 
product.\n{entity}\nPlease rewrite the following reviews in conjunction with the entity recognition 
results, and output the rewritten text without any other explanatory notes.\n{content} 

Check 
dimension 

{content}\nIf there is any direct or indirect reference to <{dimension}> in the text above, please 
answer <yes> or <no>. No further explanation is required. 

User 
requirement 

I will give you a paragraph of text describing the user's requirements and a dimension word and 
ask you to judge whether the user is likely to be interested in this dimension.\nPlease make a 
judgement on the following, if the user is likely to be interested, answer 'yes', otherwise answer 
'no', do not add any other irrelevant explanatory notes.\nText:\n{content}\nWords:\n{dimension} 

Type Method 
Clothing Electronics Home 

M@5 N@3 N@5 M@5 N@3 N@5 M@5 N@3 N@5 

Text-only 

BiMPN 57.7 41.8 46.0 52.3 40.5 44.1 56.6 43.6 47.6 
EG-CNN 56.4 40.6 44.7 51.5 39.4 42.1 55.3 42.4 46.7 
Conv-KNRM 57.2 41.2 45.6 52.6 40.5 44.2 57.4 44.5 48.4 
PRHNet 58.3 42.2 46.5 52.4 40.1 43.9 57.1 44.3 48.1 

Multimodal 
SSE-Cross 65 56 59.1 53.7 43.8 47.2 60.8 51 54 
D&R Net 65.2 56.1 59.2 53.9 44.2 47.5 61.2 51.8 54.6 
MCR 67 58.1 61.1 56 56.5 49.7 63.2 54.2 57.3 

Ours PRR-LI 62.7 44.4 54.2 59.6 44.1 53.1 66.6 46.3 57.9 
PRR-LI_FT 71.1 51.5 62.1 68.8 54 61.2 64.6 50.1 57.1 

Table 2: Results on the Amazon-MRHP dataset. 

Table 1: The pro mpt templates. 

https://www.modelscope.cn/datasets/Jerry0/JDDataset
https://www.modelscope.cn/datasets/Jerry0/JDDataset
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4.4  Ablation experiment 190 

Figure 2  shows that adding different parts of PRR-191 

LI can effectively optimize recommendation. The 192 

dataset is JDDataset. The performance decreases 193 

significantly without rewrite, review dimension, or 194 

require dimension. And rewrite with NER is better 195 

than rewrite. 196 

 197 

Figure 2: Ablation experiment 198 

We further test other LLMs’ abilities to rewrite 199 

with NER as shown in Table 4. “Rewrite” and 200 

“NER_rewrite” respectively means rewrite text 201 

without and with NER. The values are average 202 

proffer. Proffer reflects the implicit dimension 203 

mining effect, and refers to the proportion of 204 

acquired dimensions to the total dimensions as 205 

shown in equation 1, 206 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖+𝑒𝑒𝑒𝑒

 (1), 207 

Where id is the number of implicit dimensions and 208 

ed is the number of explicit dimensions. 209 

We can see that some LLMs are not suitable for 210 

rewriting with NER.  211 

4.5 Experiments on encoding models 212 

 We test other encoding models in PRR-LI on 213 

JDDataset as shown in Figure 3. “dimension” 214 

refers to vectorizing the text using the dimensions 215 

of the review. M3E-base and text2vec-bge-large 216 

series are from https://huggingface.co. We can see 217 

that the M3E-base-TextDimension reaches the best. 218 

The results on “dimension” show that ignoring the 219 

text content weakens the ranking and the recall.  220 

 221 

LLMs Rewrite NER_rewrite 
ChatGLM2-6B v1.0.12 35.5 37.1 
Qwen-7B-Chat v1.1.5 40.7 34.7 
Baichuan2-7B-Chat v1.0.4 39.7 31.9 
internlm-chat-7b v1.0.1 13.3 3.5 
Llama2-Chinese-7b-Chat-
ms v1.0.0 20.3 23.8 

ChatGLM-Pro 29.2 33.6 

Table 4: Rewrite with NER. The LLMs with 222 

parameters 6b and 7b are from 223 

https://www.modelscope.cn. 224 

 225 

Figure 3: Results on encoding models 226 

4.6 Experiments on the encoding method 227 

We test separated encoding, which encodes text 228 

and dimension separately, and combined encoding, 229 

which encodes text and dimension in the form of 230 

“text + dimension”. Table 3 shows that the 231 

combined encoding achieves better results on both 232 

M3E models, and M3E-base can handle the type of 233 

“text + dimension” data better after fine-tuning. 234 

5 Conclusion 235 

PRR-LI and the fine-tuned version PRR-LI_FT 236 

significantly outperform the text-only review 237 

recommendation models, and outperform the 238 

multimodal models in some metrics. Considering 239 

that PRR-LI and PRR-LI_FT do not use data other 240 

than text, they are very competitive and may 241 

achieve better results by using multimodal data. We 242 

also prove that encoding “text + dimension” is 243 

better than encoding “text” and “dimension” 244 

separately in review recommendation. 245 

  R@5 R@10 R@15 M@5 M@10 M@15 N@5 N@10 N@15 

M3E-base separated 72 66.44 72.83 63.57 53.56 49.97 88.49 87.42 87.11 
combined 76 74 74.92 68.67 62.8 59.22 93.48 92.33 91.66 

M3E-base-
TD 

separated 68 71 82.9 69.83 70.93 70.69 79.6 81.82 82.85 
combined 96 93 89.9 98.38 97.09 95.23 99.39 98.95 98.46 

Table 3: Results on separated and combined encoding. M3E-base-TD refers to M3E-base-TextDimension. 
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