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ABSTRACT

Large Language Models (LLMs) are increasingly applied to complex tasks that
require extended reasoning. In such settings, models often benefit from diverse
chains-of-thought to arrive at multiple candidate solutions. This requires two
competing objectives: to inject enough stochasticity to explore multiple reasoning
chains, and to ensure sufficient accuracy and quality in each path. Existing works
pursue the first objective by increasing exploration at highly uncertain steps with
higher temperature or larger candidate token sets, while others improve reliabil-
ity by rejecting samples with low confidence post-generation, implying that low
confidence correlates with low answer quality. These two lines of thought are in
conflict, as they conflate different sources of uncertainty. To resolve this, we ar-
gue that the decoding rule should be calibrated by correctness, not confidence
alone. We should sample from tokens with higher estimated correctness, and
reduce sampling where expected correctness is low. We propose simple strate-
gies that achieve this goal: Greedy-Threshold makes sampling greedy at very
low confidence steps. Calibrated-TopK and Calibrated-ε set truncation thresh-
old based on estimated rank-wise correctness. Together, our findings challenge
prevailing heuristics about decoding under uncertainty, showing consistent gains
across reasoning benchmarks, with up to 6% improvement in AIME.

1 INTRODUCTION

Large Language Models (LLMs) are used for a wide range of generation tasks, ranging from
open-ended text to structured problem-solving. In many cases, producing more than one candidate
output improves not only fluency, but also reliability, since different samples may capture alternative
valid continuations (Wang et al., 2023; Lin et al., 2024). This practice highlights a fundamental
trade-off: introducing enough randomness to explore multiple options while still ensuring the
accuracy and quality of each individual output (Tan et al., 2024; Meister et al., 2024; Shi et al.,
2024). Existing works optimize exploration by raising temperatures or enlarging candidate token
sets step-by-step (Nguyen et al., 2025; Zhang et al., 2024; Hewitt et al., 2022). These methods
assume that higher entropy is a signal of uncertainty between multiple valid next steps, warranting
broader exploration. In parallel, other works filter after generation, relying on the finding that low
confidence correlates with low answer quality. Fu et al. (2025) accepts only samples with high
token confidence and stops generation when uncertainty spikes. Hallucination detection also makes
use of low-confidence segments (Chang et al., 2024).

These two perspectives are in conflict, because they conflate different sources of uncertainty. From
a classical perspective, if a probabilistic language model closely approximates the true distribution
over next tokens, then high predictive uncertainty indicates that multiple continuations may be valid.
In this case, uncertainty reflects aleatoric variability, and broader sampling is appropriate. However,
if low-confidence positions are instead those where the model is most often wrong, then additional
randomness amplifies epistemic uncertainty, which is systematic errors arising from the model’s
lack of knowledge (Yadkori et al., 2024). In such cases, drawing more samples from an unreliable
distribution might compound the model’s errors.

In this work, we start by analyzing the role of low-probability tokens in reasoning tasks. We observe
that increasing exploration at low-confidence steps is indeed a sub-optimal strategy, as a single
misstep can derail subsequent tokens (Arora et al., 2023). This is especially true for smaller models.
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Figure 1: Comparison of common and our proposed truncation strategies. Each panel shows which tokens
remain available for sampling, with tokens ordered from highest to lowest model-assigned probability (left to
right). The y-axis represents the max token probability (“confidence”). Our methods explicitly suppress low-
confidence tail tokens.

Therefore, we propose using the counterintuitive, but simple, Greedy-Threshold rule that inverts
common sampling heuristics in the literature: when a step’s maximum probability falls below a
threshold, decoding becomes greedy. Greedy-Threshold can be used in addition to existing samplers
and shows consistent gains in reasoning benchmarks, especially for smaller models.

With this we build upon prior work on ε-sampling (Hewitt et al., 2022) that drops every token below
ε. Previous work chose very small ε for machine translation or MBR decoding (≈ 3 × 10−4 −
9 × 10−4 in the original paper) (Jinnai et al., 2024; Finkelstein & Freitag, 2024). We show that
for reasoning tasks, larger ε is safe. This is based on the same conservative principle where less
randomness is beneficial where the model is epistemically uncertain. An overview of our methods
versus those in literature is shown in Figure 1.

Finally, we unify these perspectives by showing that the rank-wise correctness of tokens provides
better truncation signals than probabilities alone, and propose a learning-free way to approximate
rank-wise calibration. Calibrated-TopK sets a truncation threshold at each generation step based
on estimated correctness for each confidence bin. Calibrated-ε extends upon this by replacing
discrete confidence bins with a smooth mapping from probability to correctness. It improves from
ε-sampling by making the truncation threshold data-calibrated. Our paper makes the following
main contributions:

• We find that sampling at low-confidence steps contributes little additional diversity, while
increasing the risk of selecting low-correctness tokens that can harm overall performance.

• We verify this empirically by showing that a Greedy-Threshold that eliminates unreliable
tail tokens alleviates this trend and improves reasoning benchmarks when used in addition
to existing samplers such as top-p, top-k and min-p.

• We introduce a rank-conditional calibration grid and derive Calibrated-TopK and
Calibrated-ε, learning-free correctness-aware truncation rules that align exploration with
expected correctness and incur negligible inference cost.

• We open-source a unified, composable implementation of common samplers and our meth-
ods in one framework.

2 WHY WE NEED STRICTER SAMPLING FOR REASONING

Before introducing our samplers, we first examine how confidence relates to accuracy across models
and how errors emerge at low-confidence steps. We show that token probabilities provide strong
signals of correctness: when the model is uncertain (low maximum probability), expected accuracy
decreases regardless of model size, and correctness beyond the top-ranked token drops sharply.
These observations motivate a clear definition of confidence, rank, and calibration, which we use
to formalize stricter sampling rules that suppress error-prone low-probability tokens.
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2.1 DEFINING RANK-WISE ACCURACY

For a prompt–answer pair, we define the gold answer token sequence as x1:L and the sequence
generated at inference as y1:M . Let V denote the vocabulary, |V| = V . At any position t, the
model outputs a logit vector zt ∈ RV conditioned on a context ht which is either the gold prefix
x<t during calibration, or the generated prefix y<t during decoding. With temperature T > 0, the
temperature-scaled categorical distribution over the next token is

pt(j | ht;T ) =
exp

(
zt(j)/T

)∑
v∈V exp

(
zt(v)/T

) for j ∈ V. (1)

When T = 1 we omit T and write pt(j). Further, let p(1)t ≥ p
(2)
t ≥ · · · ≥ p

(V )
t denote the

probabilities sorted in descending order, and let rankt(j) ∈ {1, . . . , V } be the rank of token j at
step t, then top-k sampling draws from tokens with rankt(j) ≤ k. We define confidence as the
maximum token probability at each step. pt,max ≜ maxj∈V pt(j) = p

(1)
t .

Confidence bins. We partition model confidence (0, 1] into n contiguous confidence bins, 10 in this
work:

Bm =

(
m− 1

n
,
m

n

]
, m = 1, . . . , n. (2)

Each step t is assigned to exactly one bin via the index m(t) such that pt,max ∈ Bm(t).

Rank-wise probability and correctness. For each step t, the rank-wise probability at rank r is p(r)t .
Let x⋆

t ∈ V be the ground truth next token under teacher forcing. Let R < V be the maximum rank
considered. We define the rank-wise correctness as

I{rankt(x⋆
t ) = r} =

{
1, if the gold token appears at rank r,

0, otherwise.
(3)

Calibration Grid. We can estimate a calibration grid over confidence bins and rank just based on
given text sequences which we score by teacher forcing. For each bin–rank pair (m, r), we compute
the average probability p̂m,r, and correctness ĉm,r within confidence bin Bm:

p̂m,r = E
[
p
(r)
t

∣∣∣ pt,max ∈ Bm

]
, ĉm,r = P[ rankt(x⋆

t ) = r | pt,max ∈ Bm ] . (4)

In practice, with Nm steps whose pt,max ∈ Bm,

p̂m,r =
1

Nm

∑
t:pt,max∈Bm

p
(r)
t , ĉm,r =

1

Nm

∑
t: pt,max∈Bm

I{rankt(x⋆
t ) = r}. (5)
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Figure 2: Calibration grid of Qwen2.5-1.5B-Instruct with 5
bins shows the average probability p̂ and correctness ĉ for
each confidence-bin and rank. Correctness is notably low in
the lower-confidence bins, and decreases as rank increases.
Percentages indicate frequency of occurrence of this bin.

An example calibration grid with 5 bins
is shown in Figure 2 for visualization.
Full calibration grids can be found in Sec-
tion A.10. These definitions apply to any
next-token distribution pt of a language
model. If temperature scaling, or any other
logit processing is applied, then the cali-
bration would be calculated based on the
final probabilities, as in Equation (1).

Bin-wise expected accuracy. The ex-
pected accuracy for each confidence bin,
i.e., the probability of selecting the correct
next token, is given by the average rank-
wise probability and correctness:

Cm =

R∑
r=1

p̂m,r ĉm,r. (6)
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Figure 3: Expected accuracy increases with confidence across all model sizes. In the lowest confidence bin,
expected accuracy drops regardless of model size. Frequency refers to the proportion of decoding steps whose
maximum probability falls into each confidence bin. Larger models assign more predictions to the 0.9–1.0
confidence range, where both accuracy and frequency are highest, reflecting stronger benchmark performance.
In contrast, smaller models place more probability mass in low-confidence bins, where accuracy is poor.

2.2 LOW PROBABILITY SIGNALS LOW CORRECTNESS IN REASONING TASKS

While calibration grids highlight how confidence and correctness align on average, it is less clear
how these signals affect full generations. In particular, one might expect that sampling from un-
certain positions could encourage exploration which is beneficial over many samples. We test this
assumption by analyzing the role of low-probability tokens in self-consistency.

Figure 3 shows that high-confidence predictions occur most frequently, which amplifies diversity
simply by providing more opportunities for stochastic sampling. However, this diversity does not
necessarily translate into better performance, since rank-wise accuracy drops sharply beyond the top
token (Figure 2). In the highest-confidence bin (0.8, 1.0], correctness falls from 0.907 from rank 1 to
only 0.039 at rank 2. Figure 4 further demonstrates that restricting sampling to the lowest-confidence
bin does not yield measurable gains in majority-voted accuracy, while also contributing little to
output diversity despite sampling from the full token distribution. This stands in contrast to the
assumption that exploration at low-confidence steps is beneficial. Instead, the largest improvements
in accuracy arise from sampling in mid-confidence bins 0.3− 0.6.

Figure 5 presents two views of why low-confidence positions are dangerous. Figure 5a distinguishes
between when a low-probability token is actually chosen (blue) versus when the model is in a low-
confidence state regardless of what is sampled (orange). Both conditions harm accuracy as they
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Figure 4: Plot of the majority voted accuracy and the number of unique answers as the number of samples
increase. Sampling is greedy unless the maximum probability falls into a certain confidence bin, in which case
sample from the full token distribution. Sampling at the lowest confidence bin results in no gain in accuracy
while contributing little to diversity in terms of number of unique answers.
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(a) Accuracy vs the number of low probability tokens
or states sampled in each sequence
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Figure 5: Effect of low-confidence events on sequence-level accuracy. (a) Accuracy decreases both when
the model directly samples low-probability tokens (p < 0.1, blue) and when it is in a low-confidence state
regardless of the sampled token (pmax < 0.3, orange). (b) Accuracy also drops as the mean rank of sampled
tokens increases, showing that drifting into lower-ranked tokens degrades sequence quality.

accumulate within a sequence. Figure 5b presents a rank perspective: once decoding drifts into
higher-ranked tokens, accuracy drops. These findings motivate our conservative truncation rules.
By enforcing greedy decoding at low-confidence steps, Greedy-Threshold prevents the model from
sampling higher-ranked, error-prone tokens and keeps the mean sampled rank low. Similarly, ε-
sampling blocks low-probability tokens entirely, which naturally caps the rank distribution. In both
cases, the methods limit the propagation of errors and preserves sequence-level accuracy.

3 HOW TO CALIBRATE TRUNCATION SAMPLERS

The central idea is to adapt the sampling process in autoregressive language models by filtering
out tokens that are likely to be inaccurate, thereby refining the candidate set. Although this might
initially seem infeasible, we will show that excluding tokens likely to be incorrect is possible and
effective. We call the restricted pool of permissible next tokens the active set at each step As a
reference, the active set for the simplest truncated sampler, standard top-k sampling, is always the
set of the k most likely tokens, i.e. Atop-k

t = { v ∈ V : rankt(v) ≤ k}.

Greedy-Threshold. We use this sampler to exemplify our claim that sampling less when confi-
dence is low is beneficial. When using Greedy-Threshold, we sample greedily when confidence is
below a threshold pGT ∈ (0, 1), and only the argmax token v⋆t ≜ argmaxv∈V pt(v) is accepted.
The active set of tokens to sample from is

AGT
t =

{
{ v⋆t }, if pt,max < pGT ,

V, if pt,max ≥ pGT .
(7)

ε-sampling. To draw a connection with existing ε-sampling (Hewitt et al., 2022), we recap its
definition. This rule only samples from tokens above a threshold ε ≥ 0. The active set is

Aε
t = { v ∈ V : pt(v) ≥ ε }. (8)

Note that when the Greedy-Threshold parameter equals the ε-cutoff, i.e. pGT = ε, and the maximum
token probability at step t is below this level (pt,max < pGT ), both methods fall back to greedy.
Motivated by the mismatch between raw probability and correctness, we adopt the same truncation
principle but calibrate the cutoff to estimated correctness rather than probability alone.

Calibrated-TopK. Recall from the calibration grid (Figure 2) that we can estimate, for each con-
fidence bin and token rank, the expected correctness of a token. This provides a direct way to infer
how far down the ranked list of candidates one can safely explore. The idea of Calibrated-TopK
is therefore simple. Instead of fixing k in advance, we adaptively set it so that only ranks whose
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average correctness is above a threshold are included. In this way, the method truncates exploration
to the range of token ranks that are empirically likely to be correct. Given the maximum rank whose
correctness is above the threshold cCT ∈ (0, 1) in a calibration grid ĉm,r:

Km(cCT ) = max{ r ∈ {1, . . . , R} : ĉm,r ≥ cCT } (9)
At step t with bin m(t), the active set is defined by the maximum rank

ACT
t (cCT ) =

{
{ v ∈ V : rankt(v) ≤ Km(cCT ) }, if Km(cCT ) ≥ 1,

{ v⋆t }, if Km(cCT ) = 0.
(10)
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Figure 6: A scatter plot of calibration-grid
averages (p̂, ĉ) across confidence bins and
ranks. Points concentrate along an approx-
imately linear trend. We fit a least-squares
line and use this mapping to predict correct-
ness at inference time for Calibrated-ε.

Calibrated-ε Since Calibrated-TopK sets thresholds
based on discrete confidence bins, we are motivated to
find a solution that maps probability to correctness in a
continuous way. A plot of all p̂ and ĉ shows a near-linear
relationship in log-log coordinates as shown in Figure 6:

log10ĉ ≈ A+B log10 p̂

We estimate the coefficients by least squares on the cal-
ibration grid, fitting a line in log–log space to the pairs
(p̂, ĉ) aggregated over bins and ranks:

A, B = LinearRegression(log10 p̂, log10 ĉ).
Given these coefficients, we instantiate a per-token cor-
rectness predictor at decoding step t, mapping each can-
didate token j ∈ V with probability pt(j) to an esti-
mated correctness score ĉt(j) ≜ 10Apt(j)

B . Computa-
tionally this is just a single scalar transform, adding negli-
gible overhead to decoding. We then define a correctness
threshold cε∈ (0, 1), the active set at step t becomes

ACε
t (cε) =

{
v ∈ V : ĉt(v) ≥ cε

}
.

i.e., we keep exactly those tokens whose predicted correctness exceeds the threshold. For all sam-
plers, if no tokens satisfy this condition At = ∅, sample greedily At = {v⋆t }. In general, we note
that all truncated samplers can be used together by taking the intersection of their active sets. Lastly,
given any active set At, sample xt ∼ p′t(·) from the renormalized distribution

p′t(v) =
pt(v)∑

w∈At
pt(w)

for v ∈ At. (11)

4 CORRECTNESS-FIRST SAMPLERS IMPROVE REASONING ABILITIES

We now study whether truncating low-confidence regions during decoding translates into better end-
task reasoning. Our focus is on frontier LLMs evaluated on math and general reasoning benchmarks,
where sequence-level correctness is the primary objective. We compare the proposed correctness-
first samplers against standard temperature and probability-based baselines.

4.1 EXPERIMENTAL SETTINGS

We evaluate models in the Qwen2.5 (Qwen et al., 2025) and the Llama (Grattafiori et al., 2024)
family on short reasoning tasks (GSM8K (Cobbe et al., 2021), MMLU (Wang et al., 2024) and
Big-Bench-Hard (Suzgun et al., 2022)), and GPT-OSS (OpenAI et al., 2025) on long reasoning
tasks (AIME1). We use Greedy-Threshold with pGT = 0.3, Calibrated-TopK with cCT = 0.05
(over n = 10 bins), and Calibrated-ε with cε = 0.05. We adopt higher threshold ε = 0.05 than
typically reported to emphasize the impact of truncating low-probability tokens. We provide ab-
lation on threshold value selection in Section A.4. Calibration is performed on the training split
of each benchmark. We additionally perform cross-domain calibration using alpaca-gpt4-en (Peng
et al., 2023) For comparability with temperature-based samplers, we use T = 1 unless otherwise
noted. Further implementation details, ablations with threshold values, temperatures and calibration
datasets are provided in Section A.1.

1https://huggingface.co/datasets/math-ai/aime25
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Table 1: Majority voted (maj@k) results on GSM8K, MMLU-Pro, and Big-Bench-Hard for Qwen2.5-0.5B-
Instruct. Calibrated samplers achieve the largest performance gain from no restrictions baseline.

Method
GSM8K MMLU-Pro Big-Bench-Hard

maj@8 maj@16 maj@32 maj@8 maj@16 maj@32 maj@8 maj@16 maj@32

No restrictions 30.2 35.2 38.6 16.4 17.0 17.3 17.9 17.0 16.2
top-k 32.6 38.7 41.9 16.8 17.5 18.0 22.0 21.7 21.5
top-p 35.5 40.8 43.6 16.8 17.5 18.1 25.5 25.9 25.9
min-p 38.7 43.1 46.6 17.7 18.2 18.6 30.6 31.5 31.7
EDT 40.2 44.1 46.7 17.7 18.1 18.4 30.5 31.1 31.7
η-sampling 31.6 37.2 41.0 16.5 17.3 17.9 20.6 20.3 19.6
ε-sampling 39.2 44.3 46.7 17.5 18.1 18.3 30.4 31.1 31.6

Greedy-Threshold 31.2 37.0 40.6 16.9 17.8 18.2 20.8 20.3 19.4
Calibrated-TopK 39.3 44.5 47.1 17.9 18.3 18.7 30.4 31.1 31.6
Calibrated-ε 40.8 44.3 47.1 18.9 18.4 18.6 30.6 31.5 32.0

Baselines We compare our methods against several widely used sampling strategies. Top-k (k =
10) (Fan et al., 2018). Min-p (p = 0.1) (Nguyen et al., 2025). Top-p (p = 0.95) (Holtzman et al.,
2020). EDT (Zhang et al., 2024) with N = 0.8, ϑ = 1, T0 = 0.7. These parameters are selected
from the original paper after small parameter search experiments to determine reasonable values. ε-
sampling (Hewitt et al., 2022) with higher ε = 0.05 than recommended. η-sampling (Hewitt et al.,
2022) with the original recommended value η = 0.0009.

4.2 CALIBRATED TRUNCATION INCREASES MODEL PERFORMANCE.

We evaluate the effectiveness of our proposed samplers across benchmarks. Table 1 shows that
Calibrated-ε and Calibrated-TopK achieve the largest improvement overall, showing rank-wise
correctness is an effective truncation signal. Greedy-Threshold activates only when the max-
probability token falls below 0.3, an infrequent but high-risk regime (see Figure 2). Despite its
low activation rate, this condition occurs often enough for Greedy-Threshold to yield measurable
benefits. ε-sampling (fixed threshold) performs on par with min-p and EDT, supporting the idea that
simply removing tail tokens helps by shaping the cutoff to where correctness actually drops. All cal-
ibrated samplers add negligible runtime overhead at decoding, since they only require a 2-parameter
table lookup or a single vector operation over the vocabulary.

4.3 EXISTING SAMPLERS BENEFIT FROM GREEDY-THRESHOLD

To test whether halting sampling at low-confidence steps is beneficial, we apply Greedy-Threshold
on top of existing samplers that otherwise increase exploration at such positions. This preserves
their original behavior when confidence is above 0.3, but forces greedy decoding when confidence
falls below this threshold. Table 2 shows that Greedy-Threshold improves performance in this set-
ting, especially for smaller models. When no gains are observed, results remain comparable to the
baseline, indicating that it does not degrade performance.

4.4 SCALING TO ADVANCED REASONING MODELS

We evaluate our proposed methods on reasoning-oriented “thinking” model GPT-OSS-20B (OpenAI
et al., 2025) and a challenging mathematics benchmark AIME that demands multi-step derivations.
Thinking models differ from standard LMs in that they generate long sequences of intermediate
tokens, making calibration on short, instruction-style datasets less representative of their actual be-
havior. To capture our central idea of filtering out low-correctness tokens in this setting, we apply
ε-sampling with a relatively high cutoff (ε = 0.05). Our results show substantial gains. GPT-OSS-
20B benefits from both Greedy-Threshold and ε-sampling. Output diversity is reduced, but the effect
is minimal. Over 32 samples, the number of unique answers decreases from 14.1 to 13.3 (roughly
1–2 fewer unique answers out of 14). This small drop coincides with higher maj@k and pass@k,
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Table 2: Majority voted results on GSM8K. In addition to existing sampling conditions, Greedy-Threshold
pGT = 0.3 is applied. Greedy-Threshold improves majority voting performance, especially in models with
lower starting accuracy. Statistically significant differences (p < 0.05) marked in bold.

Method Qwen2.5-0.5B-Instruct Qwen2.5-1.5B-Instruct Qwen2.5-3B-Instruct

maj@8 maj@16 maj@32 maj@8 maj@16 maj@32 maj@8 maj@16 maj@32

Baseline T=1 30.2 35.2 38.6 68.4 71.5 73.1 79.3 80.6 81.1
+ Greedy-Threshold +1.0 +1.8 +2.0 +1.7 +2.1 +2.4 +0.1 +0.2 -0.1

top-k 32.6 38.7 41.9 68.5 72.6 73.9 79.0 80.3 81.0
+ Greedy-Threshold +1.1 +0.5 +1.1 +2.6 +2.4 +2.8 +1.0 +0.5 -0.2

top-p 35.5 40.8 43.6 71.1 74.1 75.9 79.5 80.5 80.8
+ Greedy-Threshold +0.9 +0.4 +1.3 +1.5 +1.8 +1.8 0.0 0.0 +0.4

min-p 38.7 43.1 46.6 73.3 75.6 76.6 80.0 80.4 81.2
+ Greedy-Threshold +1.4 +0.8 +0.6 +1.3 +1.2 +1.5 -0.2 +0.2 +0.1

EDT 40.2 44.7 46.8 74.9 76.6 78.9 79.5 80.5 80.9
+ Greedy-Threshold +0.2 -0.3 +0.1 -0.2 0.0 -0.1 +0.1 +0.1 +0.1

η-sampling 31.6 37.2 41.0 69.0 72.4 74.2 78.8 80.1 81.0
+ Greedy-Threshold +2.4 +1.8 +1.7 +1.7 +2.7 +2.7 +0.5 +0.3 +0.1

consistent with our goal: we do not value diverse wrong answers. For reasoning tasks with single
correct solutions, correctness is more important than diversity. Expanding exploration does not help
when early steps are error-amplifying. By steering decoding away from low-correctness regions, our
methods increase the fraction of valid solutions by up to 6.5% and improve overall answer quality.

5 DISCUSSION

Why does Greedy-Threshold work? Our results suggest that in reasoning tasks, in spite of popular
intuitions, the positions with low confidence are not branch points among many valid continuations,
but error-amplifying states. Two pieces of evidence support this claim: rank-wise correctness de-
creases beyond the top token (Figure 2), and performance degrades once low-probability tokens
are sampled (Figure 5). Greedy-Threshold chooses a safe token where both risks are highest, and
potentially prevent subsequent error. It is a targeted suppression of low-correctness steps.

Reordering uncertainties as epistemic first, aleatoric second. Common existing decoding strate-
gies assume high entropy means aleatoric variability (many valid tokens) and sample more. Our
results imply the opposite might be true in reasoning tasks with closed-form answers. High entropy

Table 3: The result of AIME24 and AIME25 on GPT-OSS-20B with thinking mode enabled. ”Unique An-
swers” is the number of unique answers over all 32 samples. ”Overall Correct” is the overall proportion of
correct answers. Best result is in bold. Statistically significant difference (p < 0.05) is in italics.

Model / Method Maj@k Pass@k Unique
Answers

Overall
Correct4 8 16 32 4 8 16 32

AIME25
Baseline 75.4 84.4 87.8 90.0 85.6 90.0 91.1 92.2 13.6 56.1
Greedy-Threshold 71.1 87.8 88.9 91.1 85.6 91.1 93.3 94.4 12.0 59.9
ε-sampling 68.9 85.4 91.1 90.0 86.7 90.0 93.3 95.6 13.6 56.1

AIME24
Baseline 71.4 83.3 88.7 92.6 83.4 90.7 92.0 93.3 15.1 48.7
Greedy-Threshold 77.3 88.0 91.3 92.6 86.7 92.6 93.3 94.0 13.3 55.2
ε-sampling 77.3 87.3 90.0 91.3 89.3 90.0 91.3 92.6 13.7 54.9
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Figure 7: Calibration fit quality on performance. (a) Example scatter shows a noisier confidence to cor-
rectness relationship on MBPP. (b) Across models, poorer linear fits (higher MSE) correlate with diminished
maj@1 improvements from Calibrated-ε.

often reflects epistemic uncertainty which is a systematic lack of knowledge, especially in smaller
models. When the distribution is wrong, sampling more from it does not benefit correctness. In
our calibration-based methods, correctness is the focus. We increase sampling where expected cor-
rectness is high and shrink it where the model lacks fundamental understanding. This perspective
explains why stricter truncation (higher ε, lower rank caps in top-k) consistently helps in reasoning.
Randomness is less valuable in low-confidence regions where epistemic error dominates.

Robustness to cross-domain calibration data and fit quality. In-domain calibration dataset is
not always available, we want to ensure our calibrated samplers are robust to domain shifts. We
test calibration using a general purpose instruction tuning dataset alpaca-gpt4-en and observe
similar performance as in-domain calibration on GSM8K-training (Section A.5). This suggests
that the confidence to correctness map transfers generally when the format matches (instruction
to answer) and that out-of-domain calibration datasets can be used when in-domain dataset is not
available.

Effect of data sparsity. However, poor calibration signals could affect performance. We look at
MBPP, a dataset evaluating coding performance. There are only 374 training samples, each with
short code solutions. Limit training data means sparse data across confidence bins that results in
noisy calibration data and poor linear fit (Figure 7a). Even in training sets with large number of
samples, such as GSM8K with 7473 rows, low-confidence bins are empty or underpopulated (Fig-
ure 14a). Indeed, higher regression MSE correlates with smaller performance gains (Figure 7b).
Additionally, MBPP is evaluated using pass@k which explicitly rewards diversity, meaning more
exploration is advantages. However, overconfidence in code is reflected with a smaller gradient
(0.697) in correctness to probability mapping. With the same truncation threshold, this admits fewer
top-k tokens, which is suboptimal for pass@k. If we switch to alpaca-gpt4-en (a larger, less
noisy, general-purpose calibration set), more candidates are allowed through, improving pass@k
(Table 6). When the in-domain calibration set is small/noisy or induces an overly conservative sam-
pling, we recommend using a general-purpose dataset for calibration.

6 RELATED WORK

Literature on decoding for LLMs largely follows two directions: (i) sampling more to increase
diversity of generations, and (ii) sampling less to increase accuracy and stability. Our work focuses
on reconciling these perspectives for reasoning tasks.

Removing tail-end tokens. Classical truncation methods such as top-k (Fan et al., 2018) and top-p
(nucleus) sampling (Holtzman et al., 2020) reduce tail risk by discarding low-probability tokens.
Temperature scaling (Guo et al., 2017), often with lower temperatures for math and reasoning tasks,
has a similar intuition: sharpening the distribution so that low-probability tokens are rarely sampled.

9
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These classic methods are often used in combination (Yang et al., 2025). More recently, locally
typical sampling (Meister et al., 2025) restricts to tokens whose information content is close to the
local entropy. REAL sampling (Chang et al., 2024) adaptively reduces top-p when hallucination risk
is high. Our results on reasoning tasks support this risk-aware trend: sampling in high-uncertainty
steps introduces catastrophic errors, while removing tail end low probability tokens is safer.

Selection after sampling. Another line of work improves reliability after generation. Self-certainty
(Kang et al., 2025) and DeepConf (Fu et al., 2025) re-weigh or filter generations using confi-
dence signals. The open-source effort Entropix (XJDR, 2024) pauses or resamples at high-entropy
steps. These methods implicitly acknowledge that low-confidence steps are strongly correlated with
low correctness. Our contribution is orthogonal. We intervene during decoding to prevent low-
confidence tokens from being sampled in the first place, so that downstream majority voting operates
on stronger candidates.

Adaptive, uncertainty-aware decoding. A complementary set of methods dynamically adjust
sampling based on estimated uncertainty. Entropy-dependent temperature (EDT) (Zhang et al.,
2024) increases temperature as entropy grows. “Hot or Cold” decoding (Zhu et al., 2023) applies
higher temperature only to the first token in code generation. Adaptive Decoding (Zhu et al., 2024)
and Adaptive Contrastive Search (Garces Arias et al., 2024) adjust candidate sets or penalties step-
by-step. Min-p (Nguyen et al., 2025) scales truncation by the maximum token probability, enlarging
candidate sets when uncertainty is high, which is shown to benefit creative text generation, although
a subsequent study criticized its effectiveness (Schaeffer et al., 2025). Our study provides an
explanation why high uncertainty correlates with lower accuracy while providing limited diversity.

Assessing model calibration. Calibration for LLMs is typically assessed with reliability diagrams
and scalar errors such as ECE error on top-1 labels (Guo et al., 2017), or on a sequence level (Huang
et al., 2024; Stengel-Eskin & Durme, 2023). Full-ECE (Liu et al., 2024) extends beyond top-1 by
evaluating calibration over the entire token distribution, but it does not condition on token rank. We
introduce a confidence and rank calibrated method that informs correctness-aware truncation.

7 CONCLUSION

Future work. This work can be extended to tasks beyond math and reasoning, such as open-ended
and creative tasks, to characterize when diversity is the priority while ensuring correctness. There is
also the potential to conduct online calibration with on-the-fly recalibration depending on the exact
question or task. Lastly, one can study how calibration evolve with model size, post-training method
and data regime.

Conclusion. In this work, we re-examined decoding under uncertainty for reasoning tasks and ar-
gue for a correctness-first perspective. By visualizing a novel rank-wise calibration grid, we present
evidence on a token level that in low-confidence bins, all tokens have low expected correctness. On
a sequence level, accuracy declines with more low-probability tokens and with higher ranks sam-
pled. On a dataset level, Greedy-Threshold, Calibrated-TopK, and Calibrated-ε raise performance
in reasoning benchmarks by allocating randomness only where expected error is low. These meth-
ods are consistent and compute-efficient, making them practical for inference use. We encourage
future work to consider uncertainty as a risk signal to truncate, rather than a signal to explore.

REPRODUCIBILITY STATEMENT

Implementation of our proposed sampling strategies, model behavior analysis and calibration mea-
surements are released with our paper and hosted in our public repository. Details of evaluation and
calibration, including model settings, hyperparameters, and prompting formats are documented in
Section A.1. All benchmarks are openly available, and we provide complete code for running the
benchmarks.

LLM USE

We used large language models (LLMs) only for light editorial assistance (e.g., grammar, spelling,
phrasing), simple LaTeX formatting, and typo checks. LLMs were also used to draft boilerplate code
(e.g., code scaffolding, argument parsers) and to plot high-level diagrams. All such outputs were
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reviewed, and validated by the authors before inclusion. LLMs were not used to write substantive
sections of the paper, design experiments or analyze results. All technical content, experiments,
analyses, and conclusions were created and verified by the authors.
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A APPENDIX

A.1 DATASETS AND PARAMETERS

We provide detailed experiment setups and parameters for reproducibility. We evaluate on reasoning
and math-focused benchmarks commonly used to assess chain-of-thought robustness. We follow
the community-standard evaluation scripts to ensure comparability across papers and release the
detailed configuration files in our public GitHub repository.

Datasets

• GSM8K (Cobbe et al., 2021): with 5-shot chain-of-thought prompting. The train split is
used to construct in-distribution (ID) calibration grid.

• MBPP (Austin et al., 2021): ID calibration grids are built using the training split, with
evaluation on the test set. Results are reported in Section A.6

• Big-Bench-Hard (Suzgun et al., 2022): we report unweighted average accuracy across all
categories. Since this benchmark does not have a train split, we use alpaca-gpt4-en for
calibration.

• MMLU-Pro (Wang et al., 2024): we report unweighted average accuracy across all cate-
gories, using the validation split for ID calibration.

• Alpaca-gpt4-en (Peng et al., 2023) 2: used as an out-of-distribution (OOD) dataset for
calibration. This OOD calibration is applied once to derive a general Calibrated-TopK
setting, which can then be used across tasks. In contrast, ID calibration offers more precise
task-specific signals, but may not always be feasible for new domains. Effect of ID vs OOD
calibration dataset is compared in Section A.5

• AIME253 and AIME244: used to evaluate ”thinking” models with extended reasoning
traces.

For all benchmarks, performance is measured as the average maj@k or pass@k across three runs.
Popular Python package lm_eval5 is used to evaluate all tasks. vLLM6 is used to run large scale
generation for benchmarking. Calibration is done using code bootstrapped to torchtune7.

Calibration Setup For all calibration procedures, the input question is masked, and only cor-
rectness with respect to ground-truth answers is considered. Unless otherwise specified, we set
Greedy-Threshold pGT = 0.3, cCT = 0.05 for Calibrated-TopK and cε = 0.05 for Calibrated-ε.
The maximum number of ranks considered is R = 20.

Baselines We compare our methods against several widely used sampling strategies:

• Top-k (k = 10) (Fan et al., 2018)
• Min-p (p = 0.1) (Nguyen et al., 2025)
• Top-p (p = 0.95) (Holtzman et al., 2020)
• EDT (Zhang et al., 2024) with N = 0.8, ϑ = 1, T0 = 0.7. These parameters are selected

from the original paper after small parameter search experiments to determine reasonable
values.

• ε-sampling (Hewitt et al., 2022) with higher ε = 0.05 than recommended.
• η-sampling (Hewitt et al., 2022) with the original recommended value η = 0.0009.

Long-Form Reasoning To assess robustness on extended reasoning chains, we test on AIME25
and AIME24 using GPT-OSS’s recommended setting (T = 1.0), averaged across three runs. Ad-
ditionally, we restrict baseline comparisons to Greedy-Threshold with pGT = 0.3 and ε-sampling
with ε = 0.05. As thinking models exhibit substantially different behaviors from standard models,

2https://huggingface.co/datasets/llamafactory/alpaca_gpt4_en
3https://huggingface.co/datasets/math-ai/aime25
4https://huggingface.co/datasets/math-ai/aime24
5https://github.com/EleutherAI/lm-evaluation-harness
6https://github.com/vllm-project/vllm
7https://github.com/pytorch/torchtune
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using question–answer pairs with short ground-truth answers would produce misleading calibration
values.

Temperature Sensitivity To ensure fairness against temperature-based samplers, all main results
are reported with T = 1.0. Since math and coding tasks often benefit from lower sampling tempera-
tures, we additionally evaluate with T = 0.6. In this setting, calibration grids are recomputed using
scaled logits (Equation (1)), and thresholds (pGT , η and cCT ) are adjusted accordingly. Detailed
hyperparameter values and results are provided in Section A.8.

A.2 PARAMETERS FOR FIGURES

Figure 2 uses 5 confidence bins with 0.2 increments on Qwen2.5-0.5B-Instruct, using GSM8K train
dataset.

Figure 3 Models are in the Qwen2.5 instruct family. Expected accuracy is calculated from the
top R = 20 ranks at each step. Dataset used is alpaca-gpt4-en with questions masked, so
correctness is only calculated from answers.

Figure 4 Uses Qwen2.5-1.5B-Instruct on GSM8K test set with T = 1 and no other sampling con-
ditions. Each final numerical answer is extracted, excluding the reasoning chains. Only different
final numerical answers are counted. Different reasoning chains that arrive at the same final answer
will count as the same answer. The number of unique answers is averaged over all questions at each
number of samples. If no valid final answer can be extracted, the final answer becomes null. This
means all reasoning chains without a valid final answer will count as one unique answer.

Figure 5 uses Qwen2.5-0.5B-Instruct on GSM8K test set. All reasoning chains up to and including
the final numerical answers are considered. Sometimes the model continues to generate the next
in-context question after answering the current question. All subsequent generations are excluded.

Figure 6 uses Qwen2.5-0.5B-Instruct on GSM8K train set.

A.3 EXAMPLE OF LOW-CONFIDENCE CASES

Figure 8: Example of an answer for GSM8K by Qwen2.5-0.5B-Instruct under greedy generation. The lowest
confidence typically do not occur at the start of a sentence.

We illustrate a simple case of where low-confidence tokens arise. As shown in Figure 8, the be-
ginning of a sentence where aleatoric variability is expected, typically exhibits moderate confidence
(p ≥ 0.3). In contrast, very low-confidence tokens (p < 0.3) are rarely observed while the model
is still producing a coherent initial sentence. Over-sampling at this stage risks introducing irrelevant
tokens that derail the generation. Once the model finishes answering the question and shifts to pro-
ducing the next in-context example, however, both aleatoric variability and epistemic uncertainty
increase, and the model’s confidence drops substantially.
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A.4 HYPERPARAMETER SEARCH ON PROPOSED METHODS
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Figure 9: Values of each threshold ε, pGT , cCT and cε are varied to study their effect on self-consistency
performance. Higher number of samples generally benefit from smaller truncation thresholds.

We conduct parameter search for each of our main methods to find the optimal ε, pGT , cCT and
cε values. Figure 9a confirms our hypothesis that much larger value than suggested in the original
ε-sampling paper is beneficial. ε is 0.0009 in the original paper (Hewitt et al., 2022). We find that ε
performs best around 0.07−0.09 regardless of the number of samples. For Greedy-Threshold, lower
threshold benefit more at higher number of samples. The optimal pGT is 0.3 at 128 samples and 0.6
at 32 samples. Calibrated-TopK yields the best performance at cCT 0.05− 0.09 range. Calibrated-ε
shows the strongest gains at cε = 0.03.

In general, larger sample sizes benefit from smaller truncation thresholds. This is intuitive: looser
thresholds retain more candidate tokens, promoting diversity that enables the model to explore mul-
tiple reasoning paths and recover the correct answer often enough to dominate in majority voting.
Figure 9 illustrates that optimal threshold selection is inherently sample-size dependent, reflecting
the complex trade-off between accuracy and diversity.

In addition, we test various binning methods, including different number of bins and bin widths.
Even bins (default) use fixed, uniform bin widths over confidence. Quantile bins adapt their widths
so that each bin contains approximately the same number of tokens. This tests whether calibration
quality depends on uniform spacing or sample-balanced partitioning. Since high confidence steps
are a lot more common, quantile bins would fit high confidence steps more. This results in different
linear value fit compared to even bins and worse performance as shown in Table 4. Thus, it is
not adviced to use quantile bins. Using different number of evenly spaced bins results in similar
performance. We do not overtune the number of bins to avoid overfitting on certain dataset and
model combinations.
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Table 4: Effect of bin size and binning strategy on Qwen2.5-0.5B-Instruct performance on GSM8K. Even
bins (default) use fixed, uniform bin widths over confidence. Quantile bins adapt their widths so that each bin
contains approximately the same number of confidence samples. n indicates the number of bins. A and B are
the bias and gradient for log-log linear fit.

Bins A B maj@8 maj@16 maj@32

n = 5 even -0.574 0.791 41.2 45.4 47.6
n = 5 quantile -2.290 0.435 33.9 34.1 34.0

10 = 5 even -0.506 0.795 40.8 44.3 47.1
10 = 5 quantile -2.232 0.442 33.5 33.9 33.7

10 = 5 even -0.537 0.795 40.4 44.4 47.6
20 = 5 quantile -2.214 0.444 33.5 33.6 33.6

30 = 5 even -0.500 0.802 40.6 44.5 47.1

A.5 EFFECT OF CALIBRATION DATASET

In many cases, in-domain datasets are not available for calibration. To test robustness under this
setting, we also perform calibration on a general instruction dataset, alpaca-gpt4-en. As shown
in Table 5, performance with alpaca calibration is close to that obtained with in-domain data. While
one might expect in-domain calibration to provide stronger correctness signals, alpaca still offers
sufficiently reliable guidance.

A plausible reason out-of-domain calibration works is that the mapping from model confidence
to expected correctness appears relatively stable across settings. In Figure 3, models of differ-
ent sizes exhibit similar curves of expected accuracy as a function of confidence. Larger models
place more mass in higher-confidence bins, which aligns with better benchmark scores. If this confi-
dence–correctness relationship is driven by general properties of autoregressive modeling (rank-wise
correctness decaying with rank) rather than dataset specifics, then a calibration set that matches the
format of the target task (instruction→answer) may suffice even when its domain differs. We stress
this is a hypothesis rather than a causal claim. We lack direct evidence that models possess an “in-
trinsic sense” of token-level correctness. Still, the observation that confidence–correctness curves
are similar across model sizes suggests that correctness-aware calibration can transfer because it
leverages structural, model-internal uncertainty signals rather than domain-specific features.

Table 5: Calibrated-TopK with cCT = 0.1 using alpaca or GSM8K-train for calibration. Similar performances
are observed. The test dataset is GSM8K-test.

alpaca-gpt4-en GSM8K-train Set

Model maj@8 maj@16 maj@32 maj@8 maj@16 maj@32

Qwen2.5-0.5B-Instruct 40.1 44.3 46.5 41.0 45.7 47.4
Qwen2.5-1.5B-Instruct 72.4 74.8 76.1 72.9 74.8 76.5
Qwen2.5-3B-Instruct 79.9 80.8 81.0 79.1 80.7 80.7
Qwen2.5-14B-Instruct 92.9 93.4 93.3 93.0 93.4 93.8
Qwen2.5-32B-Instruct 92.6 93.3 93.6 92.9 93.3 93.3
Llama-3.2-1B 4.4 4.4 5.1 4.8 5.3 6.0
Llama-3.2-1B-Instruct 40.5 42.7 44.6 39.4 43.0 43.9
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Table 6: MBPP performance by Qwen2.5-0.5B-Instruct and Qwen2.5-1.5B-Instruct. Using out-of-domain
calibration dataset alpaca-gpt4-en results in better pass@k performance than using in-domain data.

Method
Qwen2.5-0.5B-Instruct Qwen2.5-1.5B-Instruct

pass@8 pass@16 pass@32 pass@8 pass@16 pass@32

No restrictions 41.6 50.1 57.6 55.6 65.2 72.5
Top-k 45.3 53.5 59.8 59.0 68.0 74.3
Top-p 47.0 55.3 63.0 60.2 68.6 74.9
Min-p 51.1 58.9 65.0 62.2 69.7 76.0
EDT 50.5 58.1 65.0 50.4 57.9 64.3
η-sampling 44.3 53.4 61.2 57.9 63.2 74.0

Greedy-Threshold 44.0 52.8 60.6 56.8 65.9 72.7
ε-sampling 49.2 56.1 61.8 62.0 69.6 75.4
Calibrated-TopK (ID) 50.3 57.9 64.2 62.6 69.3 74.6
Calibrated-ε (ID) 48.6 53.8 57.8 62.1 68.2 72.8
Calibrated-TopK (OOD) 49.7 61.2 65.2 62.4 70.1 76.1
Calibrated-ε (OOD) 51.0 61.4 64.2 62.3 70.4 76.3
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(a) GSM8K-train set calibration MSE loss= 0.134.
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(b) MBPP-validation set calibration MSE loss= 0.237

Figure 10: Qwen2.5-05B-Instruct calibrated on MBPP-validation set has poorer linear fit than GSM8K, which
might lead to worse performance.

A.6 FAILURE CASE STUDY - POOR CALIBRATION SIGNALS

We provide a case study on MBPP (Austin et al., 2021), a code generation benchmark where our
truncation strategies underperform compared to min-p that prioritize diversity. Unlike reasoning
tasks, MBPP requires directly producing executable code without intermediate steps, so every token
is critical. A single incorrect token causes the program to fail its tests. Moreover, the pass@k metric
rewards diversity, since success only requires one valid solution among the k samples. In this setting,
broader exploration increases the chance of producing at least one correct variant. Nevertheless,
Greedy-Threshold still improves over unrestricted sampling, reinforcing our argument that sampling
from low-confidence bins is harmful.

Calibration on MBPP also presents challenges. The validation set produces noisier signals, with
a larger linear fit loss (Figure 10), which likely reduces the reliability of predicted rank-wise cor-
rectness and helps explain the weaker performance of Calibrated-ε on Qwen2.5B-0.5B-Instruct.
Despite this, Calibrated-TopK performs comparably to existing methods in the literature, suggesting
that correctness-aware truncation remains useful even in diversity-driven domains. Additionally, if
we use the less-noisy alpaca calibration variant, performance becomes better than using in-domain
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calibration dataset and methods in literature too. This could be explained by in-domain dataset being
’overfit’ that impose too strict sampling conditions as seen by higher gradient (B value). This results
in more greedy-like behavior and better performance at pass@8 but worse behavior at pass@32
where diversity is more valuable.

To examine how the quality of the linear fit in calibration grids (log–log space) impacts perfor-
mance, we plot the regression Mean Squared Error (MSE) alongside model accuracy in Figure 11.
To isolate the effect of calibration quality from majority voting, we use maj@1 (single-sample ac-
curacy). If the linear interpolation provides reliable correctness estimates, models should generate
more accurate single completions. If the fit is poor, the predicted correctness signals may be uninfor-
mative or even harmful. To quantify this effect, we measure the improvement of Calibrated-ε over
the unrestricted baseline in maj@1. Figure 11 shows that as model size increases, regression MSE
rises and the performance gain diminishes. While part of this effect reflects the general difficulty
of improving already-strong large models, the trend also suggests that noisier calibration weakens
the benefit of Calibrated-ε. This pattern is consistent with our previous observation, where MBPP’s
noisy validation signals lead Calibrated-ε to underperform Calibrated-TopK. Importantly, however,
maj@1 accuracy never drops below the no-sampling baseline, indicating that even poor calibration
is not harmful.
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Figure 11: Effect of calibration fit quality. Larger models yield noisier linear fits (higher MSE), which corre-
lates with smaller gains of Calibrated-ε over the unrestricted baseline.
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Table 7: Majority voting performance for Qwen2.5-1.5B-Instruct. Calibrated-TopK has the strongest overall
performance.

Method
GSM8K MMLU-Pro Big-Bench-Hard

maj@8 maj@16 maj@32 maj@8 maj@16 maj@32 maj@8 maj@16 maj@32

No restrictions 68.4 71.5 73.1 32.9 34.4 35.4 38.9 41.8 43.0
Top-k 68.5 72.6 73.9 33.7 35.0 35.9 41.7 44.2 45.6
Top-p 71.1 74.1 75.9 34.1 35.4 36.4 44.0 46.2 47.1
Min-p 73.3 75.6 76.6 35.3 36.2 36.9 45.5 47.2 47.6
EDT 74.9 75.6 77.0 34.7 36.2 36.8 45.5 47.8 48.2
η-sampling 69.0 72.4 74.2 33.6 34.8 35.7 41.1 43.6 45.3
ε-sampling 73.4 76.4 78.2 35.0 36.2 36.9 45.4 46.9 47.7

Greedy-Threshold 70.1 73.6 75.5 33.6 34.9 36.1 40.3 42.9 44.4
Calibrated-TopK 72.3 75.2 76.3 35.6 36.4 37.0 45.8 47.7 48.5
Calibrated-ε 74.3 77.2 78.4 34.8 35.9 36.9 46.2 47.2 48.2

Table 8: Majority voted results on GSM8K and Big-Bench-Hard using Qwen2.5-1.5B-Instruct. In addition to
existing sampling conditions, Greedy-Threshold pGT = 0.3 is applied and shows strong consistent gains in
addition to base samplers. Statistically significant differences (p < 0.05) marked in bold.

Method GSM8K Big-Bench-Hard

maj@1 maj@8 maj@16 maj@32 maj@1 maj@8 maj@16 maj@32

Baseline T=1 17.3 30.2 35.2 38.6 17.4 17.9 20.0 16.2
+ Greedy-Threshold +0.3 +1.0 +1.8 +2.0 +1.9 +2.9 +0.3 +3.2

top-k 18.8 32.6 38.7 41.9 20.5 22.0 21.7 21.5
+ Greedy-Threshold +0.2 +1.1 +0.5 +1.1 +1.1 +1.6 +1.5 +1.5

top-p 22.4 35.5 40.8 43.6 22.3 25.5 25.8 25.9
+ Greedy-Threshold +0.6 +0.9 +0.4 +1.3 +1.6 +1.5 +1.5 +1.9

min-p 25.3 38.7 43.1 46.6 27.5 30.6 31.5 31.7
+ Greedy-Threshold +1.9 +1.4 +0.8 +0.6 +0.3 +0.2 +0.1 +0.1

EDT 28.0 40.2 44.7 46.8 27.0 30.4 31.1 31.7
+ Greedy-Threshold 0.0 +0.2 -0.3 +0.1 +0.5 +0.3 +0.5 +0.3

η-sampling 19.0 31.6 37.2 41.0 19.7 20.6 20.3 19.6
+ Greedy-Threshold +4.3 +2.4 +1.8 +1.7 +0.9 +1.9 +2.2 +2.7

A.7 FURTHER CALIBRATED TRUNCATION AND GREEDY-THRESHOLD RESULTS

We further compare our proposed methods against other existing methods across different bench-
marks. Calibrated-TopK has the strongest overall performance for Qwen2.5-1.5B-Instruct as shown
in Table 8.

We extend our analysis of Greedy-Threshold for up to 32B parameters models in Table 9, con-
sidering both instruct and non-instruct models. As expected, larger models with stronger baseline
performance are more challenging to improve. Existing samplers provides little improvement on the
baseline. Nevertheless, Greedy-Threshold does not degrade performance. It either provides modest
gains or remains comparable to existing samplers. One explanation for this diminishing effect is
that larger models produce high-confidence predictions more frequently (Figure 3), leading to fewer
low-confidence steps. Since Greedy-Threshold only intervenes under low-confidence conditions, its
impact naturally diminishes as model size increases. Similarly, the effect of majority voting in larger
models (Table 11) also diminishes in larger models due to reduced stochasticity.
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Table 9: Majority voted results on GSM8K. Greedy-Threshold improves performance more in smaller models.
Statistically significant difference (p < 0.05) marked in bold.

.

Method Llama-3.2-1B Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct

maj@8 maj@16 maj@32 maj@8 maj@16 maj@32 maj@8 maj@16 maj@32

Baseline T=1 0.7 0.6 0.2 92.8 93.4 93.5 92.8 93.4 94.0
+ Greedy-Threshold +0.7 +0.5 +0.5 +0.2 +0.2 +0.3 +0.1 +0.3 -0.2

Top-k 2.6 1.7 1.4 93.3 93.5 93.7 92.9 93.7 93.9
+ Greedy-Threshold -0.3 +0.6 +0.1 0.0 -0.1 0.0 +0.1 -0.1 0.0

Top-p 1.7 1.4 1.6 93.3 93.5 93.5 93.1 93.5 93.7
+ Greedy-Threshold +0.3 +0.5 +0.4 +0.1 -0.1 0.0 -0.2 -0.1 -0.2

Min-p 3.9 3.9 3.6 93.2 93.1 93.3 92.8 93.4 93.6
+ Greedy-Threshold +0.9 +0.5 +0.9 -0.3 +0.2 +0.1 +0.3 0.0 -0.2

EDT 4.2 3.8 3.9 92.9 93.3 93.4 92.7 93.3 93.5
+ Greedy-Threshold +0.9 +0.3 +0.1 +0.1 -0.1 0.0 -0.1 -0.1 +0.1

η-sampling 1.1 0.8 0.5 93.5 93.6 93.7 93.2 93.6 93.9
+ Greedy-Threshold +0.7 +0.5 +0.7 -0.4 -0.3 +0.1 -0.1 0.0 -0.1

Table 10: GSM8K performance by Qwen2.5-7B and Qwen2.5-7B-Instruct.

Method
Qwen2.5-7B Qwen2.5-7B-Instruct

pass@8 pass@16 pass@32 pass@8 pass@16 pass@32

No restrictions 82.8 86.8 88.4 86.7 88.4 89.4
Top-k 83.3 87.6 88.9 87.2 89.3 89.3
Top-p 84.9 88.2 89.6 87.2 88.3 89.3
Min-p 86.2 88.7 89.9 87.2 88.3 88.8
EDT 83.4 87.3 88.7 87.0 89.1 89.6
η-sampling 83.8 87.2 89.5 87.8 89.3 89.7

Greedy-Threshold 83.8 86.6 88.9 86.8 88.8 89.6
ε-sampling 86.6 88.5 89.9 87.4 88.7 88.8
Calibrated-TopK 86.5 88.7 89.9 87.4 89.6 89.6
Calibrated-ε 86.5 87.6 89.3 88.0 88.7 89.4

Table 11: MMLU-Pro performance by Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct.

Method
Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct

pass@8 pass@16 pass@32 pass@8 pass@16 pass@32

No restrictions 63.4 63.7 64.1 68.1 68.5 68.7
Greedy-Threshold 63.4 64.1 64.0 68.1 68.5 68.8
ε-sampling 63.6 64.2 64.2 68.6 68.9 68.9
Calibrated-TopK 63.7 64.2 64.6 68.3 68.7 69.0
Calibrated-ε 63.8 63.7 64.1 68.3 68.6 68.9
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A.8 EFFECTIVENESS AT LOW TEMPERATURES

Since lower temperatures are used for math and coding tasks, we test our proposed methods using
T = 0.6. The reason for temperature scaling is to make probability distribution more peaked so
that top-1 probability increases while the tail probabilities shrink. Consequently, probability-based
pruning becomes implicitly more aggressive. Many low-rank tokens become unlikely to be sampled
even without changing any thresholds. This aligns with our thesis that low ranked tokens should
not be broadly sampled due to their correlation with low correctness. Given the same non top-1
ranked token, after temperature scaling, its probability will decrease. Thus, to remove the same
token as without temperature scaling, the probability cutoff needs to be lower. We choose ε = 0.01,
pGT = 0.1 and cCT = 0.01.

Given the same pmax, its scaled probability would be bigger. Thus, we should set a higher Greedy-
Threshold than before. However, in practice we found that this limits diversity significantly that
the benefit from self-consistency diminishes. The maj@1 accuracy increases but performance gain
from maj@k reduces. We hypothesize that this is because more lower temperature already results
in diminished diversity. Further restrictions results in diversity collapse. From Table 12, we can see
that further gains from baseline is much smaller than with T = 1. Nevertheless, by setting lower
truncation thresholds, we still see performance gains from using our proposed truncation methods.

Relation between temperature and ε-sampling. We derive how temperature scaling interacts
with probability thresholding in ε-sampling. At a fixed decoding step t, let zt(j) denote the logit of
token j and pT (j) the corresponding next-token probability under temperature T > 0,

pT (j) =
exp

(
zt(j)/T

)∑
v exp

(
zt(v)/T

) . (12)

Let j⋆ be the top-1 token at this step and define centered logits ∆zj := zt(j) − zt(j
⋆) ≤ 0.

Subtracting zt(j
⋆) from all logits leaves the softmax invariant, so

pT (j) =
exp(∆zj/T )

1 +
∑

k ̸=j⋆ exp(∆zk/T )
=

exp(∆zj/T )

DT
, (13)

where we introduced the normalizer

DT := 1 +
∑
k ̸=j⋆

exp(∆zk/T ). (14)

In particular, for T = 1 we have

p1(j) =
exp(∆zj)

D1
, D1 := 1 +

∑
k ̸=j⋆

exp(∆zk). (15)

We can now eliminate the logits ∆zj and obtain a direct relation between pT (j) and p1(j) at the
same decoding step. From the T = 1 expression we get

exp(∆zj) = p1(j)D1, ⇒ exp(∆zj/T ) = (exp(∆zj)
)1/T

= (p1(j)D1

)1/T
. (16)

Table 12: Majority voted results on GSM8K with scaled temperature T = 0.6, ε = 0.01, pGT = 0.1 and
cCT = 0.01

.

Method Qwen2.5-0.5B-Instruct Qwen2.5-1.5B-Instruct

maj@8 maj@16 maj@32 maj@8 maj@16 maj@32

No conditions 40.7 44.9 46.9 73.7 76.3 76.9
ε-sampling 41.4 45.2 46.8 74.4 75.8 77.0

Greedy-Threshold 41.2 45.2 47.2 74.3 76.9 77.1
Calibrated-TopK 40.9 44.5 46.7 74.1 76.0 77.3
Calibrated-ε 41.4 45.2 48.4 74.2 75.6 77.0
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Plugging this into the definition of pT (j) gives

pT (j) =

(
p1(j)D1

)1/T
DT

=
D

1/T
1

DT︸ ︷︷ ︸
KT

p1(j)
1/T . (17)

Thus, for any fixed decoding step t and any temperature T > 0,

pT (j) = KT p1(j)
1/T , (18)

where the factor

KT :=
D

1/T
1

DT
(19)

depends on the full logit configuration at that step and on T , but does not depend on the particular
token j. In other words, temperature rescales per-token probabilities via a power law in their T = 1
probabilities, up to a step-wise constant multiplier KT shared by all tokens. This leads to a natural
scaling rule for ε-sampling. Suppose that at T = 1 we apply ε1-sampling and discard all tokens
with

p1(j) ≤ ε1. (20)
The same tokens have probability, at temperature T ,

pT (j) = KT p1(j)
1/T ≤ KT ε

1/T
1 . (21)

If we want our temperature-T cutoff to remove at least all the tokens that would have been removed
by ε1-sampling at T = 1, a natural choice is

εT ∝ ε
1/T
1 , (22)

with the proportionality constant absorbing an average over the step-wise factors KT . In practice
we use the simple global scaling rule

εT ≈ ε
1/T
1 . (23)

For T < 1 (sharper distributions), 1/T > 1 and hence εT < ε1. Temperature already suppresses
low-probability tokens, so the probability threshold must be lowered in order to prune a comparable
part of the tail of the logit distribution.

Intuition for the ε = 0.01 choice. In our main experiments we use ε1 = 0.05 at T = 1. Applying
Equation (23) to T = 0.6 yields the theoretical value

εtheory
0.6 ≈ ε

1/0.6
1 = 0.051/0.6 ≈ 6.8× 10−3. (24)

For our low-temperature runs at T = 0.6 we instead adopt ε = 0.01, which is slightly more conser-
vative (it removes a bit more of the tail) but remains close to the theoretical prediction.
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Table 13: GPT-4-mini judges performance of various samplers on LitBench prompts generated by Qwen2.5-
7B-Instruct. Human written baseline is the chosen story column from the original benchmark. Each category
is scored from 1-5. Higher is better.

Method Relevance Coherence Emotional impact Originality Total

Greedy 4.50 3.27 2.70 2.68 13.15
T=1 4.48 3.15 2.81 2.67 13.11
Min-p=0.1 4.48 3.38 2.80 2.69 13.35
Human written baseline 4.50 3.81 3.03 3.20 14.54

Calibrated-TopK 4.58 3.52 2.77 2.68 13.55
Calibrated-ε 4.60 3.47 2.77 2.69 13.53

A.9 WHAT ABOUT CREATIVE WRITING?

Our main experiments target reasoning tasks with closed-form answers. A natural question is
whether the same correctness-aware perspective applies to open-ended generation. We provide an
illustrative case study on creative writing using LitBench (Fein et al., 2025), treating the chosen story
as a proxy for ground truth. We construct calibration grids and probability–correctness scatter plots
and observe qualitatively similar patterns. As confidence decreases, expected correctness declines.
As rank increases, correctness drops sharply. Compared with GSM8K and Alpaca calibration, cre-
ative prompts exhibit systematically lower confidence, with low-confidence bins occurring more
often (e.g., lowest-bin frequency: 6.01% for LitBench vs. 0.17% for Alpaca and 0% for GSM8K).
The probability–correctness mapping in log–log space is also stronger in this setting, with a slope
closer to one. Full calibration diagrams and scatter plots are provided in Section A.10.

We conduct a simple evaluation of our samplers compared to min-p (Schaeffer et al., 2025), which
is advertised to excel at creative writing. We prompt Qwen2.5-7B-Instruct to generate short stories
using the prompts given in LitBench with the following prompt: Given the following writing prompt,
write a short story that is original, relevant, emotional and coherent correct in less than 500 words.
[Prompt] Your story:

The stories generated are evaluated by GPT-5-mini 8 using the following prompt: Evaluate a creative
writing task and give scores. Each category is scored from 1 (lowest) to 5 (highest). Consider
these categories: Originality: unique concepts, unexpected elements. Relevance: story follows the
writing prompt. Emotional impact: how the writing affects the reader. Coherence: logical flow and
narrative structure. Writing prompt: [prompt] Judge the writing in the following format: Reasoning:
[your evaluation with scores for each category]

The scores given by the judge model is parsed and averaged for each category averaged over three
runs. As shown in Table 13, our calibrated samplers outperforms min-p and no-samplers baseline
by improving coherence and relevance. While originality stays the same and emotional impact is
slightly reduced. The improvement in coherence and relevance is essential for a small model like
Qwen2.5-7B-Instruct, which is prone to drifting off-topic at a high temperature.

A.10 EXAMPLE CALIBRATION DIAGRAMS

8https://openrouter.ai/openai/gpt-5-mini
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Figure 12: Calibration scatter plots on Qwen2.5-1.5B-Instruct
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Figure 13: Calibration scatter plots on Qwen2.5-0.5B-Instruct
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Figure 14: Calibration grids on various Qwen models and GSM8K or alpaca-gpt4-en

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
Rank

(0.0,0.1]  0.00%

(0.1,0.2]  0.16%

(0.2,0.3]  0.77%

(0.3,0.4]  1.72%

(0.4,0.5]  2.85%

(0.5,0.6]  3.86%

(0.6,0.7]  3.95%

(0.7,0.8]  4.63%

(0.8,0.9]  6.26%

(0.9,1.0]  75.80%

Co
nf

id
en

ce
 b

in

 
p=0.090
c=0.000

 
p=0.086
c=0.000

 
p=0.067
c=0.000

 
p=0.060
c=0.000

 
p=0.051
c=0.000

 
p=0.042
c=0.000

 
p=0.036
c=0.250

 
p=0.026
c=0.250

 
p=0.022
c=0.000

 
p=0.021
c=0.000

 
p=0.168
c=0.087

 
p=0.139
c=0.092

 
p=0.113
c=0.092

 
p=0.091
c=0.056

 
p=0.072
c=0.087

 
p=0.055
c=0.051

 
p=0.044
c=0.036

 
p=0.034
c=0.046

 
p=0.028
c=0.036

 
p=0.022
c=0.051

 
p=0.259
c=0.191

 
p=0.198
c=0.174

 
p=0.145
c=0.138

 
p=0.097
c=0.078

 
p=0.064
c=0.072

 
p=0.043
c=0.043

 
p=0.031
c=0.045

 
p=0.023
c=0.030

 
p=0.018
c=0.016

 
p=0.014
c=0.023

 
p=0.354
c=0.287

 
p=0.253
c=0.222

 
p=0.152
c=0.148

 
p=0.075
c=0.089

 
p=0.041
c=0.050

 
p=0.026
c=0.035

 
p=0.017
c=0.023

 
p=0.012
c=0.020

 
p=0.009
c=0.010

 
p=0.007
c=0.014

 
p=0.456
c=0.385

 
p=0.300
c=0.278

 
p=0.108
c=0.126

 
p=0.045
c=0.051

 
p=0.024
c=0.034

 
p=0.014
c=0.026

 
p=0.010
c=0.013

 
p=0.007
c=0.011

 
p=0.005
c=0.007

 
p=0.004
c=0.008

 
p=0.550
c=0.446

 
p=0.302
c=0.304

 
p=0.065
c=0.080

 
p=0.027
c=0.046

 
p=0.014
c=0.024

 
p=0.009
c=0.017

 
p=0.006
c=0.013

 
p=0.004
c=0.007

 
p=0.003
c=0.005

 
p=0.002
c=0.004

 
p=0.650
c=0.520

 
p=0.234
c=0.257

 
p=0.051
c=0.075

 
p=0.021
c=0.037

 
p=0.011
c=0.020

 
p=0.007
c=0.012

 
p=0.004
c=0.009

 
p=0.003
c=0.007

 
p=0.002
c=0.003

 
p=0.002
c=0.004

 
p=0.752
c=0.588

 
p=0.167
c=0.197

 
p=0.035
c=0.059

 
p=0.014
c=0.032

 
p=0.007
c=0.018

 
p=0.005
c=0.012

 
p=0.003
c=0.008

 
p=0.002
c=0.006

 
p=0.002
c=0.005

 
p=0.001
c=0.004

 
p=0.854
c=0.667

 
p=0.096
c=0.136

 
p=0.021
c=0.045

 
p=0.009
c=0.023

 
p=0.005
c=0.014

 
p=0.003
c=0.008

 
p=0.002
c=0.005

 
p=0.001
c=0.005

 
p=0.001
c=0.003

 
p=0.001
c=0.003

 
p=0.990
c=0.944

 
p=0.006
c=0.019

 
p=0.001
c=0.013

 
p=0.001
c=0.005

 
p=0.000
c=0.002

 
p=0.000
c=0.001

 
p=0.000
c=0.001

 
p=0.000
c=0.001

 
p=0.000
c=0.001

 
p=0.000
c=0.000

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ne

ss
 (c

)

(c) Qwen2.5-1.5B-Instruct on GSM8K

1 2 3 4 5 6 7 8 9 10
Rank

(0.0,0.1]  0.17%

(0.1,0.2]  2.04%

(0.2,0.3]  4.95%

(0.3,0.4]  7.14%

(0.4,0.5]  8.85%

(0.5,0.6]  9.15%

(0.6,0.7]  8.42%

(0.7,0.8]  8.48%

(0.8,0.9]  9.79%

(0.9,1.0]  41.00%

Co
nf

id
en

ce
 b

in

 
p=0.081
c=0.050

 
p=0.069
c=0.050

 
p=0.058
c=0.079

 
p=0.050
c=0.059

 
p=0.043
c=0.046

 
p=0.038
c=0.029

 
p=0.033
c=0.017

 
p=0.030
c=0.042

 
p=0.027
c=0.029

 
p=0.024
c=0.008

 
p=0.162
c=0.135

 
p=0.127
c=0.108

 
p=0.100
c=0.094

 
p=0.078
c=0.078

 
p=0.061
c=0.063

 
p=0.049
c=0.044

 
p=0.040
c=0.036

 
p=0.033
c=0.035

 
p=0.028
c=0.026

 
p=0.024
c=0.024

 
p=0.255
c=0.229

 
p=0.183
c=0.159

 
p=0.127
c=0.118

 
p=0.087
c=0.085

 
p=0.060
c=0.063

 
p=0.042
c=0.044

 
p=0.031
c=0.035

 
p=0.024
c=0.024

 
p=0.019
c=0.022

 
p=0.016
c=0.017

 
p=0.352
c=0.309

 
p=0.229
c=0.216

 
p=0.132
c=0.124

 
p=0.072
c=0.076

 
p=0.044
c=0.053

 
p=0.029
c=0.033

 
p=0.021
c=0.023

 
p=0.015
c=0.018

 
p=0.012
c=0.014

 
p=0.009
c=0.011

 
p=0.451
c=0.396

 
p=0.263
c=0.251

 
p=0.104
c=0.110

 
p=0.050
c=0.061

 
p=0.029
c=0.033

 
p=0.019
c=0.024

 
p=0.013
c=0.017

 
p=0.010
c=0.010

 
p=0.007
c=0.011

 
p=0.006
c=0.008

 
p=0.549
c=0.482

 
p=0.257
c=0.256

 
p=0.074
c=0.087

 
p=0.034
c=0.040

 
p=0.019
c=0.022

 
p=0.012
c=0.018

 
p=0.009
c=0.013

 
p=0.006
c=0.010

 
p=0.005
c=0.007

 
p=0.004
c=0.005

 
p=0.650
c=0.566

 
p=0.204
c=0.222

 
p=0.057
c=0.070

 
p=0.026
c=0.037

 
p=0.015
c=0.020

 
p=0.009
c=0.012

 
p=0.006
c=0.008

 
p=0.005
c=0.008

 
p=0.004
c=0.006

 
p=0.003
c=0.004

 
p=0.750
c=0.664

 
p=0.147
c=0.171

 
p=0.040
c=0.055

 
p=0.018
c=0.025

 
p=0.010
c=0.016

 
p=0.007
c=0.011

 
p=0.004
c=0.007

 
p=0.003
c=0.005

 
p=0.002
c=0.004

 
p=0.002
c=0.004

 
p=0.852
c=0.758

 
p=0.088
c=0.127

 
p=0.024
c=0.041

 
p=0.011
c=0.018

 
p=0.006
c=0.010

 
p=0.004
c=0.006

 
p=0.003
c=0.004

 
p=0.002
c=0.003

 
p=0.001
c=0.002

 
p=0.001
c=0.002

 
p=0.979
c=0.934

 
p=0.013
c=0.024

 
p=0.003
c=0.010

 
p=0.001
c=0.005

 
p=0.001
c=0.002

 
p=0.000
c=0.001

 
p=0.000
c=0.001

 
p=0.000
c=0.001

 
p=0.000
c=0.001

 
p=0.000
c=0.000

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ne

ss
 (c

)

(d) Qwen2.5-1.5B-Instruct on alpaca-gpt4-en

Figure 14: Calibration grids on various Qwen models and GSM8K or alpaca-gpt4-en
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Figure 14: Calibration grids on various Qwen models and GSM8K, alpaca-gpt4-en or LitBench
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