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Abstract

Tensors play a crucial role in numerous scien-
tific and engineering fields. This paper addresses
the low-multilinear-rank tensor completion prob-
lem, a fundamental task in tensor-related ap-
plications. By exploiting the manifold struc-
ture inherent to fixed-multilinear-rank tensor set,
we introduce a simple yet highly effective pre-
conditioned Riemannian metric and propose the
Preconditioned Riemannian Gradient Descent
(PRGD) algorithm. Compared to the standard
Riemannian Gradient Descent (RGD), PRGD
achieves faster convergence while maintaining
the same order of per-iteration computational
complexity. Theoretically, we provide the re-
covery guarantee for PRGD under near-optimal
sampling complexity. Numerical results high-
light the efficiency of PRGD, outperforming
state-of-the-art methods on both synthetic data
and real-world video inpainting tasks. Code
is available at https://github.com/Jiushanqing-
0418/PRGD-Tucker.

1. Introduction

Tensors are multidimensional arrays, which are routinely
arising in different fields, such as community detection (Jing
etal., 2021; Zhen & Wang, 2023), multi-dimensional recom-
mendation system (Zhou et al., 2024), video and hyperspec-
tral image processing (Zhang et al., 2021; Yang et al., 2023),
signal processing (Chang & Wu, 2022) and quantum state
tomography (Qin et al., 2024). In this paper, we consider the
tensor completion problem, where the goal is to reconstruct
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the underlying three-order tensor X, € R™ *"2X"3 from its
partially observed entries:

Xi(i, 5, k), (1,5, k) € Q,

where (2 is the index set of observed entries. However, with-
out any assumptions, the problem is ill-possed since the
number of observed entries || is usually much smaller than
the ambient dimension njnons. One commonly adopted
assumption is the low-rankness of X,. Compared to matri-
ces, tensors possess a richer variety of rank notions, each
associated with different tensor decomposition structures.
Examples include the CP decomposition (Hitchcock, 1927),
Tucker decomposition (Tucker, 1966), Tensor-Train decom-
position (Oseledets, 2011) and several others (Kolda &
Bader, 2009). In this work, we focus on the Tucker de-
composition and its associated multilinear rank. The low-
multilinear-rank tensor completion problem is formulated
as follows:

£() = 5 Pa(X) = Pa(Xo)|3

min
XeRn1Xn2xn3 (1)
s.t. rank(X) =7,
where » = (ry,79,r3) is the multilinear rank satisfies

r; < n,; forall i = 1,2,3, Pq is a projection operator
for element-wisely sampling and || - || p denotes the Frobe-
nius norm.

1.1. Related Works

Compared with low-rank matrix completion, low-rank ten-
sor completion presents unique challenges due to its more
sophisticated algebraic structure. For instance, while nu-
clear norm minimization achieves near-optimal sampling
complexity for low-rank matrix completion (Candes & Tao,
2010), computing the tensor nuclear norm is NP-hard (Fried-
land & Lim, 2018) and applying nuclear norm minimization
on tensor’s unfolding matrices results in suboptimal sam-
pling complexity O(n2) (where n = max;—123n; and
assume r; = O(1),i = 1,2,3) (Mu et al., 2014; Huang
et al., 2015). The state-of-the-art sampling complexity of
polynomial-time algorithms is O(n3/2) (Cai et al., 2022b;
Tong et al., 2022; Wang et al., 2023), which is considered
near-optimal given the conjecture that no polynomial-time
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algorithm can achieve a sampling complexity lower than
this threshold (Barak & Moitra, 2016). These algorithms
can be broadly categorized into two main types.

The first category consists of algorithms based on the factor-
ization form of the Tucker format, where the optimization
variables are factor matrices and the core tensor. Among
them, (Xia & Yuan, 2019) assumed orthogonality of the fac-
tor matrices and proposed a Grassmannian gradient descent
algorithm. (Han et al., 2022) introduced regularization to
enforce orthogonal constraints on factor matrices, resulting
in a regularized gradient descent algorithm. (Tong et al.,
2022) developed a scaled gradient descent algorithm and
derived an iteration complexity that is independent of X,’s
condition number.

Another category involves algorithms that optimize directly
on the tensor variable and employ projection in each it-
eration to exploit the low-rank structure. (Rauhut et al.,
2017) developed an iterative hard thresholding algorithm
and (Chen et al., 2019) proposed a projected gradient de-
scent algorithm. Among those approaches, Riemannian
optimization methods are particularly noteworthy due to
their theoretical advantages and computational efficiency.
For instance, (Wang et al., 2023) developed the Riemannian
gradient descent algorithm and established the entrywise lin-
ear convergence guarantee. (Luo & Zhang, 2023) proposed
a Riemannian Gaussian-Newton algorithm that achieves a
quadratic convergence rate. Notably, Riemannian optimiza-
tion methods also exhibit an iteration complexity that is free
of the condition number (Cai et al., 2022b; 2023).

To the best of our knowledge, existing Riemannian opti-
mization methods developed on the fixed-multilinear-rank
manifold for (1) exclusively utilize the canonical metric
induced by the ambient space R™*"2*"s_ However, the
Riemannian metric can vary across points on the manifold,
providing the potential for more tailored designs. Thus, a
natural question arises:

Can we construct a more suitable Riemannian metric that en-
ables the resulting Riemannian gradient descent algorithm
for (1) to achieve faster convergence while maintaining
near-optimal sampling complexity?

Preconditioning techniques have long been recognized as
powerful tools to accelerate convergence. Our work con-
tributes to the recent strand of works on preconditioned
methods for tensor/matrix variable optimization problems
(Kasai & Mishra, 2016; Gupta et al., 2018; Tong et al.,
2022; Cai et al., 2022a; Gao et al., 2024; Bian et al., 2024;
2025). Notably, (Gupta et al., 2018) proposed a precondi-
tioned method, called Shampoo, for unconstrained tensor
optimization problems. This method constructs precondi-
tioners by accumulating outer products of historical gradi-
ents. However, Shampoo’s preconditioners are fully dense,

rendering them computationally expensive for large-scale
problems. In this work, we develop a simple yet efficient
preconditioner along with a data-driven Riemannian metric
on the tensor manifold, resulting in the PRGD algorithm
for (1). Numerical experiments on synthetic data show that
the proposed PRGD algorithm can be several times faster
than state-of-the-art algorithms. Additionally, we provide a
theoretical recovery guarantee, demonstrating that PRGD
achieves near-optimal sampling complexity.

1.2. Our Contributions

The main contributions of this work are summarized as
follows:

* Data-driven Riemannian metric and tangent space pa-
rameterization. We design a computationally efficient,
data-driven metric from the gradient and equip the tan-
gent space of the iterate on the manifold with this data-
driven metric. To compute the induced Riemannian
gradient, we introduce a novel tangent space parame-
terization along with a detailed analytical framework,
providing deeper insights into this method.

* PRGD algorithm and empirical studies. Building on
the data-driven metric and induced Riemannian gradi-
ent, we proposed the PRGD algorithm and empirical
studies on both synthetic and real datasets. The com-
putational complexity of PRGD maintains the same
order as RGD’s per iteration. The numerical results
demonstrate that PRGD can be several times faster
than state-of-the-art algorithms.

* Recovery guarantee. We analyze the theoretical proper-
ties of PRGD and establish that, with proper initializa-
tion, such as using spectral methods, PRGD converges
linearly to the global minimizer with a contracting
factor that is independent of the condition number. Fur-
thermore, PRGD achieves a near-optimal sampling
complexity of O(n?/2).

Notations. In this paper, we use the calligraphic letters
(X, X) to denote tensors, bold-face capital letters (U, U)
to denote matrices, lower case bold-face letters (x,y) to
denote vectors, mathematical scripts (£, .#) to denote
operators, and blackboard bold-face letters (R, M) to de-
note sets. Additionally, for matrix U € R™:*"2  we
define |U||2,00 := maxy ||U(k,:)|2 is the {3 o norm of
U. We define o = (nynzn3)'/? as the geometric mean,
N = max;—1,23Mn; and r = max;—; 2 3 7;. For constant a
and b, a V b = max{a,b} and a A b = min{a, b}.
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2. Preliminaries
2.1. Tensor Operations and Tucker Format

We give a brief introduction of tensor notations here for the
paper to be self-contained, interested readers can refer to
(Kolda & Bader, 2009) for more details.

Tensor matricization and multiplication.  For tensor
X € R™M*72x7s the mode-1 matricization #;(X) €
N given by [%I(X)]ihiz,lé = Xil,(izfl)n2+i3
for iy, € [ng]. The A#o(X) and .#5(X) are defined sim-
ilarly. We denote x; as the the mode-7 tensor multiplica-
tion, for matrix U € R"™*™, the mode-1 multiplication
X x1 U e Rm*n2Xns gatisfies

Lﬁl(/’f X1 U) = U%l(X)

Multilinear rank and Tucker format. The multi-
linear rank of X is the collection rank(X) :=
(rank(e//ll(X)),rank(,//lg(X)),rank(%g(X))). If X has
multilinear rank » = (r1,72,73), then there exist D €
R™*72X7s and U,; € R™*" satisfying U U, =1,, for
1 =1, 2,3 such that

X =Dx},U,.
This is called the Tucker format of X.

Tensor condition number. For X with multilinear rank r» =
(r1,72,73). The condition number of X is defined as

Umax(X) -
O'min(X) '

max;—1,2,3 01 (A (X))

K= : ’
min;—1 .23 0r; (f//lz(X))

where o,.(+) is the 7-th largest singular value of input matrix.

Tensor norm. For tensor X,) € R™*"2X73 the inner
product between two tensors is defined as

=Y X(i,j, k)

1,5,k

V(i j, k).

The Frobenius norm is defined as ||X|| 7 = /(X, X).

2.2. Incoherence Condition

For the completion problem, it is crucial to assume the
information of A'* carries fairly among all its entries to
make the problem well-possed. The following two concepts
are widely studied to characterise such property (Yuan &
Zhang, 2016; Cai et al., 2023).

Definition 2.1 (Incoherence and Spikiness). For X, with
multilinear rank r = (rq,72,73) and X, = D, x3_, U?.
The the incoherence and spikiness parameter of &, are
defined as:

Incoh(X,) := max, \/7||U*||2 00;

and ¥
|| *”‘eoo \/W
X7

Spiki(X,) :=

A low incoherence or spikiness parameter indicates that
the entries of the tensor are evenly distributed, enabling a
small subset of entries to effectively capture and reveal the
structure of the entire tensor. The relationship between these
two parameters is as follows.

Lemma 2.2 (Lemma 13.5. (Cai et al., 2023)). Ler X,
with multilinear rank r = (r1,ra,73), Incoh(X,) = pu
and Spiki(X,) = v, then

2 < VKo,

where kg is the condition number of X,.

2.3. Fixed-Multilinear-Rank Manifold and RGD
Algorithm

For tensors in R™1 X"2X7s3 the set of tensors with multilinear
rank » = (71,72, r3) forms a smooth embedded submani-
fold, denoted as M., i.e.

M, = {X € R™*"2X" | rank(X) = r}.

Given X € M,., X = D x3_, U; with U] U; = I,..
Denote Ty the tangent space of X, given tensor Z, the
projection has the form

3
=C X?:l U, + ZD X Wi x5, Uj,

i=1

‘@TX(Z)

where C and W, are parameters computed via explicit for-
mulas by D, U;, and Z. By equipping M,. with the canoni-
cal metric, it becomes a Riemannian manifold. Riemannian
optimization method, recognized for their computational
efficiency and sampling optimality, have been extensively
studied for solving (1) (Kressner et al., 2014; Wang et al.,
2023; Luo & Zhang, 2023; Zhang et al., 2024). The Rieman-
nian gradient descent (RGD) algorithm iteratively generates
a sequence as follows:

Xl =, (Xt—at-gradf(Xt)), 2)

where grad f(X'?) is the Riemannian gradient at X, oy is
the stepsize, and Z%; is the retraction operator. The iteration
(2) contains the following two key components:

* Riemannian gradient and tangent space projection.
The Riemannian gradient depends on the metric
used in tangent space. Under the canonical metric,
grad f(X") = Pp ,Vf(X"), where V[ is the Eu-
clidean gradient of f in the space R™1*"2%"3_ By pro-
jecting the Euclidean gradient onto T 4+, the Rieman-
nian gradient is at most rank 27, rendering considerable
computational efficiency in subsequent retraction step
(Kressner et al., 2014; Cai et al., 2020).
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* Retraction by HOSVD. The retraction operator %, is
a map from tangent space T y¢ to manifold M,.. A
widely used choice for retraction is the high-order
singular value decomposition (HOSVD) operator .77;.
(De Lathauwer et al., 2000). For Z € R™1*Xn2xns,

H(2) =2 x>, Z,Z]

where Z; € R™*" is the r;-principle left singular
vector matrix of .#;(Z).

The efficiency of RGD is significantly influenced by the
choice of the Riemannian metric. This motivates the central
aim of this work: designing a more suitable Riemannian
metric on M. to achieve faster convergence.

3. Preconditioned RGD

3.1. Data-Driven Metric and Riemannian Gradient

Our preconditioners are derived from the gradient at each
iteration, yielding a data-driven metric tailored to the given
observations and algorithmic data. Recognizing the impor-
tance of incoherence and spikiness in tensor completion, our
preconditioner rescales the gradient entry-wise to enhance
these properties.

Let Gt := Pq(X') — Pq(X,) € R™*X"2Xn3 be the Eu-
clidean gradient of the objective function f at iterate X’*.
We define the following diagonal matrices for ¢ = 1, 2, 3:

Gri= (et I, + P (MG)AG)T))E . ()

where ¢, > 0 is a constant and Pgiag(-) sets the off-
diagonal elements of input matrix to zeros, making G ;
positive definite diagonal matrices. The exponent é is ap-
plied entrywise to the diagonal vectors and the value 6 is set
twice the tensor order for normalization. We then define a
new inner product in R™ %273 ag follows:

Y, Z)w = (1Y), 2) = (Y xiy Gri, 2). ()

where Y, Z € R"1*"2X"3 are two arbitrary tensors. It is
straightforward to verify that (-, ), is an inner product.
This weighted inner product is then endowed in the tangent
space T y¢, and our preconditioned Riemannian gradient
descent is derived under this metric.

Notice that G'; ; is a diagonal matrix whose diagonals are ap-
proximately the norms of mode-i slices of G'. Therefore, in
the preconditioned Riemannian gradient descent algorithm,
each element of G! is scaled by the inverse of the product
of its slice norms, which unifies its entries and enhances the
incoherence condition. We note that our preconditioner is
also closely related to Shampoo’s preconditioners (Gupta
et al., 2018), but we discard historical gradients and retain
only the diagonals of the preconditioner matrices, thereby

enhancing computational and memorial efficiency. Similar
preconditioner has also been developed in (Bian et al., 2024;
2025).

Proposition 3.1. For X € M,., denote %X as the projec-
tion operator onto T x under (-, )y, and G is the Euclidean

gradient at X. Then the Riemannian gradient gr/\a/df(X)
under our data-driven metric is:

gr’éﬁf(X) = %X%_lg-

However, it is difficult to directly obtain the explicit form
of Y, since the components in standard tangent space
parameterization are not orthogonal under our data-driven
metric (-, -),. We need to reparameterize the tangent space
T » according to our data-driven metric.

3.2. Tangent Space Parameterization

We first give the following lemma and the proof can be
found in the Appendix A.

Lemma 3.2. Given a gauge sequence G; € R"i*™i j =

1,2,3 (e.g. each G; is a symmetric positive definite matrix).
.~ ~T o~

For X € M, with X = D xle U,and U, GU; =

I..,i=1,2,3. Then each element in the tangent space at

X can be represented as:

3
CX?:l ﬁl—i-zp X Wz X j#i ﬁj (5)
=1

—~ ~ T —~
with W,; € R™*7i ljz GW, = Or”i = 1,2,3 and
C G RT’1X’I"2><T3.

Note that each G ; € R™ *"™ is positive definite. So we
canuse G ;’s as a gauge sequence in Lemma 3.2 and obtain
the following proposition.

Proposition 3.3. For X € M,., use G.;’s as a gauge se-
quence in Lemma 3.2, then the four components in (5) are
orthogonal to each other under (-, )y, :

(€ X3, ULDxi Wi Xz Ujyy, = 0,i = 1,2,3,
<D Xk Wk Xk ﬁj,D X1 ﬁ//l Xl ﬁ]>~/14 ZO,k 75 l.

3.3. The Closed form of Z; x

With the parameterization and orthogonality between com-
ponents in Lemma 3.2, we can derive the closed form of
Pr.,. (A) for arbitrary tensor A € R™*"2%"3_denote

3
@TX(A) :=Cqy X?:l U,; —|—ZD x; A; X £ Uj
=1
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T
with unknown C4 € R™*"2*" and U; G¢;A; = 0,,,1 =
1,2, 3, then it is equivalent to solve the following problem

2

3
min CAX?:1Ui+Z'DXiAi Xj#in*.A
CAv{Ai}?=1 i=1 v,

s.t. Ui Gt,iAi = 0”, 1= 1,2,3.
Here || - ||, is the induced norm of inner product (-, -); .

Due to Proposition 3.3, C 4 and A; can be solved individu-
ally:

~ 2
Ca = argmin HCA x3_U; — AH ,
Ca a
~ 2
A, = argmin HD X Ai X2 Uj — AHW .
t

U/ G..A=0,,
Thus, the explicit form of 2, can be derived, as summa-
rized in the following lemma:
-~ 1
Lemma 3.4. For tensor X € M, and X = #,>X =
1
X x3_, G/, € M, denote e@qy)? as projection operators

onto tangent space T  of X under Euclidean metric, then:

[NIE

P W

Py = V/t_ Ee
Lemma 3.4 indicates that compared to RGD, computing
the Riemannian gradient Zr #,7'G! in PRGD requires

two additional operations. The first operation, %_%gt,
costs O(|Q) since G is sparse. For the second operation
7/;% (:@T@ %7%@) . Pr WG liesin T g, thus can
be expressed as the sum of four multilinear-rank-r tensors.
The computational cost is O(nr). Consequently, our pro-
posed preconditioned strategy is efficient, as the additional
computational overhead is negligible compared to the com-
putational cost of RGD, which scales as O(n?r) (Cai et al.,
2020).

3.4. PRGD Algorithm

The details of the proposed PRGD algorithm, based on the
derivation of the Riemannian gradient under %#; above, are
summarized in Algorithm 1.

Algorithm 1 Preconditioned RGD

Initialization: X° € M. and spikiness parameter v
fort =0,1,...,Thax do
Gt = P (X —N@Q(X*).
W= Xt — oy Pp WG
W' = Trimg, (W') with & = S lr
XL = o (W),
end for

Algorithm 1 involves an additional procedure called trim-
ming, which is used to guarantee the incoherence property
of iterates in matrix or tensor completion task (Wei et al.,
2020; Tong et al., 2022; Cai et al., 2022b). The trimming
operator Trim, is defined as follows, for given tensor W,

¢ - Sign(Wi j1),
Wi ik

if Wikl > ¢
otherwise.

[Trime W)} s = {

This operation trims large entries of VV, ensuring that its
spikiness remains within an acceptable level. Consequently,
it guarantees the incoherence property of the iterates by
Lemma 2.2.

Theorem 4.1 demonstrates that, under appropriate initial-
ization conditions, Algorithm 1 achieves linear conver-
gence to the global minimizer. To satisfy these conditions,
we propose an initialization algorithm presented in Algo-
rithm 2. Leveraging the subspace estimators introduced
in (Cai et al., 2021), Algorithm 2 first estimates the fac-
tor matrices U ; of WY using the top-r eigenvectors of the
diagonally-deleted Gram matrix of p~t.; (P (X.)) (we
use Pof-diag = ¢ — Paiag and £ is the identity operator).
Subsequently, the algorithm constructs the initialization X°
by applying the trimming procedure on YWV to ensure the re-
constructed tensor satisfies the required spikiness condition.

Algorithm 2 Spectral Initialization with Trimming
Input: P (X*) € R™*"2x"s multilinear rank 7, sam-
pling ratio p and spikiness parameter v.
for: =1,2,3do
T; = p ' Mi( Pa(X.)).
U, < the top-r; eigenvectors of gzoﬁv_diag(TiT? ).
end for
WO =p~12g(X,) x3_, UU/ .
Output: X0 = /. (Trime W?)) with ¢ = & 1le.

7n3/2y

Here we remark that the parameter v in Algorithm 1 and
Algorithm 2 is not necessarily the true spikiness condition.
Instead, it can be treated as a tuning parameter set slightly
larger than Spiki(X, ). Furthermore, we numerically observe
that the algorithm performs nearly the same with and with-
out the trimming procedure. Therefore, from a practical
perspective, the trimming step can be omitted.

4. Recovery Guarantee

The convergence analysis of PRGD is divided into two
parts, local linear convergence and initialization estimation.
We first present the local linear convergence of PRGD in
Theorem 4.1.

Theorem 4.1. Suppose X, € M,. with Spiki(X,) < v, Q
satisfies the Bernoulli model (i.e. each entry is observed
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independently with probability p) and the initialization sat-
isfies

X0 — X, |F < ~( ) and Incoh(X°) < 2ukg
Cr

1
2

for a sufficiently large but absolute constant C > 0. Then
there exist an absolute constant C' > 0 such that if p satisfies

p> C’log3(n)ﬁ*%r%V3/<8
+C (log5(n)r vk V log(n)r®v?k) nn 3k,
then with high probability (i.e. at least 1 — cyn™=* for
c1,ce > 0 and co sufficiently large), by choosing e¢; com-
1
puted from the gradient and step size oy = € p~ ', the
sequence { X'} generated by Algorithm 1 satisfy

X — X, ||p <0.351 - || X — X, ||,

forallt=0,1,2....

Theorem 4.1 dictates that Algorithm 1 converges linearly to
X* provided that the initialization X" is sufficiently close
to X, and the incoherence condition is satisfied. By lever-
aging the spectral initialization property from (Tong et al.,
2022) and the trimming property from (Cai et al., 2023), we
derive the following estimation for Algorithm 2, ensuring
it meets the initialization error requirements specified in
Theorem 4.1.

Lemma 4.2. Assume the condition of X* and 2 from Theo-

rem 4.1 holds. Then there exists an absolute constant C > 0
such that if

3T5V4K8,

p > Clog®(n)n~ ZTBVSHS + Clog®(n)nn
then with high probability, the initialization tensor X° from

Algorithm 2 satisfies
Unﬁn(A;)

~ 1
r2

&0 — Xl F < and Incoh(X°) < 2uky.

By directly combining Theorem 4.1 with Lemma 4.2, the re-
covery guarantee of the PRGD algorithm can be established
with a nearly optimal sampling complexity O(7/2). De-
tailed proofs of Theorem 4.1 and Lemma 4.2 are provided
in the Appendix B.

5. Numerical Experiments

In this section, we proposed several numerical compar-
isons of our proposed PRGD algorithm with state-of-the-
art algorithms that include RGD (Cai et al., 2020; Wang
et al., 2023), for demonstrating the effectiveness of precon-
dition, and ScaledGD (Tong et al., 2022), for comparisons
with factorization based algorithms. For our PRGD algo-
rithm, we keep the hyperparamter €, a constant chosen from

{1073,5 x 107*,107%,5 x 1075}. Since no step size strat-
egy is proposed for the ScaledGD algorithm in (Tong et al.,
2022), to make a fair comparison, we tune the optimal con-
stant step size for all tested algorithms and report the results.
All simulations are performed in MATLAB r2023b with a
2.6GHZ Intel Xeon ICX Platinum 8358 CPU.

We test those algorithms on both synthetic data and real
data. For the synthetic data, we set ny = ny = nz = n and
r1 = ro = r3 = r. Following the same manner in (Kressner
et al., 2014), we construct the ground truth tensor X, by first
generating the entries of core tensor and factor matrices from
a uniform distribution on [0, 1], then use QR decomposition
on the random factor matrices to obtain the orthonormal
ones. For the real data, we consider the video inpainting
problem, where the goal is to reconstruct the original video
from its partially observed pixels. Throughout this section,
we use the relative error frequently that is defined by

X = Xl

relative error = —————
[Xlr

where X" is the output tensor of the algorithm.

5.1. Reocovery Ability

Phase Transition. We first explore the recovery abilities
of PRGD in the framework of phase transition. A test is
considered to be successful if the recovered tensor has a
relative error smaller than 10~2. For each set of parameters,
we run 100 random trails and count the success rate. The
results in Figure 1 demonstrate the recovery is successful
when the sampling size is moderately large. And when the
rank increases, more sampling is needed for a successful
recovery. These are consistent with our theoretical findings.

0.9 -
0.8 -
0.7
<]
= 06 f
—
n
& 0.5 -
g
= 04
»n
0.3 -
—©— Tucker Rank = (3, 3, 3)
0.2 ——st— Tucker Rank = (4, 4, 4)
—#— Tucker Rank = (5, 5, 5)
0.1 —&— Tucker Rank = (6, 6, 6)
Tucker Rank = (7,7, 7)

16 15 20 25 30 35 40 45 50 55 60
pnd/2

Figure 1. The success rate of PRGD with respect to the sample
size pn®/? for tensor with size n = 100 and rank r ranging from
3to 7.
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5.2. Comparison with Other Algorithms

Iteration Count and Runtime. We next investigate the
iteration count and runtime of all tested algorithms under
different oversampling ratios (OS), which is defined as

Q] pn®

05 = dim(M,.) RERT 3(nr —r?)’

Here we consider the tensors of size n = 100, 150, 200
and rank r = 5. The OSs are set to 10, 15, 20 to represent
different sampling levels. We count the iteration numbers
and runtimes of the tested algorithm until the relative error
is less than 10~*. For each parameter setting, we perform
five random trials and report the average results in Figure 2
and Figure 3.
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Figure 2. The runtime results of tested algorithms in different set-
tings.

I PRGD
I ScaledGD
I RGD

104

Iterations

Figure 3. The iteration numbers of tested algorithms in different
settings.

The results in Figure 2 demonstrate that our PRGD algo-
rithm significantly outperforms the other two algorithms in
terms of speed under various parameter settings, achieving
approximately a 10x speedup compared to RGD and a 3
to 4x speedup compared to ScaledGD. Additionally, the
results in Figure 3 are consistent with those in Figure 2,
further verifying that the additional computational cost per
iteration of PRGD is negligible compared to RGD.

Increase the Sampling Level. To highlight the advantage of
using preconditioning across different sampling levels. We
fix the tensor size n = 100 and rank » = 5 while increasing
the OS from 10 to 100, corresponding to sampling ratio p
from 1.6% to 16%. We perform five random trials for each
OS and report the average results in Figure 4.

103 —&— PRGD r
—&— ScaledGD

—6—RGD

Iterations

20 40 60 80 100

Figure 4. The iteration counts of three algorithms at different sam-
pling levels.

Figure 4 shows that when the sampling level is low, the
benefits of precondition are substantial compared to RGD.
As the sampling level increases, RGD gradually improves,
outperforming ScaledGD and approaching the performance
of PRGD.

Noisy Data Reconstruction. We then investigate the prop-
erty of the PRGD algorithm in the presence of noise. For
ground truth tensor X, the known entries of X, are per-
turbed by rescaled Gaussian noise £, such that | Zo&||r =
o - || PaX.||F for a given noise level 0. We fix the size
n = 100, rank » = 10, OS = 10 and noise level o from
5 x 107* to 10~ 1. The stopping criteria is chosen when
|xXt — Xt /]| Xt < 1074 For each parameter set-
ting, we repeat five random trails and we report the average
relative error when the stopping criteria is satisfied. The re-
sults shown in Figure 5 and Appendix C indicate our PRGD
is faster than others and robust to the additive noise.
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Figure 5. Noisy data reconstruction results at different noise levels.

5.3. Real Data Reconstruction

Video Inpainting. We evaluate the performance of our
proposed algorithm on the Tomato video from (Liu et al.,
2012), as well as the Akiyo and Hall Monitor videos from
the YUV video dataset!. For the Akiyo and Hall Monitor
videos, only the first 100 frames are used. Since these
videos are in RGB format, we concatenate their three colour
channels along the third dimension and treat each video as
a three-order tensor.

Table 1. PSNR values of the outputs generated by different algo-
rithms for three test videos with different multilinear ranks.

VIDEO(SIZE) » PRGD RGD SCALEDGD
50 27.34  27.15 27.09
TomaATO 60 27.79 27.44 27.15
(242,320,501) 70 28.25 27.50 27.15
50 27.61 27.43 26.68
HALLMONITOR ¢ >834 2806  26.25
(288,352,300) 70 28.83 28.75 28.52
50 29.29 29.09 28.81
AKIYO 60 29.95 29.69 28.67
(288,352,300) 70  30.45  30.42 28.62

We assume that only 10% of the pixels are observed for
each video and employ different algorithms to reconstruct
the original video. We vary the multilinear rank (r, r, ) and
report the Peak Signal-to-Noise Ratio (PSNR) of the recon-
structed videos in Table 1. The image of certain frames of
reconstructed videos and more detailed results are available
in Appendix. C. It can be observed that our PRGD algo-
rithm consistently achieves higher PSNR values compared
to other algorithms across different settings and datasets,
demonstrating its effectiveness for video inpainting prob-

"http://trace.eas.asu.edu/yuv/

lems.

6. Conclusion

In this work, we propose a preconditioned Riemannian gra-
dient descent algorithm for the low-multilinear-rank tensor
completion problem. The preconditioned metric is data-
driven and computationally efficient. Numerical experi-
ments demonstrate that the proposed PRGD achieves ap-
proximately 10x acceleration compared to the standard
RGD. Furthermore, we establish the linear convergence of
PRGD and provide a recovery guarantee with near-optimal
sampling complexity. Lastly, we summarize several promis-
ing directions for future research.

* Other low-multilinear-rank applications. Practical data
often contain noise and outliers. In this work, we
evaluate PRGD numerically on noisy data. However,
a theoretical analysis of robust tensor completion and
tensor regression remains for further investigation.

* Entrywise convergence analysis of PRGD. In this work,
our convergence analysis focuses on estimating the
{5 error of iterates. In contrast, (Wang et al., 2023)
directly deals with £, error, thus they can avoid the
trimming operations and simultaneously maintain the
incoherence condition of iterates below an acceptable
level. It would be interesting to investigate whether
PRGD can exhibit similar properties.

e Other preconditioned Riemannian optimization meth-
ods. Building upon the preconditioned Riemannian
metric proposed in this work, it is worthwhile to inves-
tigate extensions such as the preconditioned Rieman-
nian conjugate gradient descent and Gauss-Newton
methods. Furthermore, exploring new preconditioned
Riemannian metrics is a promising direction for future
research. By leveraging the tangent space parame-
terization framework in this study, the corresponding
Riemannian optimization methods can be readily de-
rived.
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A. Appendix
Proof of Proposition 3.1

Proof. For X € M,., we derive the Riemannian gradient grad f (X ) under the data-driven metric (-, -),. Let y(s) be a

smooth curve in M,. with y(0) = X. Denote &7, be the orthogonal projection operator onto T x under (-, -), and G is
the gradient on X, then

IOy = (3(0),0) = (3(0), Pr #, G,

therefore, the Riemannian gradient is
gradf(X) = Pr W, 'G € Ty.

Proof of Lemma 3.2
Proof. For a symmetric positive definite matrix G € R"*", St(n, r, G) := {U € R**"|U " GU = I,.} is the generized
Stiefel manifold. The tangent space at U € St(n,r, G) is

ToSt(n,r,G) = {U e R .U GU + U GU =0,} = {U € R : U GU € Syen (1)},

where Sgew(r) denotes the space of skew-symmetric real © X r matrices. Consider the extended tangent map of

(S, Ul, UQ, Ug) —YyY=S X?:l U,,

3 3
R7XTXT HTU St(n’ r, Gz) — Ty X HSskew (T) s

=1 1=1
3
(S, Ul,UQ,U;),) — (8 X?:l Uz + ZS X5 Uz Xk;,gi Uk7U{G1U1,U§G2U2,U§G3U3> s
=1

where S € R™1%72X7s and U, € Tu, St(n;, i, G;). Moreover, for ye Ty, the S and U; are unique determined if we
impose )
U/ GU;=0,,i=1,23.

Then S and U, are given by the following formulas:

S = j)xg):l (U:GZ)v
U, = (I, —UUG)AM (y X ot (U;Gk)) M(S),i=1,2,3.

Thus the extended tangent map is an isomorphism and we complete the proof. O

Proof of Proposition 3.3

Proof. Note that for Z = S x3_, U';, the matricization of Z satisfies

M(2) = U M(S)M], M, =Us 2 U,
Mo(Z) = 172///2(3)]\4;—, M, = ﬁs ® 171
%3(2) = ﬁg%g(S)M;r, Ms = ﬁg ® ﬁl.

. 1~ 1~
Denote U; := G, U;, W, := G ;Wi =1,2,3, then

<C X?:l ﬁl,D X Wl Xj;ﬁi ﬁj>7Vt = X?:l U“D Xiwi quéi ﬁ]>

c
U 4,(C)M] W ;.4,(D)M] )
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AT~ ~T N
where the third equality is due to U,, W, = U, G ;W , = 0,.. Similarly, when k # [

<D Xka ><j7gkUJ,D><lWl ngél > <D><kﬁ7k Xj#kﬁj,p Xlﬁ\/l Xj#lﬁ])
= (W k%k(D)Ml—cr>ﬁk'///k(D)M;cr,l>
=0
here for simplicity, we denote .#}. (D x; I//[\/l X j£l IA]]) = ﬁkﬂk (D)MkT,l for some matrix My, ;. O

Proof of Lemma 3.4

~ 1 ~
Proof. For X € M,., we denote X := #,2(X) then X € M,. since the #; operation doesn’t changes the multilinear rank.
~T ~ ~ _ 1 ~
We denote X = D x3 St U withU, U; = I,,,7 = 1,2, 3 as the standard Tucker decomposition. Let U; = Gm? U, 1=
_1 . T ~

1,2,3,then X = %, 2(.)6) =Dx3 ,U;withU,; G,;U; =1,,,i=1,2,3.

By Lemma 3.2, for arbitrary tensor A € R™*"2%"3 the projection %x (A) :==Cy x3_, U, + Z?:l D x; A; Xjzi ﬁj,
where C 4 and A;’s can be solved as follows:

Ca = argmmHCAxl 1

= argmlnHCA X3y U - e (A)Hj«“
= (%%(A)) Xi Ui :
T

~ 1
where the third equality isdue to U, U; = I,.,,i = 1,2,3. While for each A;, denote A; = Gii(Ai):

A, = argmln HD x; A; ><J7gz
U/ G Ai=0,,
thus )
~ ~ ~ 1
Ai argmin ‘ D X4 Az Xj;ﬁi Uj - %2 (A)H
O] 4:=0,, r
1 ~ T (12
=  argmin HA M;(D) — M; (”//f (A) Xz U; )H
U] A;=o0,,

~

= (1 O0]) o (K ) 2,05 ) (D)

where ///;r (D) is the Moore-Penrose pseudoinverse of .#; (D). Thus the components in Py » (A) are equalivent to:

Ca X3y T = WH (A) <3, T X3, T =7 (13 () <3, 0.0
D x; Ai x5 Uy =W, % (D xi A i U5) i = 1,2,3,
To conclude . ., L
Pry(A) =W, 2 P - W2 (A)
As A is an arbitrary tensor, we complete the proof. O

12
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B. Appendix

We first refer to the following lemmas:

Lemma B.1 (Lemma 13.6.(Cai et al., 2023)). Let X, € M,. with spikiness parameter v. Assume W satisfies |W — X, ||r <

U"‘“‘?(X*). Then, the tensor . (Trim:(W)) is incoherent with parameter 2vkg if we choose { = SQZX/HQF v. Also, it satisfies:

Cor'2|W — X,
Umin(X*) ’

[ (Trime (W) = Xel|p < W = X[ r + (©)

where Cy > 0 is a constant.
3
Lemma B.2 (Lemma 6. (Tong et al., 2022)). Suppose that X, is ji-incoherent, ny, = € *ur? ko, and p satisfies:

D2 eflff%,ugr%m% log®(n) + e 2na 2 ptrisd log® (n),

for some small constant € > 0. Then with high probability, the spectral initialization W° in Algorithm 2 satisfies:
||WO - X*HF S 6U-min(‘X*)-

Lemma B.3 (Lemma 20. (Tong et al., 2022)). Suppose () satisfies the Bernoulli observation model. Then, with high

probability,
(7 = )2 )] < G (5 o) + g’ )

holds simultaneously for all X,) € M,., here C is a constant. Denote X = Cx x?zl X, Y =Cy x?zl Y, then the
quantity T obeys

T < (| X140 (Cx ) ||2,00 | Y 140 (Cy ) || F A (| X120 (Cx ) || P |Y 141 (Cy ) ||2,00)
(1 X2llz,c0Yallr A [ X2l PV 2ll2,00) ([ X3ll2,00 Y 3]l 7 Al X 3] P[Y 3]]2,00) -

Lemma B.4 (Lemma 18. (Tong et al., 2022)). Suppose that Z = S x3_, V; € M,,. is pi-incoherent, and 7p = p*nr?logn.
Then, with high probability, one has:

_ 4nr2logn
{0 =P Pa)(Xa), X5)| < o[ B 22 | Xl | X

simultaneously for all tensors X4, Xg € R™M*"2X"3 in the form of

3 3
XA=ZDAJ X2 VixiUapy, &Xp ZZDB,i X2 Vi x;Up;
i=1 i=1
where U 4 ;,Up; € R**", D4 ;,Dp,; € RT*"" i =1,2,3 are arbitrary factors, and Cy > 0 is a universal constant.
Lemma B.5 (Lemma 5.2. (Cai et al., 2020)). Let X, X, € M.,. be two order-3 multilinear-rank-r tensors, then we have

7
amirl(X*)

Lemma B.6 (Lemma 4.5. (Wei et al., 2020)). Let U1,Uy € R™*" be two orthogonal matrices. Then there exists ar X r
unitary matrix Q such that

(. = P ) XellF < 1 — 2.5 Q)

UL — U2Q|r < ||ULU{ —UsU; | 5.
Lemma B.7. For any Z € R™*"2*"s gnd t € N, we have

vl ZlE < 1215, < nll2]E, ®

1
where vy = €2 and i, = (e, + ||Gi||%) 2. Here we define ||Gy||y := max;—; o 5 maxy, ||.2:(G:)(k, :)||2 be the maximum of
Gy'’s slice norms and py = g /vy.

13
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Lemma B.8. The operator (¥, * — ¢, ty ) have the following bound:
o\ —1
_1 _1 2
|-t <a? (1 - (1 - g”) ) . )
€t

_1
Proof. Tt is straightforward since (e, + ||G;||? -3 <|# Y <e 2. O]
Y, t t

~ 1 1
Lemma B.9. For tensor X € M,. is pi-incoherent, then X := #;2 X is (p{ p)-incoherent.

Proof. Suppose X = D x3_, U, with U] U, = I,,i = 1,2,3. Then X = D x%_, (G,U).

1
Consider the orthogonalization of G, U ;:

1
GiUi=V,R;, with V]V, =1, i=123.

Then
|G2,Uillr = [|[ViRillr < || Rill2||VillF = V7| Ri|2,

1 1

thus | R;[|2 > 1/y/r - v |Uil|F = v . As the condition number (R;) < k(G7;) < p;, we have

1 1
IR 2 < [Rill3" - 5(R:) < vy °pf

Now we consider the ||V ;]|2.o = max; |le; V;||2 where e; € R"*! is a vector with i-th element be 1 and others be 0.
1 B 1 B _1 1 1 1
lef Villz = llef G2 URT 2 < lle) G2Uill2 - | R |2 < vy °pf e G,Uill2 < o7 le] Uill2.
1 S L
S0 [[Vill2,c0 < p/ [Uill2,00 and Incoh(X) < pf pu. O

Proof of Lemma 4.2

Proof. By Lemma B.2, the with the requirement of sampling ratio p, the tensor W° from Algorithm 2 satisfies

< Umin(X*)

W = X.lF < ;
15000Cor %

with high probability. Thus by Lemma B.1, the initial tensor X0 = % (Trim¢ V) with ¢ = SVUe s and A0 is
incoherent with parameter 2v( and satisfies

COrl/QHWO - X*H% < Tmin (Xs)
O'min(X*> - 10000007"% .

12° = Xl < W = XellF +

Proof of Theorem 4.1

Proof. Now we prove the linear convergence of Algorithm 1. Using the idea of induction, we start the proof assuming
|1 — Xil|p < % and Incoh(X;) < 2vk (here the constant Cy keeps the same with constant in Lemma B.1).
10000Cor 2

~ 1 1
Denote X! := #,2 X, and oy = €7 p~ L. Then, by Lemma 3.4, we have

14



Preconditioned RGD Low-Multilinear-Rank Tensor Completion

W — Xl = X — 0w Pr,  HT Pa(XE — X)) — X,
= (Bt = &) — P W, EPH (R — XY)|p

.

(
(Bt = &) = Do (R = XE) — & P, (07 W 2 PH 2 — € 2 9N X = B
< (I = Pro )X = B p + e | Pr, 07 W2 PoWF — & 2 7YX = XD)|s
(
(

[\J\»—A H~

-

I = Pr VX = XD p+ | Prg, 07 2PN 2 =T AW = )X =X (0)

(7 = e )R =2+t | 2eo i H I - )X - x|
Iy I
+&t | o T - @ - 2|
I3

Now we turn to estimate the I, I, I3, respectively.

Estimation of I;.

By Lemma B.5

< 7Pt€t

F Umln(

L<—"t HXf bl

UII]IH

2
12 =

(11)

1

where the second inequality follows from (8) and o pin (#,2 Xs) > €; Ommin(Xs).

Estimation of /5.

By Lemma B.8:
I <||or7 - g R - R

ot (1 B ( ||gt||v ) -2 1)
<etph (1 _ ( ||gtt|v>2> |t —

where the third inequality follows from the Lemma B.7.

Estimation of /5.

P -~ 1
For simplicity, we omit the subscript ¢ and denote X = X! X = Xt X, = X! = #,? X, in the following. Now we first
fix a orthogonal decomposition of X = D x?_; U;, then we choose an orthogonal decomposition of X, accordingly. Let

2?* =D %}, ﬁ; be a orthogonal decomposition, then we define the following R, Ro, R3:

R, =arg min |0, ~UR|r. i=123

A~k ~/

Here, O,,, contains all unitary matrices with dimension r; x r;. Then we define U, = U,R;,t = 1,2,3 and D, =
~ ~ %

D' x3_, R]. Thus X, = D, x3_, U,. In this manner, by Lemma B.6 we have:

V2||X — X.||r

~ A~ % ~/! ~1
|U; - U, |r < |UU;] —U,U,)"|r < =
Umin(X*)

) (13)

15
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where

Then, I is rewritten as .
Iy = (P W, 2 (I —p ' Po)(X — X.), Xo)

= (F —p  Pa)(X — X)W Py ).

for some &y with ||Xp||» < 1. Since P _Ap =C x3_, U+ Z?:l D X jzi ﬁj X ﬁ\/l for some C and Wi,i =1,2,3,
we have

3
1 ~ ~ —~
% 2@11‘)?.)(0:6)(?:1 U, + E 'D><j7gi Uj x; Wi, (14)
=1
Xo,0 Xo,i

where Xy ;,¢ = 0,1, 2, 3 are all rank-r tensors. We also split X — X, into the sum of rank-r tensors:

DX§:1 ﬁi_D* X?:1 ﬁj = (D —D.) x1 ﬁl ><2ﬁ2 X3ﬁ3+D* ><1(ﬁ1—ﬁ:) X2 ﬁz X3 ﬁg

Yo 1

+ D, x1 ﬁ: xo (Uy — ﬁ;) x5 Us+ D, X1 l}i X o l}; x3 (Us — ﬁ;) (>
Vo Vs
Thus,
) 3 3
(F —p ' D)X = X)W 2P Xo) =D > (I —p 7' Pa) Ve, Xo). (16)
k=0 1=0

Before we estimate the terms in (16) using Lemma B.3, we give the following estimation on factor matrices and core tensors.

e Upper bound of C and Wi.
— For C: Since C = Xy x3_; IAJZT and U’s are orthogonal matrices, ||C||z = || X0 # < 1.
— For W;: Because W; = (In, — ﬁlﬁj)///z(){() >;<£1 ﬁ:)///j(l)) where ., (D) is the Moore-Penrose pseudoin-
verse of .#;(D) with .#;(D).# (D) = I, we ilave

IWille < |1 1n, = U, llol|l 4 (D)2l Xo x4 U, Ir < 000 (X) < vy 20d (),

— 1~ _2
and thus [|W; || r < v, *|Willp < v, Pont(X).

min
* Upper bound of U i l}: ,D—D,, andU i l}: . For ease of exposition, we suppose the incoherence parameter of X’

~ ~ 1 1
and X, are po and piq, respectively. Then by Lemma B.9, the incoherence parameter of X and X, are p/ 10 and p; 1.

~ ~ ~ 1
— For U;: Since ||U;||r < /75 and [|U;|2,00 < p; o /;—i,

- -3 ~ L1 fpy
1Uillr <vp °Vriy WUill2,e0 < popive © 4 —
7
— For U, : Similarly,
~ % _1 ~ % 1 _1 T
IUillr <ve Vi, Uill2eo < papive ©y )=
(3

— For ﬁz — ﬁj It follows from (13) that

SVRX - Rllr _ -4 3 V21X~ Xillr

~ ~ % 1~ ~ % —
U,-U.,|lrp<v, ° U, -U,||lr <v <
|U; il O U i 4 () + o ()
~ ~ % 1 1 T
Ui —U,;ll2,00 < (o + p1)pi vy ° e

%
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*

- ForDand D,: since X =D x3_, U;, X, = D, x3_, U,

; are two orthogonal decomposition, one has:

~ 1 ~ 1 %
IDlr = [IX]lr < Vrpdomax(X),  [Dullr = |X]lr < Vrpg omax(X)
— For D — D,.: We have
~ ~ % ~ ~T
IDs —DlF = || Xx X?:l (Ui)T -X X?:l U, r
~ ~ % ~ ~ % A~k ~ ~T A~k ~ A~ %
<X x1 (Uy = Ur) T %2 (Uy) " x3 (Us) " |5+ |Xe x1 Uy X2 (Uy —Us)" x3(Us) " ||r
~ ~T ~T ~ % ~ T ~ ~ 3 ~T
+ | X x1 Uy x2Uy x3 (U —Us) ||p+ (X = X) x;2, U, ||F
<N Rr - (107 = Osllr + 103 = Oslle + 105 = Tsllr ) + |12 = 2r

oy, FV2[X - Xir
e AR

11
< dvrkopi pf | X — Xl

+ | X — X p

Now we estimate terms ((.¢ — p~* Pq) Vi, Xo ) for k,1 = 0,1,2, 3 in (16) as follows.

e For k = [ = 0, we use Lemma B.3. To this end, we notice that

|U141(D — D.)||2,06||U144(C) | 7 < |Uill2,06]ID = Dllp |U || FIIC]

1 _1 [r _1 11
< popi vy 6\/7711% VT ArRopd p2 |X — Xullp - 1
3 -+ 1 1 35
<dporzng v, P pg pf rollX — Xi[p
and, fori = 2, 3,

~ ~ 1 o_1 [r,  _1 1
||Ui||2,oo||UiHF < Hopi vy 6\/ n*z v S < pornyg Py o
1

Thus, Lemma B.3 implies that, with high probability,

log® log®
(I = p~ L P0) Vo, Xoo)| < C og”(n) 4 [ os (n)

__3 -1
nT 2 pikovy | X — X |r
P P (17)

_1
< 0.0001y, *[|X — XillF,
as long as
z 3
2 2

p > C - max {log?’(n)ué?r n p?mo,log5(n)u8r7nﬁ‘3p3ﬁ3} :

where C' > 0 is a sufficiently large but absolute constant.

* When k =0and! = 1,2, 3, we use Lemma B.3 again. For [ = 1, we have

1T 4D = D)2, [W 144 (D)l < U1 [l2,06 D = Dull [ Wi | | DIl

1

11 ry 11 2 _ 1
< piopi v *\ [ AVPROE P = Xl vy 0 (X) Vg O (X)
(2

- 5 Umax(X)
vy ©pepy HOW

2

3
< dporin 1 = Xl

For [ = 2, 3, we have

|U140(D = D.)l2,00[Ur#1 (D)l < |Unl2,00]|D = Dl p[|U | £ D] 2
11 [r 11 1 1
< popi vy ° nfl VTR pE X — Xellp vy OV/TL VUG Omax(X)
1
11 s
< Apor®ng vy * pepd KoOmax(X) | X — X F,
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and

1

5
6

_ N 11 [r, _z 1 - _ )
WUill2,00 |Willp < popf v, 5”# Y, 3Umi1n(X) < porzn; %y, pfomiln(é’(), i=2,3.
1

N|=

_ log?’(n) nlog5(n) 3 7 3 5  Omax(X) -1
(I —p ' Pq) Vo, Xou)| < Cy p + , parezn 2pfn0myt X — Xl p-
Summing it over /, we obtain that, with high probability,
1
Y (I = p7 Pa) Vo, Xog)| < 0.0001v; *||X — Xl (18)

=1

as long as

OTmax(X)

6.7 ——3 50'1211ax(X)K:2
Umin(X) of"

Ko, 10g5 (’I’L)/J,O'I" nn. Py (X)

min

5
p > C - max {log?’(n)ugr;n_gpf

e When k = 1,2,3 and | = 0, the estimation is done similarly by using

_ log®(n nlog®(n ~ ~ ~
(S~ p Pa)Vi, Xog) < O gp( Ly i( >) 1T 2 [CIFI T — T ID.

NU2ll2,00 102 7 - [Usll2,00 U] 7

log®(n) nlog®(n) ~ ~ ~
<0 + (101112 1T 2,06 1T 2. )
p p

AU = U4 ||pl|U2lp U FICI | Dl 7

log? log®
og”(n) 4 [ Tlog (n)

Q9 2__3 _1
P p por®nT 2 pirov, 2| X — X|F,

<Cy

log? log®
ogp(n) 4| Tlog (n)

(7 = p™ ' Pa) Ve, Xo)| < C1 1T 200D £ I[T |2 Il 1

NU2[l2,001U2 = Usllr - [|Us]l2,00[Us| 7

log” log” ~
p p

200 [T 2 [T 2 )

NUFIT: = Ul UslplCr D 7

log? log®
og”(n) 4| Tlog (n)

a__3 1
p popar®nT 2 pikovy 2 |X = Xl p,

<
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and
log®(n log®
og()+ nlog”(n)

) U+ ll2,00 I P UL FIIClI 7

(I —p™ " Pq) Vs, Xoo)| < Ch

NOolloocllT2ll 7 - 1Usll2.00 U5 = Uslle

log® log® o
<0 og (n) + n log (n> (HUl

L
. 200 [T 12, 1 T2, )

NULFIU2||r[Us — UsllrlICllrl| Dl 7

log? log®
og”(n) 4| Tlog (n)

__3 -1
popir i 2 prov, 2| X — X
p p

<Cl

Summing them up and noticing pg > p; give that, with high probability,

3
_1
> (I = p  P) Vi, Xoo)| < 0.0001y, * | X — X, p, (19)
k=1
as long as

p > C - max {logg(n)ugr?’n_gpf Tima )H07 log® (n)ugr®nin

X -3 4 12nax(X) :‘€2
Unlin(X) of-

g
Pt 0_2 (X)

e When k # 0,1 # 0, and k = [, we further divide it into three cases.
— For k =1 = 1, recall that

Xo,1 =D x4 Wi xaUsy x3Us, Vi =D, x3 (ijz_i—ji) xy Uy x5 Us,

which, together with Lemma B.4, implies that

_ dnr2logn
(=57 P, Xaa)| < Oy [H2ER o 9
pegnr2logn, ~ 5~ o —~ ~
< Cy THUzﬂpHU3||F||D*||FHDHF'||W1||F'HU1*U1HF
4,2 .
ponr?logn 5 3 opax(X) —1
< C2\/ PTT Pt "fom’/t [X = Xillp

— For k =1 = 2, notice that Xy o =D x; ﬁl X9 ﬁ//g X3 ﬁg and

yg :D* X1 ijl X9 (i—jg —ﬁ;) X3 i—jg-i-D* X1 (ij: —ﬁl) X9 (ijg —ﬁ;) X3 i—jg.
Va1 V2,2

Therefore, Lemma B.4 gives

dnr2logn
(I = p~ ' Pq) Va1, Xo2)| < C2\/W|Xo,2
C.
C.

— | Fo1D2lF
ph
panr?logn ~ o~ o ~ - .
SO\ Tm IULIENUs[E D p Dl - [Walr - [[U2 = Usllr
4.2
ponr?logn 5 3 opax(X) -1
< Oy B 28T Tmad ™) )72 | X — X,
=2 p,ﬁ?) Pi Ko O_min(X) Vi || ||F

r
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and Lemma B.3 gives
(I = Pq) Va2, Xo2)|

log? log®
og”(n) 4 [T oe (n)

< , [U1ll2,00IPIIFNUL = Uyl F | Dsl| F
U2 = Usll2,00[WallF - |Us|l2,00 U3l
log®(n) nlog’(n) | 5.3 3 Omax(X) -1
< + wi(po + p)re°n” 2 pf kg———=v, 2| X — Xl p.
P p 0( ) t Jmin(X) t H ||

- Fork =1 = 3, we utilize Y3 = D, x, U, x3 Uy x5 (Us — Us) and

X073:DX1 ﬁj XQ(NJZ X3 W3+D X1 ﬁ: X9 (ﬁg*ﬁ;) X3 W3+D Xl(ﬁlfﬁj) X9 f]g X3 Wg.

Xo,3,1 Xo,3,2 Xo,3,3

Then, it is deducted from Lemma B.4 that

N inr2 logn
(=P Pa)ds, o)l < Coy [ FE 22 Kol 193] e
pinr?logn, ~« o\ ~* o W [7 7
<O\ T IUEIUFID-FIPlr - [[Wslle - [Us = Usllr
[ 4.2
pinr?logn o 3 opmax(X) -1
<y o Pf%mlﬁ X = XllF,

log®(n) nlog®(n)
» +

and from Lemma B.3 that

(7 =97 Pa) Vs Xos2)| < C 1T 2. DI FIT |2 1D

NU;ll2,00|U2 = Usl|F - [[U3 = Usl2,00 | W3]l F

log® log® 5 Omax(X
& (n) +q 8 () 12 (o + )P0 p g R0 ()

1
v X = Xlp
p p Jmin(‘){) K

<Cy

and

log? log®
og”(n) 4 [ og (n)

p U1 ll2,00|Pul[p UL = U || £ D]l 7

(I —p~ ' Pa) Vs, Xozs)| < Cy

. _ o .
NUsll2,00|U2][F - U3 = Usll2,00[W3l| F

log®(n) nlog®(n) \ 3 _3 3  Omax(X) -1
< + pi(po + pa)r°n” 2 pf ko———<1 2| X — Xl p
P P 1 ( ) t Cmin (X) i || ||
The above inequalities are added to derive that, with high probability,
3 1

> (I =™t Pa)Vi, Xo,i)| < 0.0001y; 2 [|X — Xl (20)

i=1
as long as

‘ 5 Omax X 5 2 X
p > C -max {10g3(n)ugr3ﬁgpf Zmin(X))no, (logs(n)ugr6 V log(n)ur®) nﬁ%;’%n%} .
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e When k # 0,1 # 0, k # [, we discuss it in several cases.

— Fork =1and! = 2,3, we have

_ log®(n nlog®(n ~ ~ ~
(7 — p P Xon) < O gp( Ly i( >) 1T lac| D151 — T |2 5

NU2ll2,00|WallF - [|Usll2,00[Usl| 7

log®(n) nlog®(n) \ 33 5 & Omax(X) -1
<C 2pF KoLy, Pl — A,
< (1 » + » Hor°n ptﬁoamin(é\f)% I 53
and
log?(n nlog®(n ~
(7 = Zop Aag) < € [ 2L JL0E )) &

NU2ll2,00U2]F - [U3]|2,00 | W3]l F

logg(n) nlog5(n) 33 .3 5 Omax(X) -1
<C 2 ko————21, 2|X — XillF.
>~ U1 D + I HoT™ N 2 pp Ko Umin(X) Yy H HF

— Fork =2and! =1, 3, we have

2,00 DIF[[U1 — Uy ||F[| Dl 7

_ log®(n) nlog®(n) \ | ~+ —~
(F = p~ ' Pq) Vo, Xo1)| < C1 ) + ) U ll2,00 D]l F W || | Dl 7

NOzllewllUz = Uslle - [Usllz,0 | Usll

_1
v P& = el

log® log® 5 5 Omax(X
og’(n) _  [nlog’(n) 121733 pf o2 (X)

<C B
- ! p p Umin(X)

and

log®(n) o log®(n)
p

U1 ll2,00 [P £ IUL [ PP 7

(I —p ' Pq) Vs, Xo3)| < C1

NU2ll2,00[U2 = UsllF - |U3l2,00[[ W3]l

log® log® 5 max(X) —1
g n) ,  fnle () piar®n pf g ( ))Vt X = Xellp

<Cy
p p Omin X

— For k =3 and! = 1,2, we have

_ log®(n nlog®(n ~ % —~
(S~ p Pa)Vs Hoa)| < O gp< )4 i( )V 1T oo D [ D]

~ % ~ ~ ~ ~ %
NUsll2,00U2llF - [|U3]l2,00[1Us — UsllF

log? log®
og”(n) 4| Tlog (n)

< Cl
p p Umin(

3__3 2 Omax X -1
uo,u?r‘gn 2pfn07(/v)l/t X = Xl|p

)
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and

log? log®
og”(n) L+ Mg (n)

(5 = p™ P0) Vs, Xop2)| < Cy 1T |20 D[l [T | 1D

p
d 7 - Usll2.00[[Us = Usllp
log®(n nlog®(n 3 5 Omax(X) -1t
<o (sl nloe () ) snt ph Do) e
P P O'min(X
Summing all inequalities up, we obtain that, with high probability,

3 3 .
SN I = p Pa) Ve, Xou)| < 0.0001y; 2| X — Xl|p, 1)

k=1

=1,l#£k

as long as

5 Omax (X e (X
p> C-maX{log3(n)uS7"3ﬁgpf;?n((x))ﬂo,log (n)pgrnm Bpi’of:;’l‘((x))/f%}

By combining (17), (18), (19), (20), and (21), we have the following estimation of I, with high probability,
3 3
_1
I, < Z Z |<(/ — p_lgzg)yk, Xo’l>| < 0.0005v, * HX — X*”F»
as long as
p > Cmax { log®(n)ud %ﬁ*%pgi)ﬁ (10g5(n)u6r7\/10g( Yulr )nn p Tmaxie)
= Hor b Omin (X) ° ° " Oin(Y)

Now we take ¢; = ||G;||2, which yields p; = v/2. Since p; = kv, o = 2vkg, and

|Umin(Xt) - Umin(X*)| V |Umax(Xt) - amax(X*)| S H‘Xt -

the estimates (11)(22)(12) imply that: if

1
X p < ———0min
R T

3

D> C’~max{log3(n)ugr%ﬁ 2K, (log (n)v°kir™ v log(n)v?kir®) nn 3&3}
then, with high probability, it holds that
I < 0.00103 | X! — X.|lp, Lo < 0.00050 2| X — X,|lp, Iy < 0.34850; 2| X! — X,
Plugging these estimats in (10), we obtain

1 1 1
IW! =Xy, < +€f - Io+€f - 13 < 03507 | X — Xi||
Finally, by Lemma B.1, Lemma B.7, and the assumption | X* — X, | r < ﬁ, we obtain
072
A — X, || p = |26 (Trim¢ W) — Xillp
Cor'/?|W' — X, ||%

§||Wt_X*||F+ O (X)
1 1 Cor' W' = Ail3,
< IW = Xl + ) :
Vtz Omin *
Cor

2
0.13| X" — X, ||%

< 035X — Xo|lp + ——~
Omin(Xs)

< 0.351]|X" — X, F.
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This implies that || X' — X, || < ﬁ and Incoh(X'1) < 2vkg, which conclude the proof of Theorem 4.1. [
072
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C. Appendix

Phase Transition
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Figure 6. The success rate of PRGD with rank » = 5  Figure 7. The success rate of PRGD for tensor with size

and size n ranging from 50 to 150.

Noisy Data Reconstruction

n = 100 and rank r ranging from 3 to 7.

The results of noisy tensor completion with n = 100, = 10,0S = 10and o € {5 x 107%,1073,5 x 1073,1072,5 x

102,107}
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Figure 11. o0 = 10™~. Figure 12. 0 =5 x 107 °. Figure 13. 0 =107 ".
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Video Inpainting Result

The original video is represented as a three-order tensor X,. For each algorithm, the stopping criteria is chosen when
| Xt — Xt ¢ /|| Xt » < 1072, To demonstrate the representability within the Tucker format, we apply the HOSVD to
X, with a multilinear rank of (r, r,7) and the resulting tensor X g serves as a near-optimal approximation. Detailed results
of recovered tensors from different algorithms, along with A} r, are presented in Table 2 and Figure 14.

Table 2. PSNR values and relative errors of the recovered videos from different algorithms for three test videos under varying multilinear

ranks.
PRGD RGD SCALEDGD Xix

VIDEO(SIZE) " | PSNR ERR PSNR ERR PSNR ERR | PSNR ERR
TOMATO 50 | 27.34 8.711E-02 27.15 8.906E-02 27.09 8.970B-02 | 27.69 8370E-02

60 | 27.79 8.272E-02 27.44 $.608E-02 27.15 8.900B-02 | 2841  7.699E-02
(242,320,501) 70 | 28.25 7.847E-02 27.50 8.547E-02 27.15 8.907E-02 | 29.12  7.095E-02

50 | 27.61 7.090E-02 27.43 7.244E-02 26.68 7.892B-02 | 28.11 6.693E-02
HALL MONITOR ¢ | 5834 6.522E-02 28.06 6.737E-02 2625 8.295E-02 | 29.10  5.975E-02
(288,352,300) 70 | 28.83 6.166E-02 2875 6220E-02 28.52 6.390E-02 | 30.08 5.337E-02
R 50 | 29.29 7.616E-02 29.09 7.787E-02 28.81 8.045B-02 | 29.87 7.123E-02

60 | 29.95 7.054E-02 29.69 7.267E-02 28.67 8.181E-02 | 31.01  6.245E-02
(288,352,300) 70 | 30.45 6.663E-02 3042 6.681E-02 28.62 8.227E-02 | 3212  S.497E-02

Figure 14. The recovered results of three videos with r = 70. From top to bottom are Tomato-1st frame, Hall Monitor-40th frame and
Akiyo-15th frame. From left to right are original, observed, PRGD, RGD, ScaledGD and X,r.

25



