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Abstract

We propose a Gaussian confidence measure and its optimization, for use in
neural network classifiers. The measure comes with theoretical results, si-
multaneously resolving two pressing problems in Deep Neural Network clas-
sification: uncertainty quantification, and robustness. Existing research in
uncertainty quantification mostly revolves around the confidence reflected
in the input feature space. Instead, we focus on the learned representation
of the network and analyze the confidence in the penultimate layer space.
We formally prove that, independent of optimization-procedural effects,
a set of centroids always exists such that softmax classifiers are nearest-
centroid classifiers. Softmax confidence, however, does not reflect that the
classification is based on nearest centroids: artificially inflated confidence
is also given to out-of-distributions samples that are not near any centroid,
but slightly less distant from one centroid than from the others. Our new
confidence measure is centroid-based, and hence no longer suffers from the
artificial confidence inflation of out-of-distribution samples. We also show
that our proposed centroidal confidence measure is providing a robustness
certificate against attacks. As such, it manages to reflect what the model
doesn’t know (as demanded by uncertainty quantification), and to resolve
the issue of robustness of neural networks.

1 Introduction

The last layer of state-of-the-art neural networks computes the final classifications by ap-
proximation through the softmax function (Boltzmann, 1868). This function partitions the
transformed input space into Voronoi calls, each of which encompasses a single class. Con-
ceptually, this is equivalent to putting a number of centroids in this transformed space, and
clustering the data points in the dataset by proximity to these centroids through k-means.
Several recent papers posed that exploring a relation between softmax and k-means can be
beneficial (Kilinc & Uysal, 2018; Peng et al., 2018; Schilling et al., 2018).
The current state of scientific knowledge on the relation between k-means and softmax is
empirical. In this paper, we theoretically prove that softmax is a centroid-based classifier,
and we derive a centroid-based robustness certificate. This certificate motivates the usage
of a confidence measure1, the Gauss confidence, which reflects the distance of observations
to their assigned centroids. Gauss confidence therefore expresses the uncertainties of the
model; moreover, it indicates the vulnerabilities to attacks.
We show that our Gauss networks can match (median absolute difference: 0.45 percentage
points) the test accuracy of softmax networks, but at a lower confidence (as desired); both
outperform the competing DUQ networks (van Amersfoort et al., 2020) when the dataset
has many classes. The lower confidence also results in Gauss networks being much less
susceptible to adversarial attacks. Hence, the islands of confidence as illustrated in the
rightmost plot of Figure 1 reflect reality much better than the confidence landscapes of
existing methods (cf. other two plots in Figure 1).

1previously published informally (non-peer-reviewed) in January 2020 as (NN et al., 2020)
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Softmax networks DUQ networks Proposed Gauss networks

Figure 1: Classification confidence plots of actual decision boundaries/areas of a d = 2-
dimensional penultimate layer space for three distinct Deep Neural Networks. The hand-
written numbers indicate the MNIST class predictions in {0, . . . , 4}.

2 Related Work

Peng et al. (2018); Kilinc & Uysal (2018) were among the first to observe that the penul-
timate layer has surprising clustering properties. The phenomenon that samples gather
around their centroid in the transformed feature space recently gained popularity under
the term neural collapse (Kothapalli et al., 2022; Papyan et al., 2020). This motivates an
adaptation of the confidence measure. Softmax confidence has the well-documented issue
that it extrapolates with unjustified high confidence data points which are very far from
the training data (Gal, 2016): softmax is overconfident. The consequences are observable
in the very confident classification of noisy, entirely randomly generated images (Nguyen
et al., 2015), and the effect that softmax probabilities are badly calibrated (Guo et al.,
2017). Figure 1 illustrates that this effect is not surprising: in the transformed feature space
of the penultimate layer, points that do not lie directly on the decision boundaries are all
confidently assigned to a class. Softmax confidence has no capability to express what the
model doesn’t know.

2.1 Quantifying Uncertainties of DNNs

To remedy the softmax issue, various methods have been proposed. Although networks
with a centroid-based confidence intuitively make sense, training them is a major challenge.
When using the softmax cross-entropy loss, pushing a transformed feature vector ϕ(x) away
from one class region means that it is pushed towards other class regions. Employing a cen-
troidal confidence, one could push a point away from all centroids. This introduces trivial
global optima of common loss functions, which does not lead to a well-performing classifier.
To this end, Wen et al. (2016); Pang et al. (2019) minimize the distance of transformed
feature points to given (fixed) centroids. Wan et al. (2018) employ a centroidal cross en-
tropy loss, which directly optimizes for a nearest centroid classifier, but which does not
increase the density around centroids. Likewise, Lebedev et al. (2018) define a confidence
measure based on the normalized RBF kernel function. Hobbhahn et al. (2022); Mukhoti
et al. (2021) propose a retraining of only the last layer to reflect uncertainties based on a
multivariate Gaussian representation of confidences. Closest to our approach are Determin-
istic Uncertainty Classifiers (DUQs) (van Amersfoort et al., 2020), which directly optimize
for a multivariate Gaussian confidence measure (cf. Figure 1). The authors employ binary
cross-entropy loss, which is given for one-hot encoded labels Y ∗ ∈ Rm×c for m samples and
c classes by

ℓBCE(fDUQ, Y ∗) = − 1
mc

m∑
j=1

c∑
k=1

Y ∗
jk log (fDUQ(xj)) + (1 − Y ∗

jk) log (1 − fDUQ(xj))

fDUQ(x)k = exp
(
−(ϕ(x) − Z·k)⊤Σ−1

k (ϕ(x) − Z·k)
)

.
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Here, fDUQ : Rn → [0, 1]c returns the prediction confidences, Z ∈ Rd×c gathers the centroids
by its columns and Σk ∈ Rd×d is a scaled covariance matrix. BCE loss works well for data
with a moderate number of classes. With increasing class complexity, DUQ models converge
to the global optimum where all training data is infinitely far from all centroids (∥Σ−1∥ → 0).
Related to methods that use RBF- or Gaussian mixture-based uncertainty measures are
DUE (van Amersfoort et al., 2021) and SNGP (Liu et al., 2022), which train a network
with a final Gaussian processes layer. Yet, also other distributions are suitable to reflect
uncertainties. For example, prior networks (Malinin & Gales, 2018; 2019) reflect the training
data domain via a Dirichlet distribution.

2.2 Robustness of Deep Neural Networks (DNNs)

The existence of adversarial examples demonstrates that SOTA deep learning models have
warped inner representations of classes/object properties. The fact that adding humanly
indistinguishable noise changes the classification from a bus to an ostrich is worrying. Con-
sequently, a lot of research focuses on performing and preventing these attacks. The result
is a circular development of attacks and defenses (Akhtar & Mian, 2018; Carlini et al., 2019;
Athalye et al., 2018), which creates a need for certifiable robustness. A certificate provides,
e.g., a lower bound on the magnitude of adversarial perturbation required to change the
class. Existing certificates rely on bounds of the global Lipschitz constant, limiting the
effect of any, arbitrarily large perturbation (Szegedy et al., 2014; Qian & Wegman, 2019;
Gouk et al., 2018). Experimental and theoretical evaluations show that global Lipschitz
bounds overly curtail the expressiveness of DNNs, yielding underfitting classifiers (Huster
et al., 2018). The expressiveness of DNNs, their ability to approximate almost any func-
tion (Lu et al., 2017), is an important property which distinguishes feature transformations
learned by DNNs from popular alternatives. Hence, we require a control of the local Lip-
schitz constant (restricting only the effect of small perturbations). Unfortunately, this is
currently only possible for DNNs having one hidden layer (Hein & Andriushchenko, 2017).
Many uncertainty quantification methods regularize towards bi-Lipschitz functions. Bi-
Lipschitz functions preserve distances in the output to a degree, that is specified by the
Lipschitz constant. This prevents that all data (also out-of-distribution data) is mapped
onto the same confidently assigned regions. DUQ uses gradient penalization, and DUE,
SGNP, and DDU use spectral normalization (Gouk et al., 2021). Unfortunately, gradient
penalization is slow and it only bounds the local Lipschitz constant for the data points
it is optimized on. In comparison, spectral normalization is faster. However, applying
spectral normalization such that it doesn’t notably hurt the performance does not bound
the Lipschitz constant enough to provide relevant robustness guarantees.
Another way to increase robustness is the maximum margin approach. Enlarging the margin
between classes in the transformed feature space should require larger perturbances to push
an example over the decision boundary (Liu et al., 2016; Pang et al., 2019). The success of
this approach still depends on the Lipschitz constant of the feature transformation, requiring
controlling the Lipschitz constant while maintaining expressiveness (Tsuzuku et al., 2018).
With Gauss networks we show that a centroidal confidence measure provides a guarantee
on the robustness which depends on both the Lipschitz constant and the margin.

3 Why Softmax Is Actually a Centroid-based Classifier

Consider a feedforward network, mapping points in n-dimensional space to a c-dimensional
probability vector (with c the number of classes), computing predictions by the function

fsm(x) = softmax
(
W ⊤ϕ(x) + b

)
.

Here, ϕ(x) ∈ Rd returns the output of the penultimate layer. The last layer is linear; its
weights are represented by the matrix W ∈ Rd×c and bias b ∈ Rc.
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(a) A feed-forward neural network, computing a feature trans-
formation ϕ and the representation of classes in the transformed
feature space by convex cones, induced by centroids Z·1, . . . , Z·c.
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Figure 2: The role of Gauss confidence for Deep Neural Networks.

3.1 Softmax and Inherent Clustering Properties

Let D = {(x1, y1), . . . , (xm, ym)} denote our training data of data points xj ∈ Rn and their
corresponding class labels yj ∈ {1, . . . , c}. We denote by ∥·∥ the vector l2-norm or the
matrix Frobenius norm and by |·| the vector l1-norm. Figure 2a illustrates the result of
Theorem 1, showing that softmax-based classifiers are nearest centroid classifiers.
Theorem 1. Let W ∈ Rd×c be the matrix of weights between the penultimate layer and
the output layer. Let ϕ : Rn → Rd be the DNN output of the penultimate layer. If the
network computes predictions over the (soft)max function with bias term b such that y =
arg maxk ϕ(x)⊤W·k + bk and if W has at least a rank of r ≥ c, then there exist c class
centroids Z·k ∈ Rd such that every point x is assigned to the class having the nearest centroid:

y = arg min
k

∥ϕ(x) − Z·k∥2
.

Proof. We show that for any dataset and network there exists a set of centroids such that
the classification does not change when classifying according to the nearest centroid.
We gather the outputs of the penultimate layer in the matrix D reflecting the transformed
feature vectors as rows, or conversely, as columns in D⊤:

D⊤ = (ϕ(x1) . . . ϕ(xm)) ∈ Rd×m.

We define Z = W + v1⊤
c , where v ∈ Rd and 1c ∈ {1}c is a constant one vector. The

(soft)max classification of all data points in D is then given by the one-hot encoded matrix
Y ∈ {0, 1}m×c that optimizes the objective

arg max
Y

tr(Y (W ⊤D⊤ + b1⊤
m)) = arg min

Y
∥D − Y Z⊤∥2 + tr((2b1⊤

c − Z⊤Z)Y ⊤Y )) (1)

Full derivation of this equivalence is given in Appendix A. The matrix Z ∈ Rd×c indicates
a set of c centroids by its columns. The first term of Equation (1) is minimized if Y assigns
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the class with the closest centroid to each data point in D. Hence, if we can show that there
exists a vector v ∈ Rd such that the second term of Equation (1) is equal to zero (given
D and W ) then we have shown what we wanted to prove. Since |Yj·| = 1 (every point is
assigned to exactly one class), the matrix Y ⊤Y is a diagonal matrix, having the number of
data points assigned to each class on the diagonal: Y ⊤Y = diag(|Y·1|, . . . , |Y·c|). Hence, the
trace term on the right of Equation (1) equals

c∑
k=1

(2b1⊤
c − Z⊤Z)kk|Y·k| =

c∑
k=1

(2bk − ∥W·k∥2 − 2v⊤W·k)|Y·k| − ∥v∥2m (2)

Full derivation of this equivalence is given in Appendix B. We define the vector u ∈ Rc such
that uk = bk − 1

2 ∥W·k∥2. The right term of Equation (2) is constant for a vector v satisfying
uk = v⊤W·k for 1 ≤ k ≤ c. That is, we need to solve the following equation for v:

u = W ⊤v = V ΣU⊤v.

Since the rank of W is c (full column rank), this equation has a solution. It is given by the
SVD of W = UΣV ⊤, where U ∈ Rd×c is a left orthogonal matrix (U⊤U = I), Σ ∈ Rc×c

+
is a diagonal matrix having only positive values, and V ∈ Rc×c is an orthogonal matrix
(V ⊤V = V V ⊤ = I). Setting v = UΣ−1V ⊤u, this vector solves the equation.

The objective minY ∥D − Y Z⊤∥2 is the k-means cluster assignment objective in matrix
factorization form. Hence, class predictions correspond to a Voronoi tesselation of Rd.
Classification accuracy is unaffected by the distance of the points ϕ(x) to the centroid, as
long as they are in the correct Voronoi cell. Softmax confidence is high for points maximizing
the inner product ϕ(x)⊤Z·k, where Z·k is the center of the predicted class, since

softmax(W ⊤ϕ(x) + b)k = exp(ϕ(x)⊤W·k + bk)∑c
l=1 exp(ϕ(x)⊤W·l + bl)

· exp(ϕ(x)⊤v)
exp(ϕ(x)⊤v)

= exp(ϕ(x)⊤Z·k + bk)∑c
l=1 exp(ϕ(x)⊤Z·l + bl)

= softmax(Z⊤ϕ(x) + b)k.

Hence, softmax confidence is high for points ϕ(x) aligning with the direction of their class
center Z·k and having a large norm in the transformed feature space. However, the empirical
observation of neural collapse indicates that networks do in fact not map the training and
test data arbitrarily far away from their centroids but rather into their neighborhood. Thus,
one could attach semantic meaning to the distance of transformed samples to class centroids.

3.2 A Centroid-Based Robustness Certificate

In addition to the potential reflection of learned representations of a neural network, the
distance of points to their centroid also determines the robustness of a network, as the
following result shows (illustrated in Figure 2b).
Theorem 2. Let x ∈ Rn be a data point with predicted class k and let Z ∈ Rd×c be the
centroid matrix. Assume ϕ : Rn → Rd is Lipschitz continuous with modulus Lϕ. Any
distortion ∆ ∈ Rn changing the prediction of point x + ∆ to another class l ̸= k has then a
minimum size of

∥∆∥≥ ∥Z·l − Z·k∥ − ∥ϕ(x + ∆) − Z·l∥ − ∥ϕ(x) − Z·k∥
Lϕ

.

Proof. Let x, ∆ and Z be as described above. We derive from the triangle inequality and
from the Lipschitz continuity the following inequality:

∥ϕ(x + ∆) − Z·k∥ ≤ ∥ϕ(x + ∆) − ϕ(x)∥ + ∥ϕ(x) − Z·k∥
≤ Lϕ∥∆∥ + ∥ϕ(x) − Z·k∥. (3)

The triangle inequality also yields:
∥Z·l − Z·k∥ ≤ ∥ϕ(x + ∆) − Z·l∥ + ∥ϕ(x + ∆) − Z·k∥.

Subtracting ∥ϕ(x + ∆) − Z·l∥ yields a lower bound on the distance ∥ϕ(x) − Z·k∥, which we
apply in Equation (3) to obtain the final bound on the distortion ∆.
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Theorem 2 provides three explanations for the phenomenon that predictions of neural net-
works can be flipped by small perturbations: 1) the Lipschitz modulus is large, 2) class
centroids are close to each other, and 3) point x or x + ∆ is not mapped close to their class
centroid. Case 1 remains an open problem: this paper will not provide a manner to suitably
control the Lipschitz constant. Case 2 motivates a maximum margin approach where the
centroids are supposed to be as far away from each other as possible. Case 3 motivates a
novel confidence score, which reflects the distance to the centroid. In the desirable situation
where the Lipschitz constant is small and centroids are far away from each other, small
perturbations only result in a prediction change if at least one of the points x or x + ∆ is
far from its centroid. Hence, a confidence score reflecting the distance to the centroid is in
alignment with the theoretical robustness guarantee of Theorem 2. Such a confidence score
expresses not only the model’s uncertainties, but also its vulnerability to attacks.

4 Gauss Confidence and Gauss Networks

Theorem 2 motivates the direct optimization for good centroids which are in current networks
only indirectly learned. To do so, we employ a natural choice for a confidence measure which
reflects the proximity to the cluster centroids via the Gaussian RBF-kernel function.
Definition 1. Given a function ϕ : Rn → Rd and a centroid matrix Z ∈ Rd×c, we define
predictions with Gauss confidence by the function fga(x), where for k ∈ {1, . . . , c}

fga(x; γ)k = exp(−γk∥ϕ(x) − Z·k∥2) ∈ (0, 1].

The parameter γ ∈ Rc
+ determines how close the transformed samples have to be to their

centroid in order to get a high confidence. The Gauss confidence is a special case of the
multivariate Gaussian confidence (used, e.g., by DUQ networks) where the covariance matrix
for class k is equal to Σk = 1/γkI. This might seem restrictive, but this choice has two
advantages. First, the margin between classes is more easily controllable over the distance
between centroids when using Gauss confidence. For example, we can see in Figure 1 that the
centroids of class 2 and 3 are comparatively far away, but due to the multivariate confidence,
the margin between the confidently assigned areas is small. Second, the required storage for
the covariance matrix in multivariate confidences increases vastly with the dimensionality
of the penultimate layer space. For example, for a ResNet-50 architecture, the covariance
matrix has a dimensionality of 2048× 2048. We can also not decrease the required storage
by employing a low rank approximation of Σ−1, since this would introduce directions in
which the confidence is always equal to one. In turn, the Gauss confidence requires only to
store the c-dimensional vector γ.

4.1 Training Gauss Networks

We replace softmax with the Gauss confidence. While the weights W of traditional net-
works indirectly determine the class centroids Z, our network learns the centroids directly,
represented by the matrix W = Z, connecting the penultimate with the last layer.
Based on the result of Theorem 2, we aim for robust networks which map well-classifiable
points close to the corresponding centroid and points which are difficult to classify further
away from all centroids. In terms of clustering, we aim to minimize the within-class-scatter
while maximizing the between-class-scatter. We propose a novel loss function that is based
on the Gauss confidence and achieves both: it optimizes for feature transformations that
map samples close to their centroid and centroids far away from each other. To this end,
we introduce a parameter vector δ ∈ [0.01, 0.9]c.

ℓga(fga, Y ∗) = − 1
m

m∑
j=1

log
(

fga(xj ; γ)yj

fga(xj ; γ)yj +
∑

k ̸=yj
fga(xj ; δ ◦ γ)k

)
+ log (fga(xj ; γ ◦ δ))yj

The ◦ product indicates here the element-wise (Hadamard) product. The left term of the loss
resembles cross-entropy loss. We introduce here the vector δ to simulate higher confidences
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Table 1: Test accuracy (acc) and average confidence (conf) of MNIST, Cifar-10, Cifar-100
and ImageNet for softmax, softmax with adversarial training (+AT), DUQ and the proposed
Gauss networks, using LeNet and ResNet (He et al., 2015) architectures.

MNIST Cifar-10 Cifar-100 ImageNet
LeNet ResNet18 ResNet18 ResNet50

Network acc↑ conf acc↑ conf acc↑ conf acc↑ conf
Softmax 99.3% 0.99 94.4% 0.98 76.4% 0.86 75.7% 0.81
Softmax+AT 99.0% 0.99 79.7% 0.63 56.8% 0.50 - -
DUQ 98.4% 0.87 94.3% 0.94 2.6% 0.35 - -
Gauss 99.3% 0.93 94.3% 0.91 75.8% 0.64 73.8% 0.65

for the wrong classes during training. This pushes centroids further away from samples that
do not belong to their class, and hence increases the margin. The second term resembles
negative log likelihood and increases the sample density around the centroids. The inclusion
of δ forces the network to have higher sample density (and hence a smaller confidence ball
around the centroid) when δ is large, and hence the margin around that class is supposedly
small. To optimize for small values of δ, we further employ a weight decay. We optimize
the parameters of the network, as well as the parameters γ and δ, with SGD.
While the cross-entropy term pushes towards perfect training data classification, our pro-
posed ℓga loss is more sensitive to the initialization than softmax models. We make use of
the effect of neural collapse and our proven connection of softmax networks and nearest-
centroid classifiers, and employ a warm start: we train a softmax network as usual for some
epochs, then we compute the class centroids and determine the initial centroid matrix for
the Gauss confidence. We then train the Gauss network for the remaining epochs with ℓga.

5 Experimental Results

We evaluate the proposed Gauss networks with respect to robustness and a suitable reflection
of classification confidences by the Gauss confidence. For this purpose, we compare popular
network architectures with the refined Gauss variant on MNIST (Lecun et al., 1998), Cifar-
10 and -100 (Krizhevsky, 2009), and ImageNet (Russakovsky et al., 2015). As competitors,
we choose Softmax networks (with a linear classifier and softmax confidence), DUQ models,
and adversarially trained (AT) models (Madry et al., 2018). We also compare with respect to
OOD detection with the method DDU, where we train a Gaussian mixture layer on top of the
Softmax model to obtain an additional uncertainty measure. Our Pytorch implementation
with scripts for training and attacking is publicly available2.

5.1 Classification Performance

We evaluate the feasibility of our proposed loss function to attain similar test set accuracies
as softmax models. Parameter settings of our experiments are given in Appendix C.
Table 1 summarizes the performance results. For every dataset, we report the test accuracy
and the average confidence of the predictions. Gauss networks achieve equivalent accuracies
and similarly high confidences as softmax networks on MNIST and Cifar-10. On Cifar-
100, we observe that the accuracy drops a bit but more notably, Gauss networks are less
confident on these classes. While softmax networks are rather overconfident (the confidence
is higher than the accuracy), Gauss networks tend to be less confident. This effect recurs on
ImageNet: Gauss networks lose a few percentage points of accuracy w.r.t. softmax networks,
but the latter have a higher confidence than accuracy. DUQ networks can compete on the
MNIST and Cifar-10 datasets, but its training of Cifar-100 failed: the BCE loss pushes here
the embedded training samples away from all centroids. In addition, the employed gradient
penalty of DUQ networks quadruples the runtime. Consequently, we didn’t optimize DUQ
for ImageNet. Note that the runtime for one epoch is the same for Gauss and softmax

2https://anonymous.4open.science/r/GaussNetworks-A7E7
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Table 2: Results of Attacks on MNIST and Cifar-10. We report the rate of successful attacks
(rate) and the average confidence of the adversarial samples (conf) for each attack. The
displayed attacks are Carlini & Wagner (C&W) (Carlini & Wagner, 2017), Fast Gradient
Sign Attack (FGSM) (Goodfellow et al., 2014), Projected Gradient Descent (Madry et al.,
2018) with l∞- (l∞PGD) and with l2-norm (l2PGD). For all attacks we set ϵ = 0.1.

C&W FGSM(0.1) l∞PGD(0.1) l2 PGD(0.1)
Dataset Network rate↓ conf↓ rate↓ conf↓ rate↓ conf↓ rate↓ conf↓

MNIST
Softmax 39% 0.81 12% 0.75 23% 0.80 1% 0.54
Softmax+AT 11% 0.83 3% 0.78 4% 0.83 0% 0.62
DUQ 20% 0.69 38% 0.67 92% 0.91 0% 0.22
Gauss 2% 0.12 4% 0.44 20% 0.52 0% 0.00

Cifar-10
Softmax 93% 0.84 76% 0.84 93% 1.00 40% 0.96
Softmax+AT 81% 0.63 59% 0.44 78% 0.70 3% 0.36
DUQ 97% 0.73 0% 0.00 26% 0.67 44% 0.89
Gauss 9% 0.44 43% 0.66 88% 0.72 21% 0.89

nets. We observe that adversarial training comes at a cost. Accuracy for AT on MNIST is
comparable to its competitors, but drops by 14 and 20 percentage points on Cifar-10 and
Cifar-100, respectively, when compared to the plain Softmax model.

5.2 Robustness to Attacks

We evaluate the robustness of models by means of four attack methods: Carlini & Wag-
ner (C&W) (Carlini & Wagner, 2017), Fast Gradient Sign Attack (FGSM) (Goodfellow
et al., 2014), Projected Gradient Descent (Madry et al., 2018) with the l∞ (l∞PGD) and l2
(l2PGD) norms. For our attacks, we employ the advertorch library (Ding et al., 2019). One
of the theoretical strengths of the Gauss and DUQ confidence is the possibility to identify
outliers. Since the softmax confidence of the predicted class is always larger than 1

c , we
also specify that a point is considered as an outlier if the confidence of the predicted class
is smaller than 1

c : if we have ten classes, then the outlier threshold is 0.1. We train all
networks with the same number of epochs.
We investigate to which extent Gauss networks provide an inbuilt robustness (cf. Theorem 2)
on the MNIST and Cifar-10 datasets. Table 2 reports the fraction of images for which
the attacks lead to misclassification, and the average confidence of the network for these
misclassifications. For both measures, lower is better. For all attacks on both datasets,
the Gauss network outperforms the softmax network in terms of both attack success rate
and confidence in the adversarial examples. Gauss networks are less or equally susceptible
to C&W and FGSM(0.1) attacks than the adversarially trained network. Notably, the AT
models are trained to defend against the ℓ∞PGD attack, hence it comes at no surprise that
AT models are more robust to PGD attacks than Gauss networks. DUQ is sometimes more,
sometimes less robust than the softmax model. On Cifar-10, DUQ is notably more robust
to FGSM and ℓ∞PGD attacks. Here, the attacks seem to overshoot: decreasing the allowed
perturbation size actually increases the attack success rate (cf. Appendix E). A qualitative
analysis of the adversarial examples is given in Appendix D.

5.3 OOD Detection

Ideally, good confidence measures are able to reflect what the model knows, i.e., what it
has been trained on. This reflection of areas of confidence can be used for OOD detec-
tion. Figure 3 displays the Gauss confidence against three uncertainty measures on Fashion
MNIST trained networks with MNIST being the OOD data (top) and on Cifar-10 trained
models with SVHN (Netzer et al., 2011) being the OOD data (bottom). We train Fashion
MNIST on the LeNet architecture and Cifar-10 on ResNet18. Our competitors are softmax
with entropy uncertainty (high entropy indicates high uncertainty), DDU (Mukhoti et al.,
2021) using the log of the sum of the Gaussian mixture pdfs as a certainty measure, and
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Figure 3: Histograms of uncertainty measures and confidences for models trained on Fashion
MNIST (top) and Cifar-10 (bottom), deployed also on out-of-distribution data.

DUQ networks’ confidence. We train the DDU softmax model as recommended with spec-
tral normalization on the ResNet-18 architecture, using a soft Lipschitz bound of 3. The
plots indicate that no measure delivers a perfect split between OOD and in-distribution
data. However, we can observe a distinguishing characteristic of Gauss networks: using a
threshold of 0.5 confidence separates the majority of OOD samples from the majority of
in-distribution samples. For all other uncertainty measures, the cut-off value that separates
the distributions is less consistently evident.

6 Conclusions

We introduce a loss function to optimize for neural networks with Gauss confidence, a cen-
troidal confidence measure for Deep Neural Networks, instead of the standard softmax clas-
sification and the recently proposed alternative of DUQ networks (van Amersfoort et al.,
2020). We prove that softmax-based classifiers are nearest centroid classifiers (cf. Theo-
rem 1). Softmax classification accuracy is typically insensitive to the distance of the points
to its centroid: as long as a point lies in the correct Voronoi cell, softmax is confident of its
decision. We prove that one can certify the robustness of the network through these dis-
tances (cf. Theorem 2). We build on this centroid-based robustness certificate to define our
Gauss confidence (cf. Definition 1). Its islands of confidence, illustrated in the rightmost plot
of Figure 1, are in contrast to the wider confidence regions generated by the competitors.
Gauss networks can achieve comparable accuracies to softmax networks (cf. Table 1), but
are more robust against adversarial attacks (cf. Table 2). When the softmax networks
are enhanced with adversarial training, they are more robust against PGD attacks than
Gauss networks, but Gauss networks are more robust against C&W and FGSM attacks and
achieve better accuracies. In some cases, DUQ networks match Gauss networks in their
robustness (though Gauss networks are more robust on the Cifar-10 dataset), but DUQ
networks cannot achieve the same accuracy as Gauss or softmax networks when the dataset
encompasses ≫ 10 classes. In future work, we intend to improve Gauss networks by allowing
for multiple centroids per class. This would allow for classes that are not one monolithic
whole: they could consist of several parallel subsets, or even hierarchical concepts.
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A Derivation of Equation (1)

We employ the fact that the m-dimensional constant one vector is equal to 1m = Y 1c,
because Yj·1c = |Yj·| = 1. Using this relation, we obtain Equation (4).

arg max
Y

tr(Y (W ⊤D⊤ + b1⊤
m))

= arg max
Y

tr(Y W ⊤D⊤) + tr(Y b1⊤
c Y ⊤)) (4)

= arg min
Y

∥D∥2 − 2 tr(Y W ⊤D⊤) − 2 tr(1mv⊤D⊤) − tr(2b1⊤
c Y ⊤Y )) (5)

= arg min
Y

∥D∥2 − 2 tr(Y (W ⊤ + 1cv⊤)D⊤) − tr(2b1⊤
c Y ⊤Y )) (6)

= arg min
Y

∥D∥2 − 2 tr(Y Z⊤D⊤) + tr(Y Z⊤ZY ⊤) − tr(Y Z⊤ZY ⊤) − tr(2b1⊤
c Y ⊤Y )) (7)

= arg min
Y

∥D − Y Z⊤∥2 − tr((2b1⊤
c + Z⊤Z)Y ⊤Y )) (8)

In Equation (5) we change the maximization to the minimization of the negative objective
function times two. Furthermore, we add the constant terms ∥D∥2 and −2 tr(1mv⊤D⊤),
that do not change the optimizer Y . Using again the fact that 1m = Y 1c, we can write
the two terms in the middle of Equation (5) as one in Equation (6). In Equation (7), we
complete the square, arriving at the objective of Equation (8).

B Derivation of Equation (2)

The diagonal elements of the matrix 2b1⊤
c + Z⊤Z are given by 2bk + Z⊤

·kZ·k, which yields
Equation (9). We then insert the definition of Z·k = W·k + v in Equation (10), expand the
term and simplify

∑c
k=1|Y·k| = m, arriving at Equation (11).

c∑
k=1

(2b1⊤
c + Z⊤Z)kk|Y·k| =

c∑
k=1

(2bk + Z⊤
·kZ·k)|Y·k| (9)

=
c∑

k=1
(2bk + (W·k + v)⊤(W·k + v))|Y·k| (10)

=
c∑

k=1
(2bk + ∥W·k∥2 + 2v⊤W·k + ∥v∥2)|Y·k|

=
c∑

k=1
(2bk + ∥W·k∥2 + 2v⊤W·k)|Y·k| + ∥v∥2m (11)

C Experimental Setup

We employ for Gauss networks a warmup of 10 epochs on MNIST and Cifar-10, 30 epochs
on Cifar-100, and 60 epochs on ImageNet. MNIST is trained for 60 epochs, while the
other datasets are trained for 100 epochs (including the warmup). For softmax and Gauss
networks we employ a similar learning rate schedule, and we use the advised learning rate
schedule for DUQ networks (as provided for Fashion MNIST and Cifar-10). We train the
LeNet architecture with a learning rate of 0.1 for softmax nets and 0.02 for Gauss nets,
which is decayed by a factor of 10 at epoch 40. We train the ResNet-18 architecture with
a learning rate of 0.1 for softmax nets and 0.02 for Gauss nets, which is then decayed by a
factor of 10 at epoch 60 and 80. The AT models are trained with the l∞PGD attack. We
employ a standard setting with 10 iterations in the inner loop and ϵ = 0.1 for MNIST and
ϵ = 8

255. for CIFAR-10/100.
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Figure 4: Adversarial examples achieved with the l∞PGD attack on MNIST with confidence
≥ 0.7. Above each image you find the network (sm: softmax, duq: DUQ, ga: Gauss), the
erroneously predicted class, and the confidence of the prediction in parentheses.

Figure 5: Adversarial examples achieved with the ℓ∞ attack on Cifar-10 with confidence
≥ 0.7. Above each image you find the network (sm: softmax, duq: DUQ, ga: Gauss), the
erroneously predicted class, and the confidence of the prediction in parentheses.

D Cifar-10 Adversarial Examples

The most successful Gauss network attacks are the l∞PGD attack on MNIST and Cifar-10.
Confidently assigned adversarial examples are displayed in Figures 4 and 5. Adversarial
examples on MNIST indicate that Gauss networks often confuse a four with a nine; these
also are the classes with the nearest centroids (distance of 9.5; average centroid distance is
12.1 ± 1.4). The adversarial examples on Cifar-10 are less conclusive. While some of the
adversarial examples for Gauss net are justifiable, other adversarial examples hardly make
sense. This indicates that our proposed confidence measure does not yet provide a definite
safeguard against learning shortcuts, but it provides a first step towards indications of model
representations and knowledge.

E Effect of the Parameter ϵ in Attacks

We plot in Figure 6 the attack success rate against the parameter ϵ that determines the
bound on the perturbation size. As expected, the higher the parameter ϵ, the higher the
attack success rate for softmax and Gauss networks. In contrast, we observe that DUQ
models are for the FGSM and ℓ∞PGD attacks more susceptible to small perturbations of
the input. This observation suggests that those attacks possibly overshoot, such that larger
perturbations result in images that are mapped outside of the confidently assigned region.
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Figure 6: Variation of parameter ϵ, comparison of attack success rates (the lower the better)
on Cifar-10 trained networks for the FGSM, ℓ∞PGD and ℓ2PGD attack.

In comparison, the empirical analysis of the effect of ϵ further indicates that the proposed
Gauss networks are indeed well protected against small perturbations in the input.
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