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Abstract

Metal-Organic Frameworks (MOFs) have attracted considerable attention due
to their unique properties including high surface area and tunable porosity, and
promising applications in catalysis, gas storage, and drug delivery. Structure
prediction for MOFs is a challenging task, as these frameworks are intrinsically
periodic and hierarchically organized, where the entire structure is assembled
from building blocks like metal nodes and organic linkers. To address this, we
introduce MOF-BFN, a novel generative model for MOF structure prediction
based on Bayesian Flow Networks (BFNs). Given the local geometry of building
blocks, MOF-BFN jointly predicts the lattice parameters, as well as the positions
and orientations of all building blocks within the unit cell. In particular, the
positions are modelled in the fractional coordinate system to naturally incorporate
the periodicity. Meanwhile, the orientations are modeled as unit quaternions
sampled from learned Bingham distributions via the proposed Bingham BFN,
enabling effective orientation generation on the 4D unit hypersphere. Experimental
results demonstrate that MOF-BFN achieves state-of-the-art performance across
multiple tasks, including structure prediction, geometric property evaluation, and de
novo generation, offering a promising tool for designing complex MOF materials.

1 Introduction

Metal-Organic Frameworks (MOFs) have attracted significant interest in recent years due to their
unique structural properties and wide range of potential applications [} [12]. These materials are
characterized by high surface areas, tunable porosities, and exceptional versatility, which make them
ideal candidates for use in catalysis [9], gas storage [16], drug delivery [14], and other fields [18} 3]
Structurally, MOFs are composed of metal ions or clusters coordinated with organic linkers, forming
periodic structures that can be tailored for specific functions [21]. This tunability has led to their
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exploration in numerous scientific and industrial domains, sparking a need for more efficient and
accurate methods for predicting MOF structures.
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Predicting the structures of MOFs is a critical prob-
lem. Traditional crystal structure prediction methods
typically rely on ab initio calculations, using opti-
mization algorithms to find local minima on energy
landscapes defined by Density Functional Theory
(DFT) or machine learning (ML) force fields [30]].
However, such approaches are computationally inten-
sive. To overcome this limitation, recent work has
explored deep generative models that directly learn Figure 1: Decomposition of a MOF.

the data distribution, thereby bypassing explicit en-

ergy optimization. While these models have shown promising results on small-scale inorganic crystals,
they encounter challenges in addressing MOFs: the unit cells of MOFs often contain hundreds of
atoms, making direct atomic-level generation highly complex and computationally expensive. To
mitigate this, prior work has adopted a hierarchical modeling paradigm, where MOFs are decomposed
into smaller, rigid building blocks [1} 15, [13]], as shown in Figure m These methods aim to predict the
positions and orientations of building blocks to reconstruct the full structure, reducing the complexity
of the problem. Particularly, MOFFlow [13] is a representative approach that employs flow-matching
techniques to jointly generate both the unit cell parameters and the positions and orientations of each
block, offering a promising solution to the structural prediction problem.

Infinite MOF Structure Building Blocks

Despite its success, MOFFlow represents the unit cell as a finite 3D graph with global features such
as lattice parameters, without explicitly modeling the periodicity of MOF structures. Periodicity is
a key characteristic of crystalline materials, and its proper modeling is essential capturing multiple
properties. To this end, recent works have adopted fractional coordinate systems, which models
atomic positions on a 3D torus normalized by the unit cell, naturally incorporating periodic boundary
conditions. Several generative methods based on diffusion [[10} [17] or flow matching [20] have been
developed to model these fractional coordinates, showcasing promising results in various crystal
generation tasks.

However, diffusion- and flow-based models typically rely on continuous-time stochastic differential
equations (SDEs) or ordinary differential equations (ODEs), which would inevitably be discretized
during sampling. This discretization introduces truncation errors, which can accumulate and degrade
model performance [19}31]]. In contrast, Bayesian Flow Networks (BFNs) [6], a recent advancement
in generative modeling, reformulate the generation process via iterative Bayesian updates. This
paradigm bypasses the need for solving SDEs or ODEs, thus eliminating the discretization errors.
Notably, CrysBFN [28]], a recent work based on BFNs, has demonstrated strong performance in
modeling fractional coordinates for inorganic crystal generation, highlighting the potential of BFN-
based frameworks.

Nevertheless, extending BFNs to MOF structure prediction faces additional challenges. In hierarchical
MOF representations, building blocks are not simply treated as point particles but as rigid bodies with
local geometries [[13]. Therefore, in addition to predicting the fractional coordinates of each block, it
is necessary to model its orientation in three-dimensional space. Specifically, this requires learning
distributions over rotation matrices, or equivalently, over the special orthogonal group SO(3), which
remains unsolved in prior BFN-based methods.

To address this gap, we propose MOF-BFN, a novel generative framework for hierarchical MOF
structure prediction based on Bayesian Flow Networks. MOF-BFN operates in the fractional coordi-
nate system to preserve periodicity and models block orientations using unit quaternions sampled
from Bingham BFNs—a new generative module that extends BFNs to the hypersphere S for rota-
tion modeling. Given the geometry of each building block, MOF-BFN jointly predicts the lattice
parameters, fractional coordinates, and orientations of all building blocks within a unit cell.

In summary, our contributions are as follows:
* We introduce MOF-BFN, the first hierarchical structure prediction framework that jointly
models periodicity, position, and orientation using Bayesian Flow Networks.

* We incorporate fractional coordinates to capture periodicity and employ Bingham distribu-
tions to generate orientations in the unit quaternion space.



* We demonstrate the superior performance of MOF-BFN over existing methods in multiple
tasks including structure prediction, geometric property evaluation and de novo generation.

2 Related Works

Generative Models for Crystalline Materials. Generative models for crystalline materials, includ-
ing both inorganic crystals and metal-organic frameworks (MOFs), have made notable advancements.
CDVAE [29] integrates a diffusion decoder into a VAE to generate structures from predicted lat-
tices. DiffCSP [10] improves this by jointly diffusing lattice matrices and fractional coordinates.
FlowMM [20] and CrysBFN [28] further improve the generation performance via more advanced
generative models for the torus space. FlowLLM [26] initializes flow matching process with a
LLM-based prior [7]. TGDMat [4]] innovatively introduces text conditions to the generative model.
DiffCSP++ [[11]] considers space group-based generation given specific Wyckoff position (WP) as-
signments, and SymmCD [15] extends this by further enabling the generation of WPs. Specific
for MOFs, MOFD:Iff [3] extends CDVAE into a hierarchical diffusion model using coarse-grained
blocks. While MOFDIff requires post-processing to fully optimize block orientations, MOFFlow [13]
directly models the orientation of each building block in the flow matching framework, leading to an
end-to-end paradigm. However, MOFFlow does not explicitly model the periodicity of MOFs, which
we address by incorporating the fractional coordinate system in this work.

Bayesian Flow Networks. Bayesian Flow Networks (BFNs, Graves et al. [6]) define a generative
process that transitions from a prior to a posterior through Bayesian updates. Their smooth generation
has been effective in 3D tasks like molecule generation [25] and structure-based drug design [23].
CrysBFN [28] extends BFN to torus space via the von Mises distribution. In this work, we further
enhance BFN with a hierarchical MOF-specific representation, enabling accurate modeling of both
block positions and orientations.

3 Preliminaries

3.1 Representation of MOFs

General Representations of MOFs. An MOF structure can be described as an infinite periodic
arrangement of atoms in 3D space, where the smallest repeating unit is called the unit cell. A unit
cell containing N atoms can be formed by a triplet M = (L, X, A), where L = [, 15,13] € R3*3
is the lattice matrix determining the periodicity of the unit cell, X = [z;]), € R**¥ is the
Cartesian coordinate matrix specifying the positions of the atoms, and A = [a;]¥.; € R"*V is the
h-dimentional one-hot encoding matrix representing the atom types. To describe the shape of the
parallelpiped L, a commonly-used alternate is the invariant lattice parameter € = (a, b, ¢, @, 3,7) €
Ri x (0,7)? that characterizes the lengths and pairwise angles of the three basis vectors. [| The
entire periodic structure can be formulated by {(a/, z})|a} = a;, ), = x; + Lt,Vt € Z3*'}, where
the integer vector ¢ indicates the arbitrary translation along the basis vectors according to periodicity.

Block-level Representations of MOFs. MOFs typically consist of hundreds to thousands of atoms
per unit cell, making it challenging to directly design full-atom generative models. To overcome
this problem, a hierarchical modeling approach is commonly employed, where atoms are grouped
into building blocks such as metal clusters and organic linkers [5) [13]. Formally, a unit cell with
K building blocks (K < N) is then described as MZ = (L, X5 RZ B), where XB ¢ R3*K

and R® € sO(3)% specify the center positions and orientations, B = [Cj}jK:l contains the local

structures of blocks. Each block C; = {(a., wr)}ivil contains IV; atoms, described by atom types

[ar]i\gl and local coordinates [a:T]iV:jl. The canonical local coordinates are determined by PCA [13]],
which is detailed in Appendix C.1. To intrinsically model the periodicity, we further apply the
fractional coordinate system, which takes the lattice matrix L as the coordinate basis and describes
the relative position of each atom within the unit cell. Specifically, the coordinates are transformed

*In practice, following Lin et al. [17], we use ( log(a),log(b), log(c), tan(a— %), tan(8— 3 ), tan(y— %))
to project the parameters in continuous space R® to simplify modelling. Hereinafter, the notation & denotes this
projected representation.
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Figure 2: Overview of MOF-BFN. To model the joint distribution over different manifolds in the
data space, MOF-BFN defines a generative process in the corresponding parameter space. During
training, the model takes 6;_; from Bayesian flow distribution on the unit cell M as the input, and
outputs an approximation of M. The training objective is to minimize the discrepancy between the
estimation and the ground truth. During inference, the process begins from uninformative prior 6y,
and progressively updates the parameters via the trained model.

into F? = [fP1X.| = [L™'aP]I< | € [0,1)®*K. Hereinafter, we simplify F¥ as F to represent
the block-level fractional coordinates.

Represent Rotations as Unit Quaternions. Apart from the rotation matrices, unit quaternions

offer a compact and efficient way to represent 3D rotations. For ¢ = [w, z,y, 2] and ||q|| = 1, the
corresponding rotation matrix is given by
1—-2(y*+2%) 2(xy —wz2) 2(zz + wy)
R(q)=| 2@y+wz) 1-222+2%) 2yz—wz) |. 1)
2(zz — wy) 2(yz +wx)  1—2(x?+y?)

Task Definition. The task of MOF structure prediction is to predict the lattice matrix and detailed
block arrangement given the block types. By representing lattices as the invariant parameters £ and
encoding orientations as quaternions Q = [g;]X, the structure prediction task is formulated as
capturing the joint distribution p(&, F', Q|B). Furthermore, to enable de novo generation, we extend
the formulation to model p(&, F', Q, BB), thereby incorporating the block type generation into the
structure prediction framework.

3.2 Bayesian Flow Networks

Bayesian Flow Networks (BFNs) [6] are a class of generative models that progressively refine the
parameters of a distribution set via Bayesian updates. Specifically, a series of sender distributions is
constructed by perturbing data & with noise levels corresponding to a predefined accuracy schedule
[oi;]T_,, resulting in pg(yi|x; ;). In parallel, the receiver begins with an uninformative prior
distribution parameterized by 6y, and progressively updates its belief based on the observed noisy
samples [y;]7_;. At each step i, the receiver treats its distribution from the previous step as the input
distribution pr(x|0;_1), and updates it via Bayes’ rule as

pr(x]6;) o< pr(x[0i—1)ps (yilz; i), 2
which corresponds to the following update rule in the parameter space:
0; = h(0;_1,yi, i), (3)

where h is called the Bayesian update function. The corresponding Bayesian update distribution is
yielded by marginalizing y;

Pu (0i|0i—1a T, al) = EyinS(yi|w;ai)6(0i - h(ei—h Yi, O{i)). (4)



At step ¢, the marginalized Bayesian flow distribution is accumulated from the prior 6 as

pr(0ilz, [Oéj];':ﬂ =Ep01100,2:01) " Epu (61165 _0,a5001)PU (034|051, ;5 ). ©)

However, during generation, the sender distributions are actually unavailable as they requires ground-
truth data. To address this, a neural network ¢ is introduced to approximate the sender distributions by
producing output distributions that aim to recover the clean data. At each step ¢, the model takes the
current parameter ;1 as the input and outputs an estimated distribution po (Z|¢(0;-1,t;)), usually
selected as the Dirac distribution on the model prediction that

po(&|p(0i-1,t:)) = 6(T — #(0i-1,t:)). (6)

The approximated sender distribution, or so-called receiver distribution, is further given by
PrR(YilOi—15ti, ) = Epp (31600, 1.,4:))Ps (Ui 5 ). (7)

The training objective is to minimize the transmission error, quantified as the KL-divergence between
the sender and receiver distribution as

L(¢) = Exrp,int(1,7) P L (ps (|25 i) [pr(|0i-15 tis i), (®)

which is generally measured by the distance or similarity between the predicted and ground truth
data. Overall, the construction of BFN requires the following key components: (1) a prior parameter
6 for initialization; (2) a Bayesian update function h for progressively refining the parameter; (3) a
Bayesian flow distribution pr accumulated via h for training; and (4) a closed-form KL divergence
as the training objective, which will be detailed in the following section.

4 MOF-BFN

As illustrated in Fig. [2} to model the joint distribution p(&, F', Q|B), we design MOF-BFN over
the parameter space of M = {0, 0F Q}. During training, the model samples discrete timestep
i ~ U(1,T) and takes @', as the input parameter, and minimize the training objective abstracted as

Eq. (8) on each manifold. Initialized from the prior 83!, each inference step first yields the output
distribution from the trained model to approximate the receiver distribution, and then refines the input
parameters via Bayesian update. The final prediction is drawn from the output distribution at the last
step T'. In this section, we first briefly introduce the design of BFNs on continuous and torus space
in § 4.1] and detail the proposed Bingham BFN in § [4.2] Finally, we provide the training schemes of
MOF-BEN on the structure prediction task and the extended de novo generation task in § [4.3]

4.1 Bayesian Flow Networks on Common Manifolds

Lattice Parameters on Continuous Space R® The input distribution of £ follows the Gaussian
form N (&; ué, (p8)~1I) parameterized by 8% = {u$, p¢}. Following the standard BEN on contin-
uous space [6], the prior distribution is selected as the standard Gaussian with 03 = {0,1}. After

observing a sample from the Gaussian form sender distribution yf ~ N (€, (af)’lI ) at step 4, the
Bayesian update function is given by

3 3 £ &
Pi_1Mi_1 + Q7Y;
Pf—l + 0‘5

{us, 05} ={ 5+ ©)

Leveraging the additive property of Gaussian distributions, given af =or 2/ T(l — ag/ T), and o

is a predefined small variance, the Bayesian flow distribution can be analytically obtained as
P (ufl€ 1) = N((L - 07/ ")g 07" (1= 07/ ")I), (10)

with pf =or /T " Since both the sender and receiver distributions are Gaussian with identical
variance, their KL divergence simplifies to a mean-squared error form as

afT M2
Le =B,y myut st e | g€~ 060 DB an



Fractional Coordinates on Torus T3*%  As established by Wu et al. [28]], circular distributions are
appropriate for modeling the periodicity of fractional coordinates, and one suitable choice is the von
Mises distribution defined as p, (x; m, k) x exp(x cos(2m(x —m))) with , m € [0,1) denote the
random variable and mean direction, and x > 0 controls the concentration. Parameterized as OiF =
{mF kF}, the input distribution is initialized by m{’ ~ U(0, 1), k§ = 0. We can further describe
the parameter in the complex form with ¥ = k¥ ¢2™™5 % where i is the imaginary unit, implying
that k', m}" depict the modulus and argument of ¢F'. Acquiring the sample y¥* ~ p, (p,(F,af))
with pre-defined of’, the Bayesian update function at step 4 is defined as

F F F 2ryFi
c; =c¢j +ajeV (12)

resulting in the accumulated Bayesian flow distribution as

pg(CZF|F7 [af];:l) = Epv(yf\F,af)upv(yf\F,(xf—)é(CZF - ZafeQﬂ-yj 1)' (]3)
=1

The training objective is the KL-divergence between von Mises distributions as

In(afF) .
F 04 . M
Lr =By v(,1).eF \~pE(eF|F [aF)ich) [O‘i le(af) (1 — cos (2n(F — ¢F(9i—171))))}a (14)

where Iy(+), I1(-) are the modified Bessel functions.

4.2 Bingham BFN for Quaternion Generation

In this section, we detail the design of key components for implementing a BFN in the quaternion
parameter space 8%. For simplicity, we omit the superscript @ and focus on a single quaternion
q € S; the full design for Q = [q;]%£, follows naturally by extension.

Bingham Distribution. To model variation in 3D orientations, one often requires a probability
distribution defined over the space of rotations. Since each 3D rotation can be represented by a unit
quaternion on S3, it is natural to consider distributions supported on this manifold. However, one key
point according to Eq. (I) is that the mapping from unit quaternions to rotation matrices is two-to-one,
i.e. R(q) = R(—q). Hence, any valid distribution must respect this antipodal symmetry. Fortunately,
a directional distribution on the hypersphere called Bingham distribution serves precisely this role.
Mathematically, the Probability Density Function (PDF) of the Bingham distribution takes the form

pe(g; M, A) = exp (@' MTAMygq), (15)

1
Z(A)
where Z(-) is the normalization term, and M " A M is the eigendecomposition of a symmetric matrix
with orthogonal M € R**# as the eigenvectors, and diagonal A as the eigenvalues. Based on
Eq. (I3), one can directly derive the following properties of the Bingham distribution:

Proposition 1. The PDF of the Bingham distribution maintains the antipodal symmetry, i.e.,
pe(a; M, A) = pp(—q; M, A).
Proposition 2. When A = 0, the PDF is reduced to a uniform distribution, i.e., pp(q; M ,0) = ﬁ

Proposition 3. Due to the normalization constraint on the hypersphere, any bias applied on the
eigenvalues would not affect the distribution, i.e., pg(q; M, A + kI) = pg(q; M,A),Vk € R.

According to proposition (3] A is typically reduced to A = diag(\) = diag(0, A\, A2, A\3) with
A3 < A3 < A1 < 0. Hence, a Bingham distribution can also be parameterized by § = { M, A}. By
proposition we initialize the parameters using the uniform prior 8, = { M, 0}, where M, is an
arbitrary orthogonal matri

Bayesian Update of Bingham Distribution. In Bayesian statistics, a conjugate prior refers to a
prior distribution that, when combined with a specific form of likelihood function, yields a posterior

3Theoretically, when the Bingham concentration matrix is initialized as A = 0, the matrix Ag = My AM
becomes a zero matrix regardless of the choice of orthogonal matrix M, resulting in a uniform distribution over
the unit sphere. In practice, we initialize M by performing torch.linalg.eigh on the zero matrix, which
yields the identity matrix My = I.



distribution of the same functional form as the prior. This property is greatly essential for the Bayesian
update process defined by Eq. (2}[3), where the input distribution and sender distribution act as the
conjugate prior and likelihood, respectively. Notably, the likelihood need not share the same form as
the prior. For the Bingham distribution, it admits a particularly convenient conjugate relationship
when the likelihood is modeled using the Watson distribution, which yields the PDF as

pw (q; pt, k) = Cq(k) exp (k(n" q)?). (16)

Here Cy(+) is the normalization term, pu € 83 is the mean direction and £ > 0 determines the
concentration. The squared inner product ensures antipodal symmetry, consistent with the Bingham
distribution. Given 6;_; = {M;_1, A;_1} at step 7 and an observation y; from the sender distribution
following pw (yi; g, «;), the posterior is updated as

(q|0i-1,yi, ;) < pp(q; Mi_1,diag(Xi—1)) - pw (Y55 @, ;) (17)
o exp (qTMiT_ldiag()\i_l)Mi_lq + ozi(y,;Tq)Q) (18)
=exp (q' (M, diag(X\i—1)M;_1 + ;y:y; )q) (19)

As Eq. (19) retains the form of a Bingham distribution, the Bayesian update function 8; =
{M;, i} = h(0;-1,Y;, a;) is thus defined as

M, diag(\;) = EigenDecomposition (M, diag(Ai—1) Mi—1 + ciyiy; ), (20)
Ai = AL — max(X}). (21)

The distribution of the updated parameters is finally acquired as
pu(0i0i-1,q;05) = By, opiy (yisq,a0)0(0i — (01, yi, ;). (22)

Efficient Sampling for Bayesian Flow Distribution. For BFNs applied to continuous spaces such
as Gaussian distributions over R", a key additive property holds as

pu (0”16, q; 0 + ) = Epy, (616,950, P0 (0”10, 5 ), (23)

which allows the cumulative accuracy at step ¢ to be expressed as p; = po + Z;Zl «;. However,
the property does not extend to the Bayesian updates in Eq. (22)), as the eigenvalues involved in the
Bingham updates are not additive. To address this, we follow the strategy similar to Eq. (T3) on the
von Mises distribution, which also suffers from non-additive property. We simulate the posterior 6;
by accumulating the outer products in the exponential term. Given A; = M, diag(\;) M;, we have

pr(Ailgslailim1) = Epunla.an o iaan (4 = D asw59) ). (24)
j=1

The samples [%]2‘:1 can be drawn independently and in parallel via rejection sampling from the
angular central Gaussian (ACG) distribution, as described in Appendix C.2. Finally, the schedule of
accuracy [o;])Z_; is computed numerically to approximate a linearly decreasing entropy, with further
implementation details provided in Appendix C.3.

Training Objective. The training objective is computed between the predicted and target Watson
distributions, which is defined as

Lq=E, v0,1r)aimpr(Aiilalas]i2h) [Ad(ai)T<1 - (QT%(O{\:IMZ'))Z)}, (25)

where A4(-) is the second moment of the Watson distribution. Note that Eq. measures the square

of the cosine similarity between the prediction qﬁq(O{\j‘l, i) and the ground truth g, maintaining the

antipodal symmetry.

4.3 Training Scheme

The entire training objective aggregates the losses defined on each manifold, resulting in the following
composite loss function:

Lsp = veLe + YFLF +7qLqs (26)



Table 1: Structure prediction accuracy. Results for MOF structure prediction. - indicates no match.
stol represents the site tolerance for matching criteria. Baseline results are from Kim et al. [[13]].

stol = 0.5 stol = 1.0
# of samples
MR (%)t RMSE|l MR (%)1 RMSE/]
RS [30] 20 0.00 - 0.00 -
EA [30] 20 0.00 - 0.00 -
. 3 1 0.09 0.3961 23.12 0.8294
DiffCSP [10] 5 0.34 0.3848 38.94 0.7937

31.69 0.2820 87.46 0.5183
44.75 0.2694 100.0 0.4645

35.27 0.2735 92.99 0.5000
53.51 0.2498 98.37 0.4117

MOFFLow [13]

MOF-BFN

N — | W —

where each \ balances the contribution of the corresponding component.

Backbone Model for MOF-BFN. The structure prediction backbone contains two main components.
The first is the building block encoder £, which maps the local structures of building blocks into
invariant latent vectors. In our implementation, we adopt EGNN [24] as the encoder. The second is
the coarse-grained structure predictor adapted from the periodic GNN designed in [10], which takes
the timestep i, the joint parameter 8**, and the encoded condition £(B) as the input. Importantly,
it also incorporates the accuracy terms «¥ and );, as they indicates the current entropies of the
non-additive distributions [28]. The predictor outputs the estimated lattice parameters, quaternions,
and fractional translations, which together define the output distributions at each step.

Extension to De Novo Generation. We further extend our method to the de novo generation task,
where both the types and arrangements of building blocks are required for generation. To this end,
we employ a Gaussian BFN trained on the continuous embedding space learned by the contrastive
building block encoder from MOFDIff [3]], to determine the identity of each block. The training
objective is extended as

Lpne = VeLe +YFLF + V9Lq + 18LB, (27

where Lz optimizes the generation process on block embedding space and shares a similar form as
Eq. (34). More details are referred to Appendix D.

5 Experiments

In this section, we evaluate MOF-BFN across a variety of tasks. In § @ we show that MOF-
BFN significantly outperforms existing full-atom and hierarchical approaches in structure prediction
accuracy. In §[5.2] we demonstrate that the predicted structures exhibit strong agreement with
ground-truth structural properties. In § [5.3] we further extend our method to the de novo generation
task, where the identity of each block is also required to be determined. Finally, we provide analyses
on the efficiency of the fractional modelling and the BFN-based framework in § [5.4]

5.1 Structure Prediction

Setup We use the BW-DB dataset of 324,426 MOFs from Boyd et al. [1], and decompose each
structure into building blocks using the metal-oxo algorithm in MOFid [2], following Fu et al. [3]].
As suggested by Kim et al. [[13]], we remove structures with over 200 blocks and split the remaining
data into training, validation, and test sets in an 8:1:1 ratio.

Baselines We compare against three types of baselines: (1) optimization-based methods including
Random Search (RS) and Evolutionary Algorithm (EA) from CrySPY [30]; (2) DiffCSP [10], a
full-atom generative model without block-level modeling; and (3) MOFFlow [13], a hierarchical
generative model using flow matching on block representations.

Evaluation Metrics For each test structure, we generate k candidates and report match rate (MR)
and root mean square error (RMSE). MR measures the proportion that at least one of the generated
structures matches the ground truth, while RMSE is calculated between the ground truth and the best



matching. Matching is performed using StructureMatcher from pymatgen [22]]. We follow Kim
et al. [13]] and evaluate under two tolerance settings for site, length and angle tolerance criteria:
(0.5,0.3,10.0) (strict) and (1.0, 0.3,10.0) (relaxed).

Results Table [I] reports the structure predic-
tion results. As expected, optimization-based
methods (RS and EA) completely fail to re-

Table 2: Geometric property evaluation. RMSE
computed between the ground-truth and generated
MOFs. Baseline results are from Kim et al. [13]].

cover correct structures, achieving 0% match MOF-BFEN MOFFlow DiffCSP
rates, which reflects the inefﬁciepcy of atom- VSA (mZ/em®) 232.8 2645 796.9
leyel search for complex MOFs. lefCSP shows  Gga (m?/g) 2475 3316 15619
slightly better performance but still struggles Ay (A3) 315.4 5305 30102
due to its lack of block-level awareness, confirm-  ycv (A3) 312.0 569.5 31834
ing the limitations of full-atom generative mod-  VF 0.0187 0.0285  0.2167
els for large systems. Compared to these base-  PLD (A) 0.9072 1.0616  4.0581
lines, both MOFFlow and our proposed method, LCD (A) 0.9257 1.1083  4.5180
MOF-BEN, achieve significantly higher accu- _DST (g/em®) 0.0185 0.0442 03711

racy. Notably, MOF-BFN consistently outper-

forms MOFFlow under strict and relaxed matching criteria. Under the more realistic threshold of
stol = 0.5, MOF-BFN achieves a higher MR (53.51% vs. 44.75%) and lower RMSE (0.2498 vs.
0.2694) when generating 5 samples. Even under the relaxed stol = 1.0 setting, MOF-BFN maintains
competitive accuracy with a lower RMSE. These results demonstrate that MOF-BFN improves
predictive accuracy.

5.2 Geometric Property Evaluation

In this section, we assess whether the predicted MOF structures preserve essential structural properties
that are critical for downstream applications such as gas storage and separation. To this end, we
evaluate eight commonly used structural descriptors: volumetric surface area (VSA), gravimetric
surface area (GSA), accessible volume (AV), unit cell volume (UCV), void fraction (VF), pore
limiting diameter (PLD), largest cavity diameter (LCD), and density (DST). For each test case, we
generate a single structure and compute its properties using Zeo++ [27]. The RMSE between the
predicted and ground-truth property values is then reported in Table 2]

Results Table [2] reveals that MOF-BEN achieves the lowest property prediction error across all
evaluated metrics, indicating that the model not only aligns structures accurately but also preserves
the spatial characteristics and material properties vital for real-world applications.

5.3 De Novo Generation

For de novo generation, we generate 1,000 MOFs
from both MOF-BFN and MOFDiff without any

Table 3: Generation validity. Validation rates
of 1,000 generated samples.

relaxation and evaluate them using two sets of  validity Criteria MOF-BFN  MOFDff
metrics in Table First, we assess connection Connection Point Matching
point matching, where the number of metal and _matched . 0923 0723
. . . . ecker
non-metal connection points, 1dent1ﬁ_ed_ at the bro- has_carbon 1 1000 1000
ken bonds between decomposed building blocks,  has_hydrogen 0.975 0.989
3 . _ has_atomic_overlaps | 0.115 0.259
s.hould.be equal. MOF BFN achieves a sub;tar} has_overcoordinated ¢ | 0193 0.365
tially higher matching rate (0.923 v.s. 0.723), indi-  has_overcoordinated_n | 0.049 0.047
: : has_overcoordinated_h | 0.180 0.342
cating more accurate topological assembly. Sec- /= 15 00Tl 0.182 0248
ond, we apply the MOFChecker tool [8] to the  has_undercoordinated_n | 0.154 0.126
matched structures to evaluate their chemical and Engfrf‘e‘:Zﬁ"‘“dlnated*rare*emh + T Yoo
structural validity. MOF-BFN consistently outper-  has_lone_molecule | 0186 0437
. . . : has_high_charges | 0.069 0.144
forms MOFlef across most criteria and a higher =0 0o terminal_oxo | 0.000 0001
proportion of valid structures passing all checks  has_undercoordinated_alkali_alkaline | 823 0.001
has tricall sed_metal . 0.350
(0.323 v.s. 0.107). These results demonstrate that o e rcally-exposed_metal | 0350 0148
MOEF-BFN is more effective at generating chemi- Total
cally plausible and topologically consistent MOF _total _valid t 0.323 0.107

structures. More details are provided in Appendix [D}




5.4 Analyses

Our method improves upon the strong baseline MOFFlow
MOFFlow in two key aspects: (1) we replace 50 R e
Cartesian coordinates with fractional coordi-

nates to better capture the inherent periodicity of 45

MOFs; and (2) we redesign the generative mod-
eling paradigm using BFNs in place of the orig-
inal flow matching approach. To evaluate the
individual contribution of each modification, we
construct an intermediate model named MOF-
FracFlow. This variant also applies the flow

. . 25
matching framework but operates in the frac- 0.24
tional coordinate space, using the same periodic
backbone architecture as MOF-BFN. A compar-
ison of these models is presented in Figure [3]
highlighting two key observations. First, MOF-
FracFlow outperforms the original MOFFlow, 0.27
particularly in terms of the match rate with 5
samples, underscoring the importance of incor- 0.28
porating periodicity. Second, MOF-BFN consis-
tently surpasses MOF-FracFlow, demonstrating Sample 1 Sample 5
that after introducing an additional generative
target on the SO(3) manifold, BENs continue Figure 3: Comparison among different variants.
to outperform flow matching counterparts, con- We include MOF-FracFlow as an intermediate
sistent with prior findings [25) [28]. Additional model using fractional coordinates system and flow
analyses about orientation representations and matching for generation.
hyperparameters are provided in Appendix

40

35

30

Match Rate (MR) 1

RMSE |
IS
o
=)

6 Conclusion

In this work, we present MOF-BFN, a hierarchical generative framework for Metal-Organic Frame-
works that integrates Bayesian Flow Networks with fractional coordinates and quaternion-based
orientation modeling. By operating in the fractional coordinate space and modeling orientation using
Bingham distributions over unit quaternions, MOF-BFN jointly captures the periodicity, positions,
and orientations of MOF building blocks in a unified generative process. Extensive experiments
demonstrate that MOF-BFN achieves state-of-the-art accuracy in structure prediction, property
evaluation, and de novo generation, highlighting the effectiveness of MOF-BFN for MOF design.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we summarize our contribution as introducing
fractional coordinates to capture periodicity, and designing Bingham BFN for orientation
generation, which are further detailed and verified in Methods (§ ) and Experiments (§ [5).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We discuss the limitations of the work in Appendix I.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The derivation are provided in § f]and Appendix B, C.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The used datasets and evaluation setups are provided in §5] and we provide
more details in Appendix G.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Our codes are provided in Appendix K.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The hyperparameters are provided in Appendix G.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Following prior studies, instead of reporting the means and standard deviations
across multiple samples, we turns to report the performance gain under different number of
samples, as shown in Table

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources are provided in Appendix G.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper definitely follows the NeurIPS Code of Ethics.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of this paper are discussed in Appendix J.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets and tools used in this paper have been properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Explanations of Key Notations

Table 4: Key notations used in this paper.

Notation Meaning / Description
(2 Prior parameter for initialization of Bayesian Flow Network (BFN)
pU Bayesian update for refining parameters iteratively
PR Bayesian flow distribution accumulated via updates, used for training
L c R3*3 Lattice matrix
S nconstrained lattice parameters, modele aussian distribution
RS U d 1 p deled by G: distrib

Oci = {pe,i-pe,i} Parameters (mean, precision) of Gaussian distribution for £ at step i

F ¢ T3k Block-level fractional coordinates on torus space, modeled by von Mises distribution

0F = {m¥F,kF} Parameters of von Mises distribution for F' (mean direction and concentration) at step i
Complex form representing fractional coordinate parameters

i

Qc (SHK Quaternion representation for 3D orientations

ges? One single quaternion, modeled by Bingham distribution

07 = {M;, \;} Bingham distribution parameters for quaternions with orientation matrix M; and normalized eigenvalues A; at step i
Loss functions

ol Loss weights

B Proofs of Propositions

In this section, we prove the properties listed in § 4.2.

The PDF of the Bingham distribution is rewritten as

pe(g; M, A) =

1 TagT
M '"AMag).
Z(A) (a q)
Proposition 1. The PDF of the Bingham distribution maintains the antipodal symmetry, i.e.,
pe(@; M, A) =pp(—q; M, A).

Proof.
1
—q; M, A) = —— —q )M TAM(-
p(—q; M, A) Z(A)exp(( q’) (—q))
1 TasT
= M'AM
Z(A) (q q)
=pp(q; M, A)
O
Proposition 2. When A = 0, the PDF is reduced to a uniform distribution, i.e., pg(q; M ,0) = #
Proof. When A = 0, the exponent becomes zero for all ¢ € S3:
1 1
:M.0) = TMTOMq) = ——.
ps(q ) 7(0) P (g q) 7(0)
That is, pg(q; M, 0) is constant over S3, indicating it is a uniform distribution. Since the surface
area of S? is 272, the normalized uniform density is ps(q; M, 0) = 513. O

Proposition 3. Due to the normalization constraint on the hypersphere, any bias applied on the
eigenvalues would not affect the distribution, i.e., pp(q; M, A + kI) = pp(q; M,A),Vk € R.

Proof.

pe(q; M, A+ kI) = eXp(qTMT(A—l—kI)Mq)

1
Z(A +kI)
xexp(qg" M (A+kI)Mq)
=exp(q' M'AMq+kq' M Mgq)
=eFexp (qTMTAMq)

X exp (qTMTAMq).



Given the normalization constant Z(A), we have pg(q; M, A+kI) = ﬁ exp (q" MTAMgq) =
pe(g; M, A). O

C Implementation Details for MOF-BFN

C.1 Determining Local Geometries for Building Blocks

To determine the orientations of building blocks, we should first determine a reference frame for each
block. A common-used solution is Principle Component Analysis (PCA) [4]. Given a building block

C; = (A;,X,), where A; = [a,]"?, € R"Ni, X, = [&,]"7, € R¥Ni denote the atom types
and coordinates within the block. The consistent local structure X; is defined as

X; = RX;, (28)

where X; = [, = [, — & Y07, 2,7 is the centered coordinates, and R = ¢ ® R.
J — —
R = [ey, eq, €3] is the eigenvector matrix of XjX-T, and the signs ¢ = [c1, ¢2, c3] is determined by

To: >
c; = {+17el vj - 0’ (29)

—-1,e/v; <0,

with a vector v; determining the direction of the building block. Following [6]], the vector is defined
as v; = argMing,_ ||z, |20 |2

C.2 Rejection Sampling for Bingham Distribution

To sample from the Bingham distribution, we adopt a rejection sampling strategy using the Angular
Central Gaussian (ACG) distribution as the proposal [5]. Given a multivariate normal distribution
u ~ N(0,X), the normalized direction ¢ = q/||q|| follows an ACG distribution, whose density
is pac(q) o (g X~'q)~ %2, where d is the dimension of the hypersphere. To perform rejection
sampling, we choose ¥ ~! = I — 2A such that the Bingham distribution is upper bounded by a
scaled ACG distribution: pp(q) < A’ - pacc(q), with A’ related to the normalization term of each
distribution. This bound leads to the condition

exp(qAq) < A(g" (I —2A)q)~%?

4> exp(q ' Aq)
~ (qT(I—2A)q)4/?

= exp(q' Ag)(1 — 2" Aq)*/?

We define the function f(t) = exp(t)(1 — 2t)%? and maximize it over ¢ € R to obtain the tightest

possible rejection bound. The maximum occurs at { = %d, resulting in an optimal rejection constant

Apin = exp(354)d?/2. Once a sample g is accepted, we apply a linear transformation ¢’ = Mg if
the Bingham distribution has eigendecomposition M AM ". This yields a sample from the desired
Bingham distribution.

C.3 Accuracy Scheduling for Bingham BFN

As the eigenvalue matrix A is diagonal, we denote the normalization term Z(A) as Z(A) in this
subsection. To determine a suitable value of a;, we consider the entropy of the Bingham distribution,
which takes the form

H; = H(\) =log Z(\;) — A Vg Z(\),

Assuming that \; = [0, —8;, —3;, —3;], we can approximate the entropy as a function of a single
parameter [3;. This assumption is an approximation that enforces isotropy around the principal axis,
but it is effective in practice for constructing a simple and stable entropy scheduler. Let 3y = 0 and
B sufficiently large, we linearly interpolate the entropy as H; = (1 — 7 ) Ho + 7 Hr, and numerically



solve for each intermediate value 3;. Consider the sender distribution y; ~ pw ([1, 0,0, 0], «i;), its
second moment is given by

. (VZ(0,—a;, —a;, —;) VZ(0, —a;, —a;, —ay;)
Elyy,'] =d A 1— L i) 1,0,0,0]).
[y Yi ] lag( Z(O7 —Q, — Oy, _ai) * ( Z Z(07 —QG, —Oy, _ai) )[ ])

From this, the expected change in f3 is

E[B; — Bi—1] = (Elyiy; Jo — Elyiy, 1)
VZ(O, —QG, — Oy, _ai)l

- Oél(l -4 Z(Oa —Qy, —Qy, _al) )’

where the subscripts indicate the value at the corresponding indices. And we can numerically solve for
a; given B;. Such scheduler gradually sharpens the Bingham distribution, increasing its concentration
around the target direction, ensuring that the model starts with a high-entropy prior and becomes
progressively confident as step increasing.

D Extension to De Novo Generation

D.1 Implementation Details

The utilized MOF datasets contains millions of building block conformations, making a simple
one-hot encoding for building blocks sparse and computationally inefficient. To obtain compact and
continuous representations, a contrastive learning framework is employed in MOFDiff [3]]. Each
building block is encoded into a latent vector using a SE(3)-equivariant message passing neural
network, specifically GemNet-OC.

Let G denote the set of all building blocks obtained from training MOFs. For each building block
C € G, the encoder network fy maps its local structure to a continuous embedding z¢ = fy(C) € R,
with latent dimension d = 32 in MOFDIff.

To ensure that the learned embeddings reflect chemical similarity, contrastive learning is performed
using positive and negative pairs of building blocks. A positive pair (C,CT) consists of two blocks
sharing the same ECFP4 fingerprint, while a negative pair (C,C ™) indicates different block identities.

The contrastive learning objective is based on the following loss:
Z]ESJF exp (sim(z;,2z;)/7)
> jes exp (sim(zi, z;)/7)

£c0ntrast = - Z IOg

€S

(30)

where S, S+ denote the batch and the positive subset of the batch, 7 > 0 is a temperature hyperpa-
rameter, and sim(-, -) denotes the cosine similarity:

ZIZQ

TSRTRTETE] (3D
12 |z |

sim(zy,22) =

While the continuous encoding space enables efficient retrieval via KD-Trees, we empirically observe
that the distribution of embeddings deviates significantly from a normal distribution, which poses
challenges for training a BFN. To address this, we normalize the representations as

P =

z; —mean;cg(z;)
stdjeg (%)

Similar to the BFN for lattice parameters, given the block embeddings Z = [2;]X, of a structure,
the input distribution is given by N'(Z; u¥, (p?)~1I) parameterized by 0% = {uB, pF}. and the
prior distribution is chosen as 85 = {0, 1}. After acquiring a sample from the sender distribution
Y2 ~ N(Z,(aB)~11) at step 4, the Bayesian update function is

B B B, B
Pl 7Yy g B
, P51+t 32)
P?—l + O‘iB Pint ’ } (

{nl. 0P} ={



The corresponding Bayesian flow distribution is accumulated as

= . i/T\ > _2i)T i/T
PR(uf1Z.0) = N (1~ o7 2,07 (1~ 07" )T). (33)
The training objective on the latent space is
aiBT = .
L5 =i my it mpbud |2 | 5|2 — 05074, DI (34)

And the entire training objective is extended as

Long = AeLe + ArpLp + AgLg + ABL5B.

D.2 Results on Relaxed Structures

Similar to MOFDIff, we further relax the generated structures via the UFF force field [[7]. We refine
both the lattice parameters and the all-atom positions by LAMMPS [9] and LAMMPS Interface [2].
The numbers of valid structures before and after relaxation are reported in Table[5] further demon-
strating the generation quality of MOF-BFN.

Table 5: Generation validity. Number of structures that passed (1) or failed (]) each criterion among
1,000 generated candidates.

Before Relaxation After Relaxation
Validity Criteria MOF-BFN MOFDiff MOF-BFN MOFDiff
Connection Point Matching
matched 1 923 723 923 723
UFF Relaxation
relaxed 1 - - 849 662
MOF Checker
has_carbon 1 923 723 849 662
has_hydrogen 1 900 715 827 654
has_atomic_overlaps | 106 187 35 136
has_overcoordinated_c | 178 264 8 17
has_overcoordinated_n | 45 34 0 0
has_overcoordinated_h | 166 247 20 21
has_undercoordinated_c | 168 179 144 194
has_undercoordinated_n | 142 91 141 133
has_undercoordinated_rare_earth | 0 0 0 0
has_metal 1 923 723 849 662
has_lone_molecule | 172 316 36 60
has_high_charges | 64 104 5 13
has_suspicious_terminal_oxo | 0 1 0 2
has_undercoordinated_alkali_alkaline | 25 1 0 0
has_geometrically_exposed_metal | 281 253 8 24
Total
total_valid 1 323 107 545 317

D.3 Novelty and Uniqueness

Evaluating novelty and uniqueness is also critical in de novo generation. To address this, we
additionally conduct an additional analysis using MOFid, a SMILES-style descriptor that captures
both the building block identities and the topology of MOF structures. Specifically, we define novelty
as the proportion of generated structures whose MOFid does not appear in the training set, and
uniqueness as the proportion of generated structures with MOFids that are distinct from all other
generated samples. To ensure that novelty is meaningful, we further define validity as structures
that pass LAMMPS relaxation, satisfy all MOFChecker criteria, and are successfully processed by



MOFid. Table[6]summarizes the results. These results demonstrate that MOF-BEN attains a higher
overall V.N.U. rate. Notably, MOFDiff exhibits a comparatively higher novelty and uniqueness ratio
among valid samples, indicating a stronger tendency to generate structures distinct from the training
distribution. However, this advantage is offset by a lower validity, as a substantial portion of the
generated candidates fail to satisfy basic structural or physical constraints. It is therefore important to
contextualize novelty within the scope of validity, since novel structures lacking physical plausibility
are unlikely to be of practical significance for downstream applications. By contrast, MOF-BFN
yields a substantially larger number of valid structures while preserving a considerable degree of
novelty and uniqueness. Consequently, it achieves the highest proportion of valid, novel, and unique
(V.N.U.) samples. This highlights a more balanced trade-off between structural diversity and physical
realism, which is essential for practical applications in MOF design.

Table 6: Generation VNU rates. Validity, Novelty and Uniqueness of 1,000 generated samples
based on MOFid.

Model Valid w/o MOFid Valid w/ MOFid Valid & Novel Valid & Novel & Unique
MOEFDiff 323 284 281 281
MOF-BEN 545 450 424 407

D.4 Geometric Property Evaluation

We further evaluate the generated samples in terms of the Wasserstein distances against the training
set on geometric properties listed in Table[2] As shown in Table[7] the results indicate that the property
distributions of MOF-BFEN is closer to the training data compared to MOFDiff.

Table 7: Geometric property evaluation. Wasserstein distances computed between the training set
and generated MOFs.

VSA (m2/cm3®) GSA (m%/g) AV (A%) UCV (A%) VE PLD(A) LCD(A) DST (g/em?)

MOFDiff 177.8 258.4 1039.7 47372 0.043 0.607 1.311 0.059
MOF-BFN 157.2 131.7 885.2 1626.3  0.022 0.665 1.177 0.043

E Extension to Conditional Generation

Enabling conditionl generation is also a valuable problem. To demonstrate this, we further conduct
a preliminary experiment on void fraction (VF) via a classifier-guided generation (CFG)-style
approach [8]. In this approach, the model was fine-tuned to accept an additional conditioning input c,
representing the desired value of a target property. During generation, both an unconditional output
x and a conditional output x. were obtained. The final generated sample was then computed as
expy(wlog,, x.), where exp and log denote the exponential and logarithmic maps defined on the
specific manifold, including the lattice representation, fractional coordinate space, unit quaternion
space, and block embedding space. The weighting factor w controls the degree of conditioning.
Figure ] shows that the void fraction distribution of the generated structures shifts significantly toward
the desired value under conditioning.

J
l
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Figure 4: Void Fraction (VF) distribution of the original BW-DW dataset (left), the generated MOFs
with w = 1.0 (middle) and w = 2.0 (right). The distributions shift significantly toward the desired
value under conditioning, and larger guidance weights lead to stronger control.



F Additional Ablation Studies

Orientation Representation In addition to Table 8: Additional ablation studies on orientation
unit quaternions, another widely used formu- representations.

lat.ion for modeling ) 3D Or.ientations i§ the  Orientation Representation Match Rate (%) RMSD
ax1s—.ang1e representation, which characterizes a Axis-Angle 31.49 02770
rotation by a pair (u, ), where u € S* denotes Ui Quaternion 3507 0.2735
the rotation axis and 6 € [0, 7) is the rotation
angle. This representation is geometrically intuitive and has been extensively applied in rigid-body
kinematics. To model this formulation within the proposed framework, we employ a decomposed
strategy, where the rotation axis is represented by a von Mises—Fisher (vMF) distribution on the unit
2-sphere, while the rotation angle is represented by a von Mises distribution on the circle. This design
preserves the intrinsic geometry of each component and enables independent Bayesian updates within
the BFN framework.

The results on the structure prediction task are Table 9: Additional ablation studies on loss
shown in Table[§] Despite being a theoretically weights.

valid representation, this alternative led to no- v 7B  Valid before relaxation  Valid after relaxation
t@ceably worse pf:rform.ance in structure predic- T35 100 323 545
tion. As modeling axis and angle separately 1.0 10.0 219 40.9
breaks the unified structure of the SO(3) mani- 02 10 233 44.4

fold and complicates the joint learning of rota-

tion distributions. In contrast, the quaternion representation allows a unified and conjugate-friendly
update using the Bingham distribution. The additional results confirm that the use of unit quaternions
and Bingham BFN is not only theoretically motivated but also empirically beneficial.

Loss weights  For the DNG task, we further analyse the loss weights for the orientation v, and the
block embedding 3. The results in Table [9]show that scaling either component improperly leads to a
drop in validity.

G Experimental Details

Hyperparameters for the structure prediction (§ 5.1) and de novo generation (§ 5.3) are provided in
Table[I0] Baseline results in Table 1 and 2 are from MOFFlow [6], and the samples for calculating
MOFDIff results in Table 3 are directly yielded from the official pre-trained checkpointﬂ To ensure
a fair comparison, we share the same split with MOFDiff, where 95% structures are used for training,
and the remaining 5% are for validation. The structure prediction and de novo generation models are
trained on 8§ GPUs with 80 GB memories, and the training procedures take 136 and 152 GPU hours,
respectively.

H Baseline Selection

We provide the original scope of different models in Table For the structure prediction (SP)
and property evaluation task, we follow the benchmark introduced in MOFFlow, and the selected
baselines includes optimization-based methods (RS and EA), the full-atom model DiffCSP and the
block-level model MOFFlow. Optimization-based methods are excluded from property evaluation as
they fail to produce meaningful structures in Table|l} For de novo generation (DNG) task, it requires
generating both block identities and their structure. Among existing methods, only MOFDiff supports
this setting specifically for MOF, and is thus selected as the baseline.

I Limitations

While MOF-BFN presents a promising approach to hierarchical MOF structure prediction, several
limitations remain that we leave to future work. First, our current framework treats each building
block as arigid body with a fixed local geometry. This rigid-body assumption simplifies the generative
process but neglects the intrinsic conformational flexibility of many organic linkers and secondary

*https://github.com/microsoft/MOFDiff
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Table 10: Hyperparameter settings for experiments.

Building Block Encoder
num_layers node_dim edge_dim hidden_dim max_radius
4 64 64 64 5
Coarse-Grained Structure Predictor
num_layers hidden_dim time_dim num_freqs
6 512 128 64
BFN
8% BF B pE T
1000 1000 200 1000 50
B3 YF Yq B
1.0 1.0 0.2 10.0
Structure Prediction Training
Ir min_lIr plateau_factor plateau_patience =~ Adam_betas
5x1074 1x1074 0.6 30 [0.9, 0.98]
epochs batch_size  gradient_clip_val weight_decay
1000 512 0.5 0.01
De Novo Generation Training
Ir min_lIr plateau_factor plateau_patience =~ Adam_betas
5x1074 1x10~* 0.6 30 [0.9, 0.98]
epochs batch_size  gradient_clip_val weight_decay
3000 512 0.5 0.01

Table 11: Model Scope. SP and DNG denote structure prediction and de novo generation, respec-
tively.

Model Atom-level SP  Block-level SP  Block-level DNG
RS & EA v

DiffCSP v

MOFFlow

MOPFDiff v
MOF-BFN v v

building units. For instance, MOFDiff [3]] reports that over 2 million building block instances in the
dataset correspond to only 242k unique molecular graphs, indicating that significant conformational
diversity exists within each block type. Although our method supports the extension of building
block vocabularies through a continuous embedding space, it does not yet account for conformation
generation within each block. Integrating internal flexibility modeling into the current framework
could further enhance the model. Second, our current work focuses on unconditional generation and
structure prediction tasks, without explicitly incorporating guidance signals for specific downstream
properties. In practice, many MOF design scenarios require property-oriented generation, such
as optimizing for gas adsorption capacity or catalytic activity. However, techniques for guiding
models toward desired property targets remain underexplored in the field of Bayesian Flow Networks.
Developing conditional generation mechanisms within the BFN framework is an important direction
for future research to enable targeted material discovery.



J Broader Impacts

This work contributes to the development of MOF structure prediction and design. It may benefit
applications in gas storage, separation, and catalysis by enabling more efficient exploration of the
chemical design space. By improving structure prediction accuracy and generation validity, it can
potentially accelerate material discovery in a data-driven way. However, our model is trained and
evaluated primarily on the BW-DB dataset [1]], which may contain inherent biases in block types,
structural motifs, or chemical compositions. As a result, the generalization ability of the model to
underrepresented MOF types or application-specific domains could be limited. Care should be taken
when applying the model beyond the scope of the training data.

K Code Availablility

Our codes are available at https://github.com/jiaor17/MOF-BFN,
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