MOF-BFN: Metal-Organic Frameworks Structure Prediction via Bayesian Flow Networks

Rui Jiao 1,2,† Hanlin Wu 2,† Wenbing Huang 3,4,* Yuxuan Song 2 Yawen Ouyang 2

Yu Rong⁵ Tingyang Xu⁵ Pengju Wang⁵ Hao Zhou^{2,*}

Wei-Ying Ma² Jingjing Liu² Yang Liu^{1,2,*}

¹Dept. of Comp. Sci. & Tech., Institute for AI, Tsinghua University
 ²Institute of AI Industry Research (AIR), Tsinghua University
 ³Gaoling School of Artificial Intelligence, Renmin University of China
 ⁴ Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China
 ⁵ Alibaba DAMO Lab

Abstract

Metal-Organic Frameworks (MOFs) have attracted considerable attention due to their unique properties including high surface area and tunable porosity, and promising applications in catalysis, gas storage, and drug delivery. Structure prediction for MOFs is a challenging task, as these frameworks are intrinsically periodic and hierarchically organized, where the entire structure is assembled from building blocks like metal nodes and organic linkers. To address this, we introduce MOF-BFN, a novel generative model for MOF structure prediction based on Bayesian Flow Networks (BFNs). Given the local geometry of building blocks, MOF-BFN jointly predicts the lattice parameters, as well as the positions and orientations of all building blocks within the unit cell. In particular, the positions are modelled in the fractional coordinate system to naturally incorporate the periodicity. Meanwhile, the orientations are modeled as unit quaternions sampled from learned Bingham distributions via the proposed Bingham BFN, enabling effective orientation generation on the 4D unit hypersphere. Experimental results demonstrate that MOF-BFN achieves state-of-the-art performance across multiple tasks, including structure prediction, geometric property evaluation, and de novo generation, offering a promising tool for designing complex MOF materials.

1 Introduction

Metal-Organic Frameworks (MOFs) have attracted significant interest in recent years due to their unique structural properties and wide range of potential applications [1, 12]. These materials are characterized by high surface areas, tunable porosities, and exceptional versatility, which make them ideal candidates for use in catalysis [9], gas storage [16], drug delivery [14], and other fields [18, 3]. Structurally, MOFs are composed of metal ions or clusters coordinated with organic linkers, forming periodic structures that can be tailored for specific functions [21]. This tunability has led to their

^{*}Wenbing Huang, Hao Zhou and Yang Liu are corresponding authors. † indicates equal contribution. This work is done when Rui Jiao works as an intern in Alibaba Group.

exploration in numerous scientific and industrial domains, sparking a need for more efficient and accurate methods for predicting MOF structures.

Predicting the structures of MOFs is a critical problem. Traditional crystal structure prediction methods typically rely on *ab initio* calculations, using optimization algorithms to find local minima on energy landscapes defined by Density Functional Theory (DFT) or machine learning (ML) force fields [30]. However, such approaches are computationally intensive. To overcome this limitation, recent work has explored deep generative models that directly learn the data distribution, thereby bypassing explicit en-

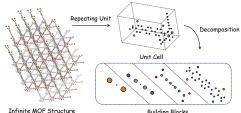


Figure 1: Decomposition of a MOF.

ergy optimization. While these models have shown promising results on small-scale inorganic crystals, they encounter challenges in addressing MOFs: the unit cells of MOFs often contain hundreds of atoms, making direct atomic-level generation highly complex and computationally expensive. To mitigate this, prior work has adopted a hierarchical modeling paradigm, where MOFs are decomposed into smaller, rigid building blocks [1, 5, 13], as shown in Figure 1. These methods aim to predict the positions and orientations of building blocks to reconstruct the full structure, reducing the complexity of the problem. Particularly, MOFFlow [13] is a representative approach that employs flow-matching techniques to jointly generate both the unit cell parameters and the positions and orientations of each block, offering a promising solution to the structural prediction problem.

Despite its success, MOFFlow represents the unit cell as a finite 3D graph with global features such as lattice parameters, without explicitly modeling the *periodicity* of MOF structures. Periodicity is a key characteristic of crystalline materials, and its proper modeling is essential capturing multiple properties. To this end, recent works have adopted *fractional coordinate systems*, which models atomic positions on a 3D torus normalized by the unit cell, naturally incorporating periodic boundary conditions. Several generative methods based on diffusion [10, 17] or flow matching [20] have been developed to model these fractional coordinates, showcasing promising results in various crystal generation tasks.

However, diffusion- and flow-based models typically rely on continuous-time stochastic differential equations (SDEs) or ordinary differential equations (ODEs), which would inevitably be discretized during sampling. This discretization introduces truncation errors, which can accumulate and degrade model performance [19, 31]. In contrast, Bayesian Flow Networks (BFNs) [6], a recent advancement in generative modeling, reformulate the generation process via iterative Bayesian updates. This paradigm bypasses the need for solving SDEs or ODEs, thus eliminating the discretization errors. Notably, CrysBFN [28], a recent work based on BFNs, has demonstrated strong performance in modeling fractional coordinates for inorganic crystal generation, highlighting the potential of BFN-based frameworks.

Nevertheless, extending BFNs to MOF structure prediction faces additional challenges. In hierarchical MOF representations, building blocks are not simply treated as point particles but as rigid bodies with local geometries [13]. Therefore, in addition to predicting the fractional coordinates of each block, it is necessary to model its orientation in three-dimensional space. Specifically, this requires learning distributions over rotation matrices, or equivalently, over the special orthogonal group SO(3), which remains unsolved in prior BFN-based methods.

To address this gap, we propose MOF-BFN, a novel generative framework for hierarchical MOF structure prediction based on Bayesian Flow Networks. MOF-BFN operates in the fractional coordinate system to preserve periodicity and models block orientations using unit quaternions sampled from Bingham BFNs—a new generative module that extends BFNs to the hypersphere S^3 for rotation modeling. Given the geometry of each building block, MOF-BFN jointly predicts the lattice parameters, fractional coordinates, and orientations of all building blocks within a unit cell.

In summary, our contributions are as follows:

- We introduce MOF-BFN, the first hierarchical structure prediction framework that jointly models periodicity, position, and orientation using Bayesian Flow Networks.
- We incorporate fractional coordinates to capture periodicity and employ Bingham distributions to generate orientations in the unit quaternion space.

 We demonstrate the superior performance of MOF-BFN over existing methods in multiple tasks including structure prediction, geometric property evaluation and de novo generation.

2 Related Works

Generative Models for Crystalline Materials. Generative models for crystalline materials, including both inorganic crystals and metal-organic frameworks (MOFs), have made notable advancements. CDVAE [29] integrates a diffusion decoder into a VAE to generate structures from predicted lattices. DiffCSP [10] improves this by jointly diffusing lattice matrices and fractional coordinates. FlowMM [20] and CrysBFN [28] further improve the generation performance via more advanced generative models for the torus space. FlowLLM [26] initializes flow matching process with a LLM-based prior [7]. TGDMat [4] innovatively introduces text conditions to the generative model. DiffCSP++ [11] considers space group-based generation given specific Wyckoff position (WP) assignments, and SymmCD [15] extends this by further enabling the generation of WPs. Specific for MOFs, MOFDiff [5] extends CDVAE into a hierarchical diffusion model using coarse-grained blocks. While MOFDiff requires post-processing to fully optimize block orientations, MOFFlow [13] directly models the orientation of each building block in the flow matching framework, leading to an end-to-end paradigm. However, MOFFlow does not explicitly model the periodicity of MOFs, which we address by incorporating the fractional coordinate system in this work.

Bayesian Flow Networks. Bayesian Flow Networks (BFNs, Graves et al. [6]) define a generative process that transitions from a prior to a posterior through Bayesian updates. Their smooth generation has been effective in 3D tasks like molecule generation [25] and structure-based drug design [23]. CrysBFN [28] extends BFN to torus space via the von Mises distribution. In this work, we further enhance BFN with a hierarchical MOF-specific representation, enabling accurate modeling of both block positions and orientations.

3 Preliminaries

3.1 Representation of MOFs

General Representations of MOFs. An MOF structure can be described as an infinite periodic arrangement of atoms in 3D space, where the smallest repeating unit is called the unit cell. A unit cell containing N atoms can be formed by a triplet $\mathcal{M}=(\boldsymbol{L},\boldsymbol{X},\boldsymbol{A})$, where $\boldsymbol{L}=[\boldsymbol{l}_1,\boldsymbol{l}_2,\boldsymbol{l}_3]\in\mathbb{R}^{3\times3}$ is the lattice matrix determining the periodicity of the unit cell, $\boldsymbol{X}=[\boldsymbol{x}_i]_{i=1}^N\in\mathbb{R}^{3\times N}$ is the Cartesian coordinate matrix specifying the positions of the atoms, and $\boldsymbol{A}=[\boldsymbol{a}_i]_{i=1}^N\in\mathbb{R}^{h\times N}$ is the h-dimentional one-hot encoding matrix representing the atom types. To describe the shape of the parallelpiped \boldsymbol{L} , a commonly-used alternate is the invariant lattice parameter $\boldsymbol{\xi}=(a,b,c,\alpha,\beta,\gamma)\in\mathbb{R}^3_+\times(0,\pi)^3$ that characterizes the lengths and pairwise angles of the three basis vectors. The entire periodic structure can be formulated by $\{(\boldsymbol{a}_i',\boldsymbol{x}_i')|\boldsymbol{a}_i'=\boldsymbol{a}_i,\boldsymbol{x}_i'=\boldsymbol{x}_i+\boldsymbol{L}\boldsymbol{t}, \forall \boldsymbol{t}\in\mathbb{Z}^{3\times1}\}$, where the integer vector \boldsymbol{t} indicates the arbitrary translation along the basis vectors according to periodicity.

Block-level Representations of MOFs. MOFs typically consist of hundreds to thousands of atoms per unit cell, making it challenging to directly design full-atom generative models. To overcome this problem, a hierarchical modeling approach is commonly employed, where atoms are grouped into building blocks such as metal clusters and organic linkers [5, 13]. Formally, a unit cell with K building blocks ($K \ll N$) is then described as $\mathcal{M}^B = (L, X^B, \mathbf{R}^B, \mathcal{B})$, where $X^B \in \mathbb{R}^{3 \times K}$ and $\mathbf{R}^B \in \mathrm{SO}(3)^K$ specify the center positions and orientations, $\mathcal{B} = [\mathcal{C}_j]_{j=1}^K$ contains the local structures of blocks. Each block $\mathcal{C}_j = \{(a_r, x_r)\}_{r=1}^{N_j}$ contains N_j atoms, described by atom types $[a_r]_{r=1}^{N_j}$ and local coordinates $[x_r]_{r=1}^{N_j}$. The canonical local coordinates are determined by PCA [13], which is detailed in Appendix C.1. To intrinsically model the periodicity, we further apply the fractional coordinate system, which takes the lattice matrix L as the coordinate basis and describes the relative position of each atom within the unit cell. Specifically, the coordinates are transformed

 $^{^2}$ In practice, following Lin et al. [17], we use $\left(\log(a), \log(b), \log(c), \tan(\alpha - \frac{\pi}{2}), \tan(\beta - \frac{\pi}{2}), \tan(\gamma - \frac{\pi}{2})\right)$ to project the parameters in continuous space \mathbb{R}^6 to simplify modelling. Hereinafter, the notation $\boldsymbol{\xi}$ denotes this projected representation.

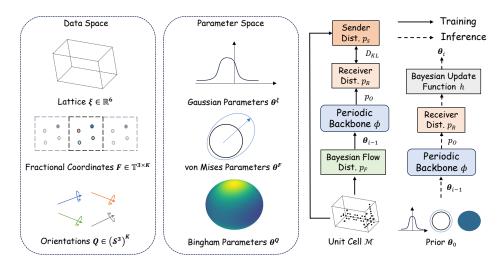


Figure 2: Overview of MOF-BFN. To model the joint distribution over different manifolds in the data space, MOF-BFN defines a generative process in the corresponding parameter space. During training, the model takes θ_{i-1} from Bayesian flow distribution on the unit cell \mathcal{M} as the input, and outputs an approximation of \mathcal{M} . The training objective is to minimize the discrepancy between the estimation and the ground truth. During inference, the process begins from uninformative prior θ_0 , and progressively updates the parameters via the trained model.

into $F^B = [f_j^B]_{j=1}^K = [L^{-1}x_j^B]_{j=1}^K \in [0,1)^{3\times K}$. Hereinafter, we simplify F^B as F to represent the block-level fractional coordinates.

Represent Rotations as Unit Quaternions. Apart from the rotation matrices, unit quaternions offer a compact and efficient way to represent 3D rotations. For $\mathbf{q} = [w, x, y, z]$ and $\|\mathbf{q}\| = 1$, the corresponding rotation matrix is given by

$$\mathbf{R}(\mathbf{q}) = \begin{pmatrix} 1 - 2(y^2 + z^2) & 2(xy - wz) & 2(xz + wy) \\ 2(xy + wz) & 1 - 2(x^2 + z^2) & 2(yz - wx) \\ 2(xz - wy) & 2(yz + wx) & 1 - 2(x^2 + y^2) \end{pmatrix}.$$
(1)

Task Definition. The task of MOF structure prediction is to predict the lattice matrix and detailed block arrangement given the block types. By representing lattices as the invariant parameters $\boldsymbol{\xi}$ and encoding orientations as quaternions $\boldsymbol{Q} = [q_i]_{i=1}^K$, the structure prediction task is formulated as capturing the joint distribution $p(\boldsymbol{\xi}, \boldsymbol{F}, \boldsymbol{Q} | \boldsymbol{\mathcal{B}})$. Furthermore, to enable de novo generation, we extend the formulation to model $p(\boldsymbol{\xi}, \boldsymbol{F}, \boldsymbol{Q}, \boldsymbol{\mathcal{B}})$, thereby incorporating the block type generation into the structure prediction framework.

3.2 Bayesian Flow Networks

Bayesian Flow Networks (BFNs) [6] are a class of generative models that progressively refine the parameters of a distribution set via Bayesian updates. Specifically, a series of *sender distributions* is constructed by perturbing data x with noise levels corresponding to a predefined accuracy schedule $[\alpha_i]_{i=1}^T$, resulting in $p_S(y_i|x;\alpha_i)$. In parallel, the receiver begins with an uninformative prior distribution parameterized by θ_0 , and progressively updates its belief based on the observed noisy samples $[y_i]_{i=1}^T$. At each step i, the receiver treats its distribution from the previous step as the *input distribution* $p_I(x|\theta_{i-1})$, and updates it via Bayes' rule as

$$p_I(\boldsymbol{x}|\boldsymbol{\theta}_i) \propto p_I(\boldsymbol{x}|\boldsymbol{\theta}_{i-1})p_S(\boldsymbol{y}_i|\boldsymbol{x};\alpha_i),$$
 (2)

which corresponds to the following update rule in the parameter space:

$$\boldsymbol{\theta}_i = h(\boldsymbol{\theta}_{i-1}, \boldsymbol{y}_i, \alpha_i), \tag{3}$$

where h is called the *Bayesian update function*. The corresponding *Bayesian update distribution* is yielded by marginalizing y_i

$$p_U(\boldsymbol{\theta}_i|\boldsymbol{\theta}_{i-1},\boldsymbol{x};\alpha_i) = \mathbb{E}_{\boldsymbol{y}_i \sim p_S(\boldsymbol{y}_i|\boldsymbol{x};\alpha_i)} \delta(\boldsymbol{\theta}_i - h(\boldsymbol{\theta}_{i-1},\boldsymbol{y}_i,\alpha_i)). \tag{4}$$

At step i, the marginalized Bayesian flow distribution is accumulated from the prior θ_0 as

$$p_F(\boldsymbol{\theta}_i|\boldsymbol{x}, [\alpha_j]_{j=1}^i) = \mathbb{E}_{p_U(\boldsymbol{\theta}_1|\boldsymbol{\theta}_0, \boldsymbol{x}; \alpha_1)} \cdots E_{p_U(\boldsymbol{\theta}_{i-1}|\boldsymbol{\theta}_{i-2}, \boldsymbol{x}; \alpha_{i-1})} p_U(\boldsymbol{\theta}_i|\boldsymbol{\theta}_{i-1}, \boldsymbol{x}; \alpha_i).$$
 (5)

However, during generation, the sender distributions are actually unavailable as they requires ground-truth data. To address this, a neural network ϕ is introduced to approximate the sender distributions by producing *output distributions* that aim to recover the clean data. At each step i, the model takes the current parameter θ_{i-1} as the input and outputs an estimated distribution $p_O(\hat{x}|\phi(\theta_{i-1},t_i))$, usually selected as the Dirac distribution on the model prediction that

$$p_O(\hat{\boldsymbol{x}}|\phi(\boldsymbol{\theta}_{i-1},t_i)) = \delta(\hat{\boldsymbol{x}} - \phi(\boldsymbol{\theta}_{i-1},t_i)). \tag{6}$$

The approximated sender distribution, or so-called receiver distribution, is further given by

$$p_R(\boldsymbol{y}_i|\boldsymbol{\theta}_{i-1};t_i,\alpha_i) = \mathbb{E}_{p_O(\hat{\boldsymbol{x}}|\phi(\boldsymbol{\theta}_{i-1},t_i))}p_S(\boldsymbol{y}_i|\hat{\boldsymbol{x}};\alpha_i). \tag{7}$$

The training objective is to minimize the transmission error, quantified as the KL-divergence between the sender and receiver distribution as

$$\mathcal{L}(\phi) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}, i \sim \mathcal{U}(1, T)} D_{KL}(p_S(\cdot | \boldsymbol{x}; \alpha_i) \| p_R(\cdot | \boldsymbol{\theta}_{i-1}; t_i, \alpha_i)), \tag{8}$$

which is generally measured by the distance or similarity between the predicted and ground truth data. Overall, the construction of BFN requires the following key components: (1) a prior parameter θ_0 for initialization; (2) a Bayesian update function h for progressively refining the parameter; (3) a Bayesian flow distribution p_F accumulated via h for training; and (4) a closed-form KL divergence as the training objective, which will be detailed in the following section.

4 MOF-BFN

As illustrated in Fig. 2, to model the joint distribution $p(\xi, F, Q|\mathcal{B})$, we design MOF-BFN over the parameter space of $\theta^{\mathcal{M}} = \{\theta^{\xi}, \theta^{F}, \theta^{Q}\}$. During training, the model samples discrete timestep $i \sim U(1,T)$ and takes $\theta^{\mathcal{M}}_{i-1}$ as the input parameter, and minimize the training objective abstracted as Eq. (8) on each manifold. Initialized from the prior $\theta^{\mathcal{M}}_0$, each inference step first yields the output distribution from the trained model to approximate the receiver distribution, and then refines the input parameters via Bayesian update. The final prediction is drawn from the output distribution at the last step T. In this section, we first briefly introduce the design of BFNs on continuous and torus space in § 4.1, and detail the proposed Bingham BFN in § 4.2. Finally, we provide the training schemes of MOF-BFN on the structure prediction task and the extended de novo generation task in § 4.3.

4.1 Bayesian Flow Networks on Common Manifolds

Lattice Parameters on Continuous Space \mathbb{R}^6 The input distribution of $\boldsymbol{\xi}$ follows the Gaussian form $\mathcal{N}(\boldsymbol{\xi}; \boldsymbol{\mu}_i^{\boldsymbol{\xi}}, (\rho_i^{\boldsymbol{\xi}})^{-1}\boldsymbol{I})$ parameterized by $\boldsymbol{\theta}_i^{\boldsymbol{\xi}} = \{\boldsymbol{\mu}_i^{\boldsymbol{\xi}}, \rho_i^{\boldsymbol{\xi}}\}$. Following the standard BFN on continuous space [6], the prior distribution is selected as the standard Gaussian with $\boldsymbol{\theta}_0^{\boldsymbol{\xi}} = \{\mathbf{0}, 1\}$. After observing a sample from the Gaussian form sender distribution $\boldsymbol{y}_i^{\boldsymbol{\xi}} \sim \mathcal{N}(\boldsymbol{\xi}, (\alpha_i^{\boldsymbol{\xi}})^{-1}\boldsymbol{I})$ at step i, the Bayesian update function is given by

$$\{\boldsymbol{\mu}_{i}^{\boldsymbol{\xi}}, \rho_{i}^{\boldsymbol{\xi}}\} = \left\{\frac{\rho_{i-1}^{\boldsymbol{\xi}} \boldsymbol{\mu}_{i-1}^{\boldsymbol{\xi}} + \alpha_{i}^{\boldsymbol{\xi}} \boldsymbol{y}_{i}^{\boldsymbol{\xi}}}{\rho_{i-1}^{\boldsymbol{\xi}} + \alpha_{i}^{\boldsymbol{\xi}}}, \rho_{i-1}^{\boldsymbol{\xi}} + \alpha_{i}^{\boldsymbol{\xi}}\right\}. \tag{9}$$

Leveraging the additive property of Gaussian distributions, given $\alpha_i^{\xi} = \sigma_T^{-2i/T} (1 - \sigma_T^{2/T})$, and σ_T is a predefined small variance, the Bayesian flow distribution can be analytically obtained as

$$p_F^{\boldsymbol{\xi}}(\boldsymbol{\mu}_i^{\boldsymbol{\xi}}|\boldsymbol{\xi}, i) = \mathcal{N}\left((1 - \sigma_T^{2i/T})\boldsymbol{\xi}, \sigma_T^{2i/T}(1 - \sigma_T^{2i/T})\boldsymbol{I}\right), \tag{10}$$

with $\rho_i^{\xi} = \sigma_T^{-2i/T}$. Since both the sender and receiver distributions are Gaussian with identical variance, their KL divergence simplifies to a mean-squared error form as

$$\mathcal{L}_{\boldsymbol{\xi}} = \mathbb{E}_{i \sim U(1,T), \boldsymbol{\mu}_{i-1}^{\boldsymbol{\xi}} \sim p_F^{\boldsymbol{\xi}}(\boldsymbol{\mu}_{i-1}^{\boldsymbol{\xi}} | \boldsymbol{\xi}, i-1)} \left[\frac{\alpha_i^{\boldsymbol{\xi}} T}{2} \| \boldsymbol{\xi} - \phi_{\boldsymbol{\xi}}(\boldsymbol{\theta}_{i-1}^{\mathcal{M}}, i) \|_2^2 \right]. \tag{11}$$

Fractional Coordinates on Torus $\mathbb{T}^{3\times K}$ As established by Wu et al. [28], circular distributions are appropriate for modeling the periodicity of fractional coordinates, and one suitable choice is the von Mises distribution defined as $p_v(x;m,\kappa) \propto \exp(\kappa\cos(2\pi(x-m)))$ with $x,m\in[0,1)$ denote the random variable and mean direction, and $\kappa\geq 0$ controls the concentration. Parameterized as $\pmb{\theta}_i^F=\{\pmb{m}_i^F,\pmb{\kappa}_i^F\}$, the input distribution is initialized by $\pmb{m}_0^F\sim U(0,1),\pmb{\kappa}_0^F=\pmb{0}$. We can further describe the parameter in the complex form with $\pmb{c}_i^F=\pmb{\kappa}_i^Fe^{2\pi\pmb{m}_0^Fi}$ where \pmb{i} is the imaginary unit, implying that $\pmb{\kappa}_i^F,\pmb{m}_i^F$ depict the modulus and argument of \pmb{c}_i^F . Acquiring the sample $\pmb{y}_i^F\sim p_v(p_v(F,\alpha_i^F))$ with pre-defined α_i^F , the Bayesian update function at step \pmb{i} is defined as

$$\boldsymbol{c}_{i}^{F} = \boldsymbol{c}_{i-1}^{F} + \alpha_{i}^{F} e^{2\pi y_{i}^{F} i}, \tag{12}$$

resulting in the accumulated Bayesian flow distribution as

$$p_F^{\mathbf{F}}(\mathbf{c}_i^{\mathbf{F}}|\mathbf{F}, [\alpha_j^{\mathbf{F}}]_{j=1}^i) = \mathbb{E}_{p_v(\mathbf{y}_1^{\mathbf{F}}|\mathbf{F}, \alpha_1^{\mathbf{F}}) \cdots p_v(\mathbf{y}_i^{\mathbf{F}}|\mathbf{F}, \alpha_i^{\mathbf{F}})} \delta\left(\mathbf{c}_i^{\mathbf{F}} - \sum_{j=1}^i \alpha_j^{\mathbf{F}} e^{2\pi \mathbf{y}_j^{\mathbf{F}} i}\right). \tag{13}$$

The training objective is the KL-divergence between von Mises distributions as

$$\mathcal{L}_{F} = \mathbb{E}_{i \sim U(1,T), \boldsymbol{c}_{i-1}^{F} \sim p_{F}^{F}(\boldsymbol{c}_{i}^{F}|F, [\alpha_{j}^{F}]_{j=1}^{i-1})} \left[\alpha_{i}^{F} T \frac{I_{0}(\alpha_{i}^{F})}{I_{1}(\alpha_{i}^{F})} \left(1 - \cos \left(2\pi (\boldsymbol{F} - \phi_{F}(\boldsymbol{\theta}_{i-1}^{\mathcal{M}}, i)) \right) \right) \right], \quad (14)$$

where $I_0(\cdot)$, $I_1(\cdot)$ are the modified Bessel functions.

4.2 Bingham BFN for Quaternion Generation

In this section, we detail the design of key components for implementing a BFN in the quaternion parameter space θ^Q . For simplicity, we omit the superscript Q and focus on a single quaternion $q \in \mathcal{S}$; the full design for $Q = [q_i]_{i=1}^K$ follows naturally by extension.

Bingham Distribution. To model variation in 3D orientations, one often requires a probability distribution defined over the space of rotations. Since each 3D rotation can be represented by a unit quaternion on S^3 , it is natural to consider distributions supported on this manifold. However, one key point according to Eq. (1) is that the mapping from unit quaternions to rotation matrices is two-to-one, i.e. R(q) = R(-q). Hence, any valid distribution must respect this antipodal symmetry. Fortunately, a directional distribution on the hypersphere called *Bingham distribution* serves precisely this role. Mathematically, the Probability Density Function (PDF) of the Bingham distribution takes the form

$$p_B(\boldsymbol{q}; \boldsymbol{M}, \boldsymbol{\Lambda}) = \frac{1}{Z(\boldsymbol{\Lambda})} \exp(\boldsymbol{q}^{\top} \boldsymbol{M}^{\top} \boldsymbol{\Lambda} \boldsymbol{M} \boldsymbol{q}), \tag{15}$$

where $Z(\cdot)$ is the normalization term, and $M^{\top}\Lambda M$ is the eigendecomposition of a symmetric matrix with orthogonal $M \in \mathbb{R}^{4\times 4}$ as the eigenvectors, and diagonal Λ as the eigenvalues. Based on Eq. (15), one can directly derive the following properties of the Bingham distribution:

Proposition 1. The PDF of the Bingham distribution maintains the antipodal symmetry, i.e., $p_B(\mathbf{q}; \mathbf{M}, \mathbf{\Lambda}) = p_B(-\mathbf{q}; \mathbf{M}, \mathbf{\Lambda})$.

Proposition 2. When $\Lambda = \mathbf{0}$, the PDF is reduced to a uniform distribution, i.e., $p_B(\mathbf{q}; \mathbf{M}, \mathbf{0}) \equiv \frac{1}{2\pi^2}$. **Proposition 3.** Due to the normalization constraint on the hypersphere, any bias applied on the eigenvalues would not affect the distribution, i.e., $p_B(\mathbf{q}; \mathbf{M}, \Lambda + k\mathbf{I}) = p_B(\mathbf{q}; \mathbf{M}, \Lambda), \forall k \in \mathbb{R}$.

According to proposition 3, Λ is typically reduced to $\Lambda = \operatorname{diag}(\lambda) = \operatorname{diag}(0, \lambda_1, \lambda_2, \lambda_3)$ with $\lambda_3 \leq \lambda_2 \leq \lambda_1 \leq 0$. Hence, a Bingham distribution can also be parameterized by $\boldsymbol{\theta} = \{\boldsymbol{M}, \boldsymbol{\lambda}\}$. By proposition 2, we initialize the parameters using the uniform prior $\boldsymbol{\theta}_0 = \{\boldsymbol{M}_0, \boldsymbol{0}\}$, where \boldsymbol{M}_0 is an arbitrary orthogonal matrix³.

Bayesian Update of Bingham Distribution. In Bayesian statistics, a *conjugate prior* refers to a prior distribution that, when combined with a specific form of *likelihood function*, yields a posterior

³Theoretically, when the Bingham concentration matrix is initialized as $\Lambda = 0$, the matrix $A_0 = M_0^\top \Lambda M$ becomes a zero matrix regardless of the choice of orthogonal matrix M, resulting in a uniform distribution over the unit sphere. In practice, we initialize M by performing torch.linalg.eigh on the zero matrix, which yields the identity matrix $M_0 = I$.

distribution of the same functional form as the prior. This property is greatly essential for the Bayesian update process defined by Eq. (2-3), where the input distribution and sender distribution act as the conjugate prior and likelihood, respectively. Notably, the likelihood need not share the same form as the prior. For the Bingham distribution, it admits a particularly convenient conjugate relationship when the likelihood is modeled using the *Watson distribution*, which yields the PDF as

$$p_W(\mathbf{q}; \boldsymbol{\mu}, \kappa) = C_d(\kappa) \exp\left(\kappa (\boldsymbol{\mu}^{\top} \mathbf{q})^2\right). \tag{16}$$

Here $C_d(\cdot)$ is the normalization term, $\mu \in \mathcal{S}^3$ is the mean direction and $\kappa \geq 0$ determines the concentration. The squared inner product ensures antipodal symmetry, consistent with the Bingham distribution. Given $\theta_{i-1} = \{M_{i-1}, \lambda_{i-1}\}$ at step i and an observation y_i from the sender distribution following $p_W(y_i; q, \alpha_i)$, the posterior is updated as

$$p(\boldsymbol{q}|\boldsymbol{\theta}_{i-1}, \boldsymbol{y}_i, \alpha_i) \propto p_B(\boldsymbol{q}; \boldsymbol{M}_{i-1}, \operatorname{diag}(\boldsymbol{\lambda}_{i-1})) \cdot p_W(\boldsymbol{y}_i; \boldsymbol{q}, \alpha_i)$$
 (17)

$$\propto \exp\left(\boldsymbol{q}^{\top}\boldsymbol{M}_{i-1}^{\top}\operatorname{diag}(\boldsymbol{\lambda}_{i-1})\boldsymbol{M}_{i-1}\boldsymbol{q} + \alpha_{i}(\boldsymbol{y}_{i}^{\top}\boldsymbol{q})^{2}\right)$$
 (18)

$$= \exp\left(\boldsymbol{q}^{\top} (\boldsymbol{M}_{i-1}^{\top} \operatorname{diag}(\boldsymbol{\lambda}_{i-1}) \boldsymbol{M}_{i-1} + \alpha_{i} \boldsymbol{y}_{i} \boldsymbol{y}_{i}^{\top}) \boldsymbol{q}\right)$$
(19)

As Eq. (19) retains the form of a Bingham distribution, the Bayesian update function $\theta_i = \{M_i, \lambda_i\} = h(\theta_{i-1}, y_i, \alpha_i)$ is thus defined as

$$M_i$$
, diag (λ_i') = EigenDecomposition $(M_{i-1}^{\top} \text{diag}(\lambda_{i-1}) M_{i-1} + \alpha_i y_i y_i^{\top})$, (20)

$$\lambda_i = \lambda_i' - \max(\lambda_i'). \tag{21}$$

The distribution of the updated parameters is finally acquired as

$$p_U(\boldsymbol{\theta}_i|\boldsymbol{\theta}_{i-1},\boldsymbol{q};\alpha_i) = \mathbb{E}_{\boldsymbol{y}_i \sim p_W(\boldsymbol{y}_i;\boldsymbol{q},\alpha_i)} \delta(\boldsymbol{\theta}_i - h(\boldsymbol{\theta}_{i-1},\boldsymbol{y}_i,\alpha_i)). \tag{22}$$

Efficient Sampling for Bayesian Flow Distribution. For BFNs applied to continuous spaces such as Gaussian distributions over \mathbb{R}^n , a key additive property holds as

$$p_{U}(\boldsymbol{\theta}''|\boldsymbol{\theta},\boldsymbol{q};\alpha_{a}+\alpha_{b}) = \mathbb{E}_{p_{U}(\boldsymbol{\theta}'|\boldsymbol{\theta},\boldsymbol{q};\alpha_{a})} p_{U}(\boldsymbol{\theta}''|\boldsymbol{\theta}',\boldsymbol{q};\alpha_{b}), \tag{23}$$

which allows the cumulative accuracy at step i to be expressed as $\rho_i = \rho_0 + \sum_{j=1}^i \alpha_i$. However, the property does not extend to the Bayesian updates in Eq. (22), as the eigenvalues involved in the Bingham updates are not additive. To address this, we follow the strategy similar to Eq. (13) on the von Mises distribution, which also suffers from non-additive property. We simulate the posterior θ_i by accumulating the outer products in the exponential term. Given $A_i = M_i^{\top} \operatorname{diag}(\lambda_i') M_i$, we have

$$p_F(\boldsymbol{A}_i|\boldsymbol{q}; [\alpha_j]_{j=1}^i) = \mathbb{E}_{p_W(\boldsymbol{y}_1|\boldsymbol{q},\alpha_1)\cdots p_W(\boldsymbol{y}_i|\boldsymbol{q},\alpha_i)}\delta\left(\boldsymbol{A}_i - \sum_{j=1}^i \alpha_j \boldsymbol{y}_j \boldsymbol{y}_j^\top\right). \tag{24}$$

The samples $[y_j]_{j=1}^i$ can be drawn independently and in parallel via rejection sampling from the angular central Gaussian (ACG) distribution, as described in Appendix C.2. Finally, the schedule of accuracy $[\alpha_i]_{i=1}^T$ is computed numerically to approximate a linearly decreasing entropy, with further implementation details provided in Appendix C.3.

Training Objective. The training objective is computed between the predicted and target Watson distributions, which is defined as

$$\mathcal{L}_{\boldsymbol{q}} = \mathbb{E}_{i \sim U(1,T), \boldsymbol{A}_{i} \sim p_{F}(\boldsymbol{A}_{i-1}|\boldsymbol{q}, [\alpha_{j}]_{j=1}^{i-1})} \left[A_{d}(\alpha_{i}) T \left(1 - (\boldsymbol{q}^{\top} \phi_{\boldsymbol{q}}(\boldsymbol{\theta}_{i-1}^{\mathcal{M}}, i))^{2} \right) \right], \tag{25}$$

where $A_d(\cdot)$ is the second moment of the Watson distribution. Note that Eq. (25) measures the square of the cosine similarity between the prediction $\phi_q(\theta_{i-1}^{\mathcal{M}}, i)$ and the ground truth q, maintaining the antipodal symmetry.

4.3 Training Scheme

The entire training objective aggregates the losses defined on each manifold, resulting in the following composite loss function:

$$\mathcal{L}_{SP} = \gamma_{\xi} \mathcal{L}_{\xi} + \gamma_{F} \mathcal{L}_{F} + \gamma_{q} \mathcal{L}_{q}, \tag{26}$$

Table 1: **Structure prediction accuracy.** Results for MOF structure prediction. - indicates no match. stol represents the site tolerance for matching criteria. Baseline results are from Kim et al. [13].

	# of samples	stol =	= 0.5	stol =	= 1.0
	" or sampres	MR (%) ↑	RMSE ↓	MR (%) ↑	RMSE ↓
RS [30]	20	0.00	-	0.00	-
EA [30]	20	0.00	-	0.00	-
DiffCSP [10]	1	0.09	0.3961	23.12	0.8294
	5	0.34	0.3848	38.94	0.7937
MOFFLow [13]	1	31.69	0.2820	87.46	0.5183
MOFFLOW [13]	5	44.75	0.2694	100.0	0.4645
MOF-BFN	1	35.27	0.2735	92.99	0.5000
MIOT-DEN	5	53.51	0.2498	98.37	0.4117

where each λ balances the contribution of the corresponding component.

Backbone Model for MOF-BFN. The structure prediction backbone contains two main components. The first is the building block encoder \mathcal{E} , which maps the local structures of building blocks into invariant latent vectors. In our implementation, we adopt EGNN [24] as the encoder. The second is the coarse-grained structure predictor adapted from the periodic GNN designed in [10], which takes the timestep i, the joint parameter $\theta_i^{\mathcal{M}}$, and the encoded condition $\mathcal{E}(\mathcal{B})$ as the input. Importantly, it also incorporates the accuracy terms κ_i^F and λ_i , as they indicates the current entropies of the non-additive distributions [28]. The predictor outputs the estimated lattice parameters, quaternions, and fractional translations, which together define the output distributions at each step.

Extension to De Novo Generation. We further extend our method to the de novo generation task, where both the types and arrangements of building blocks are required for generation. To this end, we employ a Gaussian BFN trained on the continuous embedding space learned by the contrastive building block encoder from MOFDiff [5], to determine the identity of each block. The training objective is extended as

$$\mathcal{L}_{DNG} = \gamma_{\xi} \mathcal{L}_{\xi} + \gamma_{F} \mathcal{L}_{F} + \gamma_{q} \mathcal{L}_{q} + \gamma_{\mathcal{B}} \mathcal{L}_{\mathcal{B}}, \tag{27}$$

where $\mathcal{L}_{\mathcal{B}}$ optimizes the generation process on block embedding space and shares a similar form as Eq. (34). More details are referred to Appendix D.

5 Experiments

In this section, we evaluate MOF-BFN across a variety of tasks. In § 5.1, we show that MOF-BFN significantly outperforms existing full-atom and hierarchical approaches in structure prediction accuracy. In § 5.2, we demonstrate that the predicted structures exhibit strong agreement with ground-truth structural properties. In § 5.3, we further extend our method to the de novo generation task, where the identity of each block is also required to be determined. Finally, we provide analyses on the efficiency of the fractional modelling and the BFN-based framework in § 5.4.

5.1 Structure Prediction

Setup We use the BW-DB dataset of 324,426 MOFs from Boyd et al. [1], and decompose each structure into building blocks using the metal-oxo algorithm in MOFid [2], following Fu et al. [5]. As suggested by Kim et al. [13], we remove structures with over 200 blocks and split the remaining data into training, validation, and test sets in an 8:1:1 ratio.

Baselines We compare against three types of baselines: (1) optimization-based methods including Random Search (RS) and Evolutionary Algorithm (EA) from CrySPY [30]; (2) DiffCSP [10], a full-atom generative model without block-level modeling; and (3) MOFFlow [13], a hierarchical generative model using flow matching on block representations.

Evaluation Metrics For each test structure, we generate k candidates and report match rate (MR) and root mean square error (RMSE). MR measures the proportion that at least one of the generated structures matches the ground truth, while RMSE is calculated between the ground truth and the best

matching. Matching is performed using StructureMatcher from pymatgen [22]. We follow Kim et al. [13] and evaluate under two tolerance settings for site, length and angle tolerance criteria: (0.5, 0.3, 10.0) (strict) and (1.0, 0.3, 10.0) (relaxed).

Results Table 1 reports the structure prediction results. As expected, optimization-based methods (RS and EA) completely fail to recover correct structures, achieving 0% match rates, which reflects the inefficiency of atom-level search for complex MOFs. DiffCSP shows slightly better performance but still struggles due to its lack of block-level awareness, confirming the limitations of full-atom generative models for large systems. Compared to these baselines, both MOFFlow and our proposed method, MOF-BFN, achieve significantly higher accuracy. Notably, MOF-BFN consistently outper-

Results Table 1 reports the structure prediction results. As expected, optimization-based methods (RS and EA) completely fail to re-MOFs. Baseline results are from Kim et al. [13].

	MOF-BFN	MOFFlow	DiffCSP
VSA (m ² /cm ³)	232.8	264.5	796.9
GSA (m ² /g)	247.5	331.6	1561.9
$AV (Å^3)$	315.4	530.5	3010.2
UCV (Å ³)	312.0	569.5	3183.4
VF	0.0187	0.0285	0.2167
PLD (Å)	0.9072	1.0616	4.0581
LCD (Å)	0.9257	1.1083	4.5180
DST (g/cm ³)	0.0185	0.0442	0.3711

forms MOFFlow under strict and relaxed matching criteria. Under the more realistic threshold of stol=0.5, MOF-BFN achieves a higher MR (53.51% vs. 44.75%) and lower RMSE (0.2498 vs. 0.2694) when generating 5 samples. Even under the relaxed stol=1.0 setting, MOF-BFN maintains competitive accuracy with a lower RMSE. These results demonstrate that MOF-BFN improves predictive accuracy.

5.2 Geometric Property Evaluation

In this section, we assess whether the predicted MOF structures preserve essential structural properties that are critical for downstream applications such as gas storage and separation. To this end, we evaluate eight commonly used structural descriptors: volumetric surface area (VSA), gravimetric surface area (GSA), accessible volume (AV), unit cell volume (UCV), void fraction (VF), pore limiting diameter (PLD), largest cavity diameter (LCD), and density (DST). For each test case, we generate a single structure and compute its properties using Zeo++ [27]. The RMSE between the predicted and ground-truth property values is then reported in Table 2.

Results Table 2 reveals that MOF-BFN achieves the lowest property prediction error across all evaluated metrics, indicating that the model not only aligns structures accurately but also preserves the spatial characteristics and material properties vital for real-world applications.

5.3 De Novo Generation

For de novo generation, we generate 1,000 MOFs from both MOF-BFN and MOFDiff without any relaxation and evaluate them using two sets of metrics in Table 3. First, we assess connection point matching, where the number of metal and non-metal connection points, identified at the broken bonds between decomposed building blocks, should be equal. MOF-BFN achieves a substantially higher matching rate (0.923 v.s. 0.723), indicating more accurate topological assembly. Second, we apply the MOFChecker tool [8] to the matched structures to evaluate their chemical and structural validity. MOF-BFN consistently outperforms MOFDiff across most criteria and a higher proportion of valid structures passing all checks (0.323 v.s. 0.107). These results demonstrate that MOF-BFN is more effective at generating chemically plausible and topologically consistent MOF structures. More details are provided in Appendix D.

Table 3: **Generation validity.** Validation rates of 1,000 generated samples.

Validity Criteria	MOF-BFN	MOFDiff					
Connection Point Ma	Connection Point Matching						
matched ↑	0.923	0.723					
MOFChecker							
has_carbon ↑	1.000	1.000					
has_hydrogen ↑	0.975	0.989					
has_atomic_overlaps ↓	0.115	0.259					
has_overcoordinated_c ↓	0.193	0.365					
has_overcoordinated_n ↓	0.049	0.047					
has_overcoordinated_h ↓	0.180	0.342					
has_undercoordinated_c ↓	0.182	0.248					
has_undercoordinated_n ↓	0.154	0.126					
has_undercoordinated_rare_earth ↓	0.000	0.000					
has_metal ↑	1.000	1.000					
has_lone_molecule ↓	0.186	0.437					
has_high_charges ↓	0.069	0.144					
has_suspicious_terminal_oxo ↓	0.000	0.001					
has_undercoordinated_alkali_alkaline ↓	0.027	0.001					
has_geometrically_exposed_metal ↓	0.304	0.350					
all_checks↑	0.350	0.148					
Total							
total_valid ↑	0.323	0.107					

5.4 Analyses

Our method improves upon the strong baseline MOFFlow in two key aspects: (1) we replace Cartesian coordinates with fractional coordinates to better capture the inherent periodicity of MOFs; and (2) we redesign the generative modeling paradigm using BFNs in place of the original flow matching approach. To evaluate the individual contribution of each modification, we construct an intermediate model named MOF-FracFlow. This variant also applies the flow matching framework but operates in the fractional coordinate space, using the same periodic backbone architecture as MOF-BFN. A comparison of these models is presented in Figure 3, highlighting two key observations. First, MOF-FracFlow outperforms the original MOFFlow, particularly in terms of the match rate with 5 samples, underscoring the importance of incorporating periodicity. Second, MOF-BFN consistently surpasses MOF-FracFlow, demonstrating that after introducing an additional generative target on the SO(3) manifold, BFNs continue to outperform flow matching counterparts, consistent with prior findings [25, 28]. Additional analyses about orientation representations and hyperparameters are provided in Appendix F.

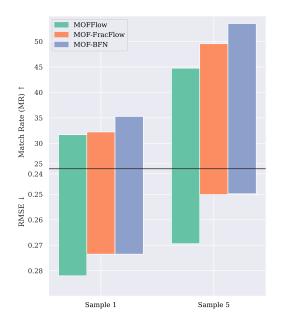


Figure 3: Comparison among different variants. We include MOF-FracFlow as an intermediate model using fractional coordinates system and flow matching for generation.

6 Conclusion

In this work, we present MOF-BFN, a hierarchical generative framework for Metal-Organic Frameworks that integrates Bayesian Flow Networks with fractional coordinates and quaternion-based orientation modeling. By operating in the fractional coordinate space and modeling orientation using Bingham distributions over unit quaternions, MOF-BFN jointly captures the periodicity, positions, and orientations of MOF building blocks in a unified generative process. Extensive experiments demonstrate that MOF-BFN achieves state-of-the-art accuracy in structure prediction, property evaluation, and de novo generation, highlighting the effectiveness of MOF-BFN for MOF design.

Acknowledgments

This work is jointly supported by the National Science and Technology Major Project (No.2022ZD0117502), the National Key R&D Program of China (No.2022ZD0160502), the National Natural Science Foundation of China (No. 61925601, No. 62376276, No. 62276152), and Beijing Nova Program (20230484278).

References

- [1] P. G. Boyd, Y. Lee, and B. Smit. Computational development of the nanoporous materials genome. *Nature Reviews Materials*, 2(8):1–15, 2017.
- [2] B. J. Bucior, A. S. Rosen, M. Haranczyk, Z. Yao, M. E. Ziebel, O. K. Farha, J. T. Hupp, J. I. Siepmann, A. Aspuru-Guzik, and R. Q. Snurr. Identification schemes for metal–organic frameworks to enable rapid search and cheminformatics analysis. *Crystal Growth & Design*, 19 (11):6682–6697, 2019.
- [3] Y. Cheng, S. J. Datta, S. Zhou, J. Jia, O. Shekhah, and M. Eddaoudi. Advances in metal–organic framework-based membranes. *Chemical Society Reviews*, 51(19):8300–8350, 2022.

- [4] K. DAS, S. Khastagir, P. Goyal, S.-C. Lee, S. Bhattacharjee, and N. Ganguly. Periodic materials generation using text-guided joint diffusion model. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [5] X. Fu, T. Xie, A. S. Rosen, T. S. Jaakkola, and J. A. Smith. Mofdiff: Coarse-grained diffusion for metal-organic framework design. In *The Twelfth International Conference on Learning Representations*.
- [6] A. Graves, R. K. Srivastava, T. Atkinson, and F. Gomez. Bayesian flow networks. arXiv preprint arXiv:2308.07037, 2023.
- [7] N. Gruver, A. Sriram, A. Madotto, A. G. Wilson, C. L. Zitnick, and Z. W. Ulissi. Fine-tuned language models generate stable inorganic materials as text. In *The Twelfth International Conference on Learning Representations*, 2024.
- [8] K. M. Jablonka. mofchecker, June 2023. URL https://github.com/kjappelbaum/mofchecker.
- [9] L. Jiao and H.-L. Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects. *Chinese Journal of Catalysis*, 45:1–5, 2023.
- [10] R. Jiao, W. Huang, P. Lin, J. Han, P. Chen, Y. Lu, and Y. Liu. Crystal structure prediction by joint equivariant diffusion. *Advances in Neural Information Processing Systems*, 36:17464–17497, 2023.
- [11] R. Jiao, W. Huang, Y. Liu, D. Zhao, and Y. Liu. Space group constrained crystal generation. In The Twelfth International Conference on Learning Representations, 2024.
- [12] M. J. Kalmutzki, N. Hanikel, and O. M. Yaghi. Secondary building units as the turning point in the development of the reticular chemistry of mofs. *Science advances*, 4(10):eaat9180, 2018.
- [13] N. Kim, S. Kim, M. Kim, J. Park, and S. Ahn. Mofflow: Flow matching for structure prediction of metal-organic frameworks. arXiv preprint arXiv:2410.17270, 2024.
- [14] H. D. Lawson, S. P. Walton, and C. Chan. Metal–organic frameworks for drug delivery: a design perspective. *ACS applied materials & interfaces*, 13(6):7004–7020, 2021.
- [15] D. Levy, S. S. Panigrahi, S.-O. Kaba, Q. Zhu, K. L. K. Lee, M. Galkin, S. Miret, and S. Ravanbakhsh. Symmcd: Symmetry-preserving crystal generation with diffusion models. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [16] H. Li, K. Wang, Y. Sun, C. T. Lollar, J. Li, and H.-C. Zhou. Recent advances in gas storage and separation using metal–organic frameworks. *Materials Today*, 21(2):108–121, 2018.
- [17] P. Lin, P. Chen, R. Jiao, Q. Mo, C. Jianhuan, W. Huang, Y. Liu, D. Huang, and Y. Lu. Equivariant diffusion for crystal structure prediction. In *Forty-first International Conference on Machine Learning*, 2024.
- [18] R.-B. Lin, S. Xiang, W. Zhou, and B. Chen. Microporous metal-organic framework materials for gas separation. *Chem*, 6(2):337–363, 2020.
- [19] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural Information Processing Systems*, 35:5775–5787, 2022.
- [20] B. K. Miller, R. T. Chen, A. Sriram, and B. M. Wood. Flowmm: Generating materials with riemannian flow matching. In *Forty-first International Conference on Machine Learning*, 2024.
- [21] P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. Maloney, P. A. Wood, S. C. Ward, and D. Fairen-Jimenez. Development of a cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. *Chemistry of Materials*, 29(7): 2618–2625, 2017.

- [22] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. Chevrier, K. A. Persson, and G. Ceder. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. *Computational Materials Science*, 68:314–319, 2013. doi: 10.1016/j.commatsci.2012.10.028.
- [23] Y. Qu, K. Qiu, Y. Song, J. Gong, J. Han, M. Zheng, H. Zhou, and W.-Y. Ma. Molcraft: Structure-based drug design in continuous parameter space. In *Forty-first International Conference on Machine Learning*, 2024.
- [24] V. G. Satorras, E. Hoogeboom, and M. Welling. E (n) equivariant graph neural networks. In International conference on machine learning, pages 9323–9332. PMLR, 2021.
- [25] Y. Song, J. Gong, H. Zhou, M. Zheng, J. Liu, and W.-Y. Ma. Unified generative modeling of 3d molecules with bayesian flow networks. In *The Twelfth International Conference on Learning Representations*, 2023.
- [26] A. Sriram, B. K. Miller, R. T. Chen, and B. M. Wood. Flowllm: Flow matching for material generation with large language models as base distributions. *Advances in Neural Information Processing Systems*, 37:46025–46046, 2024.
- [27] T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. *Microporous and Mesoporous Materials*, 149(1):134–141, 2012.
- [28] H. Wu, Y. Song, J. Gong, Z. Cao, Y. Ouyang, J. Zhang, H. Zhou, W.-Y. Ma, and J. Liu. A periodic bayesian flow for material generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=Lz0XW99tE0.
- [29] T. Xie, X. Fu, O.-E. Ganea, R. Barzilay, and T. S. Jaakkola. Crystal diffusion variational autoencoder for periodic material generation. In *International Conference on Learning Repre*sentations, 2021.
- [30] T. Yamashita, S. Kanehira, N. Sato, H. Kino, K. Terayama, H. Sawahata, T. Sato, F. Utsuno, K. Tsuda, T. Miyake, et al. Cryspy: a crystal structure prediction tool accelerated by machine learning. *Science and Technology of Advanced Materials: Methods*, 1(1):87–97, 2021.
- [31] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang. Diffusion models: A comprehensive survey of methods and applications. *ACM Computing Surveys*, 56(4):1–39, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we summarize our contribution as introducing fractional coordinates to capture periodicity, and designing Bingham BFN for orientation generation, which are further detailed and verified in Methods (§ 4) and Experiments (§ 5).

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes].

Justification: We discuss the limitations of the work in Appendix I.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

T die die FFN 1 die

Justification: The derivation are provided in § 4 and Appendix B, C.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes].

Justification: The used datasets and evaluation setups are provided in §5, and we provide more details in Appendix G.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our codes are provided in Appendix K.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The hyperparameters are provided in Appendix G.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Following prior studies, instead of reporting the means and standard deviations across multiple samples, we turns to report the performance gain under different number of samples, as shown in Table 1.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The compute resources are provided in Appendix G.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper definitely follows the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of this paper are discussed in Appendix J.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and tools used in this paper have been properly cited.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Explanations of Key Notations

Table 4: Key notations used in this paper.

Notation	Meaning / Description
θ_0	Prior parameter for initialization of Bayesian Flow Network (BFN)
p_U	Bayesian update for refining parameters iteratively
p_F	Bayesian flow distribution accumulated via updates, used for training
$oldsymbol{L} \in \mathbb{R}^{3 imes 3}$	Lattice matrix
$oldsymbol{\xi} \in \mathbb{R}^6$	Unconstrained lattice parameters, modeled by Gaussian distribution
$egin{aligned} ilde{ heta}_{\xi,i} &= \{\mu_{\xi,i}, ho_{\xi,i}\} \ extbf{\emph{F}} &\in \mathbb{T}^{3 imes K} \end{aligned}$	Parameters (mean, precision) of Gaussian distribution for ξ at step i
$oldsymbol{F} \in \mathbb{T}^{3 imes K}$	Block-level fractional coordinates on torus space, modeled by von Mises distribution
$egin{aligned} & heta_i^F = \{m{m}_i^F, m{\kappa}_i^F\} \ m{c}_i^F = \{m{g}, m{\kappa}_i^F\} \ m{Q} \in (\mathcal{S}^3)^K \ m{q} \in \mathcal{S}^3 \end{aligned}$	Parameters of von Mises distribution for F (mean direction and concentration) at step i
c_i^F	Complex form representing fractional coordinate parameters
$\mathbf{Q} \in (S^3)^K$	Quaternion representation for 3D orientations
$oldsymbol{q} \in \hat{\mathcal{S}}^3$	One single quaternion, modeled by Bingham distribution
$ heta_i^{oldsymbol{q}} = \{oldsymbol{M}_i, oldsymbol{\lambda}_i\}$	Bingham distribution parameters for quaternions with orientation matrix M_i and normalized eigenvalues λ_i at step i
Ĺ	Loss functions
γ	Loss weights

B Proofs of Propositions

In this section, we prove the properties listed in § 4.2.

The PDF of the Bingham distribution is rewritten as

$$p_B(\boldsymbol{q}; \boldsymbol{M}, \boldsymbol{\Lambda}) = \frac{1}{Z(\boldsymbol{\Lambda})} \exp(\boldsymbol{q}^{\top} \boldsymbol{M}^{\top} \boldsymbol{\Lambda} \boldsymbol{M} \boldsymbol{q}).$$

Proposition 1. The PDF of the Bingham distribution maintains the antipodal symmetry, i.e., $p_B(\mathbf{q}; \mathbf{M}, \mathbf{\Lambda}) = p_B(-\mathbf{q}; \mathbf{M}, \mathbf{\Lambda})$.

Proof.

$$p_B(-\boldsymbol{q}; \boldsymbol{M}, \boldsymbol{\Lambda}) = \frac{1}{Z(\boldsymbol{\Lambda})} \exp\left((-\boldsymbol{q}^\top) \boldsymbol{M}^\top \boldsymbol{\Lambda} \boldsymbol{M}(-\boldsymbol{q})\right)$$
$$= \frac{1}{Z(\boldsymbol{\Lambda})} \exp\left(\boldsymbol{q}^\top \boldsymbol{M}^\top \boldsymbol{\Lambda} \boldsymbol{M} \boldsymbol{q}\right)$$
$$= p_B(\boldsymbol{q}; \boldsymbol{M}, \boldsymbol{\Lambda})$$

Proposition 2. When $\Lambda = 0$, the PDF is reduced to a uniform distribution, i.e., $p_B(q; M, 0) \equiv \frac{1}{2\pi^2}$.

Proof. When $\Lambda = \mathbf{0}$, the exponent becomes zero for all $q \in \mathcal{S}^3$:

$$p_B(\boldsymbol{q};\boldsymbol{M},\boldsymbol{0}) = \frac{1}{Z(\boldsymbol{0})} \exp\left(\boldsymbol{q}^\top \boldsymbol{M}^\top \boldsymbol{0} \boldsymbol{M} \boldsymbol{q}\right) = \frac{1}{Z(\boldsymbol{0})}.$$

That is, $p_B(q; M, \mathbf{0})$ is constant over S^3 , indicating it is a uniform distribution. Since the surface area of S^3 is $2\pi^2$, the normalized uniform density is $p_B(q; M, \mathbf{0}) \equiv \frac{1}{2\pi^2}$.

Proposition 3. Due to the normalization constraint on the hypersphere, any bias applied on the eigenvalues would not affect the distribution, i.e., $p_B(\mathbf{q}; \mathbf{M}, \mathbf{\Lambda} + k\mathbf{I}) = p_B(\mathbf{q}; \mathbf{M}, \mathbf{\Lambda}), \forall k \in \mathbb{R}$.

Proof.

$$p_B(\mathbf{q}; \mathbf{M}, \mathbf{\Lambda} + k\mathbf{I}) = \frac{1}{Z(\mathbf{\Lambda} + k\mathbf{I})} \exp\left(\mathbf{q}^{\top} \mathbf{M}^{\top} (\mathbf{\Lambda} + k\mathbf{I}) \mathbf{M} \mathbf{q}\right)$$

$$\propto \exp\left(\mathbf{q}^{\top} \mathbf{M}^{\top} (\mathbf{\Lambda} + k\mathbf{I}) \mathbf{M} \mathbf{q}\right)$$

$$= \exp\left(\mathbf{q}^{\top} \mathbf{M}^{\top} \mathbf{\Lambda} \mathbf{M} \mathbf{q} + k \mathbf{q}^{\top} \mathbf{M}^{\top} \mathbf{M} \mathbf{q}\right)$$

$$= e^k \exp\left(\mathbf{q}^{\top} \mathbf{M}^{\top} \mathbf{\Lambda} \mathbf{M} \mathbf{q}\right)$$

$$\propto \exp\left(\mathbf{q}^{\top} \mathbf{M}^{\top} \mathbf{\Lambda} \mathbf{M} \mathbf{q}\right).$$

Given the normalization constant $Z(\Lambda)$, we have $p_B(q; M, \Lambda + kI) = \frac{1}{Z(\Lambda)} \exp \left(q^\top M^\top \Lambda M q \right) = p_B(q; M, \Lambda)$.

C Implementation Details for MOF-BFN

C.1 Determining Local Geometries for Building Blocks

To determine the orientations of building blocks, we should first determine a reference frame for each block. A common-used solution is Principle Component Analysis (PCA) [4]. Given a building block $\mathcal{C}_j = (\boldsymbol{A}_j, \boldsymbol{X}_j)$, where $\boldsymbol{A}_j = [\boldsymbol{a}_r]_{r=1}^{N_j} \in \mathbb{R}^{h \times N_j}$, $\boldsymbol{X}_j = [\boldsymbol{x}_r]_{r=1}^{N_j} \in \mathbb{R}^{3 \times N_j}$ denote the atom types and coordinates within the block. The consistent local structure $\dot{\boldsymbol{X}}_j$ is defined as

$$\dot{X}_j = \tilde{R}\bar{X}_j,\tag{28}$$

where $\bar{X}_j = [\bar{x}_r]_{r=1}^{N_j} = [x_r - \frac{1}{N_j} \sum_{r=1}^{N_j} x_r]_{r=1}^{N_j}$ is the centered coordinates, and $\tilde{R} = c \odot R$. $R = [e_1, e_2, e_3]$ is the eigenvector matrix of $\bar{X}_j \bar{X}_j^{\mathsf{T}}$, and the signs $c = [c_1, c_2, c_3]$ is determined by

$$c_i = \begin{cases} +1, \mathbf{e}_i^{\top} \mathbf{v}_j \ge 0, \\ -1, \mathbf{e}_i^{\top} \mathbf{v}_j < 0, \end{cases}$$
 (29)

with a vector v_j determining the direction of the building block. Following [6], the vector is defined as $v_j = \arg\min_{\bar{x}_r, \|\bar{x}_r\| \neq 0} \|\bar{x}_r\|$.

C.2 Rejection Sampling for Bingham Distribution

To sample from the Bingham distribution, we adopt a rejection sampling strategy using the Angular Central Gaussian (ACG) distribution as the proposal [5]. Given a multivariate normal distribution $\boldsymbol{u} \sim \mathcal{N}(0, \boldsymbol{\Sigma})$, the normalized direction $\boldsymbol{q} = \boldsymbol{q}/\|\boldsymbol{q}\|$ follows an ACG distribution, whose density is $p_{\text{ACG}}(\boldsymbol{q}) \propto (\boldsymbol{q}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{q})^{-d/2}$, where d is the dimension of the hypersphere. To perform rejection sampling, we choose $\boldsymbol{\Sigma}^{-1} = \boldsymbol{I} - 2\boldsymbol{\Lambda}$ such that the Bingham distribution is upper bounded by a scaled ACG distribution: $p_B(\boldsymbol{q}) \leq A' \cdot p_{\text{ACG}}(\boldsymbol{q})$, with A' related to the normalization term of each distribution. This bound leads to the condition

$$\begin{split} \exp(\boldsymbol{q}^{\top}\boldsymbol{\Lambda}\boldsymbol{q}) &\leq A(\boldsymbol{q}^{\top}(\boldsymbol{I}-2\boldsymbol{\Lambda})\boldsymbol{q})^{-d/2} \\ A &\geq \frac{\exp(\boldsymbol{q}^{\top}\boldsymbol{\Lambda}\boldsymbol{q})}{(\boldsymbol{q}^{\top}(\boldsymbol{I}-2\boldsymbol{\Lambda})\boldsymbol{q})^{-d/2}} \\ &= \exp(\boldsymbol{q}^{\top}\boldsymbol{\Lambda}\boldsymbol{q})(1-2\boldsymbol{q}^{\top}\boldsymbol{\Lambda}\boldsymbol{q})^{d/2} \end{split}$$

We define the function $f(t)=\exp(t)(1-2t)^{d/2}$ and maximize it over $t\in\mathbb{R}$ to obtain the tightest possible rejection bound. The maximum occurs at $t=\frac{1-d}{2}$, resulting in an optimal rejection constant $A_{\min}=\exp(\frac{1-d}{2})d^{d/2}$. Once a sample ${\boldsymbol q}$ is accepted, we apply a linear transformation ${\boldsymbol q}'={\boldsymbol M}{\boldsymbol q}$ if the Bingham distribution has eigendecomposition ${\boldsymbol M}{\boldsymbol \Lambda}{\boldsymbol M}^{\top}$. This yields a sample from the desired Bingham distribution.

C.3 Accuracy Scheduling for Bingham BFN

As the eigenvalue matrix Λ is diagonal, we denote the normalization term $Z(\Lambda)$ as $Z(\lambda)$ in this subsection. To determine a suitable value of α_i , we consider the entropy of the Bingham distribution, which takes the form

$$H_i = H(\lambda_i) = \log Z(\lambda_i) - \lambda_i^{\top} \nabla \log Z(\lambda_i),$$

Assuming that $\lambda_i \approx [0, -\beta_i, -\beta_i, -\beta_i]$, we can approximate the entropy as a function of a single parameter β_i . This assumption is an approximation that enforces isotropy around the principal axis, but it is effective in practice for constructing a simple and stable entropy scheduler. Let $\beta_0 = 0$ and β_T sufficiently large, we linearly interpolate the entropy as $H_i = (1 - \frac{i}{T})H_0 + \frac{i}{T}H_T$, and numerically

solve for each intermediate value β_i . Consider the sender distribution $y_i \sim p_W([1, 0, 0, 0], \alpha_i)$, its second moment is given by

$$\mathbb{E}[\boldsymbol{y}_i\boldsymbol{y}_i^\top] = \operatorname{diag}\Big(\frac{\nabla Z(0,-\alpha_i,-\alpha_i,-\alpha_i)}{Z(0,-\alpha_i,-\alpha_i,-\alpha_i)} + \Big(1 - \sum \frac{\nabla Z(0,-\alpha_i,-\alpha_i,-\alpha_i)}{Z(0,-\alpha_i,-\alpha_i,-\alpha_i)}\Big)[1,0,0,0]\Big).$$

From this, the expected change in β is

$$\mathbb{E}[\beta_i - \beta_{i-1}] = \alpha_i (\mathbb{E}[\boldsymbol{y}_i \boldsymbol{y}_i^{\top}]_0 - \mathbb{E}[\boldsymbol{y}_i \boldsymbol{y}_i^{\top}]_1)$$
$$= \alpha_i \Big(1 - 4 \frac{\nabla Z(0, -\alpha_i, -\alpha_i, -\alpha_i)_1}{Z(0, -\alpha_i, -\alpha_i, -\alpha_i)} \Big),$$

where the subscripts indicate the value at the corresponding indices. And we can numerically solve for α_i given β_i . Such scheduler gradually sharpens the Bingham distribution, increasing its concentration around the target direction, ensuring that the model starts with a high-entropy prior and becomes progressively confident as step increasing.

D Extension to De Novo Generation

D.1 Implementation Details

The utilized MOF datasets contains millions of building block conformations, making a simple one-hot encoding for building blocks sparse and computationally inefficient. To obtain compact and continuous representations, a contrastive learning framework is employed in MOFDiff [3]. Each building block is encoded into a latent vector using a SE(3)-equivariant message passing neural network, specifically GemNet-OC.

Let \mathcal{G} denote the set of all building blocks obtained from training MOFs. For each building block $\mathcal{C} \in \mathcal{G}$, the encoder network f_{θ} maps its local structure to a continuous embedding $\mathbf{z}_{\mathcal{C}} = f_{\theta}(\mathcal{C}) \in \mathbb{R}^d$, with latent dimension d = 32 in MOFDiff.

To ensure that the learned embeddings reflect chemical similarity, contrastive learning is performed using positive and negative pairs of building blocks. A positive pair $(\mathcal{C}, \mathcal{C}^+)$ consists of two blocks sharing the same ECFP4 fingerprint, while a negative pair $(\mathcal{C}, \mathcal{C}^-)$ indicates different block identities.

The contrastive learning objective is based on the following loss:

$$\mathcal{L}_{\text{contrast}} = -\sum_{i \in \mathcal{S}} \log \frac{\sum_{j \in \mathcal{S}+} \exp\left(\sin(\mathbf{z}_i, \mathbf{z}_j)/\tau\right)}{\sum_{j \in \mathcal{S}} \exp\left(\sin(\mathbf{z}_i, \mathbf{z}_j)/\tau\right)},$$
(30)

where S, S+ denote the batch and the positive subset of the batch, $\tau > 0$ is a temperature hyperparameter, and $sim(\cdot, \cdot)$ denotes the cosine similarity:

$$\operatorname{sim}(\mathbf{z}_1, \mathbf{z}_2) = \frac{\mathbf{z}_1^{\top} \mathbf{z}_2}{\|\mathbf{z}_1\| \|\mathbf{z}_2\|},\tag{31}$$

While the continuous encoding space enables efficient retrieval via KD-Trees, we empirically observe that the distribution of embeddings deviates significantly from a normal distribution, which poses challenges for training a BFN. To address this, we normalize the representations as

$$ar{oldsymbol{z}}_i = rac{oldsymbol{z}_i - ext{mean}_{j \in \mathcal{G}}(oldsymbol{z}_j)}{ ext{std}_{j \in \mathcal{G}}(oldsymbol{z}_j)}.$$

Similar to the BFN for lattice parameters, given the block embeddings $\bar{Z} = [\bar{z}_i]_{i=1}^K$ of a structure, the input distribution is given by $\mathcal{N}(\bar{Z}; \boldsymbol{\mu}_i^{\mathcal{B}}, (\rho_i^{\mathcal{B}})^{-1}\boldsymbol{I})$ parameterized by $\boldsymbol{\theta}_i^{\mathcal{B}} = \{\boldsymbol{\mu}_i^{\mathcal{B}}, \rho_i^{\mathcal{B}}\}$. and the prior distribution is chosen as $\boldsymbol{\theta}_0^{\mathcal{B}} = \{0, 1\}$. After acquiring a sample from the sender distribution $\boldsymbol{y}_i^{\mathcal{B}} \sim \mathcal{N}(\bar{Z}, (\alpha_i^{\mathcal{B}})^{-1}\boldsymbol{I})$ at step i, the Bayesian update function is

$$\{\boldsymbol{\mu}_{i}^{\mathcal{B}}, \rho_{i}^{\mathcal{B}}\} = \left\{\frac{\rho_{i-1}^{\mathcal{B}} \boldsymbol{\mu}_{i-1}^{\mathcal{B}} + \alpha_{i}^{\mathcal{B}} \boldsymbol{y}_{i}^{\mathcal{B}}}{\rho_{i-1}^{\mathcal{B}} + \alpha_{i}^{\mathcal{B}}}, \rho_{i-1}^{\mathcal{B}} + \alpha_{i}^{\mathcal{B}}\right\}.$$
(32)

The corresponding Bayesian flow distribution is accumulated as

$$p_F^{\mathcal{B}}(\boldsymbol{\mu}_i^{\mathcal{B}}|\bar{\boldsymbol{Z}}, i) = \mathcal{N}\left((1 - \sigma_T^{2i/T})\bar{\boldsymbol{Z}}, \sigma_T^{2i/T}(1 - \sigma_T^{2i/T})\boldsymbol{I}\right). \tag{33}$$

The training objective on the latent space is

$$\mathcal{L}_{\mathcal{B}} = \mathbb{E}_{i \sim U(1,T), \boldsymbol{\mu}_{i-1}^{\mathcal{B}} \sim p_F^{\mathcal{B}}(\boldsymbol{\mu}_{i-1}^{\mathcal{B}} | \bar{\boldsymbol{Z}}, i-1)} \left[\frac{\alpha_i^{\mathcal{B}} T}{2} \| \bar{\boldsymbol{Z}} - \phi_{\mathcal{B}}(\boldsymbol{\theta}_{i-1}^{\mathcal{M}}, i) \|_2^2 \right].$$
(34)

And the entire training objective is extended as

$$\mathcal{L}_{\text{DNG}} = \lambda_{\xi} \mathcal{L}_{\xi} + \lambda_{F} \mathcal{L}_{F} + \lambda_{q} \mathcal{L}_{q} + \lambda_{\mathcal{B}} \mathcal{L}_{\mathcal{B}}.$$

D.2 Results on Relaxed Structures

Similar to MOFDiff, we further relax the generated structures via the UFF force field [7]. We refine both the lattice parameters and the all-atom positions by LAMMPS [9] and LAMMPS Interface [2]. The numbers of valid structures before and after relaxation are reported in Table 5, further demonstrating the generation quality of MOF-BFN.

Table 5: **Generation validity.** Number of structures that passed (\uparrow) or failed (\downarrow) each criterion among 1,000 generated candidates.

	Before Re	elaxation	After Relaxation	
Validity Criteria	MOF-BFN	MOFDiff	MOF-BFN	MOFDiff
Connec	tion Point Mate	ching		
matched ↑	923	723	923	723
U.	FF Relaxation			
relaxed ↑	-	-	849	662
I.	10FChecker			
has_carbon ↑	923	723	849	662
has_hydrogen ↑	900	715	827	654
has_atomic_overlaps ↓	106	187	35	136
has_overcoordinated_c ↓	178	264	8	17
has_overcoordinated_n \	45	34	0	0
has_overcoordinated_h \	166	247	20	21
has_undercoordinated_c ↓	168	179	144	194
has_undercoordinated_n ↓	142	91	141	133
has_undercoordinated_rare_earth ↓	0	0	0	0
has_metal ↑	923	723	849	662
has_lone_molecule ↓	172	316	36	60
has_high_charges \	64	104	5	13
has_suspicious_terminal_oxo ↓	0	1	0	2
has_undercoordinated_alkali_alkaline \	25	1	0	0
has_geometrically_exposed_metal \	281	253	8	24
	Total			
total_valid ↑	323	107	545	317

D.3 Novelty and Uniqueness

Evaluating novelty and uniqueness is also critical in de novo generation. To address this, we additionally conduct an additional analysis using MOFid, a SMILES-style descriptor that captures both the building block identities and the topology of MOF structures. Specifically, we define novelty as the proportion of generated structures whose MOFid does not appear in the training set, and uniqueness as the proportion of generated structures with MOFids that are distinct from all other generated samples. To ensure that novelty is meaningful, we further define validity as structures that pass LAMMPS relaxation, satisfy all MOFChecker criteria, and are successfully processed by

MOFid. Table 6 summarizes the results. These results demonstrate that MOF-BFN attains a higher overall V.N.U. rate. Notably, MOFDiff exhibits a comparatively higher novelty and uniqueness ratio among valid samples, indicating a stronger tendency to generate structures distinct from the training distribution. However, this advantage is offset by a lower validity, as a substantial portion of the generated candidates fail to satisfy basic structural or physical constraints. It is therefore important to contextualize novelty within the scope of validity, since novel structures lacking physical plausibility are unlikely to be of practical significance for downstream applications. By contrast, MOF-BFN yields a substantially larger number of valid structures while preserving a considerable degree of novelty and uniqueness. Consequently, it achieves the highest proportion of valid, novel, and unique (V.N.U.) samples. This highlights a more balanced trade-off between structural diversity and physical realism, which is essential for practical applications in MOF design.

Table 6: **Generation VNU rates.** Validity, Novelty and Uniqueness of 1,000 generated samples based on MOFid.

Model	Valid w/o MOFid	Valid w/ MOFid	Valid & Novel	Valid & Novel & Unique
MOFDiff	323	284	281	281
MOF-BFN	545	450	424	407

D.4 Geometric Property Evaluation

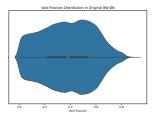
We further evaluate the generated samples in terms of the Wasserstein distances against the training set on geometric properties listed in Table 2. As shown in Table 7, the results indicate that the property distributions of MOF-BFN is closer to the training data compared to MOFDiff.

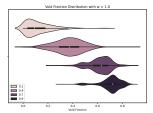
Table 7: **Geometric property evaluation.** Wasserstein distances computed between the training set and generated MOFs.

	$VSA (m^2/cm^3)$	GSA (m ² /g)	AV (\mathring{A}^3)	$UCV(\mathring{A}^3)$	VF	PLD (Å)	LCD (Å)	DST (g/cm ³)
MOFDiff	177.8	258.4	1039.7	4737.2	0.043	0.607 0.665	1.311	0.059
MOF-BFN	157.2	131.7	885.2	1626.3	0.022		1.177	0.043

E Extension to Conditional Generation

Enabling conditionl generation is also a valuable problem. To demonstrate this, we further conduct a preliminary experiment on void fraction (VF) via a classifier-guided generation (CFG)-style approach [8]. In this approach, the model was fine-tuned to accept an additional conditioning input c, representing the desired value of a target property. During generation, both an unconditional output x and a conditional output x_c were obtained. The final generated sample was then computed as $exp_x(w\log_x x_c)$, where exp and $exp_x(w\log_x x_c)$ and $exp_x(w\log_x x_c)$, where $exp_x(w\log_x x_c)$ and $exp_x(w\log_x x_c)$ and $exp_x(w\log_x x_c)$ are $exp_x(w\log_x x_c)$.





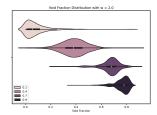


Figure 4: Void Fraction (VF) distribution of the original BW-DW dataset (left), the generated MOFs with w=1.0 (middle) and w=2.0 (right). The distributions shift significantly toward the desired value under conditioning, and larger guidance weights lead to stronger control.

Additional Ablation Studies

unit quaternions, another widely used formulation for modeling 3D orientations is the axis-angle representation, which characterizes a rotation by a pair (u, θ) , where $u \in S^2$ denotes the rotation axis and $\theta \in [0, \pi)$ is the rotation

Orientation Representation In addition to Table 8: Additional ablation studies on orientation representations.

Orientation Representation	Match Rate (%)	RMSD
Axis-Angle	31.49	0.2770
Unit Quaternion	35.27	0.2735

angle. This representation is geometrically intuitive and has been extensively applied in rigid-body kinematics. To model this formulation within the proposed framework, we employ a decomposed strategy, where the rotation axis is represented by a von Mises-Fisher (vMF) distribution on the unit 2-sphere, while the rotation angle is represented by a von Mises distribution on the circle. This design preserves the intrinsic geometry of each component and enables independent Bayesian updates within the BFN framework.

The results on the structure prediction task are Table 9: Additional ablation studies on loss shown in Table 8. Despite being a theoretically valid representation, this alternative led to noticeably worse performance in structure prediction. As modeling axis and angle separately breaks the unified structure of the SO(3) manifold and complicates the joint learning of rota-

weights.

γ_q	$\gamma_{\mathcal{B}}$	Valid before relaxation	Valid after relaxation
0.2	10.0	323	54.5
1.0	10.0	219	40.9
0.2	1.0	233	44.4

tion distributions. In contrast, the quaternion representation allows a unified and conjugate-friendly update using the Bingham distribution. The additional results confirm that the use of unit quaternions and Bingham BFN is not only theoretically motivated but also empirically beneficial.

Loss weights For the DNG task, we further analyse the loss weights for the orientation γ_q and the block embedding γ_B . The results in Table 9 show that scaling either component improperly leads to a drop in validity.

Experimental Details

Hyperparameters for the structure prediction (§ 5.1) and de novo generation (§ 5.3) are provided in Table 10. Baseline results in Table 1 and 2 are from MOFFlow [6], and the samples for calculating MOFDiff results in Table 3 are directly yielded from the official pre-trained checkpoint ⁴. To ensure a fair comparison, we share the same split with MOFDiff, where 95% structures are used for training, and the remaining 5% are for validation. The structure prediction and de novo generation models are trained on 8 GPUs with 80 GB memories, and the training procedures take 136 and 152 GPU hours, respectively.

Baseline Selection Н

We provide the original scope of different models in Table 11. For the structure prediction (SP) and property evaluation task, we follow the benchmark introduced in MOFFlow, and the selected baselines includes optimization-based methods (RS and EA), the full-atom model DiffCSP and the block-level model MOFFlow. Optimization-based methods are excluded from property evaluation as they fail to produce meaningful structures in Table 1. For de novo generation (DNG) task, it requires generating both block identities and their structure. Among existing methods, only MOFDiff supports this setting specifically for MOF, and is thus selected as the baseline.

I Limitations

While MOF-BFN presents a promising approach to hierarchical MOF structure prediction, several limitations remain that we leave to future work. First, our current framework treats each building block as a rigid body with a fixed local geometry. This rigid-body assumption simplifies the generative process but neglects the intrinsic conformational flexibility of many organic linkers and secondary

⁴https://github.com/microsoft/MOFDiff

Table 10: Hyperparameter settings for experiments.

Building Block Encoder						
num_layers	node_dim	edge_dim	hidden_dim	max_radius		
4	64	64	64	5		
	Coar	se-Grained Structur	e Predictor			
num_layers	hidden_dim	time_dim	num_freqs			
6	512	128	64			
		BFN				
$eta_T^{oldsymbol{\xi}}$	$eta_T^{oldsymbol{F}}$	$eta_T^{m{q}}$	$eta_T^{\mathcal{B}}$	T		
1000	1000	200	1000	50		
$\gamma_{m{\xi}}$	$\gamma_{m{F}}$	$\gamma_{m{q}}$	$\gamma_{\mathcal{B}}$			
1.0	1.0	0.2	10.0			
	S	tructure Prediction T	Fraining			
lr	min_lr	plateau_factor	plateau_patience	Adam_betas		
5×10^{-4}	1×10^{-4}	0.6	30	[0.9, 0.98]		
epochs	batch_size	gradient_clip_val	weight_decay			
1000	512	0.5	0.01			
	De Novo Generation Training					
lr	min_lr	plateau_factor	plateau_patience	Adam_betas		
5×10^{-4}	1×10^{-4}	0.6	30	[0.9, 0.98]		
epochs	batch_size	gradient_clip_val	weight_decay			
3000	512	0.5	0.01			

Table 11: **Model Scope.** SP and DNG denote structure prediction and de novo generation, respectively.

Model	Atom-level SP	Block-level SP	Block-level DNG
RS & EA DiffCSP	√ ✓		
MOFFlow		\checkmark	
MOFDiff MOF-BFN		✓	√

building units. For instance, MOFDiff [3] reports that over 2 million building block instances in the dataset correspond to only 242k unique molecular graphs, indicating that significant conformational diversity exists within each block type. Although our method supports the extension of building block vocabularies through a continuous embedding space, it does not yet account for conformation generation within each block. Integrating internal flexibility modeling into the current framework could further enhance the model. Second, our current work focuses on unconditional generation and structure prediction tasks, without explicitly incorporating guidance signals for specific downstream properties. In practice, many MOF design scenarios require property-oriented generation, such as optimizing for gas adsorption capacity or catalytic activity. However, techniques for guiding models toward desired property targets remain underexplored in the field of Bayesian Flow Networks. Developing conditional generation mechanisms within the BFN framework is an important direction for future research to enable targeted material discovery.

J Broader Impacts

This work contributes to the development of MOF structure prediction and design. It may benefit applications in gas storage, separation, and catalysis by enabling more efficient exploration of the chemical design space. By improving structure prediction accuracy and generation validity, it can potentially accelerate material discovery in a data-driven way. However, our model is trained and evaluated primarily on the BW-DB dataset [1], which may contain inherent biases in block types, structural motifs, or chemical compositions. As a result, the generalization ability of the model to underrepresented MOF types or application-specific domains could be limited. Care should be taken when applying the model beyond the scope of the training data.

K Code Availablility

Our codes are available at https://github.com/jiaor17/MOF-BFN.

References

- [1] Peter G Boyd, Yongjin Lee, and Berend Smit. Computational development of the nanoporous materials genome. *Nature Reviews Materials*, 2(8):1–15, 2017.
- [2] Peter G Boyd, Seyed Mohamad Moosavi, Matthew Witman, and Berend Smit. Force-field prediction of materials properties in metal-organic frameworks. *The journal of physical chemistry letters*, 8(2):357–363, 2017.
- [3] Xiang Fu, Tian Xie, Andrew Scott Rosen, Tommi S Jaakkola, and Jake Allen Smith. Mofdiff: Coarse-grained diffusion for metal-organic framework design. In *The Twelfth International Conference on Learning Representations*.
- [4] Nicholas Gao and Stephan Günnemann. Ab-initio potential energy surfaces by pairing gnns with neural wave functions. In *International Conference on Learning Representations*.
- [5] John T Kent, Asaad M Ganeiber, and Kanti V Mardia. A new method to simulate the bingham and related distributions in directional data analysis with applications. *arXiv* preprint arXiv:1310.8110, 2013.
- [6] Nayoung Kim, Seongsu Kim, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Mofflow: Flow matching for structure prediction of metal-organic frameworks. arXiv preprint arXiv:2410.17270, 2024.
- [7] Anthony K Rappé, Carla J Casewit, KS Colwell, William A Goddard III, and W Mason Skiff. Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations. *Journal of the American chemical society*, 114(25):10024–10035, 1992.
- [8] Nianze Tao and Minori Abe. Bayesian flow network framework for chemistry tasks. *Journal of Chemical Information and Modeling*, 65(3):1178–1187, 2025.
- [9] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown, Paul S Crozier, Pieter J In't Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al. Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. *Computer physics communications*, 271:108171, 2022.