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ABSTRACT

Large agent networks are abundant in applications and nature and pose difficult
challenges in the field of multi-agent reinforcement learning (MARL) due to their
computational and theoretical complexity. While graphon mean field games and
their extensions provide efficient learning algorithms for dense and moderately
sparse agent networks, the case of realistic sparser graphs remains largely unsolved.
Thus, we propose a novel cooperative mean field game (MFG) model based on the
large class of Chung-Lu graphs including power law networks with coefficients
above two. Besides a theoretical analysis, we design scalable learning algorithms
which especially apply to the challenging class of graph sequences with finite first
moment and infinite second moment. We compare our model and algorithms for
various examples on synthetic and real world networks with MFG algorithms based
on Lp graphons and graphexes. As it turns out, our approach outperforms existing
methods in many examples and on various networks due to the special design
aiming at an important, but so far hard to solve class of MARL problems.

1 INTRODUCTION

Despite the rapid developments in the field of multi-agent reinforcement learning (MARL) over the
last years, systems with many agents remain hard to solve in general (Canese et al., 2021; Gronauer
& Diepold, 2022). Mean field games (MFGs) (Caines et al., 2006; Lasry & Lions, 2007) are a
promising way to model large agent problems in a computationally tractable way while providing a
solid theoretical framework at the same time. The idea of MFGs is to abstract large, homogeneous
crowds of small agents into a single probability distribution, the mean field. While MFGs have been
used in various areas ranging from pedestrian flows (Achdou & Laurière, 2020) to oil production
(Bauso et al., 2016), the assumption of indistinguishable agents is not fulfilled in many applications.

A particularly important class of MARL problems are those with many connected agents. Initially,
these agent networks were modeled by combining the graph theoretical concept of graphons (Lovász,
2012) with MFGs, resulting in graphon MFGs (GMFGs) (Caines & Huang, 2019; 2021; Cui &
Koeppl, 2022; Zhang et al., 2024). Since GMFGs only model often unrealistic dense graphs,
subsequently MFG models based on Lp graphons (Borgs et al., 2018b; 2019) and graphexes (Veitch
& Roy, 2015; Caron & Fox, 2017; Borgs et al., 2018a) were developed, called LPGMFGs and
GXMFGs, respectively (Fabian et al., 2023; 2024). While these models facilitate learning algorithms
in moderately sparse networks, they exclude sparser topologies. Formally, (LP)GMFGs and GXMFGs
are designed exclusively for graphs with expected average degree going to infinity.

The learning literature contains various approaches to finding optimal behavior in MFGs, see Laurière
et al. (2022a) for an overview. For example, Subramanian et al. (2022) develop a decentralized
learning algorithm where agents are able to independently learn policies, while Guo et al. (2019; 2023)
focus on Q-learning methods for general MFGs. For the case of cooperative MFGs without network
interactions, also referred to as mean field control, various learning approaches exist (Ruthotto et al.,
2020; Carmona et al., 2023; Gu et al., 2023). However, we are aware of only one work by Hu et al.
(2023b) which learns policies for cooperative MFGs on dense networks, but not on sparse ones.

To learn policies for even sparser networks, we require a suitable graph theoretical framework, the
well-known Chung-Lu (CL) random graph model (Aiello et al., 2000; 2001; Chung & Lu, 2002;
2006). The CL model aligns with our aim to model sparse, large agent networks because: (i) it can
generate sparse networks, e.g. power laws, in a scalable way; (ii) it has a solid theoretical foundation
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with convergence results; (iii) it possesses properties which are beneficial for the design of efficient
approximate learning algorithms; (iv) it is conceptually simple despite its flexibility and rich structure.
These points are explained and discussed in more detail in the next sections.

Leveraging CL graphs, we formulate the new class of Chung-Lu cooperative MFGs (CLCMFGs).
CLCMFGs provide a theoretically well-motivated framework for learning agent behavior in chal-
lenging large networks where the average expected degree is finite, but the degree variance may
diverge to infinity. On the algorithmic side, we provide a two systems approximation of CLCMFGs
and corresponding learning algorithms to approximately learn optimal behaviour in these complex
agent networks. Finally, we evaluate our novel CLCMFG learning approach for multiple problems
on synthetic and real-world networks and compare it to different existing methods mentioned above.
Overall, our contributions can be summarized as:

• We introduce CLCMFGs to model large cooperative agent populations on very sparse graphs
with finite expected average degree:

• We give a rigorous theoretical analysis and motivation for CLCMFGs;

• We provide a two systems approximation and scalable learning algorithms for CLCMFGs;

• We show the capabilities of our CLCMFG learning approach on synthetic and real world
networks for different examplary problems.

2 CHUNG-LU GRAPHS

The Chung-Lu random graph model (Aiello et al., 2000; 2001; Chung & Lu, 2002; 2006) provides an
efficient way to generate large, sparse networks (Fasino et al., 2021). Compared to Lp graphons and
graphexes, the CL framework can capture sparser, often more realistic graph structures illustrated by
Figure 1. Next, we give a brief overview over CL graphs and point to Fasino et al. (2021) for details.

Graph generation. Suppose we want to generate a random graph with N ∈ N nodes. Then,
in the CL model, first specify a weight vector w ∈ RN

+ with one weight wi ∈ R+ for each
node i ∈ {1, . . . , N} and assume without loss of generality that weights are ordered such that
w1 ≤ w2 ≤ . . . ≤ wN . Intuitively, a node with high weight is more likely to have many connections
than a node with small weight. Formally, two nodes i and j in the CL model are connected with
probability wi · wj/w̄, independently of all other node pairs and with normalization factor w̄ :=∑

1≤k≤N wk. As discussed in Fasino et al. (2021), not all weight vectors yield valid probabilistic
expressions wi · wj/w̄. Thus, for N ∈ N vertices we focus on the set of admissible weight vectors
WN :=

{
w ∈ RN

+ : w2
N ≤ w̄

}
, unless stated otherwise. For given N , let WN be the weight wi of a

uniformly at random chosen node i ∈ {1, . . . , N}. Following Van Der Hofstad (2024, Chapter 1),
the empirical distribution function of WN is FN (x) := 1

N

∑
i≤N 1{wi≤x} for x ≥ 0.

Figure 1: Four networks, first two generated by an Lp graphon and graphex, third is a CL graph and
fourth is a real subsampled YouTube (YT) network (Mislove, 2009; Kunegis, 2013), highly connected
nodes are depicted larger. Each network has around 14.5k nodes and 13k edges, except graphex has
around 16.5k edges; all networks are plotted in the prefuse force directed layout (software: cytoscape).
While the Lp graphon graph lacks sufficiently many high degree nodes, the tail of the graphex degree
distribution is too heavy. In contrast, the CL graph is qualitatively close to the real YT network.
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Network convergence. For a meaningful theoretical analysis, the sequence of random CL graphs
has to converge in a suitable sense given by the next assumption.

Assumption 1 (Vertex weight convergence). There exists a random variable W with distribution
function F such that limN→∞ FN (x) = F (x) for any x for which x 7→ F (x) is continuous.
Furthermore, E[WN ] → E[W ] ∈ (0,∞) as N → ∞.

Assumption 1 ensures by limN→∞ FN (x) = F (x) that the weight WN of a uniformly at random
picked node converges in distribution to the limiting random variable W which is independent of
N . Furthermore, E[WN ] → E[W ] ∈ (0,∞) states that the expectation of a randomly picked weight
converges to the expectation of the limiting W . We emphasize the importance of E[W ] ∈ (0,∞)
because it states a finite expected degree of randomly picked nodes, even as N approaches infinity.
The finite first moment is crucial for our approximate learning scheme introduced in the next sections
and intuitively guarantees a relevant fraction of low degree agents in the limiting model.

We also tacitly assume Var(deg(vN )) → ∞ as N → ∞ to ensure the existence of relatively many
agents with (almost) infinitely many connections each. While we focus on the infinite variance case,
our approach applies to the finite variance case as well. Since finite variance is easier to model by
simply neglecting highly connected agents from our general approach, we focus on the challenging
infinite variance case. Moving from vertex weight convergence in Assumption 1 to graph convergence
requires a suitable graph convergence concept. We choose local weak convergence in probability
which means that local node neighborhoods converge to neighborhoods in a limiting model. The next
definition formalizes local weak convergence, for details see e.g. Lacker et al. (2023).

Definition 1 (Local weak convergence in probability). A sequence of finite graphs (GN )N converges
in probability in the local weak sense to G if for all continuous and bounded functions f : G∗ → R

lim
N→∞

1

N

∑
i∈[N ]

f(Cvi(GN )) = E[f(G)] in probability,

where Cvi(GN ) denotes the connected component of vi ∈ GN with root vi and G∗ is the set of
isomorphism classes of connected rooted graphs.

Under Assumption 1, large CL graphs exhibit a locally tree-like structure (Van Der Hofstad, 2024,
Theorem 3.18) which is a key insight for the proofs of our theoretical results in the next sections.
Throughout the paper, we use the running example of power law degree distributions with coefficient
γ > 2 observed in many real world networks to some extent (Newman, 2003; Kaufmann & Zweig,
2009; Newman et al., 2011). However, our methods apply to all distributions meeting Assumption 1.

Example 1 (Power law). In our work, a power law is a zeta distribution with parameter γ > 2 such
that P (deg(v) = k) = k−γ/ζ(γ), where ζ(γ) is the Riemann zeta function ζ(γ) :=

∑∞
j=1 j

−γ .

Advantages. CL graphs are a flexible and efficient framework for generating large, sparse graph
sequences. They have crucial advantages over other well-established graph generation approaches
like the configuration model (CM) (Bender & Canfield, 1978; Wormald, 1980; Bollobás, 1998).
Most notably, the CM generates multigraphs instead of simple graphs and the number of multiedges
increases drastically as the vertex degrees increase. Consequently, the CM is suboptimal for generating
graphs with a significant fraction of high degree nodes such as power law networks. Compared to the
classical Barabási-Albert model (Barabási & Albert, 1999) which only generates power law networks
with coefficient three (Bollobás et al., 2001), CL graphs are more flexible and can generate power law
graphs with any coefficient larger than two as well as other network types. Besides its rich class of
generable graphs, the CL model is theoretically well-founded and efficient implementations for large
graph generation exist (Fasino et al., 2021). For a detailed discussion on the mentioned differences,
see for example Chung & Lu (2002, Section 7).

Furthermore, as discussed in the introduction, the CL model can generate graphs with finite average
expected degree which is a crucial advantage over both graphexes and (Lp) graphons. Finally,
the neighbor degree distribution in CL graphs is described reasonably well by Heuristic 1 which
provides the foundation for our two systems approximation. Both Heuristic 1 and the two systems
approximation are defined and explained in detail in the following sections.
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3 THE FINITE MODEL AND ITS LIMIT

In the following, we denote by P(X ) the set of probability distributions over a finite set X and use
the notation [N ] := {1, . . . , N} for any N ∈ N.

Finite model. Assume some finite state space X , finite action space U and finite and discrete time
horizon T := {0, . . . , T − 1} with terminal time point T are given. Furthermore, there are N ∈ N
agents connected by some graph GN = (VN , EN ) with vertex set VN and edge set EN . Here, the
random state of agent i ∈ [N ] at time t ∈ T is denoted by XN

i,t. All agents V k
N ⊆ VN with degree

k ∈ N share a common policy πk
t at all time points t ∈ T . The empirical k-degree MF is defined as

µN,k
t :=

1

|V k
N |

∑
i∈[N ]:vi∈V k

N

δXN
i,t

∈ P(X ),

for each time point t ∈ T and k ∈ N. For notational brevity, define the overall empirical MF sequence
as µN

t := (µN,1
t , µN,2

t , . . .) ∈ P(X )N. Each policy πk ∈ P(U)T ×X×Gk

in the policy ensemble
π = (π1, π2, . . .) ∈ P(U)T ×X×Gk×N takes into account the current state of the respective agent
i with k neighbors and its neighborhood GN

i,t ∈ Gk := {G ∈ P(X ) : k · G ∈ Nk
0}. Our learning

algorithms also apply to other policy types, e.g., in our experiments we consider computationally
efficient policies only depending on the current agent state. Then, the model dynamics are

UN
i,t ∼ πk

t

(
·|XN

i,t,GN
i,t

)
and XN

i,t+1 ∼ P
(
·|XN

i,t, U
N
i,t,GN

i,t

)
,

for an agent i with degree k, t ∈ T , i.i.d. initial distribution µ0 ∈ P(X ), and some transition kernel
P : X × U × P (X ) → P (X ). Note that the theory and subsequent learning algorithms extend to
degree dependent transition kernels P k. The policies are chosen to maximize the common objective

JN (π) :=

T∑
t=1

r(µN
t )

with reward function r : P(X )N 7→ R. Our model also covers reward functions with actions as inputs
by using an extended state space X ∪ (X × U) and splitting each time step t ∈ T into two.

Limiting system. In the limiting system, the MF for each degree k ∈ N evolves according to

µk
t+1 := µk

tP
π,k
t,µ′,W :=

∑
(x,u)∈X×U,

G∈Gk

µk
t (x)Pπ

(
Gk

t (µ
′
t) = G

∣∣ xt = x
)
πk
t (u | x,G)P (· | x, u,G)

with i.i.d. initial distribution µk
0 ∈ P(X ) and where Gk is the set of k-neighborhood distributions as

before. As in the finite system, define the limiting MF ensemble µt := (µ1
t , µ

2
t , . . .) ∈ P(X )N and

the corresponding reward in the limiting system is J(π) :=
∑T

t=1 r(µt).

Theoretical results. Next, we show the strong theoretical connection between the finite and limiting
system. The following theoretical results built on the crucial observation (Van Der Hofstad, 2024,
Theorem 3.18) that large CL graphs under Assumption 1 have a locally tree-like structure. Note that
our theoretical results extend to arbitrary graph sequences converging in probability in the local weak
sense. The proofs are in Appendix A. We first state empirical MF convergence to the limiting MFs.
Theorem 1 (Mean field convergence). Under Assumption 1 and for any fixed policy ensemble π, the
empirical MFs converge to the limiting MFs such that for all k ∈ N and all t ∈ T

µN,k
t → µk

t in probability for N → ∞ .

The MF convergence from Theorem 1 enables us to derive a corresponding convergence result for the
finite and limiting objective functions under a standard continuity assumption on the reward.
Assumption 2. The reward function r : P(X )N 7→ R is continuous.
Proposition 1 (Objective convergence). Under Assumptions 1 and 2 and for any fixed policy ensemble
π, the common objective in the finite system converges to the limiting objective, i.e.

JN (π) → J(π) in probability for N → ∞ .
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We leverage these findings to show that for a finite set of policy ensembles, the optimal policy for
the limiting system in the set is also optimal in all sufficiently large finite systems. Therefore, if one
wants to know the optimal ensemble policy for an arbitrary, large agent system, it suffices to find the
optimal ensemble policy in the limiting system once which is formalized by Corollary 1.
Corollary 1 (Optimal policy). Assume some set {π1, . . . , πM} of M < ∞ policy ensembles is given
and that w.l.o.g. J(π1) > J(πi) for all i ∈ [M ] with i ̸= 1. Under Assumptions 1 and 2 and for
some N∗ ∈ N, π1 is optimal in all finite systems of size N > N∗: JN (π1) > maxi∈[M ],i̸=1 J

N (πi).

4 THE TWO SYSTEMS APPROXIMATION

In limiting systems on sparse graphs, the state evolution and optimal policy of an agent potentially
depend on the entire network (Lacker & Soret, 2022). Calculating Pπ

(
Gk

t (µ
′
t) = G

∣∣ xt = x
)

at
time t ∈ T in the limiting system requires all possible t-hop neighborhood degree-state distributions
where t-hop neighborhoods include all agents with a distance of at most t edges to the initial agent.
Unfortunately, Lemma 1 states that the number of t-hop neighborhoods grows at least exponentially
with the agent degree k in important classes of CL generated graphs, such as power laws beyond two.
Lemma 1. In the limiting system, the number of possible t-hop degree-state neighborhood distribu-
tions of agents with degree k ∈ N at time t ∈ T in the worst case, e.g. power law, is Ω

(
2poly(k)

)
.

Just neglecting high degree nodes in the model might appear as a reasonable approximation to reduce
computational complexity. However, the heavy tail of a degree distribution with finite expectation
and infinite variance makes this approach highly inaccurate, as Example 2 illustrates.
Example 2. In a power law graph with γ = 2.5 around 96% of node degrees are at most five. These
96% only account for roughly two thirds of the expected degree, formally

∑5
h=1 h

1−γ/ζ(γ − 1) <
0.68. Nodes with a degree of at most ten still only account for around 76% of the expected degree.

Two systems approximation. For the subsequent two systems approximation, we first require a
heuristic on the neighbor degree distribution for a given node.
Heuristic 1. For an arbitrary node v′ ∈ V the degree distribution of its neighbor v ∈ V is
approximately P (deg(v) = k | deg(v′) = k′, (v′, v) ∈ E) ≈ k·P (deg(v)=k)∑

k′′∈N k′′·P (deg(v)=k′′) .

Heuristic 1 is a good approximation for large CL graphs (Jackson et al., 2008, Chapter 4), and thus
reasonable in our setup. As discussed in Jackson et al. (2008), Heuristic 1 is unrealistic for many
other graph generators such as those using preferential attachment. The idea of Heuristic 1 is the
following: if one fixes any node v′ ∈ V and considers its neighbors, high degree nodes are more
likely to be connected to v′ than lowly connected ones. Instead of the overall degree distribution, we
thus weight each probability by its degree and normalize accordingly. The result is an approximate
neighbor degree distribution accounting for the increased probability of highly connected neighbors.

To address the complexity of the limiting system, we provide an approximate limiting system based
on Heuristic 1 and the underlying CL graph structure. Our two systems approximation consists of a
system for small degree agents with at most k∗ neighbors and another one for agents with more than
k∗ connections, where k∗ ∈ N is some arbitrary, but fixed finite threshold. Define an approximate MF
µ̂k for each k ∈ [k∗] and furthermore summarize all agents with more than k∗ connections into the
infinite approximate MF µ̂∞ and define µ̂ := (µ̂1, . . . , µ̂k∗

, µ̂∞). Based on Heuristic 1, we assume
that all agents with more than k∗ neighbors observe the same neighborhood state distribution

Ĝ∞
t (µ̂) :=

1

E[deg(v)]

( ∞∑
k=k∗+1

kP (deg(v) = k)

)
µ̂∞
t +

1

E[deg(v)]

k∗∑
h=1

hP (deg(v) = h)µ̂h
t .

The unified approximate neighborhood state distribution Ĝ∞
t allows us to state an approximate,

simplified version of the MF forward dynamics for high degree agents given by

µ̂∞
t+1 := µ̂∞

t P̂π,∞
t,µ′,W :=

∑
x∈X

µ̂∞
t (x)

∑
u∈U

π∞
t

(
u | x, Ĝ∞

t (µ′)
)
P
(
· | x, u, Ĝ∞

t (µ′)
)
,

where all agents with more than k∗ connections follow the same policy π∞
t ∈ P(U)T ×X×P(X ). The

approximate neighborhood of an agent with degree k ∈ [k∗] at each time t ∈ T is sampled from

5
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Ĝk
t (µ̂) ∼ Mult(k, Ĝ∞

t (µ̂)), i.e. Ĝk
t (µ̂) is multinomial with k trials and probabilities Ĝ∞

t (µ̂)(x) for
each x ∈ X . Using Heuristic 1, the approximation yields for each k ∈ [k∗] the MF forward dynamics

µ̂k
t+1 := µ̂k

t P̂
π,k
t,µ′,W :=

∑
(x,u)∈X×U

∑
G∈Gk

µ̂k
t (x)PMult

(
Ĝk

t = G
)
πk
t (u | x,G)P (· | x, u,G) .

Extensive approximation. In Appendix B we derive a second, extensive approximation

Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x
)

≈
∑

G′∈Gk

∑
x′∈X

Pπ,µ

(
Gk

t (µt) = G′, xt = x′) [∑
u∈U

πk (u | x′)P (x | x′, u,G′)

]

·
∑

c∈Ck

[∑
a2∈Ak

2 (G
′,c)

∏
j Multp2,j

(a2,j)
]∑

a3∈Ak
3 (G,G′,c)

∏
j,m Multp3,jm

(a3,jm)∑
a2∈Ak

2 (G
′,c)

∏
j,m (P (deg(v) = m | (v′, v) ∈ E)µm

t (sj))
ajm

.

of the finite agent neighborhoods. Here, the idea is to go beyond the previous multinomial assumption
Ĝk

t (µ̂) ∼ Mult(k, Ĝ∞
t (µ̂)) and to use state-degree neighborhood distributions a2 ∈ Ak

2(G
′, c)

and state-state-degree neighborhood distributions a3 ∈ Ak
3(G,G′, c) to capture agents changing

from x ∈ X to x′ ∈ X at a time step. We provide the extensive approximation derivation and
corresponding definitions of sets like Ak

2(G
′, c) and Ak

3(G,G′, c) in Appendix B. As we will see in
the following, the extensive approximation often shows a moderately higher accuracy than our first
approximation. However, the accuracy boost entails a significantly higher computational complexity
due to multiple sums over sets like Ak

2(G
′, c) and Ak

3(G,G′, c). Thus, our first approximation is
more practical since it combines reasonable accuracy with low computational complexity.

5 LEARNING ALGORITHMS

To solve the MARL problem of finding optimal policies for each class of k-degree nodes, we
propose two methods based on reducing the otherwise intractable many-agent graphical system to a
single-agent MFC MDP. The first approach in Algorithm 1 is based on solving the resulting limiting
MFC MDP under the parameters of the real graph, using the previously established two systems
approximation. The second approach in Algorithm 2 instead directly learns according to single-agent
RL that solves the MFC MDP by interacting with the real graph.

Algorithm 1 Policy Gradient CLMFC
1: for iterations n = 1, 2, . . . do
2: for time steps t = 0, . . . , Blen − 1 do
3: Sample CLMFC MDP action πt ∼ π̂θ(πt | µt).
4: Compute reward r(µt), next MF µt+1, termination flag dt+1 ∈ {0, 1}.
5: end for
6: Update policy π̂θ on minibatches b ⊆ {(µt,πt, rt, dt+1,µt+1)}t≥0 of length blen.
7: end for

RL in MFC MDP. One can consider the two system approximation to reduce the complexity of
otherwise intractable large interacting systems on networks to the MFs of each degree. The system
state at any time is then given by low-degree MFs µ1

t , µ
2
t , . . . , µ

k∗

t and high-degree MF µ∞
t , briefly

µt := (µ1
t , µ

2
t , . . . , µ

k∗

t , µ∞
t ). Given a state µt, the possible state evolutions depend only on the

analogous set of low-degree and high-degree policies at that time, πt := (π1
t , π

2
t , . . . , π

k∗

t , π∞
t ). In

other words, choosing a particular πt fully defines the state transition of the overall system, and can
therefore be considered as the high-level action in the MFC MDP. Introducing a high-level policy
π̂ to output πt ∼ π̂t(πt | µt) allows us to solve for an optimal set of policies by solving the MFC
MDP for optimal π̂, since the MF dynamics are deterministic in the limit. Finally, the MFC MDP is
solved by applying single-agent policy gradient RL, resulting in Algorithm 1. In practice, we use
proximal policy optimization (Schulman et al., 2017). To lower the complexity of the resulting MDP,
we parametrize policies as distributions over actions given the node state, πk

t ∈ P(U)X .

6
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MARL on real networks. In addition to assuming knowledge of the model and computing the
limiting MFC MDP equations, we may also directly learn on real network data without such model
knowledge in a MARL manner. To do so, we still apply policy gradient RL to solve an assumed
MFC MDP, but substitute samples from the real network into µt. At the same time, we let each node
perform its actions according to the sampled πt ∼ π̂t(πt | µt). This approach is well justified by
the previous theory and approximation, as for sufficiently large networks the limiting system and
therefore also its limiting policy gradients are well approximated by this procedure.

Algorithm 2 Policy Gradient CLMFMARL
1: for iterations n = 1, 2, . . . do
2: for time steps t = 0, . . . , Blen − 1 do
3: Sample CLMFC MDP action πt ∼ π̂θ(πt | µt).
4: for node i = 1, . . . , N do
5: Sample per-node action Ui,t ∼ πki

t (Ui,t | Xi,t) with degree ki = ∞ if ki > k∗.
6: end for
7: Perform actions, observe reward rt, next MF µt+1, termination flag dt+1 ∈ {0, 1}.
8: end for
9: Update policy π̂θ on minibatches b ⊆ {(µt,πt, rt, dt+1,µt+1)}t≥0 of length blen.

10: end for

Overall, the approach results in Algorithm 2 and has a few advantages: Firstly, the algorithm does not
assume model knowledge and is therefore a true MARL algorithm, in contrast to solving the limiting
MFC MDP. Secondly, the algorithm avoids potential inaccuracies of the two systems approximation,
as we will see in Section 7, since it directly interacts with a real network of interest. Lastly, in contrast
to standard independent and joint learning MARL methods, the method is rigorously justified by
single-agent RL theory and avoids exponential complexity in the number of agents respectively.

6 EXAMPLES

We consider four problems briefly described here. Problem details can be found in Appendix C.

Susceptible-Infected-Susceptible/Recovered (SIS/SIR). The classical SIS model (Kermack &
McKendrick, 1927; Brauer, 2005) is a benchmark in the MFG learning literature (Laurière et al.,
2022b; Zhou et al., 2024). Agents are infected or susceptible, resulting in the state space X := {S, I},
and decide to protect themselves or not. The infection probability increases without protection, and
with the number of infected neighbors. The SIR model (Hethcote, 2000; Doncel et al., 2022) is an
extension of SIS where agents can also be in an immune, recovered state R such that X := {S, I,R}.

Graph coloring (Color). Inspired by graph coloring (Jensen & Toft, 2011; Barenboim & Elkin,
2022), the states are finitely many colors on a circle and a target color distribution is given. Agents
stay at their color or costly move to a neighboring color. The objective decreases for deviations from
the target color distribution and if neighbors of an agent have neighboring colors to the agent’s color.

Rumor. In the rumor model (Maki & Thompson, 1973; Gani, 2000; Cui et al., 2022), agents are
either aware of a rumor (aware state A) or they have not heard the rumor (ignorant state I). Aware
agents decide whether they spread the rumor to their neighbors or not. They are awarded for spreading
the rumor to unaware agents but loose reputation for telling the rumor to already aware agents.

7 SIMULATION & RESULTS

In this section, we numerically verify the two system approximation as well as the proposed learning
algorithms by comparing them with baselines from the literature. The two systems approximation is
compared with previous graph approximations such as graphex or Lp graphon MF equations, and the
learning algorithms are verified against standard scalable independent learning methods such as IPPO
(Tan, 1993; Papoudakis et al., 2021), due to the large scale of networks considered here. To generate

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Average expected total variation ∆µ = 1
2T E [

∑
t∥µ̂t − µt∥1] ∈ [0, 1] of MF µt and

empirical MF µ̂t =
∑

i δXi
t

(± std. dev., 50 trials), for the four models for four problems on eight
real-world networks, CLCMFG* not displayed for last two problems since calculations exceed
maximum runtime. Best result for each network-problem combination in bold.

Model
Average expected total variation ∆µ in %, standard deviation in brackets

CAIDA Cities Digg Friends Enron Flixster Slashdot Yahoo YouTube

SI
S

LPGMFG 24.02 (1.25) 28.16 (0.41) 21.98 (0.26) 24.77 (0.32) 22.48 (0.07) 23.70 (0.43) 10.11 (2.10) 22.94 (0.25)
GXMFG 9.07 (1.25) 10.90 (0.41) 4.72 (0.26) 4.73 (0.32) 3.78 (0.07) 5.48 (0.43) 9.31 (2.10) 6.43 (0.25)
CLCMFG 2.59 (1.14) 5.00 (0.40) 3.57 (0.26) 3.39 (0.31) 1.60 (0.07) 2.41 (0.43) 3.59 (1.59) 3.53 (0.25)
CLCMFG* 1.75 (0.90) 4.20 (0.40) 3.02 (0.26) 2.67 (0.31) 0.90 (0.07) 1.70 (0.42) 3.81 (1.70) 2.93 (0.25)

SI
R

LPGMFG 9.11 (1.40) 10.01 (0.34) 8.68 (0.31) 9.51 (0.32) 8.99 (0.09) 9.37 (0.38) 4.88 (1.82) 8.90 (0.23)
GXMFG 2.81 (1.10) 2.63 (0.31) 1.27 (0.29) 0.99 (0.30) 0.99 (0.09) 1.58 (0.36) 4.60 (1.71) 1.79 (0.23)
CLCMFG 1.31 (0.87) 1.36 (0.27) 1.08 (0.28) 0.91 (0.30) 0.58 (0.08) 0.99 (0.33) 2.62 (1.30) 1.07 (0.23)
CLCMFG* 1.18 (0.82) 1.10 (0.26) 0.80 (0.27) 0.59 (0.28) 0.26 (0.08) 0.71 (0.29) 2.63 (1.30) 0.78 (0.23)

C
ol

or LPGMFG 38.73 (0.17) 38.59 (0.09) 38.70 (0.04) 39.83 (0.06) 39.55 (0.02) 39.07 (0.06) 34.18 (0.26) 38.52 (0.04)
GXMFG 11.33 (0.13) 7.90 (0.06) 7.85 (0.02) 4.91 (0.03) 6.38 (0.01) 6.81 (0.03) 32.62 (0.24) 8.76 (0.02)
CLCMFG 0.70 (0.12) 0.48 (0.05) 0.19 (0.02) 0.36 (0.04) 0.39 (0.02) 0.33 (0.04) 1.05 (0.19) 0.19 (0.03)

R
um

or LPGMFG 20.03 (2.15) 22.56 (0.50) 18.39 (0.55) 20.27 (0.61) 18.94 (0.16) 19.70 (0.82) 9.68 (3.76) 19.23 (0.47)
GXMFG 6.98 (2.06) 7.49 (0.49) 3.33 (0.54) 2.86 (0.58) 2.65 (0.16) 3.82 (0.79) 9.01 (3.69) 4.79 (0.47)
CLCMFG 3.06 (1.59) 4.31 (0.48) 3.00 (0.53) 2.62 (0.57) 1.73 (0.15) 2.41 (0.75) 5.01 (2.21) 3.27 (0.46)

artificial networks of different sizes we employ a CL-based graph sampling algorithm (Chung & Lu,
2002; Miller & Hagberg, 2011) from the Python NetworkX package.

We compare the accuracy of our model on different empirical datasets with Lp graphon and graphex
based models and with our extensive approximation CLCMFG∗, where computationally feasible,
to see how much information is lost in the CLCMFG approximation. We use eight datasets from
the KONECT database (Kunegis, 2013), where we substitute directed or weighted edges by simple
undirected edges: CAIDA (Leskovec et al., 2007)(N ≈ 26k), Cities (Kunegis, 2013) (N ≈ 14k),
Digg Friends (Hogg & Lerman, 2012) (N ≈ 280k), Enron (Klimt & Yang, 2004) (N ≈ 87k), Flixster
Zafarani & Liu (2009) (N ≈ 2.5mm), Slashdot (Gómez et al., 2008) (N ≈ 50k), Yahoo (Kunegis,
2013) (N ≈ 653k), and YouTube (Mislove, 2009) (N ≈ 3.2mm). See the references for details.

Results. First, we establish the usefulness of CLCMFGs and CLCMFG∗s by comparing their
dynamics to those of LPGMFGs and GXMFGs (Fabian et al., 2023; 2024) on eight real-world
networks, see Figure 2 for examplary dynamics over time. As Table 1 shows, our CLCMFG
approaches clearly outperforms the current LPGMFGs and GXMFGs methods for all empirical
networks and problems. The extensive approximation CLCMFG∗ moderately outperforms CLCMFGs
across datasets, except Yahoo. Since the extensive approximation is more detailed, it is often more
accurate then the CLCMFG approximation. However, Table 1 lacks an evaluation for CLCMFG∗ on
the Color and Rumor problem because the extensive approximation is computationally too expensive
for these problems. Consequently, CLCMFG dynamics are the more practical choice since they are
computationally tractable and yield a very reasonable performance across problems and datasets.
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Figure 2: Overall MF evolution on real networks (50 trials, with two std. devs.), for our approx.
(CLC), our extensive approx. (CLC∗), graphex (GX), and Lp graphon (LP) models: (a) SIS on Enron,
(b) SIR on Slashdot, (c) Color on CAIDA (without CLC∗), (d) Rumor on Cities (without CLC∗).
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Table 2: (CL)MFC, (CL)MFMARL, and IPPO for four problems on synthetic graphs of size N . Best
objective after 24 hours of training on 96 CPUs. Best result for each problem-graph tuple in bold.

Problem
N = 167 N = 406 N = 860 N = 1598

IPPO MFC MFMARL IPPO MFC MFMARL IPPO MFC MFMARL IPPO MFC MFMARL

SIS -20.80 -14.56 -12.50 -21.40 -14.18 -11.64 -19.70 -12.42 -9.11 -22.42 -13.51 -11.13
SIR -7.45 -7.84 -6.99 -7.18 -7.42 -6.55 -10.64 -6.86 -5.15 -7.73 -7.42 -6.32
Color -8.20 -6.84 -6.74 -8.05 -7.04 -6.98 -8.48 -7.08 -5.85 -8.15 -6.97 -6.94
Rumor 0.24 1.19 0.27 0.16 1.33 0.19 0.25 1.47 1.35 0.12 1.33 0.17
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Figure 3: Training curves of CLMFC, CLMFMARL, and IPPO on a random CL graph with 406
nodes for: (a) SIS, (b) SIR, (c) Color, (d) Rumor.

The second part of our results focuses on our two learning algorithms CLMFC and CLMFMARL and
compares them to the well-known IPPO algorithm. In Table 2, our algorithms outperform IPPO for all
problems on the two larger graphs with 860 and 1598 nodes, respectively. On the two smaller graphs,
CLMFC and CLMFMARL still yield an at least competitive performance compared to IPPO, where
IPPO is only marginally better than CLMFC on two problem instances, namely SIR on N = 167 and
N = 406. We point out that CLMFC, in contrast to IPPO and CLMFMARL, is not evaluated on the
empirical system, but by design on the limiting CLCMFG model, which may differ from the true
system behavior. These findings are complemented by the corresponding training curves in Figure
3. Finally, Figure 4 depicts how the training curves of our CLMFC and CLMFMARL algorithms
converge on different empirical networks for different problems.

8 CONCLUSION

We have introduced the novel CLCMFGs which can depict agent networks with finite expected
degree and diverging variance. After a theoretical analysis, we provided a practical two systems
approximation which was then leveraged to design scalable learning algorithms. Finally, we evaluated
the performance of our model and learning algorithms for different problems on synthetic and
real-world datasets and compared them to existing methods. For future work, one could extend the
CLCMFG model to various types of MFGs, e.g. to partial observability or agents under bounded
rationality. We hope that CLCMFGs and the corresponding learning approach prove to be a versatile
and useful tool for researchers across various applied research areas.
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Figure 4: Training curves of CLMFC and CLMFMARL for four different examples: (a) SIS on
Enron, (b) SIR on Slashdot, (c) Color on CAIDA, (d) Rumor on Cities.
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A APPENDIX: PROOFS FOR THE THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

Proof. We aim to eventually apply Lacker et al. (2023, Theorem 3.6) and therefore have to check
that the respective conditions hold in our model. First, it is well-established (Van Der Hofstad, 2024,
Theorem 3.18) that a Chung-Lu graph sequence (GN )N under Assumption 1 converges in probability
in the local weak sense to a unimodular branching process tree G with offspring distribution

P (D = k) = E
[
exp(−W )

W k

k!

]
.

Keeping in mind the i.i.d. initial distribution µ0, we leverage Lacker et al. (2023, Corollary 2.16) to
obtain convergence in probability in the local weak sense of the marked graphs (GN , XGN ) to the
limiting marked graph (G,XG).

Since the theory in Lacker et al. (2023) is only formulated in terms of particle systems without
including actions in the form of policies, we provide a suitable reformulation of our cooperative mean
field game model. Thus, define an auxiliary extended state space Xe := X ∪ (X × U) which serves
as the state space for the extended particle system for some fixed policy ensemble π. The idea behind
the extended state space Xe is to define an extended particle system where the state transition in X
and the choice of the next action ut+1 ∈ U are separated into two different time steps.

Using the notations from Lacker et al. (2023), denote by S⊔(X ) the set of finite unordered sequences
of arbitrary length with values in X and by Ξ := XX×S⊔(X ) × UX×U×S⊔(X ) the set of possible
noise values. Next, specify a transition function F τ : Xe × S⊔(Xe)× Ξ → Xe for each τ ∈ Te :=
{0} ∪ [2T − 1] by

XN
e,i,τ+1 = F τ (XN

e,i,τ ,GN
e,i,τ , ξi,τ+1) :=

{
(XN

e,i,τ , ξ
0
i,τ+1(X

N
e,i,τ ,GN

e,i,τ )) if τ/2 ∈ {0} ∪ N
ξ1i,τ+1(X

N
e,i,τ ,GN

e,i,τ ) otherwise,

where the neighborhood in the extended particle system GN
e,i,τ corresponds to GN

i,⌊τ/2⌋ in the original
system. Here, the noise terms ξi,τ+1 = (ξ0i,τ+1, ξ

1
i,τ+1) depict the used noise depending on whether

τ is an even or odd number. If τ is an even number, i.e. τ/2 ∈ {0} ∪N, we use ξ0i,τ+1(X
N
e,i,τ ,GN

e,i,τ )
which is a U-valued random variable with distribution

ξ0i,τ+1(x,G) ∼ πk
τ/2 (· | x,G)

for each neighborhood G and state x ∈ X , where k is the degree of agent i. If τ is odd, i.e. we
have XN

e,i,τ ∈ X × U , we choose the first, X -valued entry of XN
e,i,τ as the x in the above probability

distribution.

The X -valued noise component ξ1i,τ+1 is distributed as follows: if τ is an odd number, the noise term
is sampled from

ξ1i,τ+1(x, u,G) ∼ P (·|x, u,G)

where XN
e,i,τ = (x, u). If τ is even and thus XN

e,i,τ ∈ X , we just choose some arbitrary, but fixed
action u′ ∈ U instead of u in the above sampling process.

Now, it remains to check that Lacker et al. (2023, Assumption A) is satisfied by the extended particle
system defined above. First, the noise terms ξi,τ are i.i.d. distributed for all agents i ∈ [N ] and with
respect to all time points τ ∈ Te by construction. Finally, keeping in mind that the respective spaces
are discrete, the map F τ is continuous for each τ ∈ Te. Therefore, Lacker et al. (2023, Theorem 3.6)
yields the desired result.

A.2 PROOF OF PROPOSITION 1

Proof. We want to show

JN (π) → J(π) in probability for N → ∞

14
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which is equivalent to

T∑
t=1

r(µN
t ) →

T∑
t=1

r(µt) in probability for N → ∞ .

The reward r is a continuous function by Assumption 2. Furthermore, by Theorem 1 we know that
the empirical mean fields converge in probability to the limiting mean fields. Hence, we can apply
the continuous mapping theorem (Mann & Wald, 1943; Van der Vaart, 2000) to obtain the desired
result.

A.3 PROOF OF COROLLARY 1

Proof. Quantify the gap ∆ between the optimal and the second best solution as

∆ := J(π1)− max
i∈[M ],i̸=1

J(πi) > 0 .

Keeping in mind Proposition 1, we know that the objectives of the finite systems eventually converge
to the limiting mean field objectives as N approaches infinity. Thus, there exists some N∗ such that

max
i∈[M ]

|JN (πi)− J(πi)| <
∆

2

holds for all N > N∗. Finally, the above considerations allow us to bound the difference of interest

JN (π1)− max
i∈[M ],i̸=1

JN (πi)

= JN (π1)− J(π1) + J(π1)− max
i∈[M ],i̸=1

JN (πi)

= JN (π1)− J(π1)︸ ︷︷ ︸
>−∆/2

+ J(π1)−
(

max
i∈[M ],i̸=1

J(πi)

)
︸ ︷︷ ︸

=∆

+

(
max

i∈[M ],i̸=1
J(πi)

)
− max

i∈[M ],i̸=1
JN (πi)

>
∆

2
+ min

i∈[M ],i̸=1
J(πi)− JN (πi) >

∆

2
− ∆

2
= 0,

for all N > N∗ which implies the desired statement

JN (π1) > max
i∈[M ],i̸=1

JN (πi)

and thereby concludes the proof.

A.4 PROOF OF LEMMA 1

Proof. Since we want to lower bound the number of possible t-hop neighborhoods NG,t, we assume
for simplicity that t-hop neighbors of the initial agent have at most degree k themselves. Furthermore,
we keep in mind the fact (Beck & Robins, 2007, Theorem 2.2) that in a d-dimensional simplex with
edge length ℓ ∈ N, the number of integer points contained in the simplex is(

d+ ℓ

d

)
=

(d+ ℓ)!

d!ℓ!
. (1)

Since Lemma 1 considers the worst case, it suffices to prove the lower bound Ω
(
2poly(k)

)
for one

class of CL graphs. We choose our running example of power law graphs with coefficient above
two and under Assumption 1. It is well known that large CL graphs under Assumption 1 are locally
tree-like (Van Der Hofstad, 2024, Theorem 3.18) which we tacitly exploit in the following induction
proof.

The proof is via induction over t. We start with t = 1 and the corresponding 1-hop neighborhood.
The neighborhood consists of k agents where each one has a degree in [k] and a state in X . Since the
agents themselves are indistinguishable in our model, we focus on the degree-state neighborhood
distributions. Then, the set of possible state-degree neighborhood distributions can be seen as the
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integer points in a (k+ |X | − 1)-dimensional simplex with edge length k. Keeping in mind Equation
(1) and the well-known Stirling approximation, see e.g. Marsaglia & Marsaglia (1990), we obtain

NG,t ≥
(
k + |X | − 1 + k

k + |X | − 1

)
=

(2k + |X | − 1)!

(k + |X | − 1)!k!

Stirling∼
√

2π(2k + |X | − 1)

2π(k + |X | − 1)2πk

(2k + |X | − 1)2k+|X |−1

(k + |X | − 1)k+|X |−1kk

≥ 1√
2πk

(2k + |X | − 1)k

kk

≥ 2k√
2πk

= 2k−1/2·log2(2πk) ∈ Θ
(
2poly(k)

)
.

Now, it remains to establish the induction step from t to t + 1 where we assume that NG,t ∈
Ω
(
2poly(k)

)
holds. Then, instead of looking at the (t+ 1)-hop neighborhoods of the initial agent, we

can equivalently look at his or her 1-hop neighborhoods where each neighbor’s ’extended state’ now
consists of the neighbor’s t-hop neighborhood, where we ignore the edge between the neighbor and
initial agent. Thus, the simplex edge length decreases by one from k to k − 1 which is negligible for
large k. Leveraging the induction assumption, we obtain

NG,t+1 = Ω

((
NG,t + k

k

))
= Ω

(
(NG,t + k)!

k!NG,t!

)
Stirling
= Ω

(√
NG,t + k

kNG,t

(NG,t + k)NG,t+k

N
NG,t

G,t kk

)

= Ω

(
1√
k

(NG,t + k)k

kk

)
(IA)
= Ω

(
1√
k

(
2poly(k)

)k
kk

)
= Ω

(
2k·poly(k)−(k+1/2) log2(k)

)
= Ω

(
2poly(k)

)
which concludes the proof.

B EXTENSIVE APPROXIMATION DERIVATION

The goal of the following section is to establish a detailed approximation of the probability

Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x
)
.

First, we condition on the previous neighborhood distribution and the previous state of the agent at
time t

Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x
)

=
∑
x′∈X

Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x, xt = x′)
=
∑

G′∈Gk

∑
x′∈X

Pπ,µ

(
Gk

t+1 (µt) = G,Gk
t (µt) = G′, xt+1 = x, xt = x′) .
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Now, we can decompose the above expression into three separate terms

Pπ,µ

(
Gk

t+1 (µt) = G,Gk
t (µt) = G′, xt+1 = x, xt = x′)

= Pπ,µ

(
Gk

t (µt) = G′, xt = x′)︸ ︷︷ ︸
(I)

·Pπ,µ

(
xt+1 = x | Gk

t (µt) = G′, xt = x′)︸ ︷︷ ︸
(II)

· Pπ,µ

(
Gk

t+1 (µt) = G | Gk
t (µt) = G′, xt+1 = x, xt = x′)︸ ︷︷ ︸
(III)

which allows us to handle each term individually. Since we require a recursive computation of the
probability Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x
)
, the first term (I) will not be reformulated any further.

The computation of the second term (II) is straight-forward, i.e.

Pπ,µ

(
xt+1 = x | Gk

t (µt) = G′, xt = x′) = ∑
u∈U

πk (u | x′)P (x | x′, u,G′) .

Thus, it remains to approximate the third term (III)

Pπ,µ

(
Gk

t+1 (µt) = G | Gk
t (µt) = G′, xt+1 = x, xt = x′)

= Pπ,µ

(
Gk

t+1 (µt) = G | Gk
t (µt) = G′, xt = x′) .

To ensure a reasonable approximation complexity, we make the simplifying assumption that the
neighborhood distribution does not (crucially) depend on the current state of the agent of interest, i.e.

Pπ,µ

(
Gk

t+1 (µt) = G | Gk
t (µt) = G′, xt = x′) ≈ Pπ,µ

(
Gk

t+1 (µt) = G | Gk
t (µt) = G′) .

Thus, we focus on

Pπ,µ

(
Gk

t+1 (µt) = G | Gk
t (µt) = G′)

which requires an involved combinatorial argument to be calculated. The main difficulty in the
calculation stems from the fact that the k neighbors of the initial agent in general have different
degrees, different states at time t as well as different states at time t + 1. For notational conve-
nience, we denote by x1,t, . . . , xk,t the states of the k neighbors of the initial agent at time t and
by deg1, . . . ,degk∗ ,deg∞ ∈ {1, . . . , k} the number of neighbors with the respective degree. Also,
define Ck := {c = (c1, . . . , ck∗ , c∞) ∈ Nk∗+1

0 : c1+ . . .+ck∗+c∞ = k} for notational convenience.
Then, the above probability can be expressed as

Pπ,µ

(
Gk

t+1 (µt) = G | Gk
t (µt) = G′)

=
∑
c∈Ck

Pπ,µ

(
Gk

t+1 (µt) = G,deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞ | Gk
t (µt) = G′)

=
∑
c∈Ck

Pπ,µ

(
deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞ | Gk

t (µt) = G′)
· Pπ,µ

(
Gk

t+1 (µt) = G | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk
t (µt) = G′) .

In the remainder of the derivation, we will frequently use for all s ∈ X ,m ∈ N, and t ∈ T the
approximation

P
(
x1
t = s | deg(v1) = m, (v0, v1) ∈ E

)
≈ P

(
x1
t = s | deg(v1) = m

)
= µm

t (s) . (2)

Next, we make an auxiliary calculation to calculate the degree distribution of a (uniformly at random
picked) node v1 conditional on its state x1

t and that it is a neighbor of the initial node v0 of interest

P
(
deg(v1) = m | x1

t = s, (v0, v1) ∈ E
)

=
P
(
deg(v1) = m ∩ x1

t = s | (v0, v1) ∈ E
)

P (x1
t = s | (v0, v1) ∈ E)

=
P (deg(v1) = m | (v0, v1) ∈ E)P

(
x1
t = s | deg(v1) = m, (v0, v1) ∈ E

)
P (deg(v1) > k∗ ∩ x1

t = s | (v0, v1) ∈ E) +
∑k∗

k=1 P (deg(v1) = k ∩ x1
t = s | (v0, v1) ∈ E)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(2)
≈

P (deg(v1) = m | (v0, v1) ∈ E)µm
t (s)

P (deg(v1) > k∗ ∩ x1
t = s | (v0, v1) ∈ E) +

∑k∗

k=1 P (deg(v1) = k ∩ x1
t = s | (v0, v1) ∈ E)

=
P (deg(v1) = m | (v0, v1) ∈ E)µm

t (s)

P (deg(v1) > k∗ | (v0, v1) ∈ E)µ∞
t (s) +

∑k∗

k=1 P (deg(v1) = k | (v0, v1) ∈ E)µk
t (s)

where we exploit that

P
(
deg(v1) > k∗ ∩ x1

t = s | (v0, v1) ∈ E
)
+

k∗∑
k=1

P
(
deg(v1) = k ∩ x1

t = s | (v0, v1) ∈ E
)

= P (deg(v1) > k∗ | (v0, v1) ∈ E)P
(
x1
t = s | deg(v1) > k∗, (v0, v1) ∈ E

)
+

k∗∑
k=1

P (deg(v1) = k | (v0, v1) ∈ E)P
(
x1
t = s | deg(v1) = k, (v0, v1) ∈ E

)
(2)
≈P (deg(v1) > k∗ | (v0, v1) ∈ E)µ∞

t (s) +

k∗∑
k=1

P (deg(v1) = k | (v0, v1) ∈ E)µk
t (s) .

For the running example of power law degree distributions with exponent γ ∈ (2, 3), the conditional
degree distribution is approximately

P
(
deg(v1) = m | x1

t = sj , (v0, v1) ∈ E
)

≈
m1−γ

ζ(γ−1)µ
m
t (sj)

1
ζ(γ−1)

[∑∞
ℓ=k∗+1 ℓ

1−γ
]
µ∞
t (sj) +

1
ζ(γ−1)

∑k∗

h=1 h
1−γµh

t (sj)

=
m1−γµm

t (sj)[∑∞
ℓ=k∗+1 ℓ

1−γ
]
µ∞
t (sj) +

∑k∗

h=1 h
1−γµh

t (sj)
.

Based on the above probability and by the symmetry of the model, we obtain

Pπ,µ

(
deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞ | Gk

t (µt) = G′)
=

∑
a2∈Ak

2 (G
′,c)

Pπ,µ

(
A2 = a2,deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞ | Gk

t (µt) = G′)
=

∑
a2∈Ak

2 (G
′,c)

Pπ,µ

(
A2 = a2 | Gk

t (µt) = G′)

≈
∑

a2∈Ak
2 (G

′,c)

d∏
j=1

(
g′j

aj1, . . . , aj∞

) ∏
m∈[k∗]∪{∞}

(P
(
deg(v1) = m | x1

t = sj , (v0, v1) ∈ E
)
)ajm

where we neglect dependencies between the nodes in the last line and define the matrix set Ak
2(G

′, c)

for given G′ ∈ Gk and c ∈ Ck as

Ak
2(G

′, c) :=
{
a2 = (ajm)j∈[d],m∈[k∗]∪{∞} ∈ Nd×(k∗+1)

0 :

∑
m′∈[k∗]∪{∞}

ajm′ = g′j ,∀j ∈ [d] and
d∑

ℓ=1

aℓm = cm,∀m ∈ [k∗] ∪ {∞}

 .

Therefore, it remains to calculate the conditional probability

Pπ,µ

(
Gk

t+1 (µt) = G | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk
t (µt) = G′) .

As a first step, we define the set of matrices Ak
3(G,G′, c) for a given triple of vectors G,G′ ∈ Gk

and c ∈ Ck as

Ak
3(G,G′, c) :=

{
a3 = (aijm)i,j∈[d],m∈[k∗]∪{∞} ∈ Nd×d×(k∗+1)

0 :
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∑
m′∈[k∗]∪{∞}

d∑
ℓ=1

aiℓm′ = gi and
∑

m′∈[k∗]∪{∞}

d∑
ℓ=1

aℓjm′ = g′j , ∀i, j ∈ [d]

and
d∑

ℓ,ℓ′=1

aℓℓ′m = cm,∀m ∈ [k∗] ∪ {∞}

 .

where d := |X | is the finite number of states. Intuitively, the matrix set Ak
3(G,G′, c) for an agent

with degree k contains all possible numbers (aijm)i,j∈[d],m∈[k∗]∪{∞} of neighbors whose degree
is m and current state is xi and who transition to state xj in the next time step. For notational
convenience, let A denote the random variable taking values in Ak

3(G,G′, c) and analogously let A2

be the random variable with values in Ak
2(G

′, c). We continue with the reformulation

Pπ,µ

(
Gk

t+1 (µt) = G | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk
t (µt) = G′)

=
∑

a2∈Ak
2 (G

′,c)

Pπ,µ

(
A2 = a2 | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′)
· Pπ,µ

(
Gk

t+1 (µt) = G | A2 = a2,deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk
t (µt) = G′)

=
∑

a2∈Ak
2 (G

′,c)

Pπ,µ

(
A2 = a2 | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′)
· Pπ,µ

(
Gk

t+1 (µt) = G | A2 = a2

)
.

Next, we consider the two conditional probabilities separately. We start with

Pπ,µ

(
A2 = a2 | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′)
=

Pπ,µ

(
A2 = a2 ∩ deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′)
Pπ,µ

(
deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′
)

=
Pπ,µ (A2 = a2)

Pπ,µ

(
deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′
) .

Keeping in mind both

Pπ,µ (A2 = a2 = (ajm)j,m) ≈
d∏

j=1

∏
m∈[k∗]∪{∞}

(P (deg(v1) = m | (v0, v1) ∈ E)µm
t (sj))

ajm

by neglecting dependencies between the nodes and

Pπ,µ

(
deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′)
=

∑
a2∈Ak

2 (G
′,c)

Pπ,µ

(
deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′, A2 = a2

)
=

∑
a2∈Ak

2 (G
′,c)

Pπ,µ (A2 = a2)

=
∑

a2∈Ak
2 (G

′,c)

d∏
j=1

∏
m∈[k∗]∪{∞}

(P (deg(v1) = m | (v0, v1) ∈ E)µm
t (sj))

ajm

we obtain

Pπ,µ

(
A2 = a2 | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′)
=

Pπ,µ (A2 = a2)

Pπ,µ

(
deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′
)

≈
∏d

j=1

∏
m∈[k∗]∪{∞} (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
ajm∑

a′
2∈Ak

2 (G
′,c)

∏d
j=1

∏
m∈[k∗]∪{∞} (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
a′
jm
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and especially, for the case of a power law degree distribution with γ ∈ (2, 3), we have

Pπ,µ

(
A2 = a2 | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′)
=

∏d
j=1

(
µ∞
t (sj)

(
1−∑k∗

m′=1
(m′)1−γ

ζ(γ−1)

))aj∞ ∏k∗

m=1

(
m1−γµm

t (sj)
ζ(γ−1)

)ajm

∑
a′

2∈Ak
2 (G

′,c)

∏d
j=1

(
µ∞
t (sj)

(
1−∑k∗

m′=1
(m′)1−γ

ζ(γ−1)

))a′
j∞ ∏k∗

m=1

(
m1−γµm

t (sj)
ζ(γ−1)

)a′
jm

≈
∏d

j=1

(
µ∞
t (sj)

(
ζ(γ − 1)−∑k∗

m′=1(m
′)1−γ

))aj∞ ∏k∗

m=1

(
m1−γµm

t (sj)
)ajm

∑
a′

2∈Ak
2 (G

′,c)

∏d
j=1

(
µ∞
t (sj)

(
ζ(γ − 1)−∑k∗

m′=1(m
′)1−γ

))a′
j∞ ∏k∗

m=1 (m
1−γµm

t (sj))
a′
jm

.

Now, it remains to calculate the second probability term, namely

Pπ,µ

(
Gk

t+1 (µt) = G | A2 = a2

)
.

Exploiting the symmetry of the problem, we obtain

Pπ,µ

(
Gk

t+1 (µt) = G | A2 = a2

)
≈

∑
a3∈Ak(G,G′,c)

d∏
j=1

∏
m∈[k∗]∪{∞}

( ∑
i aijm

a1jm, . . . , adjm

)
1{

∑
i aijm=ajm}

·
d∏

i=1

(
Pπ,µ

(
x1
t+1 = xi | x1

t = xj ,deg(v1) = m
))aijm

≈
∑

a3∈Ak(G,G′,c)

d∏
j=1

∏
m∈[k∗]∪{∞}

( ∑
i aijm

a1jm, . . . , adjm

)
1{

∑
i aijm=ajm}

·
d∏

i=1

( ∑
G′′∈Gm

Pπ (Gm
t (µt) = G′′ | x′′

t = sj)
∑
u∈U

πm
t (u | sj) · P (si | sj , u,G′′)

)aijm

where 1{...} denotes the indicator function and where we neglect the potential dependencies between
the neighbors of the initial node in the second line. Finally, we arrive at

Pπ,µ

(
Gk

t+1 (µt) = G | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk
t (µt) = G′)

=
∑

a2∈Ak
2 (G

′,c)

Pπ,µ

(
A2 = a2 | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk

t (µt) = G′)
· Pπ,µ

(
Gk

t+1 (µt) = G | A2 = a2

)
≈

∑
a2∈Ak

2 (G
′,c)

∏d
j=1

∏
m∈[k∗]∪{∞} (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
ajm∑

a′
2∈Ak

2 (G
′,c)

∏d
j=1

∏
m∈[k∗]∪{∞} (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
a′
jm

· Pπ,µ

(
Gk

t+1 (µt) = G | A2 = a2

)
≈

∑
a2∈Ak

2 (G
′,c)

∏d
j=1

∏
m∈[k∗]∪{∞} (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
ajm∑

a′
2∈Ak

2 (G
′,c)

∏d
j=1

∏
m∈[k∗]∪{∞} (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
a′
jm

∑
a3∈Ak

3 (G,G′,c)

d∏
j=1

∏
m∈[k∗]∪{∞}

( ∑
i aijm

a1jm, . . . , adjm

)
1{

∑
i aijm=ajm}

·
d∏

i=1

( ∑
G′′∈Gm

Pπ (Gm
t (µt) = G′′ | x′′

t = sj)
∑
u∈U

πm
t (u | sj) · P (si | sj , u,G′′)

)aijm

and for the running example of power law graphs we especially obtain

Pπ,µ

(
Gk

t+1 (µt) = G | deg1 = c1, . . . ,degk∗ = ck∗ ,deg∞ = c∞,Gk
t (µt) = G′)
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≈
∑

a2∈Ak
2 (G

′,c)

∏d
j=1

(
µ∞
t (sj)

(
1−∑k∗

m′=1
(m′)1−γ

ζ(γ−1)

))aj∞ ∏k∗

m=1

(
m1−γµm

t (sj)
ζ(γ−1)

)ajm

∑
a′

2∈Ak
2 (G

′,c)

∏
j

(
µ∞
t (sj)

(
1−∑k∗

m′=1
(m′)1−γ

ζ(γ−1)

))a′
j∞ ∏k∗

m=1

(
m1−γµm

t (sj)
ζ(γ−1)

)a′
jm

∑
a3∈Ak

3 (G,G′,c)

d∏
j=1

∏
m∈[k∗]∪{∞}

( ∑
i aijm

a1jm, . . . , adjm

)
1{

∑
i aijm=ajm}

·
d∏

i=1

( ∑
G′′∈Gm

Pπ (Gm
t (µt) = G′′ | x′′

t = sj)
∑
u∈U

πm
t (u | sj) · P (si | sj , u,G′′)

)aijm

=
∑

a3∈Ak
3 (G,G′,c)

∏d
j=1

(
µ∞
t (sj)

(
1−∑k∗

m′=1
(m′)1−γ

ζ(γ−1)

))aj∞ ∏k∗

m=1

(
m1−γµm

t (sj)
ζ(γ−1)

)ajm

∑
a′

2∈Ak
2 (G

′,c)

∏
j

(
µ∞
t (sj)

(
1−∑k∗

m′=1
(m′)1−γ

ζ(γ−1)

))a′
j∞ ∏k∗

m=1

(
m1−γµm

t (sj)
ζ(γ−1)

)a′
jm

d∏
j=1

∏
m∈[k∗]∪{∞}

( ∑
i aijm

a1jm, . . . , adjm

)

·
d∏

i=1

( ∑
G′′∈Gm

Pπ (Gm
t (µt) = G′′ | x′′

t = sj)
∑
u∈U

πm
t (u | sj) · P (si | sj , u,G′′)

)aijm

.

Resulting Approximation Eventually, we obtain the approximation

Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x
)

≈
∑

G′∈Gk

∑
x′∈X

Pπ,µ

(
Gk

t (µt) = G′, xt = x′) [∑
u∈U

πk (u | x′)P (x | x′, u,G′)

]

·
∑
c∈Ck

 ∑
a2∈Ak(G′,c)

d∏
j=1

(
g′j

aj1, . . . , aj∞

) ∏
m∈[k∗]∪{∞}

·
(

P (deg(v1) = m | (v0, v1) ∈ E)µm
t (sj)

P (deg(v1) > k∗ | (v0, v1) ∈ E)µ∞
t (sj) +

∑k∗

k=1 P (deg(v1) = k | (v0, v1) ∈ E)µk
t (sj)

)ajm
]

· 1∑
a′

2∈Ak
2 (G

′,c)

∏
j,m (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
a′
jm

∑
a3∈Ak

3 (G,G′,c)

d∏
j=1

∏
m∈[k∗]∪{∞}

( ∑
i aijm

a1jm, . . . , adjm

) d∏
i=1

(P (deg(v1) = m | (v0, v1) ∈ E)µm
t (sj))

aijm

·
( ∑

G′′∈Gm

Pπ (Gm
t (µt) = G′′ | x′′

t = sj)
∑
u∈U

πm
t (u | sj) · P (si | sj , u,G′′)

)aijm

which, for the power law running example, can be reformulated as

Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x
)

≈
∑

G′∈Gk

∑
x′∈X

Pπ,µ

(
Gk

t (µt) = G′, xt = x′) [∑
u∈U

πk (u | x′)P (x | x′, u,G′)

]

·
∑
c∈Ck

 ∑
a2∈Ak(G′,c)

d∏
j=1

(
g′j

aj1, . . . , aj∞

)

·
∏

m∈[k∗]∪{∞}

(
m1−γµm

t (sj)[∑∞
ℓ=k∗+1 ℓ

1−γ
]
µ∞
t (sj) +

∑k∗

h=1 h
1−γµh

t (sj)

)ajm
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·
∑

a3∈Ak
3 (G,G′,c)

∏d
j=1

(
µ∞
t (sj)

(
1−∑k∗

m′=1
(m′)1−γ

ζ(γ−1)

))aj∞ ∏k∗

m=1

(
m1−γµm

t (sj)
ζ(γ−1)

)ajm

∑
a′

2∈Ak
2 (G

′,c)

∏
j

(
µ∞
t (sj)

(
1−∑k∗

m′=1
(m′)1−γ

ζ(γ−1)

))a′
j∞ ∏k∗

m=1

(
m1−γµm

t (sj)
ζ(γ−1)

)a′
jm

d∏
j=1

∏
m∈[k∗]∪{∞}

( ∑
i aijm

a1jm, . . . , adjm

)

·
d∏

i=1

( ∑
G′′∈Gm

Pπ (Gm
t (µt) = G′′ | x′′

t = sj)
∑
u∈U

πm
t (u | sj) · P (si | sj , u,G′′)

)aijm

For notational convenience, define for each j ∈ [d] and m ∈ [k∗] ∪ {∞}

pjm :=
P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj)

P (deg(v1) > k∗ | (v0, v1) ∈ E)µ∞
t (sj) +

∑k∗

k=1 P (deg(v1) = k | (v0, v1) ∈ E)µk
t (sj)

and for each i, j ∈ [d] and m ∈ [k∗] ∪ {∞}
pijm := P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj)

·
∑

G′′∈Gm

Pπ (Gm
t (µt) = G′′ | x′′

t = sj)
∑
u∈U

πm
t (u | sj) · P (si | sj , u,G′′) .

Then, the extensive approximation can be rewritten more compactly as

Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x
)

≈
∑

G′∈Gk

∑
x′∈X

Pπ,µ

(
Gk

t (µt) = G′, xt = x′) [∑
u∈U

πk (u | x′)P (x | x′, u,G′)

]

·
∑
c∈Ck

 ∑
a2∈Ak

2 (G
′,c)

d∏
j=1

(
g′j

aj1, . . . , aj∞

) ∏
m∈[k∗]∪{∞}

p
ajm

jm


·
∑

a3∈Ak
3 (G,G′,c)

∏d
j=1

∏
m∈[k∗]∪{∞}

( ∑
i aijm

a1jm,...,adjm

)∏d
i=1 p

aijm

ijm∑
a2∈Ak

2 (G
′,c)

∏
j,m (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
ajm

.

Furthermore, we introduce
p2,j := (pj1, . . . , pjk∗ , pj∞) and a2,j := (aj1, . . . , ajk∗ , aj∞)

for every j ∈ [d] and similarly we define
p3,jm := (p1jm, . . . , pdjm) and a3,jm := (a1jm, . . . , adjm)

for every tuple (j,m) ∈ [d]× ([k∗] ∪ {∞}). Then, the extensive approximation can be formulated as

Pπ,µ

(
Gk

t+1 (µt) = G, xt+1 = x
)

≈
∑

G′∈Gk

∑
x′∈X

Pπ,µ

(
Gk

t (µt) = G′, xt = x′) [∑
u∈U

πk (u | x′)P (x | x′, u,G′)

]

·
∑

c∈Ck

[∑
a2∈Ak

2 (G
′,c)

∏
j Multp2,j

(a2,j)
]∑

a3∈Ak
3 (G,G′,c)

∏
j,m Multp3,jm

(a3,jm)∑
a2∈Ak

2 (G
′,c)

∏
j,m (P (deg(v1) = m | (v0, v1) ∈ E)µm

t (sj))
ajm

.

C SIMULATION DETAILS

We use MARLlib 1.0.0 (Hu et al., 2023a) building on RLlib 1.8.0 (Apache-2.0 license) (Liang et al.,
2018) and its PPO implementation (Schulman et al., 2017) for IPPO and our algorithms. For our
experiments, we used around 80 000 core hours on Intel Xeon Platinum 9242 CPUs, and each training
run usually took a single day of training on up to 96 parallel CPU cores. For the policies we used two
hidden layers of 256 nodes with tanh activations. We used a discount factor of γ = 0.99 with GAE
λ = 1.0, and training and minibatch sizes of 4000 and 1000, performing 5 updates per training batch.
The KL coefficient and clip parameter were set to 0.2, with a KL target of 0.03. The learning rate
was set to 0.00005. The problem details are found in the following.
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Susceptible-Infected-Susceptible (SIS). In the SIS model with state space X := {S, I}, agents
are either infected (I) or susceptible to a virus (S). At each time step t ∈ T , agents either protect
themselves (P ) or not (P̄ ) which is formalized by the action space U := {P, P̄}. As usual, the game
terminates at finite terminal time T ∈ N which can be interpreted as the time when a cure for the
virus is found. Therefore, it remains to specify the transition dynamics. Susceptible agents who
protect themselves at time t also remain susceptible at time t+ 1, i.e.

P k(S | S, P,G) = 1 and P k(I | S, P,G) = 0,

irrespective of their degree k and neighborhood G. On the other hand, if a susceptible agent chooses
action P̄ , the transition dynamics are

P k(I | S, P̄ ,G) = ρI ·G(I) ·
(

2

1 + exp(−k/2)
− 1

)
and P k(S | S, P̄ ,G) = 1− P k(I | S, P̄ ,G), correspondingly, and where ρI > 0 is a fixed infection
rate. Apart from that, infected agents recover with some fixed recovery rate 1 ≥ ρR ≥ 0, independent
of their action and degree, which means that

P k(S | I, P̄ , G) = P k(S | I, P,G) = ρR .

To complete the model, the reward per agent taking action u ∈ U in state x ∈ X at each time t is
r(x, u) = −cP · 1P (u)− cI · 1I(x),

where the cooperative objective J is obtained by talking the average reward over all agents and
summing up over all time points. Here, cP and cI denote the constant costs of protecting oneself and
being infected, respectively. In our experiments from the main text, the chosen parameter values are
µ0(I) = 0.4, µ0(S) = 0.6, T = 50, ρI = 0.4, ρR = 0.1, cP = 0.5, and cI = 1.

Susceptible-Infected-Recovered (SIR). In the SIR model, we extend the state space from the
SIS by the recovered state R and obtain X := {S, I,R}. As only infected agents can recover, the
transition dynamics of the SIS model are modified by

P k(R | I, P̄ , G) = P k(R | I, P,G) = ρR

and
P k(R | R, P̄ ,G) = P k(R | R,P,G) = 1,

to formalize that recovered agents cannot become susceptible or infected again. The rewards and
hence objective remain the same as in the SIS model. In the experiments, we set the parameter values
µ0(I) = 0.1, µ0(S) = 0.9, T = 50, ρI = 0.1, ρR = 0.02, cP = 0.25, and cI = 1.

Graph coloring (Color). In this problem, the state space consists of five colors X :=
{x1, x2, x3, x4, x5} allocated on a circle. Agents can move from the current color to the next
color on the left (ℓ), to the next one on the right (r), or stay at their current color (s) such that
the action space is U := {ℓ, r, s}. The group of agents is also supposed to come close to a target
distribution ν ∈ P(X ). To keep notations manageable, we make the auxiliary definition

G̃k := min(1, G2 · ρd · exp(−2/k)),

where ρd > 0 is a constant noise factor. The following three matrices specify the transition dynamics,
where the row is the current agent color and the column is the next agent color:

P k(· | ·, ℓ, G) =


G̃k(x1)/2 0 0 G̃k(x1)/2 1− G̃k(x1)

1− G̃k(x2) G̃k(x2)/2 0 0 G̃k(x2)/2

G̃k(x3)/2 1− G̃k(x3) G̃k(x3)/2 0 0

0 G̃k(x4)/2 1− G̃k(x4) G̃k(x4)/2 0

0 0 G̃k(x5)/2 1− G̃k(x5) G̃k(x5)/2


and

P k(· | ·, s,G) =


1− G̃k(x1) G̃k(x1)/2 0 0 G̃k(x1)/2

G̃k(x2)/2 1− G̃k(x2) G̃k(x2)/2 0 0

0 G̃k(x3)/2 1− G̃k(x3) G̃k(x3)/2 0

0 0 G̃k(x4)/2 1− G̃k(x4) G̃k(x4)/2

G̃k(x5)/2 0 0 G̃k(x5)/2 1− G̃k(x5)
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and

P k(· | ·, r,G) =


G̃k(x1)/2 1− G̃k(x1) G̃k(x1)/2 0 0

0 G̃k(x2)/2 1− G̃k(x2) G̃k(x2)/2 0

0 0 G̃k(x3)/2 1− G̃k(x3) G̃k(x3)/2

G̃k(x4)/2 0 0 G̃k(x4)/2 1− G̃k(x4)

1− G̃k(x5) G̃k(x5)/2 0 0 G̃k(x5)/2

 .

The reward in our graph coloring model is defined as

r(xj , u,G) := − (1ℓ(u) + 1r(u)) · cm − (G(xj−1) +G(xj+1)) · cd −
5∑

i=1

|µ(xi)− ν(xi)| · cν ,

where cm, cd, cν > 0 are the costs of moving, having neighbors with neighboring colors, and
deviating from the target distribution ν, respectively. In our experiments, we choose the parameters
µ0 = (1, 0, 0, 0, 0), ν = (0.1, 0.2, 0.4, 0.2, 0.1), T = 20, ρd = 0.9, cm = 0.1, cd = 0.5, and cν = 1.

Rumor. The state space X := {I, A} in the rumor model consists of the state A where an agent is
aware of a rumor and state I where the agent does not know the rumor and is therefore ignorant of the
rumor. Agents either spread the rumor S or decide not to do so S̄ which results in the action space
U := {S, S̄}. Since the rumor spreading probability increases with the number of aware numbers
who decide to spread the rumor, we work with the extended state space X ′ := X ∪ (X × U). Then,
the transition dynamics are

P k((A, u) | A, u,G) = P k(A | (A, u), u,G) = 1, ∀u ∈ U , G ∈ Gk, k ∈ N

meaning that aware agents remain aware, and furthermore

P k((I, u) | I, u,G) = 1, ∀u ∈ U , G ∈ Gk, k ∈ N

and

P k(A | (I, u), u,G) = min

(
1, ρA ·G((A,S)) ·

(
2

1 + exp(−k/2)
− 1

))
P k(I | (I, u), u,G) = 1− P k(A | (I, u), u,G) .

To complete the rumor model, the reward is given by

r(x, u,G) = 1(A,S)(x) ·
(
rS ·G((I, S)) + rS ·G((I, S̄))− cS ·G((A,S))− cS ·G((A, S̄))

)
for each agent, where we obtain the overall objective by averaging over the individual rewards. In our
experiments, the parameters are chosen as µ0(A) = 0.1, µ0(I) = 0.9, T = 50, ρA = 0.3, cS = 16,
and rS = 4.
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