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ABSTRACT

Large-scale vision generative models, including diffusion and flow models, have
demonstrated remarkable performance in visual generation tasks. However, trans-
ferring these pre-trained models to downstream tasks often results in significant
parameter redundancy. In this paper, we propose EntPruner, an entropy-guided
automatic progressive pruning framework for diffusion and flow models. First,
we introduce entropy-guided pruning, a block-level importance assessment strat-
egy tailored for transformer-based diffusion and flow models. As the importance
of each module can vary significantly across downstream tasks, EntPruner priori-
tizes pruning of less important blocks using data-dependent transfer entropy as a
guiding metric. Second, leveraging the entropy ranking, we propose a zero-shot
Neural Architecture Search (NAS) framework during training to automatically de-
termine when and how much to prune. This dynamic strategy avoids the pitfalls of
one-shot pruning, mitigating mode collapse, and preserving model performance.
Extensive experiments on DiT and SiT models demonstrate the effectiveness of
EntPruner, achieving up to 2.22× inference speedup while maintaining competi-
tive generation quality on ImageNet and three downstream datasets.

1 INTRODUCTION

A myriad of recent breakthroughs in diffusion and flow models have demonstrated their remark-
able capabilities in image generation. The success has also been extended to audio, video, and
language domains (Huang et al., 2023; Zhu et al., 2024; Sahoo et al., 2024). The Denoising Dif-
fusion Probabilistic Model (DDPM) (Ho et al., 2020) highlighted the effectiveness of the U-Net
backbone. Recently, owing to the superior performance of Diffusion Transformers (Peebles & Xie,
2023), studies have increasingly adopted transformer-based architectures. Lipman et al. (Lipman
et al., 2022) further introduced Flow Matching, a more direct and faster generative trajectory that
offers an alternative perspective on training and inference for diffusion models. While diffusion
models have evolved rapidly in recent years, achieving near-photorealistic quality, their practi-
cal deployment remains limited due to computational inefficiency. Recent trends in architectural
design—particularly the adoption of transformer-based backbones like DiT (Peebles & Xie, 2023)
and SiT (Ma et al., 2024)—have significantly improved scalability and expressivity. However, these
advancements come at the cost of increased parameter counts and memory usage. These models
suffer from efficiency issues when deployed on edge devices or used in low-latency settings such
as interactive applications. The high computational cost and slow inference speed of diffusion and
flow models motivate us to explore more effective solutions.

To solve these problems, a majority of the arts have explored efficient pruning strategies for Stable
Diffusion (SD) models (Rombach et al., 2022). BK-SDM (Kim et al., 2024) employs a heuristi-
cally handcrafted pruning scheme and leverages distillation to recover performance after pruning.
However, its manual design limits transferability and requires substantial human efforts and compu-
tational costs. Diff-Pruning (Fang et al., 2023) removes filters by identifying unimportant weights
through gradient analysis, but its threshold must be tuned for specific tasks, restricting practical
applicability. LD-Pruner (Castells et al., 2024) introduces a novel metric to evaluate the impor-
tance of each operator and prunes unimportant convolutional and attention layers, but this metric is
task-independent. Furthermore, none of these methods have been examined on transformer-based
diffusion models, leaving their effectiveness uncertain.
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Figure 1: Generated results of a series of flow models pruned by EntPruner. Base model is SiT-
XL/2. The pruning rates in rows 1 and 2 are set to 35%, while those in rows 3 and 4 are set to 50%.
Inference is performed on the ArtBench (column 1-2), CUB (columns 3-4), and Flowers (columns
5-6) datasets, with the classifier-free guidance coefficient set to 4.0. The sampling process involves
250 steps, and ODE solver is used.

Training a Large DiT from scratch is prohibitively costly—for example, generating 256×256 Im-
ageNet images requires roughly 4,700 GPU-hours (Yao et al., 2024). Fine-tuning is the main ap-
proach for transfer learning tasks. Although various fine-tuning techniques have been proposed to
accelerate the training process, they typically retain the computational cost of the original model
during inference (Xie et al., 2023; Li et al., 2024a). Our observations suggest that transferring
large pretrained models to downstream tasks often introduces substantial parameter redundancy, as
smaller or less complex tasks rarely require the full capacity of the original model. Moreover, many
downstream tasks—such as domain-specific generation or low-resolution synthesis—do not benefit
from the full capacity of large-scale pretrained models.

These discrepancies raise a critical challenge: how to adaptively compress diffusion models without
compromising their generative quality? Current pruning methods fail to address this in a task-aware
and scalable manner, especially when applied to transformer-based diffusion backbones. Further-
more, prior pruning work has also demonstrated a delicate trade-off between model performance
and pruning ratio: aggressive pruning often leads to instability and catastrophic forgetting, making
the post-pruning training process slow and ineffective. These challenges highlight the need for a
principled, efficient, and robust pruning framework that can adapt to various downstream settings.

Numerous studies have demonstrated that not all parameters in deep neural networks contribute
equally to model performance (Cheng et al., 2023; Guo et al., 2020; Yang et al.). As shown in Fig-
ure 2, we evaluate the contribution of each block in a pre-trained SiT-XL/2 model (trained on Ima-
geNet) to downstream task performance. Transfer entropy is particularly well-suited for evaluating
information flow and inter-layer dependency in sequential generation models like diffusion trans-
formers. Unlike simple magnitude-based or gradient-based importance measures, transfer entropy
captures the directional influence of each block on the output distribution, thereby offering a more
nuanced understanding of a block’s contribution to the model’s expressive power. Figure 2 (a) and
(b) respectively report the change in training loss and transfer entropy when individual blocks are
removed. The results indicate significant variation in how different blocks contribute to the model’s
expressivity and convergence speed. Figure 2 (c) and (d) further reveal a strong positive correla-
tion between loss and transfer entropy. Moreover, as the number of removed blocks increases, both
loss and transfer entropy tend to rise. The large variance observed across random removal trials
suggests that the impact of indiscriminate pruning is highly unpredictable and often detrimental to
convergence, making the model harder to train effectively.
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Figure 2: Block Interactions in SiT. We apply masking to each block of the pre-trained SiT-XL/2
model individually and compute the corresponding transfer entropy and output loss, as shown in (a)
and (b). Blocks with higher influence—indicated by higher transfer entropy—contribute more to
faster convergence and better model performance. In (c) and (d), we randomly mask blocks in the
pre-trained SiT-XL/2 model 20 times and compute the mean and variance of the resulting loss. A
strong positive correlation is observed between transfer entropy and the associated loss, highlighting
the effectiveness of transfer entropy in quantifying block importance.

We propose a task-aware pruning framework for Transformer-based diffusion models, where each
block primarily consists of MLP and self-attention layers. The framework performs block-level
structured pruning through a two-stage process: 1) Entropy-Guided Importance Estimation: We
evaluate block interactions in the pretrained diffusion model using transfer entropy, which enables
us to rank blocks based on their contribution to the overall model behavior. 2) Automatic progres-
sive pruning: We first introduce a linear pruning scheme, based on which we introduce an erasure
operator to determine when and how much to prune by solving the optimization problem. To further
reduce computational overhead, we integrate multiple zero-shot Neural Architecture Search (NAS)
metrics, allowing us to reformulate pruning as a sub-network architecture search problem that can
be solved with minimal cost.

Our framework accurately identifies the least important components for each downstream task,
thereby minimizing disruption to the pretrained weights. It autonomously determines the opti-
mal pruning schedule at different training stages, resulting in faster convergence while maintain-
ing near-lossless performance. Through extensive experiments on multiple benchmark datasets and
two widely-used diffusion architectures (DiT and SiT), we show that our entropy-guided pruning
framework not only reduces model size and inference cost but also achieves superior or comparable
generative performance compared to full fine-tuning and existing pruning baselines (Figure 1). This
work bridges a gap in the compression of diffusion Transformers and offers a practical solution for
their deployment in resource-constrained environments.

The main contributions are summarized as follows:

• We introduce Transfer Entropy (TE) to evaluate the interaction between blocks and rank the
importance of each block, so that the network performance will be less or even not degraded
during the pruning process.

• We further propose an Entropy-Guided Automatic Pruning Framework (EntPruner), which
can automatically select the optimal pruning time and pruning rate during training, making the
post-pruning training process more stable and less loss of performance.

• Our method is validated on a wide range of benchmark datasets, with an average FID drop of
only 1.76 at a 50% pruning rate, while the inference speed is 2.22× faster than the full model.
These excellent experimental performances demonstrate the potential of our method for different
diffusion models and downstream tasks.

2 ENTROPY-GUIDED PROGRESSIVE PRUNING FOR DIFFUSION AND FLOW
MODELS

2.1 DIFFUSION AND FLOW MODELS

Both diffusion and flow models corrupt data x∗ ∼ p(x) by progressively injecting noise ϵ ∼
N (0, I). A unified forward process can be written as xt = αtx∗ + σtϵ, where αt and σt are
time-dependent functions. In score-matching diffusion models, the process is usually defined on
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Figure 3: Entropy-guided automatic pruning framework. At first, we employ transfer entropy
to evaluate and rank the expressiveness of individual blocks, where darker regions in the heatmap
indicate stronger interactions with the overall network. At each pruning stage, the pruning schedule
explores candidate subnetworks under different pruning ratios, selects the optimal one using zero-
shot NAS proxies, and inherits parameters from the previous stage.

discrete time steps, and xt converges to N (0, I) as t → ∞. Flow-matching methods, in contrast,
restrict the trajectory to t ∈ [0, 1] and set α0 = σ1 = 1 and α1 = σ0 = 0, so that xt converges to
N (0, I) precisely at t = 1. In the reverse process, both flow matching and score-based diffusion
models can be implemented by learning to invert the forward dynamics using either a stochastic dif-
ferential equation (SDE) (Albergo & Vanden-Eijnden, 2022) or probability flow ordinary differential
equation (ODE) (Albergo et al., 2023).

2.2 OVERVIEW.

Our goal is to enhance the efficiency of Transformer-based diffusion models (DMs) by removing
blocks with minimal interactions, thereby achieving model lightweighting without sacrificing per-
formance. To this end, we first need to establish a pruning priority: given a target pruning ratio r,
less informative blocks should be pruned first, while more critical blocks are preserved. Transfer
entropy (TE) (Schreiber, 2000; Lin et al., 2024b) provides a reliable measure of both the infor-
mation contained in each block and its complex interactions within the network. By leveraging
transfer entropy, we can quantitatively assess block importance and systematically determine which
less essential blocks should be pruned. Prior studies have shown that a large pruning rate often
disrupts the pretrained model’s prior, leading to irreversible performance degradation. Conversely,
an appropriate pruning ratio can effectively balance efficiency and accuracy. Therefore, we propose
a progressive pruning framework. We first define a pruning schedule Ψ for progressive pruning,
which consists of a sequence of sub-networks, and the pruning space set is ξ. Let L denote the task
loss, Ω the model size, and ω the set of model parameters. The objective of progressive pruning can
be formulated as:

min
ω,Ψ,Γ

{L(ω,Ψ), Ω} . (1)

To reduce the complexity of optimizing over Ψ, we adopt a linear pruning space based on a pre-
defined pruning ratio. To ensure that the model is sufficiently optimized after each pruning step,
the whole pruning process is divided into k stages (default k = 4), with each stage consisting of
s = S/k training iterations. For a target pruning ratio r, the schedule is defined as Ψ = {ψi}|k|i=1,
where ψk retains (1 − r)% of the original parameter count. Throughout training, the model size is
gradually reduced according to Ψ.

Pruning redundant operators in predefined neural networks to search for optimal sub-networks is
a key research direction in the field of Neural Architecture Search (NAS) (Chen et al., 2023b).
Exsisting studies have investigated how to identify important sub-networks starting from a supernet
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that encompasses all candidate connections and operations (Wang et al., 2023; Li et al., 2023a). We
optimize the pruning schedule Ψ via zero-shot NAS, where each candidate subnetwork is evaluated
by NTK condition numbers and ZiCo scores. These metrics jointly capture convergence properties
and gradient stability, enabling Ψ to automatically select and prune less informative blocks while
preserving the trainability of the subnetwork.

2.3 QUANTIFYING THE IMPORTANCE OF BLOCKS WITH TRANSFER ENTROPY

Entropy Quantification. Given a denoising network, let the distribution of output feature maps be
denoted as p(x), x ∈ X, where X represents the set of output feature maps from the network. The
entropy can be expressed as:

H(X) = −
∫
p(x) log p(x) dx, x ∈ X. (2)

For tractability, we assume that p(x) follows a Gaussian distribution, i.e., X ∼ N (µ, σ2). Eq.( 2)
can be written as:

H(X) = −E[logN (µ, σ2)]

= −E[log[(2πσ2)−1/2 exp(− 1

2σ2
(f − µ)2)]]

= log(σ) +
1

2
log(2π) +

1

2

(3)

Interaction among Blocks. The complexity of interactions between layers with diffusion models
can serve as an indicator of their importance to the whole network. However, this cannot be imple-
mented by simple entropy quantification. Transfer entropy(TE) (Schreiber, 2000; Lin et al., 2024b)
addresses this limitation by quantifying the information discrepancy between a original and a target
network. The formulation of TE is defined as:

TE = H(Xoriginal)−H(Xtarget)

= H(Xout)−H(Xout | Mask{blocki}),
(4)

where H(Xout) denotes the entropy of the original network output, and H(Xout | Mask{blocki})
represents the entropy after masking the ith block. Therefore, Eq. (4) provides a metric to evaluate
the effect of removing a certain block on the entire pretrained model.

2.4 AUTOMATIC PRUNING VIA ZERO-SHOT NEURAL NETWORK SEARCH.

Assume that H is a zero-shot performance predictor used to estimate the loss of each candidate
sub-network. The optimal sub-network at stage k can be identified by solving:

ψ∗
k = argmin

ψk∈Λk

{H(ω(ψk)), Ω} ,

where Λk = {ψ ∈ ξ | |ω(ψ)| ≤ |ω(ψk−1)|} .
(5)

where Λk denotes the set of candidate sub-networks whose parameter sizes are no larger than that
of ψk−1, the sub-network from the previous pruning stage.

Trainability via the NTK Condition Number in Flow Matching. The trainability of a neural
network reflects how effectively it can be optimized via gradient descent. While larger models offer
more expressivity, this does not guarantee practical trainability. The Neural Tangent Kernel (NTK)
provides a useful tool for analyzing convergence in the infinite-width regime (Jacot et al., 2018;
Novak et al., 2022).

In flow matching, a denoising network learns the velocity field v(t, xt) that transports noisy samples
xt = αtx∗+σtϵ toward data x∗. The true velocity is v(t, xt) = α̇tx∗+ σ̇tϵ, and the model vθ(xt, t)
is trained to approximate it. For a candidate sub-network with parameters ω, the update of predicted
velocity satisfies

∆v(xt) = −η Θ̂(xt, xt)∇v(xt)L, (6)

where Θ̂ is the NTK of the velocity predictor.
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In the infinite-width limit, the training dynamics are governed by the eigenvalues {λi} of Θ̂. The
maximum stable learning rate scales as η ∼ 2/λ0, while the convergence of the slowest mode
depends on 1/κ, where κ = λ0/λm. A smaller κ indicates faster and more stable convergence.
Thus, we adopt the NTK condition number as a zero-shot NAS metric:

Hκ(ψ) =
λ0
λm

. (7)

where λ0 and λm denote the largest and smallest eigenvalues of the NTK, respectively. More details
are provided in Appendix A.3.

Convergence Rate and Generalization Capacity via Gradient Analysis. Convergence and ex-
pressivity also directly influence the final performance of a neural network. After a number of
training steps, a network with a larger absolute mean of gradient and smaller standard deviation
of gradient is generally associated with lower training loss and faster convergence. Interestingly, a
smaller gradient variance often correlates with a lower maximum eigenvalue Θ of the NTK, which
implies a smoother loss landscape and better generalization performance (Lewkowycz et al., 2020).

We adopt ZiCo as one of the zero-shot NAS metrics, which jointly considers the absolute mean and
standard deviation of gradient. The parameters of a candidate sub-network ω are also inherited from
the trained parameters ω∗ of the previous pruning stage. Since the ZiCo metric has been shown
to correlate positively with network trainability, we introduce a negative sign to make it positively
correlated with loss, allowing it to be minimized during optimization:

HZiCo(ψ) = −
N∑
l=1

log

(∑
ω∈ωl

E [|∇ωL∗|]
σ (|∇ωL∗|)

)
. (8)

where N denotes the number of layers in the candidate sub-network, ωl is the set of parameters in
the lth layer, L∗ is the loss L(xt,i,vt,i;ω), i ∈ {1, . . . , D} and D is the number of training batches,
typically set to 2 to balance stability and efficiency.

2.5 ENTROPY-GUIDED AUTOMATIC PROGRESSIVE PRUNING FRAMEWORK

We summarize the overall algorithmic workflow of EntPruner as follows. First, we perform block-
level importance ranking using transfer entropy to evaluate the contribution of each block in the
pretrained model. Second, we employ two zero-shot NAS proxies to guide the pruning schedule at
each training stage. The optimization objective, as reformulated from Eq. (5) is:

ψ⋆k = arg min
ψk∈Λk

{Hκ(ψk), HZiCo(ψk), Ω} . (9)

A key challenge lies in how to jointly optimize the two proxies. We assume both proxies are equally
important for maintaining network performance and training efficiency. A common strategy is to
apply a voting-based algorithm to select the optimal candidate sub-network. This approach helps
mitigate differences in scale between the two metrics. Additionally, we incorporate model’ parame-
ters as a regularization term in the selection process. The final optimization is defined as:

ψ⋆k = arg min
ψk∈Λk

R(ψk),

s.t.R(ψk) = R(Hκ(ψk)) +R(HZiCo(ψk)) + γR(Ω).
(10)

where R(·) denotes the ranking score (e.g., 1st, 2nd, ..., R-th) and γ is the regularization factor
default set to 0.5. The candidate with the lowest rank in each individual metric receives the smallest
score, and the sub-network ψ⋆k with the lowest total rank is selected for the next training stage.
Appendix A.4 shows the Algorithm of our EntPruner.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

We evaluate the effectiveness of our proposed method on DiT-XL/2 and SiT-XL/2 models with an
image resolution of 256×256. We conduct experiments on both diffusion-based DiT and flow-
matching-based SiT. All experiments are conducted on a computing platform equipped with 8
NVIDIA A800 GPUs (80 GB), with DiT trained for 240K steps and SiT for 60K steps. We fine-tune
SiT and DiT on downstream tasks following the configuration in (Xie et al., 2023; Ma et al., 2024).
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Figure 4: Qualitative comparison of flow models pruned by different methods. Base model
is SiT-XL/2, with 35% pruning rate. Datasets are Flowers (column 1-2), CUB (column 3-4), and
ArtBench (column 5-6). Our EntPruner consistently generates finer details and better quality.

Table 1: Comparison of flow models pruned by dif-
ferent methods. We use SiT as the base model and
evaluate with both ODE and SDE samplers on three
datasets. ↓ and ↑ indicate whether lower or higher
values are better.

Method Sparsity CUB Flowers ArtBench Params (M) Speedup

FID↓ IS↑ FID↓ IS↑ FID↓ IS↑
Fine-tuning (ODE) / 5.32 6.02 11.78 3.71 8.80 7.32 675.12 ×1

LD-Pruner (ODE) 35% 5.70 6.03 12.02 3.75 10.78 6.63 435.78 ×1.82
Ours (ODE) 5.48 6.07 11.75 3.82 10.03 6.88 435.78 ×1.82

LD-Pruner (ODE) 50% 6.86 6.16 12.09 3.79 12.81 6.35 334.67 ×2.22
Ours (ODE) 6.68 6.18 11.86 3.82 12.65 6.41 334.67 ×2.22

Fine-tuning (SDE) / 5.17 5.87 12.47 3.77 13.33 6.56 675.12 ×1

LD-Pruner (SDE) 35% 5.24 6.10 12.32 3.74 16.16 6.20 435.78 ×1.49
Ours (SDE) 5.22 6.11 12.10 3.74 15.25 6.31 435.78 ×1.49

LD-Pruner (SDE) 50% 5.98 6.19 12.92 3.75 18.74 5.90 334.67 ×1.85
Ours (SDE) 5.83 6.15 12.77 3.77 18.69 5.90 334.67 ×1.85

Table 2: Comparison of diffusion mod-
els trained by different methods. We use
DiT as the base model and compare on
three datasets. Our method achieves com-
parable results with full fine-tuning and
other efficient tuning methods with 1.33×
inference speedup.

Method Sparsity CUB Flowers ArtBench Params (M) Speedup

Full Fine-tuning / 5.68 21.05 25.31 673.8 ×1

Ours 30% 5.50 11.99 24.99 471.66 ×1.33

Adapt-Parallel - 7.73 21.24 38.43 678.08 -
Adapt-Sequential - 7.00 21.36 35.04 678.08 -
BitFit - 8.81 20.31 24.53 674.41 -
VPT-Deep - 17.29 25.59 40.74 676.61 -
LoRA-R8 - 56.03 164.13 80.99 674.94 -
LoRA-R16 - 58.25 161.68 80.72 675.98 -
DiffFit - 5.48 20.18 20.87 674.63 -

We select three fine-grained image datasets as the calibration datasets for pruning: CUB-200-
2011 (Wah et al., 2011), Oxford Flowers (Nilsback & Zisserman, 2008), and ArtBench-10 (Liao
et al., 2022). Notably, ArtBench-10 exhibits a distribution that significantly differs from ImageNet,
allowing us to comprehensively evaluate the generalization performance of EntPruner on out of dis-
tribution tasks. For the DiT model, we adopt the DDPM sampler, while for SiT, we employ an ODE
solver and SDE solver. We report results based on 50 sampling steps. To assess generative quality,
we utilize two widely adopted evaluation metrics: Fréchet Inception Distance (FID) and Inception
Score (IS). We measure efficiency using inference latency and the number of parameters.

3.2 ENTROPY-GUIDED AUTOMATIC PROGRESSIVE PRUNING ON DOWNSTREAM DATASETS

Class to Image Generation with Flow Models. To evaluate the effectiveness of our approach, we
compare it with LD-Pruner (Castells et al., 2024) on the SiT architecture. As shown in Table 1,
our method consistently outperforms LD-Pruner at both 35% and 50% pruning ratios, when pruning
35% of the parameters, we achieve 3.9%, 2.2%, and 6.9% FID improvements on the three bench-
mark datasets with an ODE sampler. Notably, on Flowers dataset, our method surpasses full fine-
tuning when pruning 35% of the parameters, achieving the best overall performance. We observe
slight variations across different samplers, with the SDE sampler exhibiting longer sampling times
compared to the ODE. Nevertheless, our method consistently outperforms LD-Pruner regardless of
the sampling strategy. While both pruning methods exhibit performance degradation on ArtBench,
likely due to the substantial distribution gap between ArtBench and ImageNet. However, EntPruner
still outperforms LD-Pruner, demonstrating strong robustness and superior generalization.

We qualitatively compare the image generation quality of EntPruner and LD-Pruner. In these ex-
periments, we use the same random seed, set the classifier-free guidance scale to 4.0, and adopt 250
sampling steps. As shown in Figure 4, our method consistently produces images with finer details
and better quality. On the CUB and Oxford Flowers datasets, EntPruner tends to generate close-up
views of the subject, enriching detail and enhancing aesthetic quality. On the ArtBench dataset,
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Figure 5: Qualitative comparison of flow models pruned by different methods on ImageNet
256×256. Base model is SiT with 30% pruning rate. Our EntPruner consistently produces more
photorealistic images with fewer generation artifacts.

our approach captures more realistic textures in structures such as houses and trees, resulting in
improved visual fidelity compared to LD-Pruner.

Class to Image Generation with Diffusion Models. We apply EntPruner on DiT and compare
with full fine-tuning. As shown in Table 2, our method outperforms full fine-tuning across all three
datasets. Notably, on Flowers, EntPruner reduces the FID relatively by 43.04%. Furthermore,
EntPruner improves inference efficiency, achieving a 1.33× speedup compared to full fine-tuning.
In addition, we benchmark EntPruner against state-of-the-art fine-tuning strategies. Our method
matches or surpasses the performance of efficient fine-tuning baselines, while offering 1.33× faster
inference.

Figure 6: Tradeoff between computational cost
(MACs) and generative quality (FID). The
rightmost point represents the full model.

Inference Efficiency Across Parameter Bud-
gets. Figure 6 compares the FID scores
vs. computational complexity (measured by
MACs) of EntPruner and LD-Pruner across
three datasets: CUB, Flowers, and Art-
Bench. Notably, EntPruner consistently out-
performs LD-Pruner across all configurations.
At medium complexity, the gap between the
two is most obvious. Table 1 and Figure 6
jointly demonstrate that EntPruner maintains
lower FID scores even under reduced MACs on
CUB and Flowers datasets, demonstrating better robustness in resource-constrained settings. On
ArtBench dataset, the performance gap between the two methods is most pronounced, further high-
lighting EntPruner’s superior generalization ability and pruning efficiency for complex image gen-
eration tasks. See Appendix A.2 for more details.

3.3 ENTROPY-GUIDED AUTOMATIC PROGRESSIVE PRUNING ON IMAGENET 256×256

Table 3: Comparison of flow models
pruned by different methods on Ima-
geNet 256×256. Base model is SiT with
30% pruning rate. We also include full
model performance of different generative
models as a reference.

Method Params(M) FID↓ Speedup

BigGAN-deep 112 6.95 -
StyleGAN-XL 166 2.30 -

ADM 554 10.94 -
LDM-4-G 400 3.60 -
DiT-XL/2 (DDPM) 675.12 2.27 ×0.43
SiT-XL/2 (ODE) 675.12 2.15 ×1

LD-Pruner (SiT,ODE) 471.66 6.81 ×1.33
Ours (SiT,ODE) 471.66 3.53 ×1.33

To further demonstrate the effectiveness and robust-
ness of our pruning method on pretrained models, we
directly apply our pruning strategy to compress mod-
els pretrained on ImageNet 256×256. The experimen-
tal setup follows the same configuration as Section 3.1,
where SiT is trained using flow matching. During sam-
pling, we employ an ODE solver and adhere to stan-
dard evaluation protocols (Peebles & Xie, 2023; Ma
et al., 2024).

As shown in Table 3, with a pruning ratio of 30% on
ImageNet, our method achieves a final FID of 3.53,
only a degradation of 1.38 compared to the original
SiT-XL/2. Notably, it surpasses the recent pruning
method LD-Pruner by 48.16%, further validating our
method’s ability to mitigate parameter collapse often caused by one-shot pruning. Moreover, in
terms of inference speed, our method achieves a 1.33× speedup compared to SiT, and a 209.30%
speed improvement compared to DiT, highlighting its practical inference efficiency.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

As shown in Figure 5, we present qualitative results demonstrating the impact of pruning on image
generation quality. It is evident that pruning with LD-Pruner leads to significant degradation in
visual fidelity. For instance, generated images exhibit missing features such as the eyes of a dog,
fine details of a raccoon, aesthetically pleasing text on hot air balloons, well-structured cakes, and the
tusks of an elephant. In contrast, our method preserves more structural details and visual coherence.
By pruning at more appropriate stages, our approach enables the final model to maintain robust
generative performance while retaining essential semantic content.

3.4 ABLATION STUDY

Table 4: Ablation studies on Auto pruning
and Entropy-Guided pruning. Results are
reported on SiT using Oxford Flowers.

Method FID ↓ IS ↑ Params Speedup

Full Fine-tuning 11.78 3.71 675.12 ×1

w/o Entropy-Guided 12.06 3.81 435.78 ×1.82
w/o Auto Pruning 11.84 3.80 435.78 ×1.82

Ours 11.75 3.82 435.78 ×1.82

Entropy-Guided Pruning. We perform an ablation
study to evaluate the effectiveness of entropy-guided
importance ranking. Random pruning leads to high
variance and instability, so we prune blocks with the
highest transfer entropy, which are identified as most
critical by our metric. As illustrated in Table 4, prun-
ing blocks with high entropy causes a substantial per-
formance drop, which cannot be fully recovered even
through continued fine-tuning. which proves that
transfer entropy is a reliable indicator of parameter importance in pretrained networks.

Automated Pruning. We conduct an ablation study on automated pruning. The results are pre-
sented in Table 4, demonstrating that one-shot pruning or premature pruning significantly degrades
model performance. In contrast, our method autonomously determines both the timing and extent
of pruning, allowing the model to maintain competitive performance, while achieving lower FID
scores, and even converging to better solutions than full fine-tuning in some cases.

4 RELATED WORK

Diffusion Models (Ho et al., 2020; Zhang et al., 2023; Ruiz et al., 2023) have achieved remarkable
progress in image synthesis, with recent designs shifting from U-Nets to Transformer backbones
for better scalability (Peebles & Xie, 2023; Ma et al., 2024; Chen et al., 2024). While these works
focus on boosting generative quality, our approach instead addresses their efficient deployment via
entropy-guided pruning.

Automated Machine Learning. AutoML automates model design and optimization (Liu et al.,
2018; Tan et al., 2019; Cubuk et al., 2019). NAS approaches fall into multi-shot (Real et al., 2019),
one-shot (Li et al., 2020), and zero-shot (Lin et al., 2021; Yang & Liu, 2024; Li et al., 2024b)
categories. Unlike traditional NAS that searches from scratch, we leverage zero-shot proxies to
prune pretrained diffusion Transformers, combining AutoML efficiency with pretrained stability.

Efficient Inference for Diffusion Models. The inference cost of diffusion models is primarily influ-
enced by the number of inference steps and the computational cost. The former includes advanced
solvers (Lu et al., 2022) and distillation (Lin et al., 2024a; Ren et al., 2024), while the latter ex-
plores pruning (Castells et al., 2024; Fang et al., 2023), quantization (Li et al., 2023b), and adaptive
compression (Lu et al., 2023; Chen et al., 2023a; Guo et al., 2020). Our work extends this line by
reframing block-level pruning as a zero-shot NAS problem, achieving lightweight yet performant
diffusion Transformers.

5 CONCLUSION AND LIMITATION

We present an entropy-guided automatic pruning framework that leverages zero-shot NAS to adap-
tively rank block importance and determine pruning ratios across tasks. Our method preserves pre-
trained knowledge, mitigates performance collapse, and achieves faster inference while maintaining
generation quality comparable to full fine-tuning. A potential limitation is that its ease of deploy-
ment may also enable misuse in unregulated or adversarial scenarios.
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A APPENDIX
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Figure 7: Visualization of the sampling process of SiT models pruned with different methods.
From left to right, each column corresponds to sampling steps 50, 100, 150, 200 and 250, respec-
tively.

A.1 PERFORMANCE OF DIFFERENT METHODS

Figure 8: Comparison of training loss
trajectories across different methods.

To better understand the generative behavior of different
methods, we visualize the denoising trajectories starting
from the same noise latent. As shown in Figure 7, we
track the intermediate outputs along the denoising path
for each method. While both models begin from identi-
cal noise, our method consistently produces more visually
appealing and coherent results compared to LD-Pruner.
In addition, we evaluate the aesthetic quality of generated
images using the Neural Image Assessment (NIMA) met-
ric (Talebi & Milanfar, 2018). NIMA employs a trained
deep convolutional neural network to predict how users
would rate an image in terms of technical quality and aes-
thetic appeal. Experimental results show that our method
outperforms LD-Pruner by 0.259 and 0.152 points in aesthetic scores, respectively, demonstrating
the effectiveness of our approach in preserving visual quality. Figure 8 illustrates the loss trajectory
during training with SiT on ArtBench dataset. Owing to our automated pruning strategy, model
compression is performed progressively, avoiding abrupt parameter collapse. This leads to faster
and more stable convergence.

A.2 INFERENCE EFFICIENCY ACROSS PARAMETER BUDGETS.

We evaluate the inference efficiency of our method applied to both SiT and DiT under vary-
ing parameter scales. FID is reported as the average across three benchmark datasets. Multi-
ply–Accumulate Operations (MACs) are used to quantify the computational complexity of each
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Table 5: Inference Efficiency Evaluation. We apply our proposed method to both SiT and DiT
models to systematically assess inference efficiency under varying parameter budgets.

Method Params Avarage
FID

MACs
(G)

Latency
(s/per)

GPU Memory
(GB/per)

DiT/DDPM 675.12 17.35 228.85 0.41 5.35
483.88 14.16 163.48 0.31 4.56

SiT/ODE
675.12 8.63 228.85 0.20 5.32
435.78 9.08 147.13 0.11 4.39
334.67 10.39 114.45 0.09 3.99

SiT/SDE
675.12 10.32 228.85 0.76 5.36
435.78 10.85 147.13 0.51 4.38
334.67 12.43 114.45 0.41 3.93

model. In addition, per-image inference time is measured with a batch size of 256. Peak memory
usage is recorded as maximum GPU memory required for a single-image inference on A800.

As shown in Table 5, on DiT, pruning 30% of parameters leads to an 18.4% improvement in average
FID compared to full fine-tuning. This result reinforces the insight that large-scale models often
contain substantial parameter redundancy when transferred to downstream tasks—redundancy that
can hinder rather than help model performance. Our pruning strategy is block-level, which allows
the computational complexity (as measured by MACs) to decrease proportionally with reduction in
parameter count. For instance, when the parameter count is reduced by 35% and 50%, the corre-
sponding MACs are also reduced by approximately 35% and 50%. We further observe that for SiT,
using the Euler-based SDE sampler results in the slowest inference speed, whereas the ODE sampler
offers the fastest. At a pruning rate of 35%, the FID scores of both samplers decrease (by 0.53 and
0.45), while the memory usage decreases by 18.3% and 19.8%.

A.3 TRAINABILITY VIA THE CONDITION NUMBER OF NTK IN FLOW MATCHING.

The trainability of a neural network reflects its ability to be effectively optimized via gradient de-
scent. While a network with more parameters theoretically possesses greater expressivity, this does
not guarantee practical trainability. The Neural Tangent Kernel (NTK) provides a powerful analyti-
cal tool for assessing the convergence behavior of deep networks under gradient-based optimization,
particularly in infinite-width regime (Jacot et al., 2018; Novak et al., 2022).

During progressive pruning, we evaluate the trainability of a candidate sub-network with parameters
ω ∈ Λk, inherited from the previous training stage. Let L be the velocity prediction loss. Using the
chain rule, the parameter update ∆ω and the corresponding change in predicted velocity ∆v can be
expressed as:

∆ω = −η∇ωv(xt)
T∇v(xt)L,

∆v(xt) = ∇ωv(xt)∆ω

= −ηΘ̂(xt,xt)∇v(xt)L,
(11)

where η is the learning rate, and Θ̂(xt,xt) = ∇ωv(xt)
T∇ωv(xt) represents the NTK of the veloc-

ity prediction network.

In the infinite-width limit, the NTK remains constant throughout training, and the expected output
µ(xt) evolves as Jacot et al. (2018):

µ(xt) = (I− e−ηΘ̂s)vt, (12)

where s is the training step index. This expression can be diagonalized in the eigenspace of Θ̂,
yielding:

µ(xt)i = (1− e−ηλis)vt,i, (13)

where λi denotes the ith eigenvalue of the NTK.

By ordering the eigenvalues as λ0 ≥ · · · ≥ λm, it is known that the maximum stable learning rate
scales as η ∼ 2/λ0. Consequently, the convergence rate of the slowest mode is governed by 1/κ,
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where κ = λ0/λm is the condition number of the kernel. A smaller κ indicates better trainability
and faster convergence.

Thus, we adopt the NTK condition number as one of our zero-shot NAS metrics:

H κ(ψ) =
λ0
λm

, (14)

where λ0 and λm denote the largest and smallest eigenvalues of the NTK, respectively.

A.4 ALGORITHM

The algorithm of Entropy-Guided Automatic Pruning is as follows:

Algorithm 1 Entropy-Guided Automatic Pruning
Input:
Γ : pruning operator;
S: total training iterations;
s: training iterations per stage;
ω: pretrained model parameters;
N : number of blocks;
Ns: pruning stage interval.
Output:
Pruned model parameters ψ.
for i ∈ [1, N ] do

Compute the transfer entropy TEi of block i using Eq. (4).

end
Rank blocks in ascending order of TEi.

for t ∈ [1, S] do
if t mod Ns = 0 then

Evaluate zero-shot performance for each candidate sub-network.
Select the optimal sub-network ψ∗ using Eq. (10).
Apply pruning: ψ ← ψ∗.

end
Train the pruned network ψ for s iterations.

end

A.5 MORE QUALITATIVE RESULTS

The sampling results produced by applying our method to the DiT model are shown in Figure 9.

Figure 9: Generated results of a series of diffusion models pruned by EntPruner. Base model is DiT-
XL/2. The pruning rates are set to 30%. Inference is performed on the CUB (column 1-2), ArtBench
(columns 3-4), and Flowers (columns 5-6) datasets, with the classifier-free guidance coefficient set
to 4.0. The sampling process involves 250 steps.
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