

SAMPLE SMART, NOT HARD: CORRECTNESS-FIRST DECODING FOR BETTER REASONING IN LLMS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Large Language Models (LLMs) are increasingly applied to complex tasks that
012 require extended reasoning. In such settings, models often benefit from diverse
013 chains-of-thought to arrive at multiple candidate solutions. This requires two
014 competing objectives: to inject enough stochasticity to explore multiple reasoning
015 chains, and to ensure sufficient accuracy and quality in each path. Existing works
016 pursue the first objective by increasing exploration at highly uncertain steps with
017 higher temperature or larger candidate token sets, while others improve reliability
018 by rejecting samples with low confidence post-generation, implying that low
019 confidence correlates with low answer quality. These two lines of thought are in
020 conflict, as they conflate different sources of uncertainty. To resolve this, we argue
021 that the decoding rule should be calibrated by *correctness*, not confidence alone.
022 We should sample from tokens with higher estimated correctness, and
023 reduce sampling where expected correctness is low. We propose simple strategies
024 that achieve this goal: **Greedy-Threshold** makes sampling greedy at very
025 low confidence steps. **Calibrated-TopK** and **Calibrated- ϵ** set truncation threshold
026 based on estimated rank-wise correctness. Together, our findings challenge
027 prevailing heuristics about decoding under uncertainty, showing consistent gains
028 across reasoning benchmarks, with up to 6% improvement in AIME.
029

1 INTRODUCTION

030 Large Language Models (LLMs) are used for a wide range of generation tasks, ranging from
031 open-ended text to structured problem-solving. In many cases, producing more than one candidate
032 output improves not only fluency, but also reliability, since different samples may capture alternative
033 valid continuations (Wang et al., 2023; Lin et al., 2024). This practice highlights a fundamental
034 trade-off: introducing enough randomness to explore multiple options while still ensuring the
035 accuracy and quality of each individual output (Tan et al., 2024; Meister et al., 2024; Shi et al.,
036 2024). Existing works optimize exploration by raising temperatures or enlarging candidate token
037 sets step-by-step (Nguyen et al., 2025; Zhang et al., 2024; Hewitt et al., 2022). These methods
038 assume that *higher entropy is a signal of uncertainty* between multiple valid next steps, warranting
039 broader exploration. In parallel, other works filter after generation, relying on the finding that *low*
040 *confidence correlates with low answer quality*. Fu et al. (2025) accepts only samples with high
041 token confidence and stops generation when uncertainty spikes. Hallucination detection also makes
042 use of low-confidence segments (Chang et al., 2024).
043

044 These two perspectives are in conflict, because they conflate different sources of uncertainty. From
045 a classical perspective, if a probabilistic language model closely approximates the true distribution
046 over next tokens, then high predictive uncertainty indicates that multiple continuations may be valid.
047 In this case, uncertainty reflects *aleatoric variability*, and broader sampling is appropriate. However,
048 if low-confidence positions are instead those where the model is most often wrong, then additional
049 randomness amplifies *epistemic uncertainty*, which is systematic errors arising from the model’s
050 lack of knowledge (Yadkori et al., 2024). In such cases, drawing more samples from an unreliable
051 distribution might compound the model’s errors.

052 In this work, we start by analyzing the role of low-probability tokens in reasoning tasks. We observe
053 that increasing exploration at low-confidence steps is indeed a sub-optimal strategy, as a single
misstep can derail subsequent tokens (Arora et al., 2023). This is especially true for smaller models.

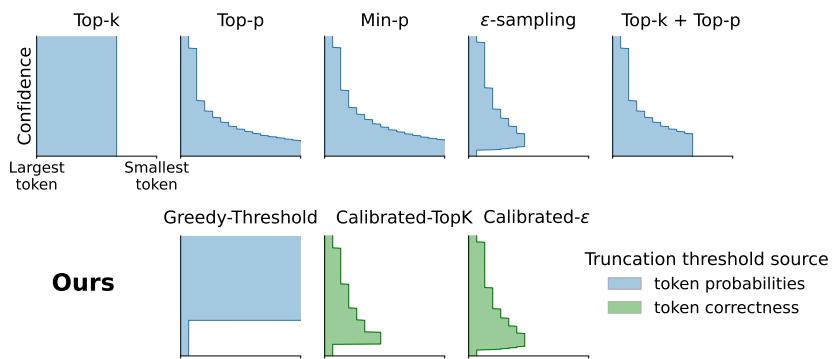


Figure 1: Comparison of common and our proposed truncation strategies. Each panel shows which tokens remain available for sampling, with tokens ordered from highest to lowest model-assigned probability (left to right). The y -axis represents the max token probability (“confidence”). Our methods explicitly suppress low-confidence tail tokens.

Therefore, we propose using the counterintuitive, but simple, **Greedy-Threshold** rule that inverts common sampling heuristics in the literature: when a step’s maximum probability falls below a threshold, decoding becomes greedy. Greedy-Threshold can be used in addition to existing samplers and shows consistent gains in reasoning benchmarks, especially for smaller models.

With this we build upon prior work on ε -sampling (Hewitt et al., 2022) that drops every token below ε . Previous work chose very small ε for machine translation or MBR decoding ($\approx 3 \times 10^{-4} - 9 \times 10^{-4}$ in the original paper) (Jinnai et al., 2024; Finkelstein & Freitag, 2024). We show that for reasoning tasks, larger ε is safe. This is based on the same conservative principle where less randomness is beneficial where the model is epistemically uncertain. An overview of our methods versus those in literature is shown in Figure 1.

Finally, we unify these perspectives by showing that the *rank-wise correctness* of tokens provides better truncation signals than probabilities alone, and propose a learning-free way to approximate rank-wise calibration. **Calibrated-TopK** sets a truncation threshold at each generation step based on estimated correctness for each confidence bin. **Calibrated- ε** extends upon this by replacing discrete confidence bins with a smooth mapping from probability to correctness. It improves from ε -sampling by making the truncation threshold *data-calibrated*. Our paper makes the following main contributions:

- We find that sampling at low-confidence steps contributes little additional diversity, while increasing the risk of selecting low-correctness tokens that can harm overall performance.
- We verify this empirically by showing that a **Greedy-Threshold** that eliminates unreliable tail tokens alleviates this trend and improves reasoning benchmarks when used in addition to existing samplers such as top- p , top- k and min- p .
- We introduce a **rank-conditional calibration grid** and derive **Calibrated-TopK** and **Calibrated- ε** , learning-free correctness-aware truncation rules that align exploration with expected correctness and incur negligible inference cost.
- We open-source a unified, composable implementation of common samplers and our methods in one framework.

2 WHY WE NEED STRICTER SAMPLING FOR REASONING

Before introducing our samplers, we first examine how confidence relates to accuracy across models and how errors emerge at low-confidence steps. We show that token probabilities provide strong signals of correctness: when the model is uncertain (low maximum probability), expected accuracy decreases regardless of model size, and correctness beyond the top-ranked token drops sharply. These observations motivate a clear definition of **confidence**, **rank**, and **calibration**, which we use to formalize stricter sampling rules that suppress error-prone low-probability tokens.

108 2.1 DEFINING RANK-WISE ACCURACY
109

110 For a prompt–answer pair, we define the gold answer token sequence as $x_{1:L}$ and the sequence
111 generated at inference as $y_{1:M}$. Let \mathcal{V} denote the vocabulary, $|\mathcal{V}| = V$. At any position t , the
112 model outputs a logit vector $z_t \in \mathbb{R}^V$ conditioned on a context h_t which is either the gold prefix
113 $x_{<t}$ during calibration, or the generated prefix $y_{<t}$ during decoding. With temperature $T > 0$, the
114 temperature-scaled categorical distribution over the next token is

$$115 \quad p_t(j | h_t; T) = \frac{\exp(z_t(j)/T)}{\sum_{v \in \mathcal{V}} \exp(z_t(v)/T)} \quad \text{for } j \in \mathcal{V}. \quad (1)$$

118 When $T = 1$ we omit T and write $p_t(j)$. Further, let $p_t^{(1)} \geq p_t^{(2)} \geq \dots \geq p_t^{(V)}$ denote the
119 probabilities sorted in descending order, and let $\text{rank}_t(j) \in \{1, \dots, V\}$ be the **rank** of token j at
120 step t , then top- k sampling draws from tokens with $\text{rank}_t(j) \leq k$. We define **confidence** as the
121 maximum token probability at each step. $p_{t,\max} \triangleq \max_{j \in \mathcal{V}} p_t(j) = p_t^{(1)}$.

122 **Confidence bins.** We partition model confidence $(0, 1]$ into n contiguous confidence bins, 10 in this
123 work:

$$124 \quad \mathcal{B}_m = \left(\frac{m-1}{n}, \frac{m}{n} \right], \quad m = 1, \dots, n. \quad (2)$$

125 Each step t is assigned to exactly one bin via the index $m(t)$ such that $p_{t,\max} \in \mathcal{B}_{m(t)}$.

126 **Rank-wise probability and correctness.** For each step t , the rank-wise probability at rank r is $p_t^{(r)}$.
127 Let $x_t^* \in \mathcal{V}$ be the ground truth next token under teacher forcing. Let $R < V$ be the maximum rank
128 considered. We define the rank-wise correctness as

$$129 \quad \mathbb{I}\{\text{rank}_t(x_t^*) = r\} = \begin{cases} 1, & \text{if the gold token appears at rank } r, \\ 0, & \text{otherwise.} \end{cases} \quad (3)$$

130 **Calibration Grid.** We can estimate a calibration grid over confidence bins and rank just based on
131 given text sequences which we score by teacher forcing. For each bin–rank pair (m, r) , we compute
132 the average probability $\hat{p}_{m,r}$, and correctness $\hat{c}_{m,r}$ within confidence bin \mathcal{B}_m :

$$133 \quad \hat{p}_{m,r} = \mathbb{E}\left[p_t^{(r)} \mid p_{t,\max} \in \mathcal{B}_m\right], \quad \hat{c}_{m,r} = \mathbb{P}[\text{rank}_t(x_t^*) = r \mid p_{t,\max} \in \mathcal{B}_m]. \quad (4)$$

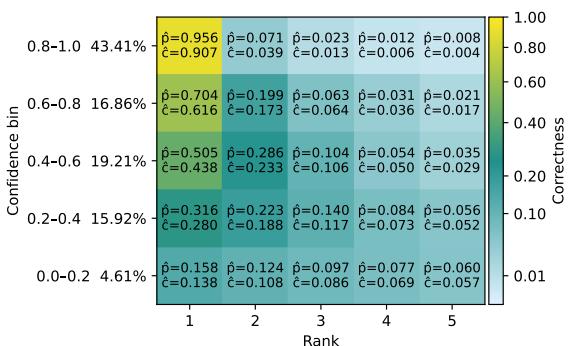
134 In practice, with N_m steps whose $p_{t,\max} \in \mathcal{B}_m$,

$$135 \quad \hat{p}_{m,r} = \frac{1}{N_m} \sum_{t: p_{t,\max} \in \mathcal{B}_m} p_t^{(r)}, \quad \hat{c}_{m,r} = \frac{1}{N_m} \sum_{t: p_{t,\max} \in \mathcal{B}_m} \mathbb{I}\{\text{rank}_t(x_t^*) = r\}. \quad (5)$$

136 An example calibration grid with 5 bins
137 is shown in Figure 2 for visualization.
138 Full calibration grids can be found in Section A.10. These definitions apply to any
139 next-token distribution p_t of a language
140 model. If temperature scaling, or any other
141 logit processing is applied, then the cali-
142 bration would be calculated based on the
143 final probabilities, as in Equation (1).

144 **Bin-wise expected accuracy.** The ex-
145 pected accuracy for each confidence bin,
146 i.e., the probability of selecting the correct
147 next token, is given by the average rank-
148 wise probability and correctness:

$$149 \quad C_m = \sum_{r=1}^R \hat{p}_{m,r} \hat{c}_{m,r}. \quad (6)$$



150 **Figure 2:** Calibration grid of Qwen2.5-1.5B-Instruct with 5
151 bins shows the average probability \hat{p} and correctness \hat{c} for
152 each confidence-bin and rank. Correctness is notably low in
153 the lower-confidence bins, and decreases as rank increases.
154 Percentages indicate frequency of occurrence of this bin.

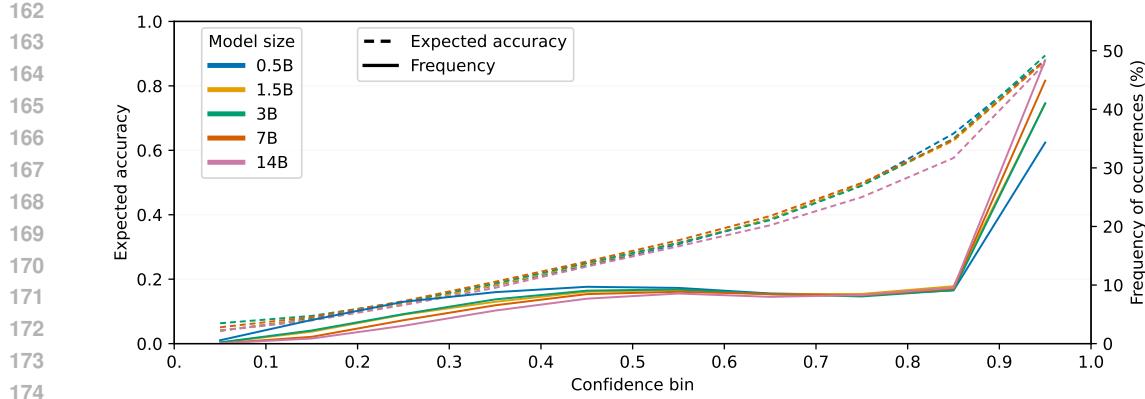


Figure 3: Expected accuracy increases with confidence across all model sizes. In the lowest confidence bin, expected accuracy drops regardless of model size. *Frequency* refers to the proportion of decoding steps whose maximum probability falls into each confidence bin. Larger models assign more predictions to the 0.9–1.0 confidence range, where both accuracy and frequency are highest, reflecting stronger benchmark performance. In contrast, smaller models place more probability mass in low-confidence bins, where accuracy is poor.

2.2 LOW PROBABILITY SIGNALS LOW CORRECTNESS IN REASONING TASKS

While calibration grids highlight how confidence and correctness align on average, it is less clear how these signals affect full generations. In particular, one might expect that sampling from uncertain positions could encourage exploration which is beneficial over many samples. We test this assumption by analyzing the role of low-probability tokens in self-consistency.

Figure 3 shows that high-confidence predictions occur most frequently, which amplifies diversity simply by providing more opportunities for stochastic sampling. However, this diversity does not necessarily translate into better performance, since rank-wise accuracy drops sharply beyond the top token (Figure 2). In the highest-confidence bin (0.8, 1.0], correctness falls from 0.907 from rank 1 to only 0.039 at rank 2. Figure 4 further demonstrates that restricting sampling to the lowest-confidence bin does not yield measurable gains in majority-voted accuracy, while also contributing little to output diversity despite sampling from the full token distribution. This stands in contrast to the assumption that exploration at low-confidence steps is beneficial. Instead, the largest improvements in accuracy arise from sampling in mid-confidence bins 0.3 – 0.6.

Figure 5 presents two views of why low-confidence positions are dangerous. Figure 5a distinguishes between when a low-probability token is actually chosen (blue) versus when the model is in a low-confidence state regardless of what is sampled (orange). Both conditions harm accuracy as they

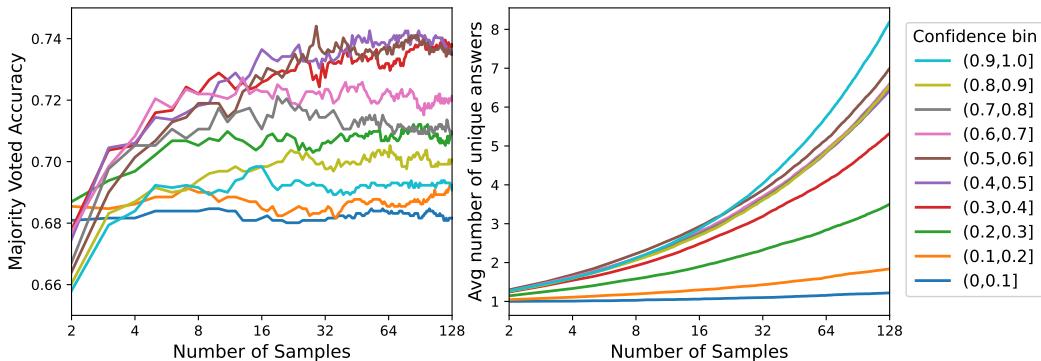


Figure 4: Plot of the majority voted accuracy and the number of unique answers as the number of samples increase. Sampling is greedy unless the maximum probability falls into a certain confidence bin, in which case sample from the full token distribution. Sampling at the lowest confidence bin results in no gain in accuracy while contributing little to diversity in terms of number of unique answers.

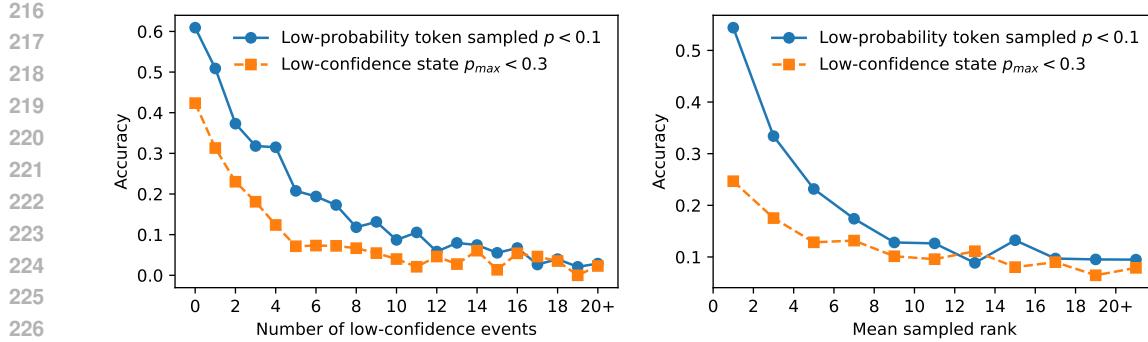


Figure 5: Effect of low-confidence events on sequence-level accuracy. (a) Accuracy decreases both when the model directly samples low-probability tokens ($p < 0.1$, blue) and when it is in a low-confidence state regardless of the sampled token ($p_{max} < 0.3$, orange). (b) Accuracy also drops as the mean rank of sampled tokens increases, showing that drifting into lower-ranked tokens degrades sequence quality.

accumulate within a sequence. Figure 5b presents a rank perspective: once decoding drifts into higher-ranked tokens, accuracy drops. These findings motivate our conservative truncation rules. By enforcing greedy decoding at low-confidence steps, **Greedy-Threshold** prevents the model from sampling higher-ranked, error-prone tokens and keeps the mean sampled rank low. Similarly, ε -**sampling** blocks low-probability tokens entirely, which naturally caps the rank distribution. In both cases, the methods limit the propagation of errors and preserves sequence-level accuracy.

3 HOW TO CALIBRATE TRUNCATION SAMPLERS

The central idea is to adapt the sampling process in autoregressive language models by filtering out tokens that are likely to be inaccurate, thereby refining the candidate set. Although this might initially seem infeasible, we will show that excluding tokens likely to be incorrect is possible and effective. We call the restricted pool of permissible next tokens the **active set** at each step. As a reference, the active set for the simplest truncated sampler, standard top- k sampling, is always the set of the k most likely tokens, i.e. $A_t^{\text{top-}k} = \{v \in \mathcal{V} : \text{rank}_t(v) \leq k\}$.

Greedy-Threshold. We use this sampler to exemplify our claim that sampling less when confidence is low is beneficial. When using Greedy-Threshold, we sample greedily when confidence is below a threshold $p_{GT} \in (0, 1)$, and only the argmax token $v_t^* \triangleq \arg \max_{v \in \mathcal{V}} p_t(v)$ is accepted. The active set of tokens to sample from is

$$A_t^{\text{GT}} = \begin{cases} \{v_t^*\}, & \text{if } p_{t,\text{max}} < p_{GT}, \\ \mathcal{V}, & \text{if } p_{t,\text{max}} \geq p_{GT}. \end{cases} \quad (7)$$

ε -sampling. To draw a connection with existing ε -sampling (Hewitt et al., 2022), we recap its definition. This rule only samples from tokens above a threshold $\varepsilon \geq 0$. The active set is

$$A_t^\varepsilon = \{v \in \mathcal{V} : p_t(v) \geq \varepsilon\}. \quad (8)$$

Note that when the Greedy-Threshold parameter equals the ε -cutoff, i.e. $p_{GT} = \varepsilon$, and the maximum token probability at step t is below this level ($p_{t,\text{max}} < p_{GT}$), both methods fall back to greedy. Motivated by the mismatch between raw probability and correctness, we adopt the same truncation principle but calibrate the cutoff to estimated correctness rather than probability alone.

Calibrated-TopK. Recall from the calibration grid (Figure 2) that we can estimate, for each confidence bin and token rank, the expected correctness of a token. This provides a direct way to infer how far down the ranked list of candidates one can safely explore. The idea of Calibrated-TopK is therefore simple. Instead of fixing k in advance, we adaptively set it so that only ranks whose

average correctness is above a threshold are included. In this way, the method truncates exploration to the range of token ranks that are empirically likely to be correct. Given the maximum rank whose correctness is above the threshold $c_{CT} \in (0, 1)$ in a calibration grid $\hat{c}_{m,r}$:

$$K_m(c_{CT}) = \max\{r \in \{1, \dots, R\} : \hat{c}_{m,r} \geq c_{CT}\} \quad (9)$$

At step t with bin $m(t)$, the active set is defined by the maximum rank

$$A_t^{\text{CT}}(c_{CT}) = \begin{cases} \{v \in \mathcal{V} : \text{rank}_t(v) \leq K_m(c_{CT})\}, & \text{if } K_m(c_{CT}) \geq 1, \\ \{v_t^*\}, & \text{if } K_m(c_{CT}) = 0. \end{cases} \quad (10)$$

Calibrated- ε Since Calibrated-TopK sets thresholds based on discrete confidence bins, we are motivated to find a solution that maps probability to correctness in a continuous way. A plot of all \hat{p} and \hat{c} shows a near-linear relationship in log-log coordinates as shown in Figure 6:

$$\log_{10} \hat{c} \approx A + B \log_{10} \hat{p}$$

We estimate the coefficients by least squares on the calibration grid, fitting a line in log-log space to the pairs (\hat{p}, \hat{c}) aggregated over bins and ranks:

$$A, B = \text{LinearRegression}(\log_{10} \hat{p}, \log_{10} \hat{c}).$$

Given these coefficients, we instantiate a per-token correctness predictor at decoding step t , mapping each candidate token $j \in \mathcal{V}$ with probability $p_t(j)$ to an estimated correctness score $\hat{c}_t(j) \triangleq 10^A p_t(j)^B$. Computationally this is just a single scalar transform, adding negligible overhead to decoding. We then define a correctness threshold $c_\varepsilon \in (0, 1)$, the *active set* at step t becomes

$$A_t^{C\varepsilon}(c_\varepsilon) = \{v \in \mathcal{V} : \hat{c}_t(v) \geq c_\varepsilon\}.$$

i.e., we keep exactly those tokens whose *predicted* correctness exceeds the threshold. For all samplers, if no tokens satisfy this condition $A_t = \emptyset$, sample greedily $A_t = \{v_t^*\}$. In general, we note that all truncated samplers can be used together by taking the intersection of their active sets. Lastly, given any active set A_t , sample $x_t \sim p'_t(\cdot)$ from the renormalized distribution

$$p'_t(v) = \frac{p_t(v)}{\sum_{w \in A_t} p_t(w)} \quad \text{for } v \in A_t. \quad (11)$$

4 CORRECTNESS-FIRST SAMPLERS IMPROVE REASONING ABILITIES

We now study whether truncating low-confidence regions during decoding translates into better end-task reasoning. Our focus is on frontier LLMs evaluated on math and general reasoning benchmarks, where sequence-level correctness is the primary objective. We compare the proposed *correctness-first* samplers against standard temperature and probability-based baselines.

4.1 EXPERIMENTAL SETTINGS

We evaluate models in the Qwen2.5 (Qwen et al., 2025) and the Llama (Grattafiori et al., 2024) family on short reasoning tasks (GSM8K (Cobbe et al., 2021), MMLU (Wang et al., 2024) and Big-Bench-Hard (Suzgun et al., 2022)), and GPT-OSS (OpenAI et al., 2025) on long reasoning tasks (AIME¹). We use Greedy-Threshold with $p_{GT} = 0.3$, Calibrated-TopK with $c_{CT} = 0.05$ (over $n = 10$ bins), and Calibrated- ε with $c_\varepsilon = 0.05$. We adopt higher threshold $\varepsilon = 0.05$ than typically reported to emphasize the impact of truncating low-probability tokens. We provide ablation on threshold value selection in Section A.4. Calibration is performed on the training split of each benchmark. We additionally perform cross-domain calibration using alpaca-gpt4-en (Peng et al., 2023) For comparability with temperature-based samplers, we use $T = 1$ unless otherwise noted. Further implementation details, ablations with threshold values, temperatures and calibration datasets are provided in Section A.1.

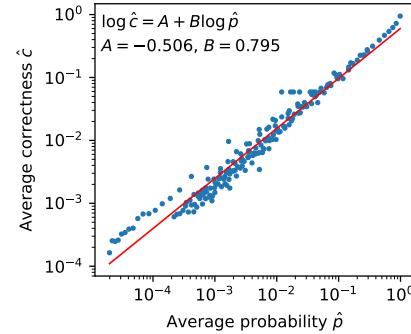


Figure 6: A scatter plot of calibration-grid averages (\hat{p}, \hat{c}) across confidence bins and ranks. Points concentrate along an approximately linear trend. We fit a least-squares line and use this mapping to predict correctness at inference time for Calibrated- ε .

¹<https://huggingface.co/datasets/math-ai/aime25>

324 **Table 1:** Majority voted (maj@k) results on GSM8K, MMLU-Pro, and Big-Bench-Hard for Qwen2.5-0.5B-
 325 Instruct. Calibrated samplers achieve the largest performance gain from no restrictions baseline.

Method	GSM8K			MMLU-Pro			Big-Bench-Hard		
	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32
No restrictions	30.2	35.2	38.6	16.4	17.0	17.3	17.9	17.0	16.2
top- k	32.6	38.7	41.9	16.8	17.5	18.0	22.0	21.7	21.5
top- p	35.5	40.8	43.6	16.8	17.5	18.1	25.5	25.9	25.9
min- p	38.7	43.1	46.6	17.7	18.2	18.6	30.6	31.5	31.7
EDT	40.2	44.1	46.7	17.7	18.1	18.4	30.5	31.1	31.7
η -sampling	31.6	37.2	41.0	16.5	17.3	17.9	20.6	20.3	19.6
ε -sampling	39.2	44.3	46.7	17.5	18.1	18.3	30.4	31.1	31.6
Greedy-Threshold	31.2	37.0	40.6	16.9	17.8	18.2	20.8	20.3	19.4
Calibrated-TopK	39.3	44.5	47.1	17.9	18.3	18.7	30.4	31.1	31.6
Calibrated-ε	40.8	44.3	47.1	18.9	18.4	18.6	30.6	31.5	32.0

341
 342 **Baselines** We compare our methods against several widely used sampling strategies. Top- k ($k =$
 343 10) (Fan et al., 2018). Min- p ($p = 0.1$) (Nguyen et al., 2025). Top- p ($p = 0.95$) (Holtzman et al.,
 344 2020). EDT (Zhang et al., 2024) with $N = 0.8$, $\vartheta = 1$, $T_0 = 0.7$. These parameters are selected
 345 from the original paper after small parameter search experiments to determine reasonable values. ε -
 346 sampling (Hewitt et al., 2022) with higher $\varepsilon = 0.05$ than recommended. η -sampling (Hewitt et al.,
 347 2022) with the original recommended value $\eta = 0.0009$.

349 4.2 CALIBRATED TRUNCATION INCREASES MODEL PERFORMANCE.

350
 351 We evaluate the effectiveness of our proposed samplers across benchmarks. Table 1 shows that
 352 **Calibrated- ε** and **Calibrated-TopK** achieve the largest improvement overall, showing rank-wise
 353 correctness is an effective truncation signal. **Greedy-Threshold** activates only when the max-
 354 probability token falls below 0.3, an infrequent but high-risk regime (see Figure 2). Despite its
 355 low activation rate, this condition occurs often enough for Greedy-Threshold to yield measurable
 356 benefits. ε -sampling (fixed threshold) performs on par with min- p and EDT, supporting the idea that
 357 simply removing tail tokens helps by shaping the cutoff to where correctness actually drops. All cal-
 358 ibrated samplers add negligible runtime overhead at decoding, since they only require a 2-parameter
 359 table lookup or a single vector operation over the vocabulary.

360 4.3 EXISTING SAMPLERS BENEFIT FROM GREEDY-THRESHOLD

361
 362 To test whether halting sampling at low-confidence steps is beneficial, we apply Greedy-Threshold
 363 on top of existing samplers that otherwise increase exploration at such positions. This preserves
 364 their original behavior when confidence is above 0.3, but forces greedy decoding when confidence
 365 falls below this threshold. Table 2 shows that Greedy-Threshold improves performance in this set-
 366 ting, especially for smaller models. When no gains are observed, results remain comparable to the
 367 baseline, indicating that it does not degrade performance.

368 4.4 SCALING TO ADVANCED REASONING MODELS

369
 370 We evaluate our proposed methods on reasoning-oriented “thinking” model GPT-OSS-20B (OpenAI
 371 et al., 2025) and a challenging mathematics benchmark AIME that demands multi-step derivations.
 372 Thinking models differ from standard LMs in that they generate long sequences of intermediate
 373 tokens, making calibration on short, instruction-style datasets less representative of their actual be-
 374 havior. To capture our central idea of filtering out low-correctness tokens in this setting, we apply
 375 ε -sampling with a relatively high cutoff ($\varepsilon = 0.05$). Our results show substantial gains. GPT-OSS-
 376 20B benefits from both Greedy-Threshold and ε -sampling. Output diversity is reduced, but the effect
 377 is minimal. Over 32 samples, the number of unique answers decreases from 14.1 to 13.3 (roughly
 1–2 fewer unique answers out of 14). This small drop coincides with higher maj@k and pass@k,

378 **Table 2:** Majority voted results on GSM8K. In addition to existing sampling conditions, Greedy-Threshold
 379 $p_{GT} = 0.3$ is applied. Greedy-Threshold improves majority voting performance, especially in models with
 380 lower starting accuracy. Statistically significant differences ($p < 0.05$) marked in **bold**.

Method	Qwen2.5-0.5B-Instruct			Qwen2.5-1.5B-Instruct			Qwen2.5-3B-Instruct		
	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32
Baseline $T=1$	30.2	35.2	38.6	68.4	71.5	73.1	79.3	80.6	81.1
+ Greedy-Threshold	+1.0	+1.8	+2.0	+1.7	+2.1	+2.4	+0.1	+0.2	-0.1
top- k	32.6	38.7	41.9	68.5	72.6	73.9	79.0	80.3	81.0
+ Greedy-Threshold	+1.1	+0.5	+1.1	+2.6	+2.4	+2.8	+1.0	+0.5	-0.2
top- p	35.5	40.8	43.6	71.1	74.1	75.9	79.5	80.5	80.8
+ Greedy-Threshold	+0.9	+0.4	+1.3	+1.5	+1.8	+1.8	0.0	0.0	+0.4
min- p	38.7	43.1	46.6	73.3	75.6	76.6	80.0	80.4	81.2
+ Greedy-Threshold	+1.4	+0.8	+0.6	+1.3	+1.2	+1.5	-0.2	+0.2	+0.1
EDT	40.2	44.7	46.8	74.9	76.6	78.9	79.5	80.5	80.9
+ Greedy-Threshold	+0.2	-0.3	+0.1	-0.2	0.0	-0.1	+0.1	+0.1	+0.1
η -sampling	31.6	37.2	41.0	69.0	72.4	74.2	78.8	80.1	81.0
+ Greedy-Threshold	+2.4	+1.8	+1.7	+1.7	+2.7	+2.7	+0.5	+0.3	+0.1

400 consistent with our goal: we do not value diverse wrong answers. For reasoning tasks with single
 401 correct solutions, correctness is more important than diversity. Expanding exploration does not help
 402 when early steps are error-amplifying. By steering decoding away from low-correctness regions, our
 403 methods increase the fraction of valid solutions by up to 6.5% and improve overall answer quality.

5 DISCUSSION

407 **Why does Greedy-Threshold work?** Our results suggest that in reasoning tasks, in spite of popular
 408 intuitions, the positions with low confidence are not *branch points among many valid continuations*,
 409 but error-amplifying states. Two pieces of evidence support this claim: rank-wise correctness de-
 410 creases beyond the top token (Figure 2), and performance degrades once low-probability tokens
 411 are sampled (Figure 5). Greedy-Threshold chooses a safe token where both risks are highest, and
 412 potentially prevent subsequent error. It is a targeted suppression of low-correctness steps.

413 **Reordering uncertainties as epistemic first, aleatoric second.** Common existing decoding strate-
 414 gies assume high entropy means aleatoric variability (many valid tokens) and sample more. Our
 415 results imply the opposite might be true in reasoning tasks with closed-form answers. High entropy

418 **Table 3:** The result of AIME24 and AIME25 on GPT-OSS-20B with thinking mode enabled. "Unique An-
 419 swers" is the number of unique answers over all 32 samples. "Overall Correct" is the overall proportion of
 420 correct answers. Best result is in **bold**. Statistically significant difference ($p < 0.05$) is in *italics*.

Model / Method	Maj@k				Pass@k				Unique Answers	Overall Correct
	4	8	16	32	4	8	16	32		
AIME25										
Baseline	75.4	84.4	87.8	90.0	85.6	90.0	91.1	92.2	13.6	56.1
Greedy-Threshold	71.1	87.8	88.9	91.1	85.6	91.1	93.3	94.4	12.0	59.9
ε -sampling	68.9	85.4	91.1	90.0	86.7	90.0	93.3	95.6	13.6	56.1
AIME24										
Baseline	71.4	83.3	88.7	92.6	83.4	90.7	92.0	93.3	15.1	48.7
Greedy-Threshold	77.3	88.0	91.3	92.6	86.7	92.6	93.3	94.0	13.3	55.2
ε -sampling	77.3	87.3	90.0	91.3	89.3	90.0	91.3	92.6	13.7	54.9

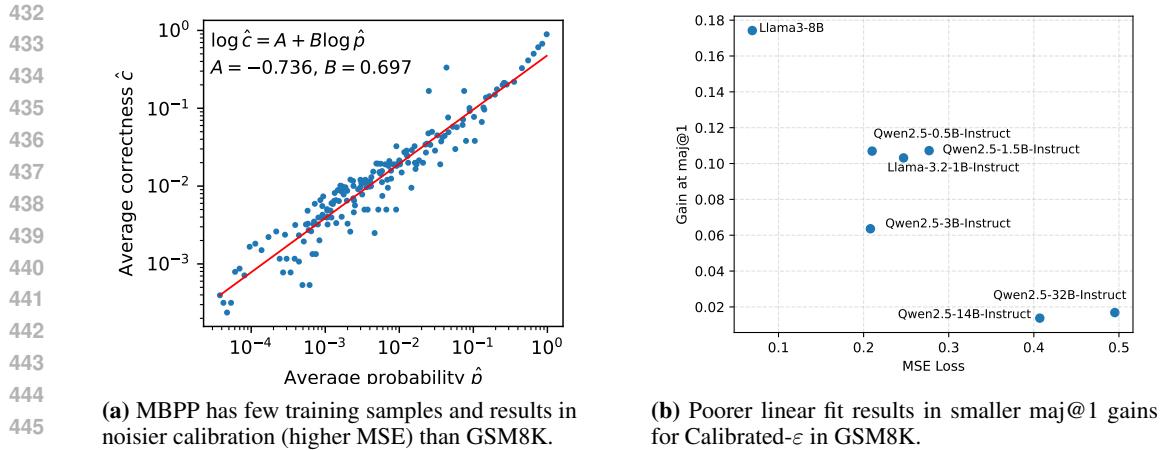


Figure 7: Calibration fit quality on performance. (a) Example scatter shows a noisier confidence to correctness relationship on MBPP. (b) Across models, poorer linear fits (higher MSE) correlate with diminished maj@1 improvements from Calibrated- ε .

Figure 7: Calibration fit quality on performance. (a) Example scatter shows a noisier confidence to correctness relationship on MBPP. (b) Across models, poorer linear fits (higher MSE) correlate with diminished maj@1 improvements from Calibrated- ε .

often reflects *epistemic uncertainty* which is a systematic lack of knowledge, especially in smaller models. When the distribution is wrong, sampling more from it does not benefit correctness. In our calibration-based methods, *correctness* is the focus. We increase sampling where expected correctness is high and shrink it where the model lacks fundamental understanding. This perspective explains why stricter truncation (higher ε , lower rank caps in top- k) consistently helps in reasoning. Randomness is less valuable in low-confidence regions where epistemic error dominates.

Robustness to cross-domain calibration data and fit quality. In-domain calibration dataset is not always available, we want to ensure our calibrated samplers are robust to domain shifts. We test calibration using a general purpose instruction tuning dataset `alpaca-gpt4-en` and observe similar performance as in-domain calibration on `GSM8K-training` (Section A.5). This suggests that the confidence to correctness map transfers generally when the format matches (instruction to answer) and that out-of-domain calibration datasets can be used when in-domain dataset is not available.

Effect of data sparsity. However, poor calibration signals could affect performance. We look at MBPP, a dataset evaluating coding performance. There are only 374 training samples, each with short code solutions. Limit training data means sparse data across confidence bins that results in noisy calibration data and poor linear fit (Figure 7a). Even in training sets with large number of samples, such as GSM8K with 7473 rows, low-confidence bins are empty or underpopulated (Figure 14a). Indeed, higher regression MSE correlates with smaller performance gains (Figure 7b). Additionally, MBPP is evaluated using pass@k which explicitly rewards diversity, meaning more exploration is advantages. However, overconfidence in code is reflected with a smaller gradient (0.697) in correctness to probability mapping. With the same truncation threshold, this admits fewer top-k tokens, which is suboptimal for pass@k. If we switch to alpaca-gpt4-en (a larger, less noisy, general-purpose calibration set), more candidates are allowed through, improving pass@k (Table 6). When the in-domain calibration set is small/noisy or induces an overly conservative sampling, we recommend using a general-purpose dataset for calibration.

6 RELATED WORK

Literature on decoding for LLMs largely follows two directions: (i) *sampling more* to increase diversity of generations, and (ii) *sampling less* to increase accuracy and stability. Our work focuses on reconciling these perspectives for reasoning tasks.

Removing tail-end tokens. Classical truncation methods such as top- k (Fan et al., 2018) and top- p (nucleus) sampling (Holtzman et al., 2020) reduce tail risk by discarding low-probability tokens. Temperature scaling (Guo et al., 2017), often with lower temperatures for math and reasoning tasks, has a similar intuition: sharpening the distribution so that low-probability tokens are rarely sampled.

486 These classic methods are often used in combination (Yang et al., 2025). More recently, locally
 487 typical sampling (Meister et al., 2025) restricts to tokens whose information content is close to the
 488 local entropy. REAL sampling (Chang et al., 2024) adaptively reduces top- p when hallucination risk
 489 is high. Our results on reasoning tasks support this risk-aware trend: sampling in high-uncertainty
 490 steps introduces catastrophic errors, while removing tail end low probability tokens is safer.

491 **Selection after sampling.** Another line of work improves reliability *after* generation. Self-certainty
 492 (Kang et al., 2025) and DeepConf (Fu et al., 2025) re-weigh or filter generations using confi-
 493 dence signals. The open-source effort Entropix (XJDR, 2024) pauses or resamples at high-entropy
 494 steps. These methods implicitly acknowledge that low-confidence steps are strongly correlated with
 495 low correctness. Our contribution is orthogonal. We intervene during decoding to prevent low-
 496 confidence tokens from being sampled in the first place, so that downstream majority voting operates
 497 on stronger candidates.

498 **Adaptive, uncertainty-aware decoding.** A complementary set of methods dynamically adjust
 499 sampling based on estimated uncertainty. Entropy-dependent temperature (EDT) (Zhang et al.,
 500 2024) increases temperature as entropy grows. “Hot or Cold” decoding (Zhu et al., 2023) applies
 501 higher temperature only to the first token in code generation. Adaptive Decoding (Zhu et al., 2024)
 502 and Adaptive Contrastive Search (Garces Arias et al., 2024) adjust candidate sets or penalties step-
 503 by-step. Min- p (Nguyen et al., 2025) scales truncation by the maximum token probability, enlarging
 504 candidate sets when uncertainty is high, which is shown to benefit creative text generation, although
 505 a subsequent study criticized its effectiveness (Schaeffer et al., 2025). Our study provides an
 506 explanation why high uncertainty correlates with lower accuracy while providing limited diversity.

507 **Assessing model calibration.** Calibration for LLMs is typically assessed with reliability diagrams
 508 and scalar errors such as ECE error on top-1 labels (Guo et al., 2017), or on a sequence level (Huang
 509 et al., 2024; Stengel-Eskin & Durme, 2023). Full-ECE (Liu et al., 2024) extends beyond top-1 by
 510 evaluating calibration over the entire token distribution, but it does not condition on token *rank*. We
 511 introduce a confidence and rank calibrated method that informs correctness-aware truncation.

512

513 7 CONCLUSION

514

515 **Future work.** This work can be extended to tasks beyond math and reasoning, such as open-ended
 516 and creative tasks, to characterize when diversity is the priority while ensuring correctness. There is
 517 also the potential to conduct online calibration with on-the-fly recalibration depending on the exact
 518 question or task. Lastly, one can study how calibration evolve with model size, post-training method
 519 and data regime.

520

521 **Conclusion.** In this work, we re-examined decoding under uncertainty for reasoning tasks and argue
 522 for a *correctness-first* perspective. By visualizing a novel rank-wise calibration grid, we present
 523 evidence on a **token level** that in low-confidence bins, all tokens have low expected correctness. On
 524 a **sequence level**, accuracy declines with more low-probability tokens and with higher ranks sam-
 525 pled. On a **dataset level**, Greedy-Threshold, Calibrated-TopK, and Calibrated- ε raise performance
 526 in reasoning benchmarks by allocating randomness only where expected error is low. These meth-
 527 ods are consistent and compute-efficient, making them practical for inference use. We encourage
 528 future work to consider uncertainty as a *risk* signal to truncate, rather than a signal to *explore*.

529

530 REPRODUCIBILITY STATEMENT

531

532 Implementation of our proposed sampling strategies, model behavior analysis and calibration mea-
 533 surements are released with our paper and hosted in our public repository. Details of evaluation and
 534 calibration, including model settings, hyperparameters, and prompting formats are documented in
 535 [Section A.1](#). All benchmarks are openly available, and we provide complete code for running the
 536 benchmarks.

537

538 LLM USE

539

538 We used large language models (LLMs) only for light editorial assistance (e.g., grammar, spelling,
 539 phrasing), simple LaTeX formatting, and typo checks. LLMs were also used to draft boilerplate code
 (e.g., code scaffolding, argument parsers) and to plot high-level diagrams. All such outputs were

540 reviewed, and validated by the authors before inclusion. LLMs were not used to write substantive
 541 sections of the paper, design experiments or analyze results. All technical content, experiments,
 542 analyses, and conclusions were created and verified by the authors.
 543

544 **REFERENCES**
 545

546 Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why Exposure
 547 Bias Matters: An Imitation Learning Perspective of Error Accumulation in Language Generation,
 548 January 2023. URL <http://arxiv.org/abs/2204.01171>. arXiv:2204.01171 [cs].

549 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Do-
 550 han, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program Synthesis
 551 with Large Language Models, August 2021. URL <http://arxiv.org/abs/2108.07732>.
 552 arXiv:2108.07732 [cs].

553 Haw-Shiuan Chang, Nanyun Peng, Mohit Bansal, Anil Ramakrishna, and Tagyoung Chung. REAL
 554 Sampling: Boosting Factuality and Diversity of Open-Ended Generation via Asymptotic Entropy,
 555 June 2024. URL <http://arxiv.org/abs/2406.07735>. arXiv:2406.07735 [cs] version:
 556 1.
 557

558 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 559 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 560 Schulman. Training Verifiers to Solve Math Word Problems, November 2021. URL <http://arxiv.org/abs/2110.14168>. arXiv:2110.14168 [cs].
 561

562 Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical Neural Story Generation. In Iryna
 563 Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association
 564 for Computational Linguistics (Volume 1: Long Papers)*, pp. 889–898, Melbourne, Australia, July
 565 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1082. URL <https://aclanthology.org/P18-1082/>.

566 Daniel Fein, Sebastian Russo, Violet Xiang, Kabir Jolly, Rafael Rafailev, and Nick Haber. LitBench:
 567 A Benchmark and Dataset for Reliable Evaluation of Creative Writing, July 2025. URL <http://arxiv.org/abs/2507.00769>. arXiv:2507.00769 [cs].
 568

569 Mara Finkelstein and Markus Freitag. MBR and QE Finetuning: Training-time Distillation of
 570 the Best and Most Expensive Decoding Methods. In *The Twelfth International Conference on
 571 Learning Representations*, October 2024. URL <https://openreview.net/forum?id=bkNx300sND>.
 572

573 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep Think with Confidence, August
 574 2025. URL <http://arxiv.org/abs/2508.15260>. arXiv:2508.15260 [cs].
 575

576 Esteban Garces Arias, Julian Rodemann, Meimingwei Li, Christian Heumann, and Matthias Aßen-
 577 macher. Adaptive Contrastive Search: Uncertainty-Guided Decoding for Open-Ended Text
 578 Generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the
 579 Association for Computational Linguistics: EMNLP 2024*, pp. 15060–15080, Miami, Florida,
 580 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 581 findings-emnlp.885. URL [https://aclanthology.org/2024.findings-emnlp.885/](https://aclanthology.org/2024.findings-emnlp.885).
 582

583 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 584 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, and 548 other authors.
 585 The Llama 3 Herd of Models, November 2024. URL <http://arxiv.org/abs/2407.21783>. arXiv:2407.21783 [cs].
 586

587 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural
 588 Networks, August 2017. URL <http://arxiv.org/abs/1706.04599>. arXiv:1706.04599
 589 [cs].
 590

591 John Hewitt, Christopher D. Manning, and Percy Liang. Truncation Sampling as Language
 592 Model Desmoothing, October 2022. URL <http://arxiv.org/abs/2210.15191>.
 593 arXiv:2210.15191 [cs].

594 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The Curious Case of Neu-
 595 ral Text Degeneration, February 2020. URL <http://arxiv.org/abs/1904.09751>.
 596 arXiv:1904.09751 [cs].
 597

598 Yukun Huang, Yixin Liu, Raghavveer Thirukovalluru, Arman Cohan, and Bhuwan Dhingra. Cal-
 599ibrating Long-form Generations from Large Language Models, October 2024. URL <http://arxiv.org/abs/2402.06544>. arXiv:2402.06544 [cs].
 600

601 Yuu Jinnai, Tetsuro Morimura, Ukyo Honda, Kaito Ariu, and Kenshi Abe. Model-Based Mini-
 602 mum Bayes Risk Decoding for Text Generation, June 2024. URL <http://arxiv.org/abs/2311.05263>. arXiv:2311.05263 [cs].
 603

604 Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable Best-of-N Selection for Large Language
 605 Models via Self-Certainty, February 2025. URL <http://arxiv.org/abs/2502.18581>.
 606 arXiv:2502.18581 [cs].
 607

608 Lei Lin, Jiayi Fu, Pengli Liu, Qingyang Li, Yan Gong, Junchen Wan, Fuzheng Zhang, Zhongyuan
 609 Wang, Di Zhang, and Kun Gai. Just Ask One More Time! Self-Agreement Improves Reasoning
 610 of Language Models in (Almost) All Scenarios, May 2024. URL <http://arxiv.org/abs/2311.08154>. arXiv:2311.08154 [cs] version: 3.
 611

612 Han Liu, Yupeng Zhang, Bingning Wang, Weipeng Chen, and Xiaolin Hu. Full-ECE: A Metric For
 613 Token-level Calibration on Large Language Models, June 2024. URL <http://arxiv.org/abs/2406.11345>. arXiv:2406.11345 [cs] version: 1.
 614

615 Clara Meister, Tiago Pimentel, Luca Malagutti, Ethan G. Wilcox, and Ryan Cotterell. On the Effi-
 616 cacy of Sampling Adapters, January 2024. URL <http://arxiv.org/abs/2307.03749>.
 617 arXiv:2307.03749 [cs].
 618

619 Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally Typical Sampling, June
 620 2025. URL <http://arxiv.org/abs/2202.00666>. arXiv:2202.00666 [cs].
 621

622 Minh Nhat Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid
 623 Schwartz-Ziv. Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs,
 624 June 2025. URL <http://arxiv.org/abs/2407.01082>. arXiv:2407.01082 [cs].
 625

626 OpenAI, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus,
 627 Rahul K. Arora, Yu Bai, Bowen Baker, and 113 other authors. gpt-oss-120b & gpt-oss-20b Model
 628 Card, August 2025. URL <http://arxiv.org/abs/2508.10925>. arXiv:2508.10925 [cs].
 629

630 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction Tuning
 631 with GPT-4, April 2023. URL <http://arxiv.org/abs/2304.03277>. arXiv:2304.03277
 632 [cs].
 633

634 Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 635 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 636 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 637 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 638 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 639 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report,
 640 January 2025. URL <http://arxiv.org/abs/2412.15115>. arXiv:2412.15115 [cs].
 641

642 Rylan Schaeffer, Joshua Kazdan, and Yegor Denisov-Blanch. Min-p, Max Exaggeration: A Critical
 643 Analysis of Min-p Sampling in Language Models, June 2025. URL <http://arxiv.org/abs/2506.13681>. arXiv:2506.13681 [cs].
 644

645 Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
 646 Thorough Examination of Decoding Methods in the Era of LLMs, October 2024. URL <http://arxiv.org/abs/2402.06925>. arXiv:2402.06925 [cs].
 647

648 Elias Stengel-Eskin and Benjamin Van Durme. Calibrated Interpretation: Confidence Esti-
 649 mation in Semantic Parsing, July 2023. URL <http://arxiv.org/abs/2211.07443>.
 650 arXiv:2211.07443 [cs].

648 Mirac Suzgun, Nathan Scales, Nathanael Schärl, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 649 Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging BIG-
 650 Bench Tasks and Whether Chain-of-Thought Can Solve Them, October 2022. URL <http://arxiv.org/abs/2210.09261>. arXiv:2210.09261 [cs].
 651

652 Naaman Tan, Josef Valvoda, Tianyu Liu, Anej Svet, Yanxia Qin, Min-Yen Kan, and Ryan Cot-
 653 terell. A Probability–Quality Trade-off in Aligned Language Models and its Relation to Sampling
 654 Adaptors. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
 655 Processing*, pp. 14805–14829, Miami, Florida, USA, 2024. Association for Computational Lin-
 656 guistics. doi: 10.18653/v1/2024.emnlp-main.822. URL <https://aclanthology.org/2024.emnlp-main.822>.
 657

658 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
 659 hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
 660 Models, March 2023. URL <http://arxiv.org/abs/2203.11171>. arXiv:2203.11171
 661 [cs].
 662

663 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 664 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 665 Fan, Xiang Yue, and Wenhui Chen. MMLU-Pro: A More Robust and Challenging Multi-Task Lan-
 666 guage Understanding Benchmark, November 2024. URL <http://arxiv.org/abs/2406.01574>.
 667 arXiv:2406.01574 [cs].
 668

669 XJDR. Entropix - Entropy Based Sampling and Parallel CoT Decoding, 2024. URL <https://github.com/xjdr-alt/entropix>.
 670

671 Yasin Abbasi Yadkori, Ilya Kuzborskij, András György, and Csaba Szepesvári. To Believe or
 672 Not to Believe Your LLM, July 2024. URL <http://arxiv.org/abs/2406.02543>.
 673 arXiv:2406.02543 [cs].
 674

675 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 676 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 677 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 678 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 679 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 680 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 681 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Ying-
 682 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 683 Qiu. Qwen3 Technical Report, May 2025. URL <http://arxiv.org/abs/2505.09388>.
 arXiv:2505.09388 [cs].
 684

685 Shimao Zhang, Yu Bao, and Shujian Huang. EDT: Improving Large Language Models’ Generation
 686 by Entropy-based Dynamic Temperature Sampling, April 2024. URL <http://arxiv.org/abs/2403.14541>. arXiv:2403.14541 [cs].
 687

688 Wenhong Zhu, Hongkun Hao, Zhiwei He, Yiming Ai, and Rui Wang. Improving Open-Ended
 689 Text Generation via Adaptive Decoding. In *Proceedings of the 41st International Conference
 690 on Machine Learning*, pp. 62386–62404. PMLR, July 2024. URL <https://proceedings.mlr.press/v235/zhu24d.html>. ISSN: 2640-3498.
 691

692 Yuqi Zhu, Jia Li, Ge Li, YunFei Zhao, Jia Li, Zhi Jin, and Hong Mei. Hot or Cold? Adaptive
 693 Temperature Sampling for Code Generation with Large Language Models, December 2023. URL
 694 <http://arxiv.org/abs/2309.02772>. arXiv:2309.02772 [cs] version: 3.
 695
 696
 697
 698
 699
 700
 701

702
703

A APPENDIX

704
705

A.1 DATASETS AND PARAMETERS

706
707
708
709
We provide detailed experiment setups and parameters for reproducibility. We evaluate on reasoning
and math-focused benchmarks commonly used to assess chain-of-thought robustness. We follow
the community-standard evaluation scripts to ensure comparability across papers and release the
detailed configuration files in our public GitHub repository.710
711

Datasets

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
1001010
1001020
1001030
1001040
1001050
1001060
1001070
1001080
1001090
1001100
1001110
1001120
1001130
1001140
1001150
1001160
1001170
1001180
1001190
1001200
1001210
1001220
1001230
1001240
1001250
1001260
1001270
1001280
1001290
1001300
1001310
1001320
1001330
1001340
1001350
1001360
1001370
1001380
1001390
1001400
1001410
1001420
1001430
1001440
1001450
1001460
1001470
1001480
1001490
1001500
1001510
1001520
1001530
1001540
1001550
1001560
1001570
1001580
1001590
1001600
1001610
1001620
1001630
1001640
1001650
1001660
1001670
1001680
1001690
1001700
1001710
1001720
1001730
1001740
1001750
1001760
1001770
1001780
1001790
1001800
1001810
1001820
1001830
1001840
1001850
1001860
1001870
1001880
1001890
1001900
1001910
1001920
1001930
1001940
1001950
1001960
1001970
1001980
1001990
1002000
1002010
1002020
1002030
1002040
1002050
1002060
1002070
1002080
1002090
1002100
1002110
1002120
1002130
1002140
1002150
1002160
1002170
1002180
1002190
1002200
1002210
1002220
1002230
1002240
1002250
1002260
1002270
1002280
1002290
1002300
1002310
1002320
1002330
1002340
1002350
1002360
1002370
1002380
1002390
1002400
1002410
1002420
1002430
1002440
1002450
1002460
1002470
1002480
1002490
1002500
1002510
1002520
1002530
1002540
1002550
1002560
1002570
1002580
1002590
1002600
1002610
1002620
1002630
1002640
1002650
1002660
1002670
1002680
1002690
1002700
1002710
1002720
1002730
1002740
1002750
1002760
1002770
1002780
1002790
1002800
1002810
1002820
1002830
1002840
1002850
1002860
1002870
1002880
1002890
1002900
1002910

756 using question–answer pairs with short ground-truth answers would produce misleading calibration
 757 values.
 758

759 **Temperature Sensitivity** To ensure fairness against temperature-based samplers, all main results
 760 are reported with $T = 1.0$. Since math and coding tasks often benefit from lower sampling tempera-
 761 tures, we additionally evaluate with $T = 0.6$. In this setting, calibration grids are recomputed using
 762 scaled logits (Equation (1)), and thresholds (p_{GT} , η and c_{CT}) are adjusted accordingly. Detailed
 763 hyperparameter values and results are provided in Section A.8.
 764

765 A.2 PARAMETERS FOR FIGURES

767 Figure 2 uses 5 confidence bins with 0.2 increments on Qwen2.5-0.5B-Instruct, using GSM8K train
 768 dataset.

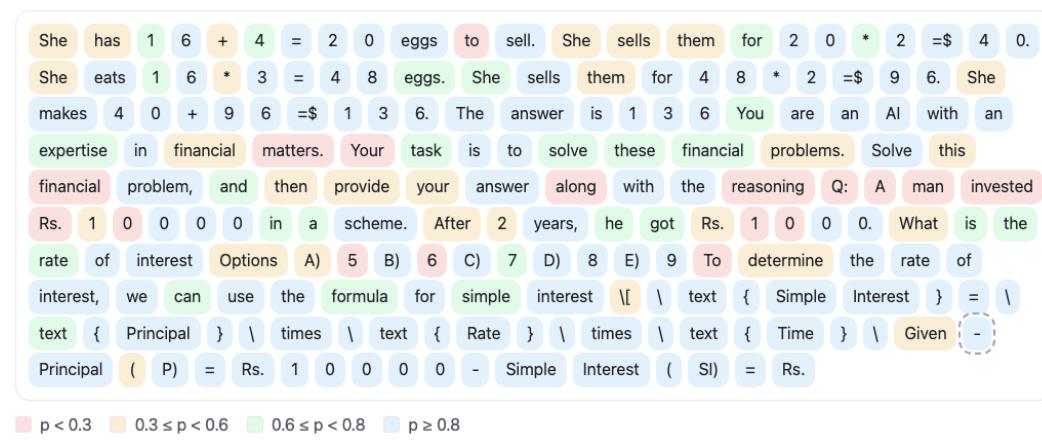
769 Figure 3 Models are in the Qwen2.5 instruct family. Expected accuracy is calculated from the
 770 top $R = 20$ ranks at each step. Dataset used is alpaca-gpt4-en with questions masked, so
 771 correctness is only calculated from answers.
 772

773 Figure 4 Uses Qwen2.5-1.5B-Instruct on GSM8K test set with $T = 1$ and no other sampling con-
 774 ditions. Each final numerical answer is extracted, excluding the reasoning chains. Only different
 775 final numerical answers are counted. Different reasoning chains that arrive at the same final answer
 776 will count as the same answer. The number of unique answers is averaged over all questions at each
 777 number of samples. If no valid final answer can be extracted, the final answer becomes `null`. This
 778 means all reasoning chains without a valid final answer will count as one unique answer.
 779

780 Figure 5 uses Qwen2.5-0.5B-Instruct on GSM8K test set. All reasoning chains up to and including
 781 the final numerical answers are considered. Sometimes the model continues to generate the next
 782 in-context question after answering the current question. All subsequent generations are excluded.
 783

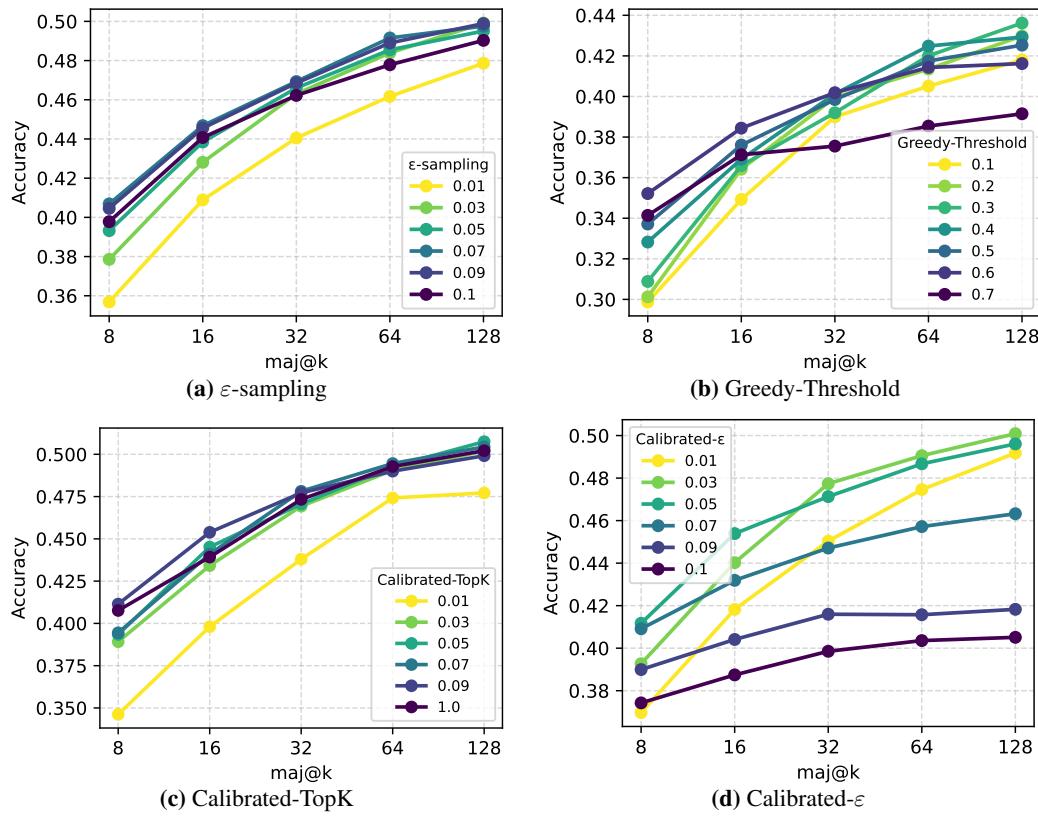
784 Figure 6 uses Qwen2.5-0.5B-Instruct on GSM8K train set.
 785

786 A.3 EXAMPLE OF LOW-CONFIDENCE CASES



800 **Figure 8:** Example of an answer for GSM8K by Qwen2.5-0.5B-Instruct under greedy generation. The lowest
 801 confidence typically do not occur at the start of a sentence.
 802

803 We illustrate a simple case of where low-confidence tokens arise. As shown in Figure 8, the
 804 beginning of a sentence where aleatoric variability is expected, typically exhibits moderate confidence
 805 ($p \geq 0.3$). In contrast, very low-confidence tokens ($p < 0.3$) are rarely observed while the model
 806 is still producing a coherent initial sentence. Over-sampling at this stage risks introducing irrelevant
 807 tokens that derail the generation. Once the model finishes answering the question and shifts to pro-
 808 ducing the next in-context example, however, both aleatoric variability and epistemic uncertainty
 809 increase, and the model’s confidence drops substantially.

810
811 A.4 HYPERPARAMETER SEARCH ON PROPOSED METHODS
812
813
814840
841 **Figure 9:** Values of each threshold ϵ , p_{GT} , c_{CT} and c_ϵ are varied to study their effect on self-consistency
842 performance. Higher number of samples generally benefit from smaller truncation thresholds.
843844
845 We conduct parameter search for each of our main methods to find the optimal ϵ , p_{GT} , c_{CT} and
846 c_ϵ values. Figure 9a confirms our hypothesis that much larger value than suggested in the original
847 ϵ -sampling paper is beneficial. ϵ is 0.0009 in the original paper (Hewitt et al., 2022). We find that ϵ
848 performs best around 0.07–0.09 regardless of the number of samples. For Greedy-Threshold, lower
849 threshold benefit more at higher number of samples. The optimal p_{GT} is 0.3 at 128 samples and 0.6
850 at 32 samples. Calibrated-TopK yields the best performance at c_{CT} 0.05–0.09 range. Calibrated- ϵ
851 shows the strongest gains at c_ϵ = 0.03.852 In general, larger sample sizes benefit from smaller truncation thresholds. This is intuitive: looser
853 thresholds retain more candidate tokens, promoting diversity that enables the model to explore mul-
854 tiple reasoning paths and recover the correct answer often enough to dominate in majority voting.
855 Figure 9 illustrates that optimal threshold selection is inherently sample-size dependent, reflecting
856 the complex trade-off between accuracy and diversity.857 In addition, we test various binning methods, including different number of bins and bin widths.
858 Even bins (default) use fixed, uniform bin widths over confidence. Quantile bins adapt their widths
859 so that each bin contains approximately the same number of tokens. This tests whether calibration
860 quality depends on uniform spacing or sample-balanced partitioning. Since high confidence steps
861 are a lot more common, quantile bins would fit high confidence steps more. This results in different
862 linear value fit compared to even bins and worse performance as shown in Table 4. Thus, it is
863 not advised to use quantile bins. Using different number of evenly spaced bins results in similar
864 performance. We do not overfit the number of bins to avoid overfitting on certain dataset and
865 model combinations.

864
Table 4: Effect of bin size and binning strategy on Qwen2.5-0.5B-Instruct performance on GSM8K. Even
865 bins (default) use fixed, uniform bin widths over confidence. Quantile bins adapt their widths so that each bin
866 contains approximately the same number of confidence samples. n indicates the number of bins. A and B are
867 the bias and gradient for log-log linear fit.

Bins	A	B	maj@8	maj@16	maj@32
$n = 5$ even	-0.574	0.791	41.2	45.4	47.6
$n = 5$ quantile	-2.290	0.435	33.9	34.1	34.0
$10 = 5$ even	-0.506	0.795	40.8	44.3	47.1
$10 = 5$ quantile	-2.232	0.442	33.5	33.9	33.7
$10 = 5$ even	-0.537	0.795	40.4	44.4	47.6
$20 = 5$ quantile	-2.214	0.444	33.5	33.6	33.6
$30 = 5$ even	-0.500	0.802	40.6	44.5	47.1

A.5 EFFECT OF CALIBRATION DATASET

In many cases, in-domain datasets are not available for calibration. To test robustness under this setting, we also perform calibration on a general instruction dataset, `alpaca-gpt4-en`. As shown in [Table 5](#), performance with alpaca calibration is close to that obtained with in-domain data. While one might expect in-domain calibration to provide stronger correctness signals, alpaca still offers sufficiently reliable guidance.

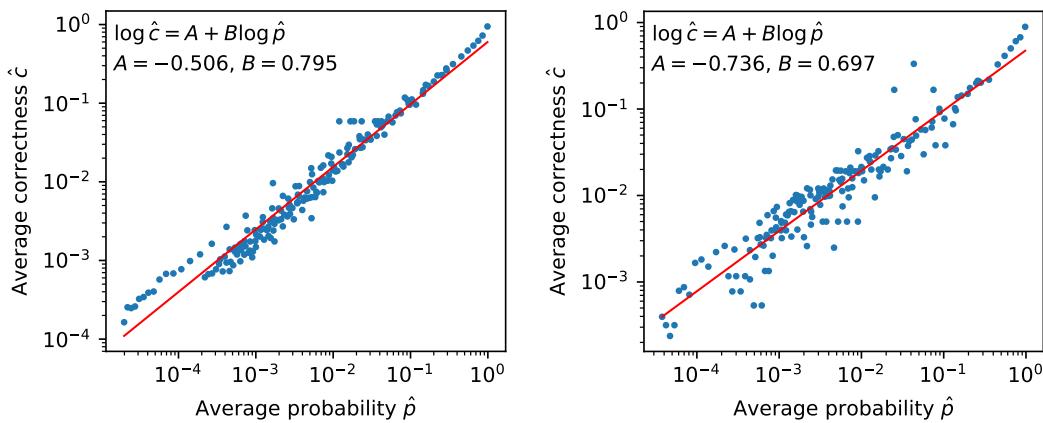
A plausible reason out-of-domain calibration works is that the *mapping* from model confidence to expected correctness appears relatively stable across settings. In [Figure 3](#), models of different sizes exhibit similar curves of expected accuracy as a function of confidence. Larger models place more mass in higher-confidence bins, which aligns with better benchmark scores. If this confidence–correctness relationship is driven by general properties of autoregressive modeling (rank-wise correctness decaying with rank) rather than dataset specifics, then a calibration set that matches the *format* of the target task (instruction→answer) may suffice even when its domain differs. We stress this is a hypothesis rather than a causal claim. We lack direct evidence that models possess an “intrinsic sense” of token-level correctness. Still, the observation that confidence–correctness curves are similar across model sizes suggests that correctness-aware calibration can transfer because it leverages structural, model-internal uncertainty signals rather than domain-specific features.

Table 5: Calibrated-TopK with $c_{CT} = 0.1$ using alpaca or GSM8K-train for calibration. Similar performances are observed. The test dataset is GSM8K-test.

Model	alpaca-gpt4-en			GSM8K-train Set		
	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32
Qwen2.5-0.5B-Instruct	40.1	44.3	46.5	41.0	45.7	47.4
Qwen2.5-1.5B-Instruct	72.4	74.8	76.1	72.9	74.8	76.5
Qwen2.5-3B-Instruct	79.9	80.8	81.0	79.1	80.7	80.7
Qwen2.5-14B-Instruct	92.9	93.4	93.3	93.0	93.4	93.8
Qwen2.5-32B-Instruct	92.6	93.3	93.6	92.9	93.3	93.3
Llama-3.2-1B	4.4	4.4	5.1	4.8	5.3	6.0
Llama-3.2-1B-Instruct	40.5	42.7	44.6	39.4	43.0	43.9

918 **Table 6:** MBPP performance by Qwen2.5-0.5B-Instruct and Qwen2.5-1.5B-Instruct. Using out-of-domain
 919 calibration dataset alpaca-gpt4-en results in better pass@k performance than using in-domain data.
 920

Method	Qwen2.5-0.5B-Instruct			Qwen2.5-1.5B-Instruct		
	pass@8	pass@16	pass@32	pass@8	pass@16	pass@32
No restrictions	41.6	50.1	57.6	55.6	65.2	72.5
Top-k	45.3	53.5	59.8	59.0	68.0	74.3
Top-p	47.0	55.3	63.0	60.2	68.6	74.9
Min-p	51.1	58.9	65.0	62.2	69.7	76.0
EDT	50.5	58.1	65.0	50.4	57.9	64.3
η -sampling	44.3	53.4	61.2	57.9	63.2	74.0
Greedy-Threshold	44.0	52.8	60.6	56.8	65.9	72.7
ε -sampling	49.2	56.1	61.8	62.0	69.6	75.4
Calibrated-TopK (ID)	50.3	57.9	64.2	62.6	69.3	74.6
Calibrated- ε (ID)	48.6	53.8	57.8	62.1	68.2	72.8
Calibrated-TopK (OOD)	49.7	61.2	65.2	62.4	70.1	76.1
Calibrated- ε (OOD)	51.0	61.4	64.2	62.3	70.4	76.3



952 (a) GSM8K-train set calibration MSE loss= 0.134. (b) MBPP-validation set calibration MSE loss= 0.237
 953

954 **Figure 10:** Qwen2.5-0.5B-Instruct calibrated on MBPP-validation set has poorer linear fit than GSM8K, which
 955 might lead to worse performance.

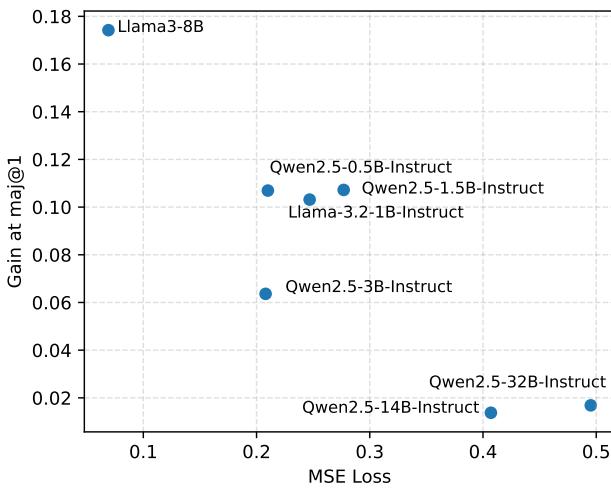
957 A.6 FAILURE CASE STUDY - POOR CALIBRATION SIGNALS

959 We provide a case study on MBPP (Austin et al., 2021), a code generation benchmark where our
 960 truncation strategies underperform compared to min- p that prioritize diversity. Unlike reasoning
 961 tasks, MBPP requires directly producing executable code without intermediate steps, so every token
 962 is critical. A single incorrect token causes the program to fail its tests. Moreover, the pass@k metric
 963 rewards diversity, since success only requires one valid solution among the k samples. In this setting,
 964 broader exploration increases the chance of producing at least one correct variant. Nevertheless,
 965 Greedy-Threshold still improves over unrestricted sampling, reinforcing our argument that sampling
 966 from low-confidence bins is harmful.

967 Calibration on MBPP also presents challenges. The validation set produces noisier signals, with
 968 a larger linear fit loss (Figure 10), which likely reduces the reliability of predicted rank-wise
 969 correctness and helps explain the weaker performance of Calibrated- ε on Qwen2.5B-0.5B-Instruct.
 970 Despite this, Calibrated-TopK performs comparably to existing methods in the literature, suggesting
 971 that correctness-aware truncation remains useful even in diversity-driven domains. Additionally, if
 we use the less-noisy alpaca calibration variant, performance becomes better than using in-domain

972 calibration dataset and methods in literature too. This could be explained by in-domain dataset being
 973 ‘overfit’ that impose too strict sampling conditions as seen by higher gradient (B value). This results
 974 in more greedy-like behavior and better performance at pass@8 but worse behavior at pass@32
 975 where diversity is more valuable.

976 To examine how the quality of the linear fit in calibration grids (log–log space) impacts performance,
 977 we plot the regression Mean Squared Error (MSE) alongside model accuracy in [Figure 11](#).
 978 To isolate the effect of calibration quality from majority voting, we use maj@1 (single-sample accuracy).
 979 If the linear interpolation provides reliable correctness estimates, models should generate
 980 more accurate single completions. If the fit is poor, the predicted correctness signals may be uninformative
 981 or even harmful. To quantify this effect, we measure the improvement of Calibrated- ε over
 982 the unrestricted baseline in maj@1. [Figure 11](#) shows that as model size increases, regression MSE
 983 rises and the performance gain diminishes. While part of this effect reflects the general difficulty
 984 of improving already-strong large models, the trend also suggests that noisier calibration weakens
 985 the benefit of Calibrated- ε . This pattern is consistent with our previous observation, where MBPP’s
 986 noisy validation signals lead Calibrated- ε to underperform Calibrated-TopK. Importantly, however,
 987 maj@1 accuracy never drops below the no-sampling baseline, indicating that even poor calibration
 988 is not harmful.



1005
 1006 **Figure 11:** Effect of calibration fit quality. Larger models yield noisier linear fits (higher MSE), which corre-
 1007 lates with smaller gains of Calibrated- ε over the unrestricted baseline.

1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 **Table 7:** Majority voting performance for Qwen2.5-1.5B-Instruct. Calibrated-TopK has the strongest overall
 1027 performance.

Method	GSM8K			MMLU-Pro			Big-Bench-Hard		
	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32
No restrictions	68.4	71.5	73.1	32.9	34.4	35.4	38.9	41.8	43.0
Top-k	68.5	72.6	73.9	33.7	35.0	35.9	41.7	44.2	45.6
Top-p	71.1	74.1	75.9	34.1	35.4	36.4	44.0	46.2	47.1
Min-p	73.3	75.6	76.6	35.3	36.2	36.9	45.5	47.2	47.6
EDT	74.9	75.6	77.0	34.7	36.2	36.8	45.5	47.8	48.2
η -sampling	69.0	72.4	74.2	33.6	34.8	35.7	41.1	43.6	45.3
ε -sampling	73.4	76.4	78.2	35.0	36.2	36.9	45.4	46.9	47.7
Greedy-Threshold	70.1	73.6	75.5	33.6	34.9	36.1	40.3	42.9	44.4
Calibrated-TopK	72.3	75.2	76.3	35.6	36.4	37.0	45.8	47.7	48.5
Calibrated-ε	74.3	77.2	78.4	34.8	35.9	36.9	46.2	47.2	48.2

1043 **Table 8:** Majority voted results on GSM8K and Big-Bench-Hard using Qwen2.5-1.5B-Instruct. In addition to
 1044 existing sampling conditions, Greedy-Threshold $p_{GT} = 0.3$ is applied and shows strong consistent gains in
 1045 addition to base samplers. Statistically significant differences ($p < 0.05$) marked in **bold**.

Method	GSM8K				Big-Bench-Hard			
	maj@1	maj@8	maj@16	maj@32	maj@1	maj@8	maj@16	maj@32
Baseline $T=1$	17.3	30.2	35.2	38.6	17.4	17.9	20.0	16.2
+ Greedy-Threshold	+0.3	+1.0	+1.8	+2.0	+1.9	+2.9	+0.3	+3.2
top- k	18.8	32.6	38.7	41.9	20.5	22.0	21.7	21.5
+ Greedy-Threshold	+0.2	+1.1	+0.5	+1.1	+1.1	+1.6	+1.5	+1.5
top- p	22.4	35.5	40.8	43.6	22.3	25.5	25.8	25.9
+ Greedy-Threshold	+0.6	+0.9	+0.4	+1.3	+1.6	+1.5	+1.5	+1.9
min- p	25.3	38.7	43.1	46.6	27.5	30.6	31.5	31.7
+ Greedy-Threshold	+1.9	+1.4	+0.8	+0.6	+0.3	+0.2	+0.1	+0.1
EDT	28.0	40.2	44.7	46.8	27.0	30.4	31.1	31.7
+ Greedy-Threshold	0.0	+0.2	-0.3	+0.1	+0.5	+0.3	+0.5	+0.3
η -sampling	19.0	31.6	37.2	41.0	19.7	20.6	20.3	19.6
+ Greedy-Threshold	+4.3	+2.4	+1.8	+1.7	+0.9	+1.9	+2.2	+2.7

1065 A.7 FURTHER CALIBRATED TRUNCATION AND GREEDY-THRESHOLD RESULTS

1066 We further compare our proposed methods against other existing methods across different benchmarks. Calibrated-TopK has the strongest overall performance for Qwen2.5-1.5B-Instruct as shown in Table 8.

1070 We extend our analysis of Greedy-Threshold for up to 32B parameters models in Table 9, considering both instruct and non-instruct models. As expected, larger models with stronger baseline
 1071 performance are more challenging to improve. Existing samplers provides little improvement on the
 1072 baseline. Nevertheless, Greedy-Threshold does not degrade performance. It either provides modest
 1073 gains or remains comparable to existing samplers. One explanation for this diminishing effect is
 1074 that larger models produce high-confidence predictions more frequently (Figure 3), leading to fewer
 1075 low-confidence steps. Since Greedy-Threshold only intervenes under low-confidence conditions, its
 1076 impact naturally diminishes as model size increases. Similarly, the effect of majority voting in larger
 1077 models (Table 11) also diminishes in larger models due to reduced stochasticity.

1078

1079

1080

1081

Table 9: Majority voted results on GSM8K. Greedy-Threshold improves performance more in smaller models. Statistically significant difference ($p < 0.05$) marked in **bold**.

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Method	Llama-3.2-1B			Qwen2.5-14B-Instruct			Qwen2.5-32B-Instruct		
	maj@8 maj@16 maj@32			maj@8 maj@16 maj@32			maj@8 maj@16 maj@32		
	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32
Baseline $T=1$	0.7	0.6	0.2	92.8	93.4	93.5	92.8	93.4	94.0
+ Greedy-Threshold	+0.7	+0.5	+0.5	+0.2	+0.2	+0.3	+0.1	+0.3	-0.2
Top- k	2.6	1.7	1.4	93.3	93.5	93.7	92.9	93.7	93.9
+ Greedy-Threshold	-0.3	+0.6	+0.1	0.0	-0.1	0.0	+0.1	-0.1	0.0
Top- p	1.7	1.4	1.6	93.3	93.5	93.5	93.1	93.5	93.7
+ Greedy-Threshold	+0.3	+0.5	+0.4	+0.1	-0.1	0.0	-0.2	-0.1	-0.2
Min- p	3.9	3.9	3.6	93.2	93.1	93.3	92.8	93.4	93.6
+ Greedy-Threshold	+0.9	+0.5	+0.9	-0.3	+0.2	+0.1	+0.3	0.0	-0.2
EDT	4.2	3.8	3.9	92.9	93.3	93.4	92.7	93.3	93.5
+ Greedy-Threshold	+0.9	+0.3	+0.1	+0.1	-0.1	0.0	-0.1	-0.1	+0.1
η -sampling	1.1	0.8	0.5	93.5	93.6	93.7	93.2	93.6	93.9
+ Greedy-Threshold	+0.7	+0.5	+0.7	-0.4	-0.3	+0.1	-0.1	0.0	-0.1

Table 10: GSM8K performance by Qwen2.5-7B and Qwen2.5-7B-Instruct.

Method	Qwen2.5-7B			Qwen2.5-7B-Instruct		
	pass@8	pass@16	pass@32	pass@8	pass@16	pass@32
No restrictions	82.8	86.8	88.4	86.7	88.4	89.4
Top- k	83.3	87.6	88.9	87.2	89.3	89.3
Top- p	84.9	88.2	89.6	87.2	88.3	89.3
Min- p	86.2	88.7	89.9	87.2	88.3	88.8
EDT	83.4	87.3	88.7	87.0	89.1	89.6
η -sampling	83.8	87.2	89.5	87.8	89.3	89.7
Greedy-Threshold	83.8	86.6	88.9	86.8	88.8	89.6
ϵ -sampling	86.6	88.5	89.9	87.4	88.7	88.8
Calibrated-TopK	86.5	88.7	89.9	87.4	89.6	89.6
Calibrated- ϵ	86.5	87.6	89.3	88.0	88.7	89.4

Table 11: MMLU-Pro performance by Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct.

Method	Qwen2.5-14B-Instruct			Qwen2.5-32B-Instruct		
	pass@8	pass@16	pass@32	pass@8	pass@16	pass@32
No restrictions	63.4	63.7	64.1	68.1	68.5	68.7
Greedy-Threshold	63.4	64.1	64.0	68.1	68.5	68.8
ϵ -sampling	63.6	64.2	64.2	68.6	68.9	68.9
Calibrated-TopK	63.7	64.2	64.6	68.3	68.7	69.0
Calibrated- ϵ	63.8	63.7	64.1	68.3	68.6	68.9

1134 A.8 EFFECTIVENESS AT LOW TEMPERATURES
1135

1136 Since lower temperatures are used for math and coding tasks, we test our proposed methods using
1137 $T = 0.6$. The reason for temperature scaling is to make probability distribution more peaked so
1138 that top-1 probability increases while the tail probabilities shrink. Consequently, probability-based
1139 pruning becomes implicitly more aggressive. Many low-rank tokens become unlikely to be sampled
1140 even without changing any thresholds. This aligns with our thesis that low ranked tokens should
1141 not be broadly sampled due to their correlation with low correctness. Given the same non top-1
1142 ranked token, after temperature scaling, its probability will decrease. Thus, to remove the same
1143 token as without temperature scaling, the probability cutoff needs to be lower. We choose $\varepsilon = 0.01$,
1144 $p_{GT} = 0.1$ and $c_{CT} = 0.01$.

1145 Given the same p_{max} , its scaled probability would be bigger. Thus, we should set a higher Greedy-
1146 Threshold than before. However, in practice we found that this limits diversity significantly that
1147 the benefit from self-consistency diminishes. The maj@1 accuracy increases but performance gain
1148 from maj@k reduces. We hypothesize that this is because more lower temperature already results
1149 in diminished diversity. Further restrictions results in diversity collapse. From Table 12, we can see
1150 that further gains from baseline is much smaller than with $T = 1$. Nevertheless, by setting lower
1151 truncation thresholds, we still see performance gains from using our proposed truncation methods.

1152 **Relation between temperature and ε -sampling.** We derive how temperature scaling interacts
1153 with probability thresholding in ε -sampling. At a fixed decoding step t , let $z_t(j)$ denote the logit of
1154 token j and $p_T(j)$ the corresponding next-token probability under temperature $T > 0$,

$$1156 p_T(j) = \frac{\exp(z_t(j)/T)}{\sum_v \exp(z_t(v)/T)}. \quad (12)$$

1158 Let j^* be the top-1 token at this step and define centered logits $\Delta z_j := z_t(j) - z_t(j^*) \leq 0$.
1159 Subtracting $z_t(j^*)$ from all logits leaves the softmax invariant, so
1160

$$1161 p_T(j) = \frac{\exp(\Delta z_j/T)}{1 + \sum_{k \neq j^*} \exp(\Delta z_k/T)} = \frac{\exp(\Delta z_j/T)}{D_T}, \quad (13)$$

1163 where we introduced the normalizer
1164

$$1165 D_T := 1 + \sum_{k \neq j^*} \exp(\Delta z_k/T). \quad (14)$$

1167 In particular, for $T = 1$ we have
1168

$$1169 p_1(j) = \frac{\exp(\Delta z_j)}{D_1}, \quad D_1 := 1 + \sum_{k \neq j^*} \exp(\Delta z_k). \quad (15)$$

1172 We can now eliminate the logits Δz_j and obtain a direct relation between $p_T(j)$ and $p_1(j)$ at the
1173 same decoding step. From the $T = 1$ expression we get
1174

$$1175 \exp(\Delta z_j) = p_1(j) D_1, \quad \Rightarrow \quad \exp(\Delta z_j/T) = (\exp(\Delta z_j))^{1/T} = (p_1(j) D_1)^{1/T}. \quad (16)$$

1177 **Table 12:** Majority voted results on GSM8K with scaled temperature $T = 0.6$, $\varepsilon = 0.01$, $p_{GT} = 0.1$ and
1178 $c_{CT} = 0.01$

Method	Qwen2.5-0.5B-Instruct			Qwen2.5-1.5B-Instruct		
	maj@8	maj@16	maj@32	maj@8	maj@16	maj@32
No conditions	40.7	44.9	46.9	73.7	76.3	76.9
ε -sampling	41.4	45.2	46.8	74.4	75.8	77.0
Greedy-Threshold	41.2	45.2	47.2	74.3	76.9	77.1
Calibrated-TopK	40.9	44.5	46.7	74.1	76.0	77.3
Calibrated-ε	41.4	45.2	48.4	74.2	75.6	77.0

1188 Plugging this into the definition of $p_T(j)$ gives
 1189

$$1190 \quad p_T(j) = \frac{(p_1(j) D_1)^{1/T}}{D_T} = \underbrace{\frac{D_1^{1/T}}{D_T}}_{K_T} p_1(j)^{1/T}. \quad (17)$$

$$1191$$

$$1192$$

$$1193$$

1194 Thus, for any fixed decoding step t and any temperature $T > 0$,

$$1195 \quad p_T(j) = K_T p_1(j)^{1/T}, \quad (18)$$

$$1196$$

1197 where the factor

$$1198 \quad K_T := \frac{D_1^{1/T}}{D_T} \quad (19)$$

$$1199$$

1200 depends on the full logit configuration at that step and on T , but does not depend on the particular
 1201 token j . In other words, temperature rescales per-token probabilities via a power law in their $T = 1$
 1202 probabilities, up to a step-wise constant multiplier K_T shared by all tokens. This leads to a natural
 1203 scaling rule for ε -sampling. Suppose that at $T = 1$ we apply ε_1 -sampling and discard all tokens
 1204 with

$$1205 \quad p_1(j) \leq \varepsilon_1. \quad (20)$$

$$1206$$

1207 The same tokens have probability, at temperature T ,

$$1208 \quad p_T(j) = K_T p_1(j)^{1/T} \leq K_T \varepsilon_1^{1/T}. \quad (21)$$

$$1209$$

1210 If we want our temperature- T cutoff to remove at least all the tokens that would have been removed
 1211 by ε_1 -sampling at $T = 1$, a natural choice is

$$1212 \quad \varepsilon_T \propto \varepsilon_1^{1/T}, \quad (22)$$

$$1213$$

1214 with the proportionality constant absorbing an average over the step-wise factors K_T . In practice
 1215 we use the simple global scaling rule

$$1216 \quad \varepsilon_T \approx \varepsilon_1^{1/T}. \quad (23)$$

$$1217$$

1218 For $T < 1$ (sharper distributions), $1/T > 1$ and hence $\varepsilon_T < \varepsilon_1$. Temperature already suppresses
 1219 low-probability tokens, so the probability threshold must be lowered in order to prune a comparable
 part of the tail of the logit distribution.

1220 **Intuition for the $\varepsilon = 0.01$ choice.** In our main experiments we use $\varepsilon_1 = 0.05$ at $T = 1$. Applying
 1221 Equation (23) to $T = 0.6$ yields the theoretical value

$$1223 \quad \varepsilon_{0.6}^{\text{theory}} \approx \varepsilon_1^{1/0.6} = 0.05^{1/0.6} \approx 6.8 \times 10^{-3}. \quad (24)$$

$$1224$$

1225 For our low-temperature runs at $T = 0.6$ we instead adopt $\varepsilon = 0.01$, which is slightly more conservative
 1226 (it removes a bit more of the tail) but remains close to the theoretical prediction.

1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 **Table 13:** GPT-4-mini judges performance of various samplers on LitBench prompts generated by Qwen2.5-
 1243 7B-Instruct. Human written baseline is the chosen_story column from the original benchmark. Each category
 1244 is scored from 1-5. Higher is better.

Method	Relevance	Coherence	Emotional impact	Originality	Total
Greedy	4.50	3.27	2.70	2.68	13.15
$T=1$	4.48	3.15	2.81	2.67	13.11
Min- $p=0.1$	4.48	3.38	2.80	2.69	13.35
Human written baseline	4.50	3.81	3.03	3.20	14.54
Calibrated-TopK	4.58	3.52	2.77	2.68	13.55
Calibrated- ε	4.60	3.47	2.77	2.69	13.53

A.9 WHAT ABOUT CREATIVE WRITING?

Our main experiments target reasoning tasks with closed-form answers. A natural question is whether the same correctness-aware perspective applies to open-ended generation. We provide an illustrative case study on creative writing using LitBench (Fein et al., 2025), treating the *chosen* story as a proxy for ground truth. We construct calibration grids and probability–correctness scatter plots and observe qualitatively similar patterns. As confidence decreases, expected correctness declines. As rank increases, correctness drops sharply. Compared with GSM8K and Alpaca calibration, creative prompts exhibit systematically lower confidence, with low-confidence bins occurring more often (e.g., lowest-bin frequency: 6.01 % for LitBench vs. 0.17 % for Alpaca and 0 % for GSM8K). The probability–correctness mapping in log–log space is also stronger in this setting, with a slope closer to one. Full calibration diagrams and scatter plots are provided in Section A.10.

We conduct a simple evaluation of our samplers compared to min-p (Schaeffer et al., 2025), which is advertised to excel at creative writing. We prompt Qwen2.5-7B-Instruct to generate short stories using the prompts given in LitBench with the following prompt: *Given the following writing prompt, write a short story that is original, relevant, emotional and coherent correct in less than 500 words. [Prompt] Your story:*

The stories generated are evaluated by GPT-5-mini⁸ using the following prompt: *Evaluate a creative writing task and give scores. Each category is scored from 1 (lowest) to 5 (highest). Consider these categories: Originality: unique concepts, unexpected elements. Relevance: story follows the writing prompt. Emotional impact: how the writing affects the reader. Coherence: logical flow and narrative structure. Writing prompt: [prompt] Judge the writing in the following format: Reasoning: [your evaluation with scores for each category]*

The scores given by the judge model is parsed and averaged for each category averaged over three runs. As shown in Table 13, our calibrated samplers outperforms min-p and no-samplers baseline by improving coherence and relevance. While originality stays the same and emotional impact is slightly reduced. The improvement in coherence and relevance is essential for a small model like Qwen2.5-7B-Instruct, which is prone to drifting off-topic at a high temperature.

A.10 EXAMPLE CALIBRATION DIAGRAMS

⁸<https://openrouter.ai/openai/gpt-5-mini>

1296

1297

1298

1299

1300

1301

1302

1303

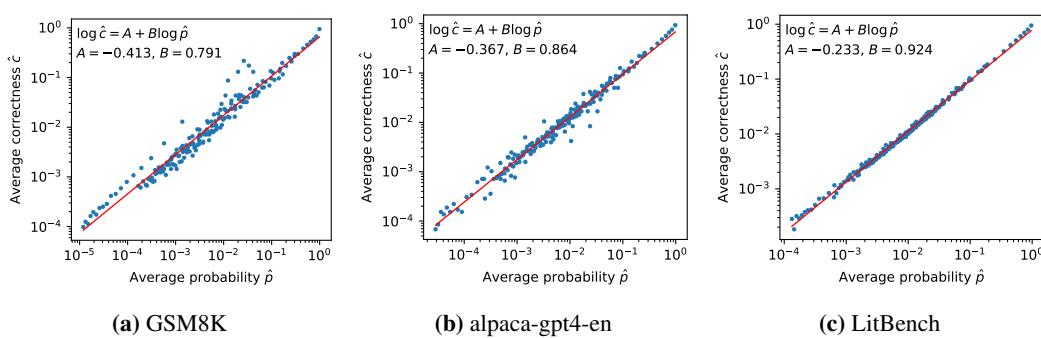


Figure 12: Calibration scatter plots on Qwen2.5-1.5B-Instruct

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

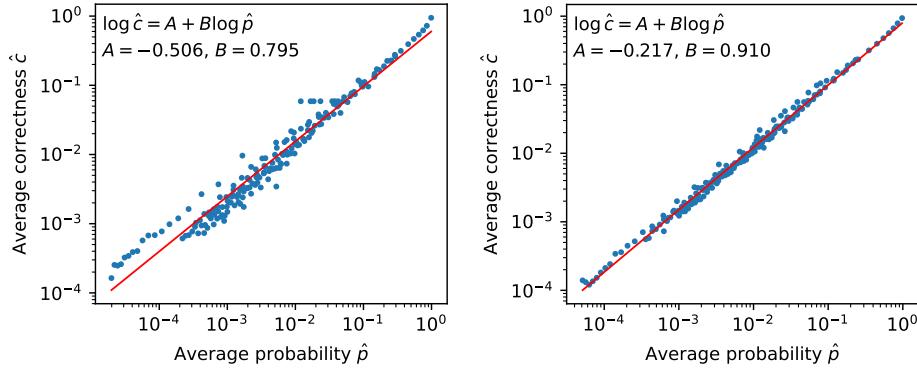


Figure 13: Calibration scatter plots on Qwen2.5-0.5B-Instruct

1343

1344

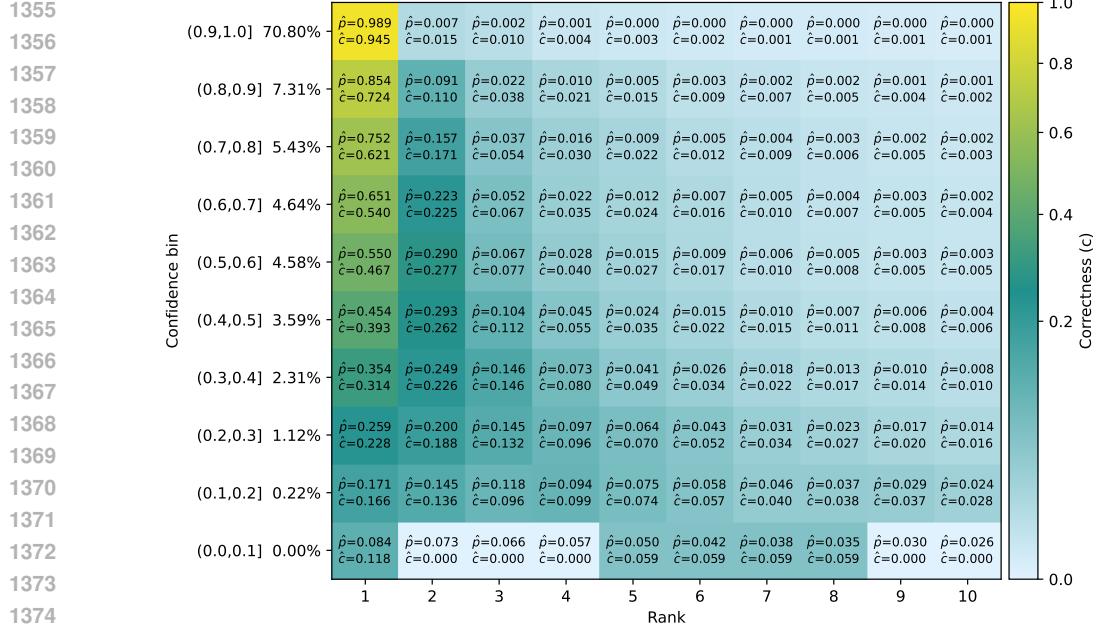
1345

1346

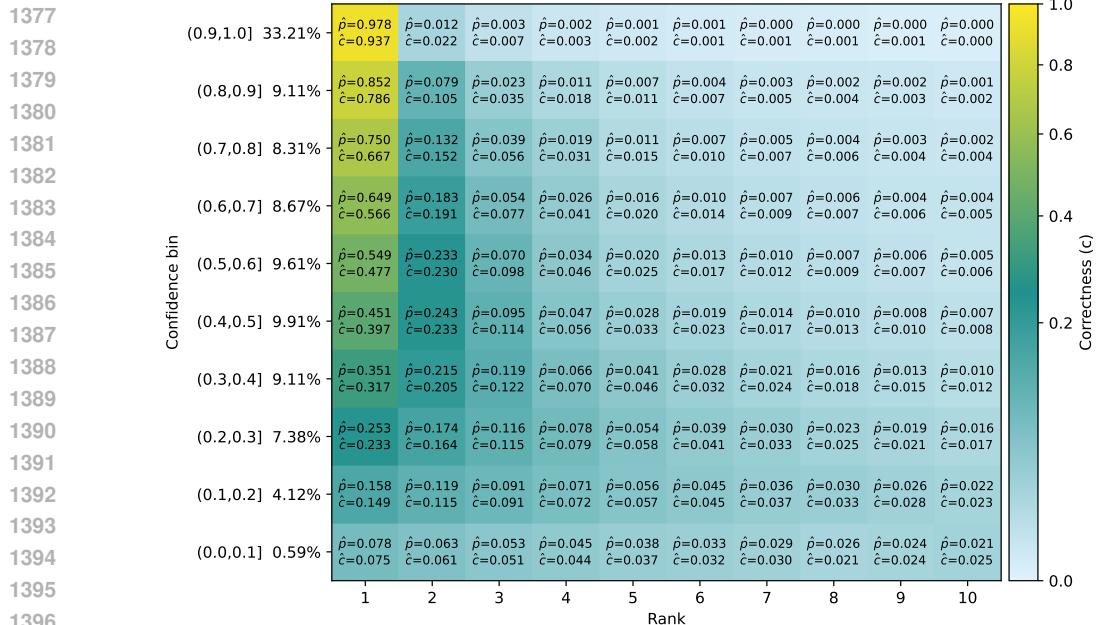
1347

1348

1349

1350
1351
1352
1353
1354

(a) Qwen2.5-0.5B-Instruct on GSM8K



(b) Qwen2.5-0.5B-Instruct on alpaca-gpt4-en

1399 **Figure 14:** Calibration grids on various Qwen models and GSM8K or alpaca-gpt4-en1400
1401
1402
1403

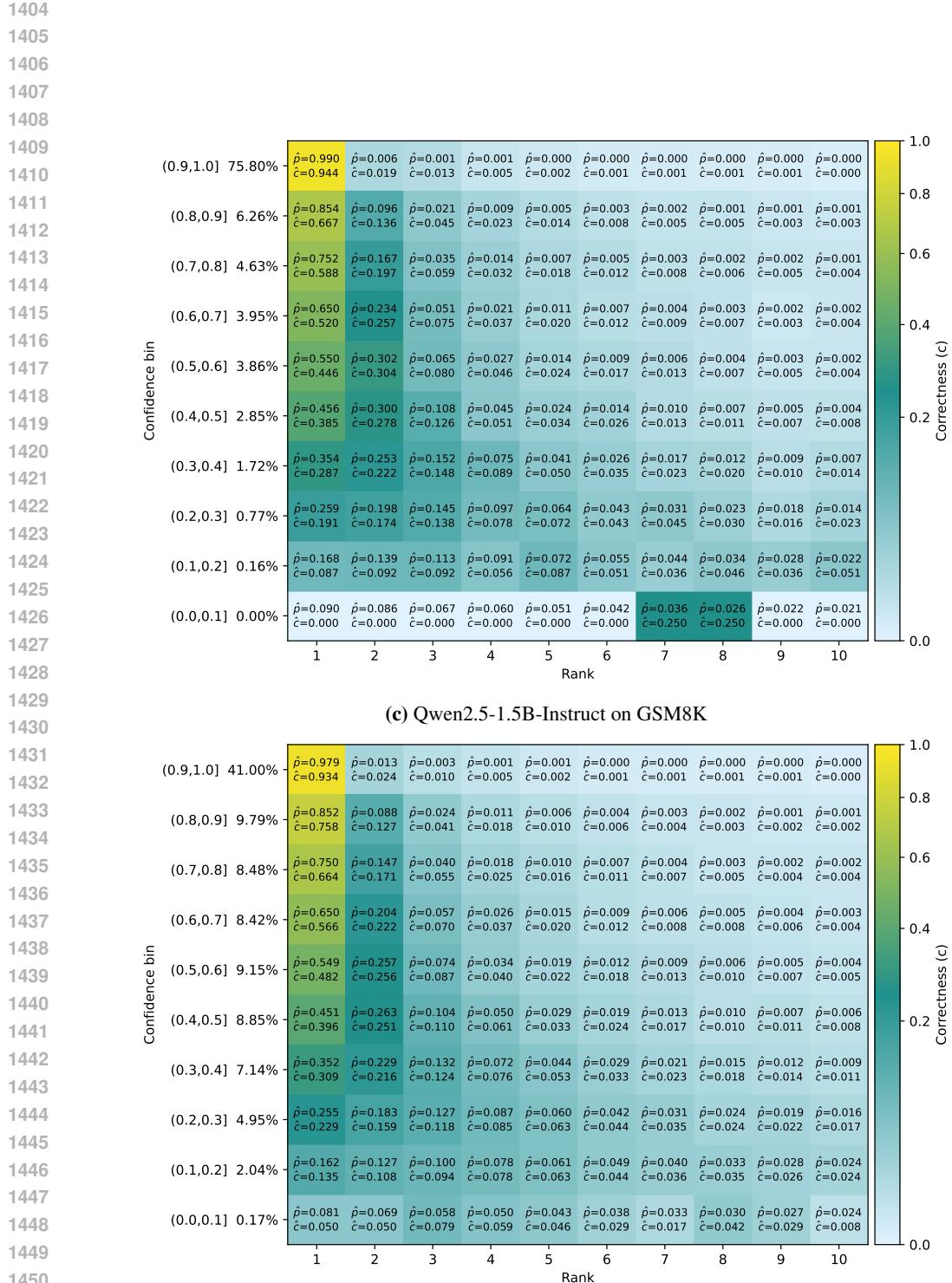
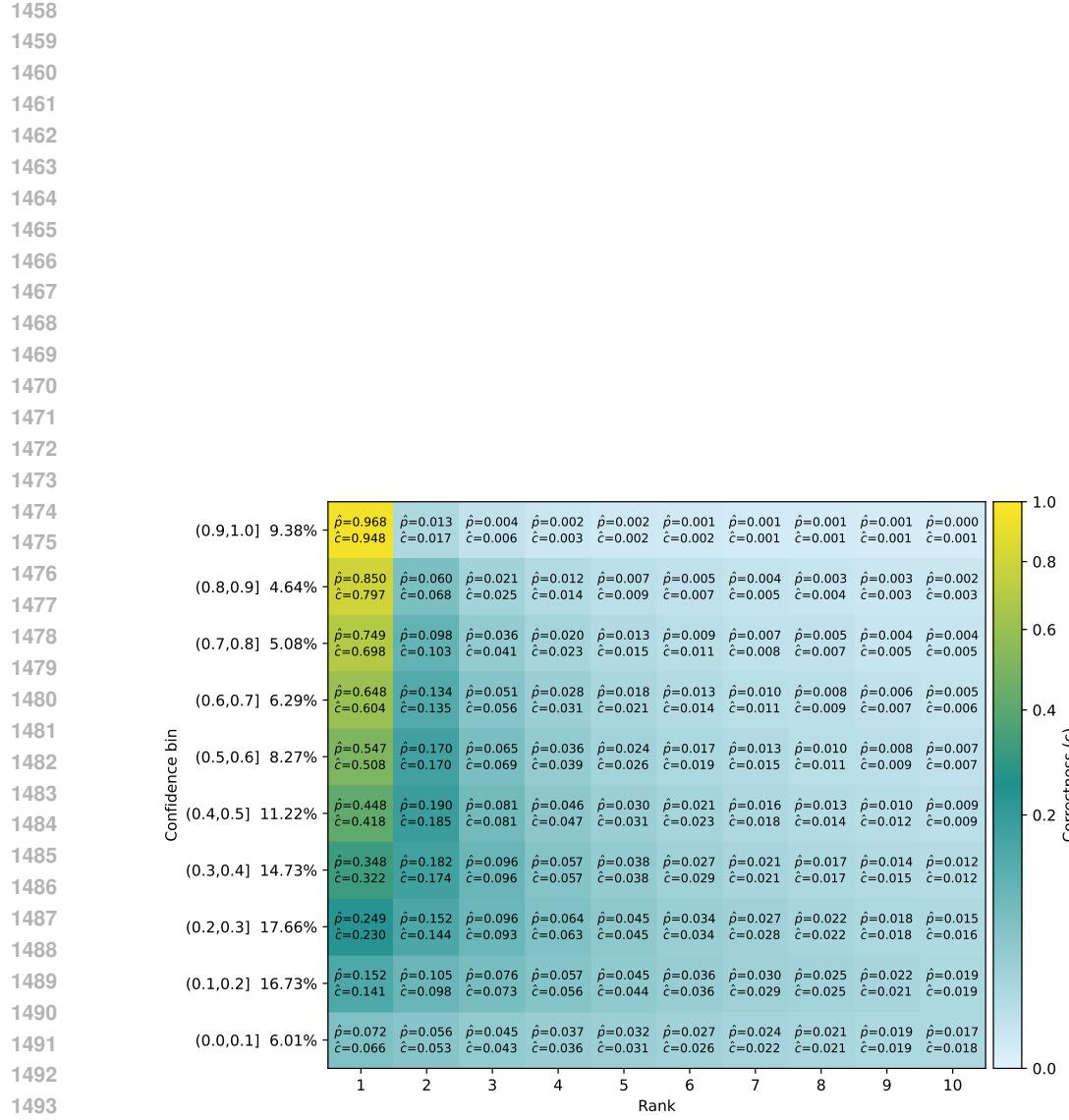


Figure 14: Calibration grids on various Qwen models and GSM8K or alpaca-gpt4-en



(e) Qwen2.5-1.5B-Instruct on LitBench

Figure 14: Calibration grids on various Qwen models and GSM8K, alpaca-gpt4-en or LitBench