
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENTROPY-GUIDED AUTOMATED PROGRESSIVE PRUN-
ING FOR DIFFUSION AND FLOW MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale vision generative models, including diffusion and flow models, have
demonstrated remarkable performance in visual generation tasks. However, trans-
ferring these pre-trained models to downstream tasks often results in significant
parameter redundancy. In this paper, we propose EntPruner, an entropy-guided
automatic progressive pruning framework for diffusion and flow models. First,
we introduce entropy-guided pruning, a block-level importance assessment strat-
egy tailored for transformer-based diffusion and flow models. As the importance
of each module can vary significantly across downstream tasks, EntPruner priori-
tizes pruning of less important blocks using data-dependent transfer entropy as a
guiding metric. Second, leveraging the entropy ranking, we propose a zero-shot
Neural Architecture Search (NAS) framework during training to automatically de-
termine when and how much to prune. This dynamic strategy avoids the pitfalls of
one-shot pruning, mitigating mode collapse, and preserving model performance.
Extensive experiments on DiT and SiT models demonstrate the effectiveness of
EntPruner, achieving up to 2.22× inference speedup while maintaining competi-
tive generation quality on ImageNet and three downstream datasets.

1 INTRODUCTION

A myriad of recent breakthroughs in diffusion and flow models have demonstrated their remark-
able capabilities in image generation. The success has also been extended to audio, video, and
language domains (Huang et al., 2023; Zhu et al., 2024; Sahoo et al., 2024). The Denoising Dif-
fusion Probabilistic Model (DDPM) (Ho et al., 2020) highlighted the effectiveness of the U-Net
backbone. Recently, owing to the superior performance of Diffusion Transformers (Peebles & Xie,
2023), studies have increasingly adopted transformer-based architectures. Lipman et al. (Lipman
et al., 2022) further introduced Flow Matching, a more direct and faster generative trajectory that
offers an alternative perspective on training and inference for diffusion models. While diffusion
models have evolved rapidly in recent years, achieving near-photorealistic quality, their practi-
cal deployment remains limited due to computational inefficiency. Recent trends in architectural
design—particularly the adoption of transformer-based backbones like DiT (Peebles & Xie, 2023)
and SiT (Ma et al., 2024)—have significantly improved scalability and expressivity. However, these
advancements come at the cost of increased parameter counts and memory usage. These models
suffer from efficiency issues when deployed on edge devices or used in low-latency settings such
as interactive applications. The high computational cost and slow inference speed of diffusion and
flow models motivate us to explore more effective solutions.

To solve these problems, a majority of the arts have explored efficient pruning strategies for Stable
Diffusion (SD) models (Rombach et al., 2022). BK-SDM (Kim et al., 2024) employs a heuristi-
cally handcrafted pruning scheme and leverages distillation to recover performance after pruning.
However, its manual design limits transferability and requires substantial human efforts and compu-
tational costs. Diff-Pruning (Fang et al., 2023) removes filters by identifying unimportant weights
through gradient analysis, but its threshold must be tuned for specific tasks, restricting practical
applicability. LD-Pruner (Castells et al., 2024) introduces a novel metric to evaluate the impor-
tance of each operator and prunes unimportant convolutional and attention layers, but this metric is
task-independent. Furthermore, none of these methods have been examined on transformer-based
diffusion models, leaving their effectiveness uncertain.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Generated results of a series of flow models pruned by EntPruner. Base model is SiT-
XL/2. The pruning rates in rows 1 and 2 are set to 35%, while those in rows 3 and 4 are set to 50%.
Inference is performed on the ArtBench (column 1-2), CUB (columns 3-4), and Flowers (columns
5-6) datasets, with the classifier-free guidance coefficient set to 4.0. The sampling process involves
250 steps, and ODE solver is used.

Training a Large DiT from scratch is prohibitively costly—for example, generating 256×256 Im-
ageNet images requires roughly 4,700 GPU-hours (Yao et al., 2024). Fine-tuning is the main ap-
proach for transfer learning tasks. Although various fine-tuning techniques have been proposed to
accelerate the training process, they typically retain the computational cost of the original model
during inference (Xie et al., 2023; Li et al., 2024a). Our observations suggest that transferring
large pretrained models to downstream tasks often introduces substantial parameter redundancy, as
smaller or less complex tasks rarely require the full capacity of the original model. Moreover, many
downstream tasks—such as domain-specific generation or low-resolution synthesis—do not benefit
from the full capacity of large-scale pretrained models.

These discrepancies raise a critical challenge: how to adaptively compress diffusion models without
compromising their generative quality? Current pruning methods fail to address this in a task-aware
and scalable manner, especially when applied to transformer-based diffusion backbones. Further-
more, prior pruning work has also demonstrated a delicate trade-off between model performance
and pruning ratio: aggressive pruning often leads to instability and catastrophic forgetting, making
the post-pruning training process slow and ineffective. These challenges highlight the need for a
principled, efficient, and robust pruning framework that can adapt to various downstream settings.

Numerous studies have demonstrated that not all parameters in deep neural networks contribute
equally to model performance (Cheng et al., 2023; Guo et al., 2020; Yang et al.). As shown in Fig-
ure 2, we evaluate the contribution of each block in a pre-trained SiT-XL/2 model (trained on Ima-
geNet) to downstream task performance. Transfer entropy is particularly well-suited for evaluating
information flow and inter-layer dependency in sequential generation models like diffusion trans-
formers. Unlike simple magnitude-based or gradient-based importance measures, transfer entropy
captures the directional influence of each block on the output distribution, thereby offering a more
nuanced understanding of a block’s contribution to the model’s expressive power. Figure 2 (a) and
(b) respectively report the change in training loss and transfer entropy when individual blocks are
removed. The results indicate significant variation in how different blocks contribute to the model’s
expressivity and convergence speed. Figure 2 (c) and (d) further reveal a strong positive correla-
tion between loss and transfer entropy. Moreover, as the number of removed blocks increases, both
loss and transfer entropy tend to rise. The large variance observed across random removal trials
suggests that the impact of indiscriminate pruning is highly unpredictable and often detrimental to
convergence, making the model harder to train effectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Block Interactions in SiT. We apply masking to each block of the pre-trained SiT-XL/2
model individually and compute the corresponding transfer entropy and output loss, as shown in (a)
and (b). Blocks with higher influence—indicated by higher transfer entropy—contribute more to
faster convergence and better model performance. In (c) and (d), we randomly mask blocks in the
pre-trained SiT-XL/2 model 20 times and compute the mean and variance of the resulting loss. A
strong positive correlation is observed between transfer entropy and the associated loss, highlighting
the effectiveness of transfer entropy in quantifying block importance.

We propose a task-aware pruning framework for Transformer-based diffusion models, where each
block primarily consists of MLP and self-attention layers. The framework performs block-level
structured pruning through a two-stage process: 1) Entropy-Guided Importance Estimation: We
evaluate block interactions in the pretrained diffusion model using transfer entropy, which enables
us to rank blocks based on their contribution to the overall model behavior. 2) Automatic progres-
sive pruning: We first introduce a linear pruning scheme, based on which we introduce an erasure
operator to determine when and how much to prune by solving the optimization problem. To further
reduce computational overhead, we integrate multiple zero-shot Neural Architecture Search (NAS)
metrics, allowing us to reformulate pruning as a sub-network architecture search problem that can
be solved with minimal cost.

Our framework accurately identifies the least important components for each downstream task,
thereby minimizing disruption to the pretrained weights. It autonomously determines the opti-
mal pruning schedule at different training stages, resulting in faster convergence while maintain-
ing near-lossless performance. Through extensive experiments on multiple benchmark datasets and
two widely-used diffusion architectures (DiT and SiT), we show that our entropy-guided pruning
framework not only reduces model size and inference cost but also achieves superior or comparable
generative performance compared to full fine-tuning and existing pruning baselines (Figure 1). This
work bridges a gap in the compression of diffusion Transformers and offers a practical solution for
their deployment in resource-constrained environments.

The main contributions are summarized as follows:

• We introduce Transfer Entropy (TE) to evaluate the interaction between blocks and rank the
importance of each block, so that the network performance will be less or even not degraded
during the pruning process.

• We further propose an Entropy-Guided Automatic Pruning Framework (EntPruner), which
can automatically select the optimal pruning time and pruning rate during training, making the
post-pruning training process more stable and less loss of performance.

• Our method is validated on a wide range of benchmark datasets, with an average FID drop of
only 1.76 at a 50% pruning rate, while the inference speed is 2.22× faster than the full model.
These excellent experimental performances demonstrate the potential of our method for different
diffusion models and downstream tasks.

2 ENTROPY-GUIDED PROGRESSIVE PRUNING FOR DIFFUSION AND FLOW
MODELS

2.1 DIFFUSION AND FLOW MODELS

Both diffusion and flow models corrupt data x∗ ∼ p(x) by progressively injecting noise ϵ ∼
N (0, I). A unified forward process can be written as xt = αtx∗ + σtϵ, where αt and σt are
time-dependent functions. In score-matching diffusion models, the process is usually defined on

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

I. Pruning Schedule II. Auto search III. Stage k Train

Input

Output

Input

Output

Input

Output

Input

Output

I. Calculate TE II. Rank with TE

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Transfer
Entropy(TE)

Figure 3: Entropy-guided automatic pruning framework. At first, we employ transfer entropy
to evaluate and rank the expressiveness of individual blocks, where darker regions in the heatmap
indicate stronger interactions with the overall network. At each pruning stage, the pruning schedule
explores candidate subnetworks under different pruning ratios, selects the optimal one using zero-
shot NAS proxies, and inherits parameters from the previous stage.

discrete time steps, and xt converges to N (0, I) as t → ∞. Flow-matching methods, in contrast,
restrict the trajectory to t ∈ [0, 1] and set α0 = σ1 = 1 and α1 = σ0 = 0, so that xt converges to
N (0, I) precisely at t = 1. In the reverse process, both flow matching and score-based diffusion
models can be implemented by learning to invert the forward dynamics using either a stochastic dif-
ferential equation (SDE) (Albergo & Vanden-Eijnden, 2022) or probability flow ordinary differential
equation (ODE) (Albergo et al., 2023).

2.2 OVERVIEW.

Our goal is to enhance the efficiency of Transformer-based diffusion models (DMs) by removing
blocks with minimal interactions, thereby achieving model lightweighting without sacrificing per-
formance. To this end, we first need to establish a pruning priority: given a target pruning ratio r,
less informative blocks should be pruned first, while more critical blocks are preserved. Transfer
entropy (TE) (Schreiber, 2000; Lin et al., 2024b) provides a reliable measure of both the infor-
mation contained in each block and its complex interactions within the network. By leveraging
transfer entropy, we can quantitatively assess block importance and systematically determine which
less essential blocks should be pruned. Prior studies have shown that a large pruning rate often
disrupts the pretrained model’s prior, leading to irreversible performance degradation. Conversely,
an appropriate pruning ratio can effectively balance efficiency and accuracy. Therefore, we propose
a progressive pruning framework. We first define a pruning schedule Ψ for progressive pruning,
which consists of a sequence of sub-networks, and the pruning space set is ξ. Let L denote the task
loss, Ω the model size, and ω the set of model parameters. The objective of progressive pruning can
be formulated as:

min
ω,Ψ,Γ

{L(ω,Ψ), Ω} . (1)

To reduce the complexity of optimizing over Ψ, we adopt a linear pruning space based on a pre-
defined pruning ratio. To ensure that the model is sufficiently optimized after each pruning step,
the whole pruning process is divided into k stages (default k = 4), with each stage consisting of
s = S/k training iterations. For a target pruning ratio r, the schedule is defined as Ψ = {ψi}|k|i=1,
where ψk retains (1 − r)% of the original parameter count. Throughout training, the model size is
gradually reduced according to Ψ.

Pruning redundant operators in predefined neural networks to search for optimal sub-networks is
a key research direction in the field of Neural Architecture Search (NAS) (Chen et al., 2023b).
Exsisting studies have investigated how to identify important sub-networks starting from a supernet

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

that encompasses all candidate connections and operations (Wang et al., 2023; Li et al., 2023a). We
optimize the pruning schedule Ψ via zero-shot NAS, where each candidate subnetwork is evaluated
by NTK condition numbers and ZiCo scores. These metrics jointly capture convergence properties
and gradient stability, enabling Ψ to automatically select and prune less informative blocks while
preserving the trainability of the subnetwork.

2.3 QUANTIFYING THE IMPORTANCE OF BLOCKS WITH TRANSFER ENTROPY

Entropy Quantification. Given a denoising network, let the distribution of output feature maps be
denoted as p(x), x ∈ X, where X represents the set of output feature maps from the network. The
entropy can be expressed as:

H(X) = −
∫
p(x) log p(x) dx, x ∈ X. (2)

For tractability, we assume that p(x) follows a Gaussian distribution, i.e., X ∼ N (µ, σ2). Eq.(2)
can be written as:

H(X) = −E[logN (µ, σ2)]

= −E[log[(2πσ2)−1/2 exp(− 1

2σ2
(f − µ)2)]]

= log(σ) +
1

2
log(2π) +

1

2

(3)

Interaction among Blocks. The complexity of interactions between layers with diffusion models
can serve as an indicator of their importance to the whole network. However, this cannot be imple-
mented by simple entropy quantification. Transfer entropy(TE) (Schreiber, 2000; Lin et al., 2024b)
addresses this limitation by quantifying the information discrepancy between a original and a target
network. The formulation of TE is defined as:

TE = H(Xoriginal)−H(Xtarget)

= H(Xout)−H(Xout | Mask{blocki}),
(4)

where H(Xout) denotes the entropy of the original network output, and H(Xout | Mask{blocki})
represents the entropy after masking the ith block. Therefore, Eq. (4) provides a metric to evaluate
the effect of removing a certain block on the entire pretrained model.

2.4 AUTOMATIC PRUNING VIA ZERO-SHOT NEURAL NETWORK SEARCH.

Assume that H is a zero-shot performance predictor used to estimate the loss of each candidate
sub-network. The optimal sub-network at stage k can be identified by solving:

ψ∗
k = argmin

ψk∈Λk

{H(ω(ψk)), Ω} ,

where Λk = {ψ ∈ ξ | |ω(ψ)| ≤ |ω(ψk−1)|} .
(5)

where Λk denotes the set of candidate sub-networks whose parameter sizes are no larger than that
of ψk−1, the sub-network from the previous pruning stage.

Trainability via the NTK Condition Number in Flow Matching. The trainability of a neural
network reflects how effectively it can be optimized via gradient descent. While larger models offer
more expressivity, this does not guarantee practical trainability. The Neural Tangent Kernel (NTK)
provides a useful tool for analyzing convergence in the infinite-width regime (Jacot et al., 2018;
Novak et al., 2022).

In flow matching, a denoising network learns the velocity field v(t, xt) that transports noisy samples
xt = αtx∗+σtϵ toward data x∗. The true velocity is v(t, xt) = α̇tx∗+ σ̇tϵ, and the model vθ(xt, t)
is trained to approximate it. For a candidate sub-network with parameters ω, the update of predicted
velocity satisfies

∆v(xt) = −η Θ̂(xt, xt)∇v(xt)L, (6)

where Θ̂ is the NTK of the velocity predictor.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In the infinite-width limit, the training dynamics are governed by the eigenvalues {λi} of Θ̂. The
maximum stable learning rate scales as η ∼ 2/λ0, while the convergence of the slowest mode
depends on 1/κ, where κ = λ0/λm. A smaller κ indicates faster and more stable convergence.
Thus, we adopt the NTK condition number as a zero-shot NAS metric:

Hκ(ψ) =
λ0
λm

. (7)

where λ0 and λm denote the largest and smallest eigenvalues of the NTK, respectively. More details
are provided in Appendix A.3.

Convergence Rate and Generalization Capacity via Gradient Analysis. Convergence and ex-
pressivity also directly influence the final performance of a neural network. After a number of
training steps, a network with a larger absolute mean of gradient and smaller standard deviation
of gradient is generally associated with lower training loss and faster convergence. Interestingly, a
smaller gradient variance often correlates with a lower maximum eigenvalue Θ of the NTK, which
implies a smoother loss landscape and better generalization performance (Lewkowycz et al., 2020).

We adopt ZiCo as one of the zero-shot NAS metrics, which jointly considers the absolute mean and
standard deviation of gradient. The parameters of a candidate sub-network ω are also inherited from
the trained parameters ω∗ of the previous pruning stage. Since the ZiCo metric has been shown
to correlate positively with network trainability, we introduce a negative sign to make it positively
correlated with loss, allowing it to be minimized during optimization:

HZiCo(ψ) = −
N∑
l=1

log

(∑
ω∈ωl

E [|∇ωL∗|]
σ (|∇ωL∗|)

)
. (8)

where N denotes the number of layers in the candidate sub-network, ωl is the set of parameters in
the lth layer, L∗ is the loss L(xt,i,vt,i;ω), i ∈ {1, . . . , D} and D is the number of training batches,
typically set to 2 to balance stability and efficiency.

2.5 ENTROPY-GUIDED AUTOMATIC PROGRESSIVE PRUNING FRAMEWORK

We summarize the overall algorithmic workflow of EntPruner as follows. First, we perform block-
level importance ranking using transfer entropy to evaluate the contribution of each block in the
pretrained model. Second, we employ two zero-shot NAS proxies to guide the pruning schedule at
each training stage. The optimization objective, as reformulated from Eq. (5) is:

ψ⋆k = arg min
ψk∈Λk

{Hκ(ψk), HZiCo(ψk), Ω} . (9)

A key challenge lies in how to jointly optimize the two proxies. We assume both proxies are equally
important for maintaining network performance and training efficiency. A common strategy is to
apply a voting-based algorithm to select the optimal candidate sub-network. This approach helps
mitigate differences in scale between the two metrics. Additionally, we incorporate model’ parame-
ters as a regularization term in the selection process. The final optimization is defined as:

ψ⋆k = arg min
ψk∈Λk

R(ψk),

s.t.R(ψk) = R(Hκ(ψk)) +R(HZiCo(ψk)) + γR(Ω).
(10)

where R(·) denotes the ranking score (e.g., 1st, 2nd, ..., R-th) and γ is the regularization factor
default set to 0.5. The candidate with the lowest rank in each individual metric receives the smallest
score, and the sub-network ψ⋆k with the lowest total rank is selected for the next training stage.
Appendix A.4 shows the Algorithm of our EntPruner.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

We evaluate the effectiveness of our proposed method on DiT-XL/2 and SiT-XL/2 models with an
image resolution of 256×256. We conduct experiments on both diffusion-based DiT and flow-
matching-based SiT. All experiments are conducted on a computing platform equipped with 8
NVIDIA A800 GPUs (80 GB), with DiT trained for 240K steps and SiT for 60K steps. We fine-tune
SiT and DiT on downstream tasks following the configuration in (Xie et al., 2023; Ma et al., 2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

O
ur
s

LD
-P
ru
ne
r

Figure 4: Qualitative comparison of flow models pruned by different methods. Base model
is SiT-XL/2, with 35% pruning rate. Datasets are Flowers (column 1-2), CUB (column 3-4), and
ArtBench (column 5-6). Our EntPruner consistently generates finer details and better quality.

Table 1: Comparison of flow models pruned by dif-
ferent methods. We use SiT as the base model and
evaluate with both ODE and SDE samplers on three
datasets. ↓ and ↑ indicate whether lower or higher
values are better.

Method Sparsity CUB Flowers ArtBench Params (M) Speedup

FID↓ IS↑ FID↓ IS↑ FID↓ IS↑
Fine-tuning (ODE) / 5.32 6.02 11.78 3.71 8.80 7.32 675.12 ×1

LD-Pruner (ODE) 35% 5.70 6.03 12.02 3.75 10.78 6.63 435.78 ×1.82
Ours (ODE) 5.48 6.07 11.75 3.82 10.03 6.88 435.78 ×1.82

LD-Pruner (ODE) 50% 6.86 6.16 12.09 3.79 12.81 6.35 334.67 ×2.22
Ours (ODE) 6.68 6.18 11.86 3.82 12.65 6.41 334.67 ×2.22

Fine-tuning (SDE) / 5.17 5.87 12.47 3.77 13.33 6.56 675.12 ×1

LD-Pruner (SDE) 35% 5.24 6.10 12.32 3.74 16.16 6.20 435.78 ×1.49
Ours (SDE) 5.22 6.11 12.10 3.74 15.25 6.31 435.78 ×1.49

LD-Pruner (SDE) 50% 5.98 6.19 12.92 3.75 18.74 5.90 334.67 ×1.85
Ours (SDE) 5.83 6.15 12.77 3.77 18.69 5.90 334.67 ×1.85

Table 2: Comparison of diffusion mod-
els trained by different methods. We use
DiT as the base model and compare on
three datasets. Our method achieves com-
parable results with full fine-tuning and
other efficient tuning methods with 1.33×
inference speedup.

Method Sparsity CUB Flowers ArtBench Params (M) Speedup

Full Fine-tuning / 5.68 21.05 25.31 673.8 ×1

Ours 30% 5.50 11.99 24.99 471.66 ×1.33

Adapt-Parallel - 7.73 21.24 38.43 678.08 -
Adapt-Sequential - 7.00 21.36 35.04 678.08 -
BitFit - 8.81 20.31 24.53 674.41 -
VPT-Deep - 17.29 25.59 40.74 676.61 -
LoRA-R8 - 56.03 164.13 80.99 674.94 -
LoRA-R16 - 58.25 161.68 80.72 675.98 -
DiffFit - 5.48 20.18 20.87 674.63 -

We select three fine-grained image datasets as the calibration datasets for pruning: CUB-200-
2011 (Wah et al., 2011), Oxford Flowers (Nilsback & Zisserman, 2008), and ArtBench-10 (Liao
et al., 2022). Notably, ArtBench-10 exhibits a distribution that significantly differs from ImageNet,
allowing us to comprehensively evaluate the generalization performance of EntPruner on out of dis-
tribution tasks. For the DiT model, we adopt the DDPM sampler, while for SiT, we employ an ODE
solver and SDE solver. We report results based on 50 sampling steps. To assess generative quality,
we utilize two widely adopted evaluation metrics: Fréchet Inception Distance (FID) and Inception
Score (IS). We measure efficiency using inference latency and the number of parameters.

3.2 ENTROPY-GUIDED AUTOMATIC PROGRESSIVE PRUNING ON DOWNSTREAM DATASETS

Class to Image Generation with Flow Models. To evaluate the effectiveness of our approach, we
compare it with LD-Pruner (Castells et al., 2024) on the SiT architecture. As shown in Table 1,
our method consistently outperforms LD-Pruner at both 35% and 50% pruning ratios, when pruning
35% of the parameters, we achieve 3.9%, 2.2%, and 6.9% FID improvements on the three bench-
mark datasets with an ODE sampler. Notably, on Flowers dataset, our method surpasses full fine-
tuning when pruning 35% of the parameters, achieving the best overall performance. We observe
slight variations across different samplers, with the SDE sampler exhibiting longer sampling times
compared to the ODE. Nevertheless, our method consistently outperforms LD-Pruner regardless of
the sampling strategy. While both pruning methods exhibit performance degradation on ArtBench,
likely due to the substantial distribution gap between ArtBench and ImageNet. However, EntPruner
still outperforms LD-Pruner, demonstrating strong robustness and superior generalization.

We qualitatively compare the image generation quality of EntPruner and LD-Pruner. In these ex-
periments, we use the same random seed, set the classifier-free guidance scale to 4.0, and adopt 250
sampling steps. As shown in Figure 4, our method consistently produces images with finer details
and better quality. On the CUB and Oxford Flowers datasets, EntPruner tends to generate close-up
views of the subject, enriching detail and enhancing aesthetic quality. On the ArtBench dataset,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Qualitative comparison of flow models pruned by different methods on ImageNet
256×256. Base model is SiT with 30% pruning rate. Our EntPruner consistently produces more
photorealistic images with fewer generation artifacts.

our approach captures more realistic textures in structures such as houses and trees, resulting in
improved visual fidelity compared to LD-Pruner.

Class to Image Generation with Diffusion Models. We apply EntPruner on DiT and compare
with full fine-tuning. As shown in Table 2, our method outperforms full fine-tuning across all three
datasets. Notably, on Flowers, EntPruner reduces the FID relatively by 43.04%. Furthermore,
EntPruner improves inference efficiency, achieving a 1.33× speedup compared to full fine-tuning.
In addition, we benchmark EntPruner against state-of-the-art fine-tuning strategies. Our method
matches or surpasses the performance of efficient fine-tuning baselines, while offering 1.33× faster
inference.

Figure 6: Tradeoff between computational cost
(MACs) and generative quality (FID). The
rightmost point represents the full model.

Inference Efficiency Across Parameter Bud-
gets. Figure 6 compares the FID scores
vs. computational complexity (measured by
MACs) of EntPruner and LD-Pruner across
three datasets: CUB, Flowers, and Art-
Bench. Notably, EntPruner consistently out-
performs LD-Pruner across all configurations.
At medium complexity, the gap between the
two is most obvious. Table 1 and Figure 6
jointly demonstrate that EntPruner maintains
lower FID scores even under reduced MACs on
CUB and Flowers datasets, demonstrating better robustness in resource-constrained settings. On
ArtBench dataset, the performance gap between the two methods is most pronounced, further high-
lighting EntPruner’s superior generalization ability and pruning efficiency for complex image gen-
eration tasks. See Appendix A.2 for more details.

3.3 ENTROPY-GUIDED AUTOMATIC PROGRESSIVE PRUNING ON IMAGENET 256×256

Table 3: Comparison of flow models
pruned by different methods on Ima-
geNet 256×256. Base model is SiT with
30% pruning rate. We also include full
model performance of different generative
models as a reference.

Method Params(M) FID↓ Speedup

BigGAN-deep 112 6.95 -
StyleGAN-XL 166 2.30 -

ADM 554 10.94 -
LDM-4-G 400 3.60 -
DiT-XL/2 (DDPM) 675.12 2.27 ×0.43
SiT-XL/2 (ODE) 675.12 2.15 ×1

LD-Pruner (SiT,ODE) 471.66 6.81 ×1.33
Ours (SiT,ODE) 471.66 3.53 ×1.33

To further demonstrate the effectiveness and robust-
ness of our pruning method on pretrained models, we
directly apply our pruning strategy to compress mod-
els pretrained on ImageNet 256×256. The experimen-
tal setup follows the same configuration as Section 3.1,
where SiT is trained using flow matching. During sam-
pling, we employ an ODE solver and adhere to stan-
dard evaluation protocols (Peebles & Xie, 2023; Ma
et al., 2024).

As shown in Table 3, with a pruning ratio of 30% on
ImageNet, our method achieves a final FID of 3.53,
only a degradation of 1.38 compared to the original
SiT-XL/2. Notably, it surpasses the recent pruning
method LD-Pruner by 48.16%, further validating our
method’s ability to mitigate parameter collapse often caused by one-shot pruning. Moreover, in
terms of inference speed, our method achieves a 1.33× speedup compared to SiT, and a 209.30%
speed improvement compared to DiT, highlighting its practical inference efficiency.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

As shown in Figure 5, we present qualitative results demonstrating the impact of pruning on image
generation quality. It is evident that pruning with LD-Pruner leads to significant degradation in
visual fidelity. For instance, generated images exhibit missing features such as the eyes of a dog,
fine details of a raccoon, aesthetically pleasing text on hot air balloons, well-structured cakes, and the
tusks of an elephant. In contrast, our method preserves more structural details and visual coherence.
By pruning at more appropriate stages, our approach enables the final model to maintain robust
generative performance while retaining essential semantic content.

3.4 ABLATION STUDY

Table 4: Ablation studies on Auto pruning
and Entropy-Guided pruning. Results are
reported on SiT using Oxford Flowers.

Method FID ↓ IS ↑ Params Speedup

Full Fine-tuning 11.78 3.71 675.12 ×1

w/o Entropy-Guided 12.06 3.81 435.78 ×1.82
w/o Auto Pruning 11.84 3.80 435.78 ×1.82

Ours 11.75 3.82 435.78 ×1.82

Entropy-Guided Pruning. We perform an ablation
study to evaluate the effectiveness of entropy-guided
importance ranking. Random pruning leads to high
variance and instability, so we prune blocks with the
highest transfer entropy, which are identified as most
critical by our metric. As illustrated in Table 4, prun-
ing blocks with high entropy causes a substantial per-
formance drop, which cannot be fully recovered even
through continued fine-tuning. which proves that
transfer entropy is a reliable indicator of parameter importance in pretrained networks.

Automated Pruning. We conduct an ablation study on automated pruning. The results are pre-
sented in Table 4, demonstrating that one-shot pruning or premature pruning significantly degrades
model performance. In contrast, our method autonomously determines both the timing and extent
of pruning, allowing the model to maintain competitive performance, while achieving lower FID
scores, and even converging to better solutions than full fine-tuning in some cases.

4 RELATED WORK

Diffusion Models (Ho et al., 2020; Zhang et al., 2023; Ruiz et al., 2023) have achieved remarkable
progress in image synthesis, with recent designs shifting from U-Nets to Transformer backbones
for better scalability (Peebles & Xie, 2023; Ma et al., 2024; Chen et al., 2024). While these works
focus on boosting generative quality, our approach instead addresses their efficient deployment via
entropy-guided pruning.

Automated Machine Learning. AutoML automates model design and optimization (Liu et al.,
2018; Tan et al., 2019; Cubuk et al., 2019). NAS approaches fall into multi-shot (Real et al., 2019),
one-shot (Li et al., 2020), and zero-shot (Lin et al., 2021; Yang & Liu, 2024; Li et al., 2024b)
categories. Unlike traditional NAS that searches from scratch, we leverage zero-shot proxies to
prune pretrained diffusion Transformers, combining AutoML efficiency with pretrained stability.

Efficient Inference for Diffusion Models. The inference cost of diffusion models is primarily influ-
enced by the number of inference steps and the computational cost. The former includes advanced
solvers (Lu et al., 2022) and distillation (Lin et al., 2024a; Ren et al., 2024), while the latter ex-
plores pruning (Castells et al., 2024; Fang et al., 2023), quantization (Li et al., 2023b), and adaptive
compression (Lu et al., 2023; Chen et al., 2023a; Guo et al., 2020). Our work extends this line by
reframing block-level pruning as a zero-shot NAS problem, achieving lightweight yet performant
diffusion Transformers.

5 CONCLUSION AND LIMITATION

We present an entropy-guided automatic pruning framework that leverages zero-shot NAS to adap-
tively rank block importance and determine pruning ratios across tasks. Our method preserves pre-
trained knowledge, mitigates performance collapse, and achieves faster inference while maintaining
generation quality comparable to full fine-tuning. A potential limitation is that its ease of deploy-
ment may also enable misuse in unregulated or adversarial scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. Ld-pruner: Efficient
pruning of latent diffusion models using task-agnostic insights. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 821–830, 2024.

Junsong Chen, Jincheng YU, Chongjian GE, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In The Twelfth International Conference on Learning Rep-
resentations, 2024.

Tianyi Chen, Tianyu Ding, Zhihui Zhu, Zeyu Chen, HsiangTao Wu, Ilya Zharkov, and Luming
Liang. Otov3: Automatic architecture-agnostic neural network training and compression from
structured pruning to erasing operators. arXiv preprint arXiv:2312.09411, 2023a.

Tianyi Chen, Luming Liang, Tianyu Ding, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic,
generic, user-friendly. arXiv preprint arXiv:2303.06862, 2023b.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning-
taxonomy, comparison. Analysis, and Recommendations, 2023.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 113–123, 2019.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Jinyang Guo, Weichen Zhang, Wanli Ouyang, and Dong Xu. Model compression using progressive
channel pruning. IEEE Transactions on Circuits and Systems for Video Technology, 31(3):1114–
1124, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
diffusion models. In International Conference on Machine Learning, pp. 13916–13932. PMLR,
2023.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: A lightweight,
fast, and cheap version of stable diffusion. In European Conference on Computer Vision, pp. 381–
399. Springer, 2024.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, and Xi-
aojun Chang. Block-wisely supervised neural architecture search with knowledge distillation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1989–1998, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Changlin Li, Jiawei Zhang, Sihao Lin, Zongxin Yang, Junwei Liang, Xiaodan Liang, and Xiaojun
Chang. Efficient training of large vision models via advanced automated progressive learning.
arXiv preprint arXiv:2410.00350, 2024a.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. Zico: Zero-shot nas via
inverse coefficient of variation on gradients. arXiv preprint arXiv:2301.11300, 2023a.

Guihong Li, Duc Hoang, Kartikeya Bhardwaj, Ming Lin, Zhangyang Wang, and Radu Marculescu.
Zero-shot neural architecture search: Challenges, solutions, and opportunities. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024b.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 17535–17545, 2023b.

Peiyuan Liao, Xiuyu Li, Xihui Liu, and Kurt Keutzer. The artbench dataset: Benchmarking genera-
tive models with artworks. arXiv preprint arXiv:2206.11404, 2022.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong
Jin. Zen-nas: A zero-shot nas for high-performance image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 347–356, 2021.

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024a.

Sihao Lin, Pumeng Lyu, Dongrui Liu, Tao Tang, Xiaodan Liang, Andy Song, and Xiaojun Chang.
Mlp can be a good transformer learner. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 19489–19498, 2024b.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 19–34, 2018.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Xiaotong Lu, Weisheng Dong, Xin Li, Jinjian Wu, Leida Li, and Guangming Shi. Adaptive search-
and-training for robust and efficient network pruning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(8):9325–9338, 2023.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pp. 23–40. Springer, 2024.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Roman Novak, Jascha Sohl-Dickstein, and Samuel S Schoenholz. Fast finite width neural tangent
kernel. In International Conference on Machine Learning, pp. 17018–17044. PMLR, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng Xiao.
Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. arXiv preprint
arXiv:2404.13686, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500–
22510, 2023.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Thomas Schreiber. Measuring information transfer. Physical review letters, 85(2):461, 2000.

Hossein Talebi and Peyman Milanfar. Nima: Neural image assessment. IEEE transactions on image
processing, 27(8):3998–4011, 2018.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Guangrun Wang, Changlin Li, Liuchun Yuan, Jiefeng Peng, Xiaoyu Xian, Xiaodan Liang, Xiaojun
Chang, and Liang Lin. Dna family: Boosting weight-sharing nas with block-wise supervisions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(5):2722–2740, 2023.

Enze Xie, Lewei Yao, Han Shi, Zhili Liu, Daquan Zhou, Zhaoqiang Liu, Jiawei Li, and Zhenguo
Li. Difffit: Unlocking transferability of large diffusion models via simple parameter-efficient
fine-tuning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
4230–4239, 2023.

Jiechao Yang and Yong Liu. Etas: Zero-shot transformer architecture search via network trainability
and expressivity. In Findings of the Association for Computational Linguistics ACL 2024, pp.
6780–6795, 2024.

Mingzhe Yang, Sihao Lin, Changlin Li, and Xiaojun Chang. Let llm tell what to prune and how
much to prune. In Forty-second International Conference on Machine Learning.

Jingfeng Yao, Cheng Wang, Wenyu Liu, and Xinggang Wang. Fasterdit: Towards faster diffusion
transformers training without architecture modification. Advances in Neural Information Pro-
cessing Systems, 37:56166–56189, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 3836–3847, 2023.

Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Zilong Dong, Yinghui Xu, Xun Cao, Yao Yao,
Hao Zhu, and Siyu Zhu. Champ: Controllable and consistent human image animation with 3d
parametric guidance. In European Conference on Computer Vision, pp. 145–162. Springer, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

35
%

 p
ru

ni
ng

O
ur

s
35

%
 p

ru
ni

ng
LD

-P
ru

ne
r

35
%

 p
ru

ni
ng

LD
-P

ru
ne

r
35

%
 p

ru
ni

ng
O

ur
s

5.034 +- (1.490)
5.293 +- (1.539)

4.600 +- (1.674)
 4.752 +- (1.692)

Figure 7: Visualization of the sampling process of SiT models pruned with different methods.
From left to right, each column corresponds to sampling steps 50, 100, 150, 200 and 250, respec-
tively.

A.1 PERFORMANCE OF DIFFERENT METHODS

Figure 8: Comparison of training loss
trajectories across different methods.

To better understand the generative behavior of different
methods, we visualize the denoising trajectories starting
from the same noise latent. As shown in Figure 7, we
track the intermediate outputs along the denoising path
for each method. While both models begin from identi-
cal noise, our method consistently produces more visually
appealing and coherent results compared to LD-Pruner.
In addition, we evaluate the aesthetic quality of generated
images using the Neural Image Assessment (NIMA) met-
ric (Talebi & Milanfar, 2018). NIMA employs a trained
deep convolutional neural network to predict how users
would rate an image in terms of technical quality and aes-
thetic appeal. Experimental results show that our method
outperforms LD-Pruner by 0.259 and 0.152 points in aesthetic scores, respectively, demonstrating
the effectiveness of our approach in preserving visual quality. Figure 8 illustrates the loss trajectory
during training with SiT on ArtBench dataset. Owing to our automated pruning strategy, model
compression is performed progressively, avoiding abrupt parameter collapse. This leads to faster
and more stable convergence.

A.2 INFERENCE EFFICIENCY ACROSS PARAMETER BUDGETS.

We evaluate the inference efficiency of our method applied to both SiT and DiT under vary-
ing parameter scales. FID is reported as the average across three benchmark datasets. Multi-
ply–Accumulate Operations (MACs) are used to quantify the computational complexity of each

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Inference Efficiency Evaluation. We apply our proposed method to both SiT and DiT
models to systematically assess inference efficiency under varying parameter budgets.

Method Params Avarage
FID

MACs
(G)

Latency
(s/per)

GPU Memory
(GB/per)

DiT/DDPM 675.12 17.35 228.85 0.41 5.35
483.88 14.16 163.48 0.31 4.56

SiT/ODE
675.12 8.63 228.85 0.20 5.32
435.78 9.08 147.13 0.11 4.39
334.67 10.39 114.45 0.09 3.99

SiT/SDE
675.12 10.32 228.85 0.76 5.36
435.78 10.85 147.13 0.51 4.38
334.67 12.43 114.45 0.41 3.93

model. In addition, per-image inference time is measured with a batch size of 256. Peak memory
usage is recorded as maximum GPU memory required for a single-image inference on A800.

As shown in Table 5, on DiT, pruning 30% of parameters leads to an 18.4% improvement in average
FID compared to full fine-tuning. This result reinforces the insight that large-scale models often
contain substantial parameter redundancy when transferred to downstream tasks—redundancy that
can hinder rather than help model performance. Our pruning strategy is block-level, which allows
the computational complexity (as measured by MACs) to decrease proportionally with reduction in
parameter count. For instance, when the parameter count is reduced by 35% and 50%, the corre-
sponding MACs are also reduced by approximately 35% and 50%. We further observe that for SiT,
using the Euler-based SDE sampler results in the slowest inference speed, whereas the ODE sampler
offers the fastest. At a pruning rate of 35%, the FID scores of both samplers decrease (by 0.53 and
0.45), while the memory usage decreases by 18.3% and 19.8%.

A.3 TRAINABILITY VIA THE CONDITION NUMBER OF NTK IN FLOW MATCHING.

The trainability of a neural network reflects its ability to be effectively optimized via gradient de-
scent. While a network with more parameters theoretically possesses greater expressivity, this does
not guarantee practical trainability. The Neural Tangent Kernel (NTK) provides a powerful analyti-
cal tool for assessing the convergence behavior of deep networks under gradient-based optimization,
particularly in infinite-width regime (Jacot et al., 2018; Novak et al., 2022).

During progressive pruning, we evaluate the trainability of a candidate sub-network with parameters
ω ∈ Λk, inherited from the previous training stage. Let L be the velocity prediction loss. Using the
chain rule, the parameter update ∆ω and the corresponding change in predicted velocity ∆v can be
expressed as:

∆ω = −η∇ωv(xt)
T∇v(xt)L,

∆v(xt) = ∇ωv(xt)∆ω

= −ηΘ̂(xt,xt)∇v(xt)L,
(11)

where η is the learning rate, and Θ̂(xt,xt) = ∇ωv(xt)
T∇ωv(xt) represents the NTK of the veloc-

ity prediction network.

In the infinite-width limit, the NTK remains constant throughout training, and the expected output
µ(xt) evolves as Jacot et al. (2018):

µ(xt) = (I− e−ηΘ̂s)vt, (12)

where s is the training step index. This expression can be diagonalized in the eigenspace of Θ̂,
yielding:

µ(xt)i = (1− e−ηλis)vt,i, (13)

where λi denotes the ith eigenvalue of the NTK.

By ordering the eigenvalues as λ0 ≥ · · · ≥ λm, it is known that the maximum stable learning rate
scales as η ∼ 2/λ0. Consequently, the convergence rate of the slowest mode is governed by 1/κ,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where κ = λ0/λm is the condition number of the kernel. A smaller κ indicates better trainability
and faster convergence.

Thus, we adopt the NTK condition number as one of our zero-shot NAS metrics:

H κ(ψ) =
λ0
λm

, (14)

where λ0 and λm denote the largest and smallest eigenvalues of the NTK, respectively.

A.4 ALGORITHM

The algorithm of Entropy-Guided Automatic Pruning is as follows:

Algorithm 1 Entropy-Guided Automatic Pruning
Input:
Γ : pruning operator;
S: total training iterations;
s: training iterations per stage;
ω: pretrained model parameters;
N : number of blocks;
Ns: pruning stage interval.
Output:
Pruned model parameters ψ.
for i ∈ [1, N] do

Compute the transfer entropy TEi of block i using Eq. (4).

end
Rank blocks in ascending order of TEi.

for t ∈ [1, S] do
if t mod Ns = 0 then

Evaluate zero-shot performance for each candidate sub-network.
Select the optimal sub-network ψ∗ using Eq. (10).
Apply pruning: ψ ← ψ∗.

end
Train the pruned network ψ for s iterations.

end

A.5 MORE QUALITATIVE RESULTS

The sampling results produced by applying our method to the DiT model are shown in Figure 9.

Figure 9: Generated results of a series of diffusion models pruned by EntPruner. Base model is DiT-
XL/2. The pruning rates are set to 30%. Inference is performed on the CUB (column 1-2), ArtBench
(columns 3-4), and Flowers (columns 5-6) datasets, with the classifier-free guidance coefficient set
to 4.0. The sampling process involves 250 steps.

15

	Introduction
	Entropy-Guided Progressive Pruning for Diffusion and Flow Models
	Diffusion and Flow Models
	Overview.
	Quantifying the Importance of Blocks with Transfer Entropy
	Automatic Pruning via Zero-Shot Neural Network Search.
	Entropy-Guided Automatic Progressive Pruning Framework

	Experiment
	EXPERIMENTAL SETUP
	Entropy-Guided Automatic Progressive Pruning on Downstream Datasets
	Entropy-Guided Automatic Progressive Pruning on ImageNet 256×256
	Ablation Study

	Related Work
	Conclusion and Limitation
	Appendix
	Performance of Different Methods
	Inference Efficiency Across Parameter Budgets.
	Trainability via the Condition Number of NTK in Flow Matching.
	Algorithm
	More Qualitative Results

