
The HalluRAG Dataset: Detecting Closed-Domain Hallucinations in RAG
Applications Using an LLM’s Internal States

Fabian Ridder, Malte Schilling
Computer Science Department, University of Münster

Einsteinstraße 62, 48149 Münster, Germany
{fridder, malte.schilling}@uni-muenster.de

Abstract
Detecting hallucinations in large language models (LLMs)
is critical for enhancing their reliability and trustworthiness.
Most research focuses on hallucinations as deviations from
information seen during training. However, the opaque na-
ture of an LLM’s parametric knowledge complicates the un-
derstanding of why generated texts appear ungrounded: The
LLM might not have picked up the necessary knowledge
from large and often inaccessible datasets, or the informa-
tion might have been changed or contradicted during further
training. Our focus is on hallucinations involving information
not used in training, which we determine by using recency
to ensure the information emerged after a cut-off date. This
study investigates these hallucinations by detecting them at
sentence level using different internal states of various LLMs.
We present HalluRAG, a dataset designed to train classifiers
on these hallucinations. Depending on the model and quanti-
zation, MLPs trained on HalluRAG detect hallucinations with
test accuracies ranging up to 75%, with Mistral-7B-Instruct-
v0.1 achieving the highest test accuracies. Our results show
that IAVs detect hallucinations as effectively as CEVs and
reveal that answerable and unanswerable prompts are en-
coded differently as separate classifiers for these categories
improved accuracy. However, HalluRAG showed some lim-
ited generalizability, advocating for more diversity in datasets
on hallucinations.

Code — https://github.com/F4biian/HalluRAG
Dataset — https://doi.org/10.17879/84958668505
arXiv — https://arxiv.org/abs/2412.17056

Introduction
Large language models (LLMs) are generative machine
learning models that generate sequences of tokens one by
one. As these are trained on massive datasets, LLMs have
become excellent at producing coherent text. When suffi-
ciently trained, these models can be prompted on novel tasks
(Radford et al. 2019), meaning that one can apply an LLM
on a different task—e.g., asking questions—to which the
model generates a corresponding output and answer. One
impressive feature of LLMs is that the generated answers
are not only coherent as a possible text but also appear rea-
sonable. While this allows LLMs as generative models to
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create novel outputs that were not part of the training data,
there is a downside: The produced answers can be incorrect
or not factual while being plausible-sounding answers. An-
other limitation of directly questioning LLMs is that they are
restricted to knowledge learned from training data.

Retrieval-augmented generation (RAG) (Lewis et al.
2021) is a commonly used technique aimed at overcoming
these challenges (Shuster et al. 2021). In RAG, background
knowledge indexed beforehand is retrieved from a database
as additional context and input to the model. For example, a
user’s question is enriched with particular snippets from ex-
ternal documents (e.g., PDF, PowerPoint, or text files) that
serve as additional input to the LLM. RAG exploits the ca-
pability to use large contexts as inputs, integrating knowl-
edge from the context into the answer. Typical examples
of RAG systems are chatbots that provide customer support
based on a database of past transactions (Xu et al. 2024) or
tutoring systems in which context, as well as answers, are
enhanced by infusing background knowledge from trusted
sources (Levonian et al. 2023; Kahl et al. 2024). Although
LLM applications incorporating RAG are aimed at halluci-
nating less, hallucinations still occur. Generating different
forms of non-factual answers—or those contradicting some
of the available knowledge—remains a significant challenge
for incorporating LLMs into workflows and services.

One approach to address hallucinations is to detect them,
which allows the system to intervene. The system could
refuse to return the hallucinated response and regenerate
another response. In this work, we analyze an approach
that leverages the LLM’s internal states to determine if it
currently fabricates hallucinations while answering a user’s
question. The analysis is based on a novel dataset for detect-
ing closed-domain hallucinations—i.e., a dataset of queries
that cover knowledge not included in training datasets but
for which additional context can be provided as input to the
LLM. Furthermore, we start by introducing a distinction be-
tween different types of hallucinations.

Hallucination Types and Characteristics
A hallucination is a statement that lacks grounding in the
LLM’s knowledge. Specifically, a statement is considered
ungrounded if it does not exist in any form within the
model’s knowledge—neither as part of the training data nor
as additional context (such as provided in RAG application).



Figure 1: Differentiation of approaches (Azaria and Mitchell
2023; Su et al. 2024; Longpre et al. 2022) based on the
type of queried knowledge. Current methods in the litera-
ture focus on knowledge that is assumed as entrained into
the LLM’s parameters (parametric). This is often difficult
to assess as, first, the training data is not always accessible.
Second, it is not clear if and how this information was accu-
rately learned by the model during training. Or how further
training on other data might have influenced the informa-
tion, for example, when contradicting pieces of information
were present in the training data. In contrast, our focus (in
the HalluRAG dataset) is on knowledge the LLM could not
have seen during training, avoiding speculative assumptions.
This gives us full control over offering this knowledge as
context to the model or dealing with questions the model
can not answer in any case. The second dimension distin-
guishes if relevant information for answering the question
was provided as part of the context.

This makes an ungrounded statement “fabricated” (Agrawal
et al. 2024). Notably, the determination of whether a state-
ment constitutes a hallucination does not depend on its fac-
tual accuracy or alignment with current scientific consensus
as such but rather on how well the response aligns with the
knowledge sources that constitute the model’s foundation.

In an LLM, there are two forms of knowledge and mem-
ories: First, during training, knowledge is integrated into the
model’s parameters from the training data. This is known
as parametric knowledge. Second, contextual information
can be provided to the model as part of the input or prompt,
referred to as contextual knowledge (Longpre et al. 2022).
When considering hallucinations, we should distinguish be-
tween these two kind of knowledge sources: parametric
and contextual. On the one hand, absolute or open-domain
hallucinations are generated statements with no grounding
in an LLM’s parametric knowledge or training data. This
makes open-domain hallucinations difficult to detect due
to the vast and often opaque nature of training datasets,
which may be unpublished or lack detailed references. On
the other hand, closed-domain hallucinations involve state-
ments ungrounded with respect to the provided context and
the knowledge given as input in a prompt (Agrawal et al.
2024; Friel and Sanyal 2023). Additional distinctions for
hallucinations have been introduced (Zhang et al. 2023) that
address special cases (Longpre et al. 2022) and lead to fur-
ther subdivisions (Maynez et al. 2020). From our point of

view, it is important to explicitly distinguish how a halluci-
nation fabricates new knowledge: Does it contradict or de-
viate from knowledge the model has seen during training
and encoded in its parameters? This is the most widely as-
sessed type of hallucination, where statements are actually
false and contradict—or are assumed as contradicting—the
training data (Fig. 1). Further research (see below on Related
Work) has investigated hallucinations where LLMs fabricate
statements that are false with respect to knowledge provided
as additional input. Our dataset, HalluRAG, is designed to
specifically address knowledge that the model has not seen
during training, allowing systematic control over whether in-
formation is provided as context.

Related Work
There are two main characteristics or dimensions of hallu-
cination detection methods: first, the level of access to the
LLM, and second, the use of references for comparison dur-
ing the detection process.

Detection methods require different levels of access to an
LLM. At one end of such a spectrum, black-box methods
utilize only the LLM’s output token, focusing exclusively
on the generated language. On the other end, white-box
methods tap into the model’s internal states for detection,
requiring full access to the LLM, which is possible when
the model is run locally. Gray-box detection methods are
an intermediate case, employing the output probability dis-
tribution for tokens—as provided as well by many online
LLM services—but without requiring full access to internal
states (Manakul, Liusie, and Gales 2023).

The second characteristic differentiates whether refer-
ences are available for comparison purposes. Reference-
based (supervised) methods use a reference text to validate
output accuracy, whereas reference-free (unsupervised or
zero-reference) methods assess output without the need for
any reference for comparison. This is particularly important,
as in many cases, no reliable references are available (Fang
et al. 2024). White-box and gray-box approaches are typi-
cally applied without references, as hallucination detection
should rely on the internal states or the output distribution
alone, without considering the generated text itself.

Hallucination detection is a rapidly growing field of re-
search, with an increasing number of proposed methods in
all mentioned areas. Reference-based black-box methods
were proposed early on. For example, RefChecker (Hu et al.
2024) evaluates ‘knowledge triplets’ by comparing them to
real references under various context conditions. Such meth-
ods have been further improved, e.g., Agrawal et al. used
Bing to verify if suggested references by an LLM really
exist. Reference-free black-box methods focus on the para-
metric knowledge of LLMs and prompt the LLM to either
explicitly or implicitly evaluate generated answers by them-
selves: Kadavath et al. proposed such self-evaluation to mea-
sure confidence in the models’ answers. In contrast, Self-
CheckGPT (Manakul, Liusie, and Gales 2023) checks for
self-consistency across multiple generated outputs for the
same prompt. Manakul, Liusie, and Gales also suggested
a reference-free gray-box method using likelihood and en-



Figure 2: Locations of intermediate activation values and
contextualized embedding vectors in the simplified archi-
tecture of LLaMA 2 7B including RMSNorm (Zhang and
Sennrich 2019) and Rotary Position Embeddings (Su et al.
2023). While Azaria and Mitchell and Su et al. used contex-
tualized embedding vectors as input to a binary classifier, we
extend this approach by also considering intermediate acti-
vation values as classifier inputs.

tropy metrics that allow to flag hallucinations based on the
measured response randomness.

Lastly, reference-free white-box methods involve analyz-
ing the internal components of an LLM, such as the INSIDE
EigenScore (Chen et al. 2024) for assessing self-consistency
through covariance analysis, the MIND classifier (Su et al.
2024), and SAPLMA’s template-based classifier (Azaria and
Mitchell 2023). Closest to our approach is the work of Su
et al. and Azaria and Mitchell, who follow a white-box,
reference-free detection method. Both evaluate generated
sentences solely by examining the model’s internal states
without requiring an external reference during production,
but with full access to the LLM’s internal structure. This is
achieved by training a neural network that uses the inter-
nal states as an input and predicts the likelihood of a hal-
lucination in the concurrently generated output sequences.
While our approach uses a similar setup, it specifically fo-
cuses on distinguishing closed-domain hallucinations and,
as such, focuses only on knowledge queries that are out-
side of the training data (Fig. 1). In contrast, Su et al. and
Azaria and Mitchell assume that Wikipedia content is re-
liably encoded in an LLM’s parametric knowledge, which
seems reasonable for basic and foundational information,
such as elements on the periodic table. However, this is not
necessarily true for other types of knowledge, which might
change over time or for which contradictory information has
been encountered during training. Moreover, it is difficult
to determine whether such knowledge—even if seen during
training—has been accurately encoded in the LLM’s param-
eters. Additionally, our proposed method takes into account
intermediate activation values from the decoder blocks’ mul-
tilayer perceptrons (MLPs), an internal state type that previ-
ous research has mostly neglected, as it primarily focused
on contextualized embedding vectors (also referred to as ac-
tivation values, see Fig. 2).

Method
We aim to train an MLP to identify sentence-level halluci-
nations by analyzing specific internal states in RAG appli-
cations. In particular, we focus on closed-domain halluci-
nations, which involve querying the model for answers that
it cannot infer from its training. To train the classifier, we
require a suitable supervised dataset that links the internal
state—corresponding to a given input that lead to a gener-
ated sentence—to a hallucination label.

While we aim for reference-free hallucination detection
in RAG applications, question-answering datasets are suit-
able for training these methods. There are several fitting
datasets, e.g., the NoMIRACL dataset (Thakur et al. 2024)
and the RAGTruth dataset (Wu et al. 2023). The latter offers
18, 000 word-level human-annotated hallucinations from
LLM outputs across tasks such as summarization, question
answering, and data-to-text, focusing on Mistral (Jiang et al.
2023) and LLaMA 2 models (Touvron et al. 2023). How-
ever, both datasets have some common drawbacks. First, the
prompt formats are not diverse. Second, it is unclear whether
information on questions and answers has been explicitly
or potentially used during training of the LLM, as there are
no criteria regarding recency. Recency—considered as novel
information that has emerged during recent times and was
not available before a given cut-off date—is a crucial factor
that is not guaranteed by either RAGTruth or NoMIRACL.
Therefore, we created a novel dataset called HalluRAG, as
we consider recency a promising means of determining what
information an LLM may have been trained on. This enables
us to focus exclusively on closed-domain hallucinations, ex-
plicitly controlling the answerability of prompts (Fig. 1).
Since Su et al. found that the SAPLMA classifier by Azaria
and Mitchell might have been overfitted, possibly due to its
simplistic template-based approach, we aim for HalluRAG
to encompass a broader variety of formats and topics. Our
objective is to create a heterogeneous dataset that allows
training MLP-based classifiers, which can be broadly ap-
plied to any RAG application. As Su et al. found a distinction
between a forced hallucination and one that emerged natu-
rally, hallucinations in HalluRAG will not be enforced but
should only emerge, leading to natural hallucinations.

In the following, we will, first, present the HalluRAG
dataset, which includes RAG prompts, generated responses,
and internal states, fulfilling our requirements. Second, we
will explain the training of an MLP-based classifier that uses
the internal states of an LLM and estimates whether a gen-
erated sentence is hallucinated.

Creating the HalluRAG Dataset
We selected Wikipedia as a semi-structured source of in-
formation because of its wide variety of topics and the
large number of references within its articles. Furthermore,
Wikipedia provides detailed timestamps indicating when in-
formation was created or updated. This is particularly impor-
tant, as we use recency to ensure that information could not
have been used for training. We used Wikipedia timestamps
to verify that information is recent and was not available—
even in an older form or relying on similar older content—
during training of an LLM based on the LLM’s cutoff date.



The process of generating HalluRAG is briefly illustrated in
Figure 3 and explained in detail below.

1. Extracting recent sentences from Wikipedia: For a given
cut-off date—in our case February 22, 2024—all newer
articles from the English Wikipedia were considered.
From all potential articles, sentences with at least one
reference, that consisted of more than 50 characters, and
were not linked to other Wikipedia articles were col-
lected. Furthermore, we checked each date, access date,
and archive date in the references to ensure they were not
older than the cut-off date. If all of these conditions were
met, a sentence was considered a dataset candidate.

2. Question generation: Given a dataset candidate and its
surrounding text, we prompted GPT-4o (gpt-4o-2024-05-
13) (OpenAI et al. 2024) to generate a question that could
have been raised in a RAG application. GPT-4o was fur-
ther instructed to extract the corresponding answer from
the dataset candidate’s sentence, which was necessary for
our hallucination annotation in step 5. Additionally, we
use the extracted answer as an effective verification step,
ensuring it was a substring of the original sentence to re-
move the chance of hallucinations at this stage.

3. Creating pairs of questions and answers: For each ques-
tion, we generated two RAG prompts—one answerable
and one unanswerable—reflecting the real-world vari-
ability in retrieval systems, where the correct chunk may
not always be provided or for cases when the question
lacks a definitive answer. The first prompt included the
relevant passage from Wikipedia where the answer was
present, while the second contained an unrelated chunk
from a different Wikipedia article. To add diversity, we
randomly varied one of three prompt templates, a chunk
size (350, 550, or 750 characters), and the number of
chunks per prompt (1, 3, or 5).

4. Observing internal states: We passed these RAG prompts
to an LLM to generate answers for each question, using
a temperature of 0.0 and a token limit of 500. For Hal-
luRAG, we used LLaMA-2-7B-Chat-HF (Touvron et al.
2023) and Mistral-7B-Instruct-v0.1 (Jiang et al. 2023).1
During each generation, specific internal states (see next
section) were extracted and stored for each sentence of
the generated response: the contextualized embedding
vectors from the last token’s middle and last decoder
blocks (noted as ‘cev (middle)’ and ‘cev (last)’) and the
intermediate activation values from the same blocks (de-
noted ‘iav (middle)’ and ‘iav (last)’).2 Previous work has
suggested that the final token embeddings best capture
the essence of the preceding text, effectively compress-
ing its content into a single vector (Azaria and Mitchell
2023; Su et al. 2024).

5. Labeling of responses as hallucinations: To label each
sentence as either hallucinated or not, we used GPT-4o
(gpt-4o-2024-05-13) to compare each generated sentence

1LLaMA-2-13B-Chat-HF (Touvron et al. 2023) was also ob-
served, but showed some unexpected behavior.

2We thank Su et al. for providing their code on GitHub and for
their assistance.

Figure 3: The whole process of a valid passage on Wikipedia
turned into a RAG prompt and internal states for the Hal-
luRAG dataset to eventually train a multilayer perceptron.

against the entire response, the Wikipedia passage, and
the quoted answer from step 2. GPT-4o was prompted
with a detailed Chain-of-Thought (CoT) prompt (Wei
et al. 2023) to set four booleans: conflicting,
grounded, has factual information, and
no clear answer. Each combination of these
booleans was mapped to either 1 (“hallucinated”), 0
(“non-hallucinated”), or ‘None’ (“invalid”) based on the
prompt’s answerability. Sentences labeled as ‘None’
were withheld from training, testing, and validation. This
four-boolean framework showed distinct advantages, as
it made GPT-4o’s decision-making more transparent and
forced it to break the task down. This helps mitigate
GPT-4o-induced hallucinations, as the model justifies
each boolean with verifiable substring checks. As a
benchmark, we compared these with 274 human-labeled
sentences. GPT-4o achieved an F1-score of 96.05% and
an accuracy of 97.81% (the six found ‘misclassifications’
appeared as debatable cases to us). Overall, GPT-4o
appears as a reliable evaluator for this task.

In total, HalluRAG comprises 19, 731 validly annotated
sentences generated by LLaMA-2-7B, LLaMA-2-13B, or
Mistral-7B, across different quantizations (float8, int8, or
int4). As mentioned, we are only interested in natural hal-
lucinations, not forced ones. Therefore, as a first observa-
tion, we report the hallucination rates for the different mod-
els: The LLaMA-2-7B configurations exhibit a stable hallu-
cination rate of approximately 21% on HalluRAG, whereas
Mistral-7B demonstrates a significantly lower hallucination
rate of about 10%. When grouping by prompt template, we
observed that the hallucination rate varied considerably. For
instance, LLaMA-2-7B showed hallucination rates between
32% and 40% with a template from the Langchain hub, com-
pared to around 16% with template 1 (designed by us). This
indicates that prompt engineering is already a straightfor-
ward yet effective method for reducing hallucinations.

Training a Classifier for Hallucination Detection
We trained a neural network as a classifier on the HalluRAG
dataset. The input to the network consists of different in-
ternal states from an LLM, obtained during the generation



Internal State All (%) None (%) float8 (%) int8 (%) int4 (%)
LLaMA 2 7B Chat HF
cev (middle) 65.41±0.87 62.82±0.55 63.57±1.40 62.79±1.82 71.01±0.59
cev (last) 60.40±1.79 60.93±1.05 57.61±2.03 59.68±4.08 71.24±2.29
iav (middle) 65.98±1.66 64.62±1.43 61.40±3.59 62.40±2.03 71.46±0.67
iav (last) 64.93±2.34 62.60±1.67 58.57±2.52 62.55±1.38 71.07±0.94
Mistral 7B Instruct
cev (middle) 67.47±1.16 66.98±4.29 54.29±7.85 65.26±0.62 68.59±5.26
cev (last) 73.28±3.51 67.27±4.83 67.28±9.13 68.02±7.70 75.16±1.84
iav (middle) 69.95±2.38 56.33±1.66 61.35±2.75 67.31±0.36 71.94±5.97
iav (last) 74.91±0.92 65.84±3.62 70.58±5.03 71.43±3.00 78.94±1.88

Table 1: Average test accuracies and standard deviations of training ten MLPs on the internal states of the responses taken from
HalluRAG. The column names indicate the quantization, where ‘None’ means the use of no quantization and ‘All’ considers
all quantizations together (None, float8, int8, and int4). All internal states have been extracted from the last token’s middle and
last decoder block or ‘layer.’ We abbreviate contextualized embedding vectors as ‘CEV’ and intermediate activation values as
‘IAV’. The values based on a single quantized Mistral configuration are italic, since their test sets appear insufficiently small
for being analyzed in more detail.

of our dataset. The target for the classifier is the assigned
label, indicating whether the answer is hallucinated or non-
hallucinated. The MLP structure consists of four linear lay-
ers (input size—256—128—64—1) with ReLU activa-
tion and a final sigmoid function, following the structure
used in MIND (Su et al. 2024) and SAPLMA (Azaria and
Mitchell 2023). The learning rate was set to 2.5e−6, with a
weight decay of 1e−5 and an initial dropout rate of 15%
(similar to MIND’s 20%). We employed early-stopping:
training stopped after a maximum of 800 epochs or when the
validation loss did not improve for 30 epochs. We proceeded
with the checkpoint that had the lowest validation loss for
testing. Ten MLPs were trained per LLM configuration to
account for statistical variability. We analyzed the mean and
standard deviation of test accuracies across all these models.

However, the number of generated sentences by the LLMs
varied across our different configurations (chunk size, chunk
count, template, and answerability), inferring an imbalance
in the data. To address this, we oversampled based on the
configuration parameters and the label (hallucinated vs. non-
hallucinated). In this way, we ensured a balance of one-to-
one with respect to answerability and hallucination across
training, validation, and test sets. For chunk sizes, numbers
of chunks per prompt, and prompt templates, we ensured a
ratio of one-third in each case. This approach enables inter-
pretable and comparable test accuracies.

Results
Classifier Results on HalluRAG
For each configuration (different LLMs, quantizations), ten
classifiers were trained independently to determine whether
a given input—provided as the internal states of the LLM—
should be deemed as a hallucination. The neural networks
were trained on balanced datasets, using oversampling as de-
scribed above. An overview of the results is provided in ta-
ble 1. For the LLaMA-2-7B-Chat-HF model, test accuracies
are around or above 60%, with int4 quantizations achieving
a consistently higher accuracy of 71%. Notably, some larger-

than-expected standard deviations make comparing different
layers and quantizations challenging, but emphasize the im-
portance of multiple training runs.

When comparing different layers, the middle layers of
both, contextualized embedding vectors (CEVs) and inter-
mediate activation values (IAVs), generally show slightly
higher average accuracies than the last layers.

In contrast, the Mistral-7B-Instruct-v0.1 model showed a
different pattern compared to LLaMA-2-7B: the last layer’s
CEVs and IAVs lead to accuracies above 70%, while middle
layers remained below 70%. Importantly, in nearly all exper-
iments, MLPs trained on sentences generated by Mistral-7B
outperformed those trained on LLaMA-2-7B data.3

In particular, regardless of the specific model, all int4
quantizations consistently demonstrate the highest test ac-
curacies in Table 1, as well as in other results. Furthermore,
in combining internal states by concatenating their vectors
does not seem to boost test accuracies considerably.

We also tested the impact of withholding specific varia-
tions of the training data (e.g., a chunk size of 350 or prompt
template 2) by excluding them from training and validation,
but still evaluating on the full test set, including the previ-
ously withheld parameters. The results show no significant
impact on test accuracy, except when training and validating
solely on answerable questions, which on the test set lead to
accuracies no better than random guessing.

Generalization in Hallucination Classifiers
We further cross-tested the MLPs trained on HalluRAG
against RAGTruth (Wu et al. 2023), as a similar dataset
that however lacks a clear answerability distinction, and
vice versa. This generally showed a poor performance for
the LLaMA-2-7B model, which performed close to chance
level (Table 2). Mistral-7B again showed much better perfor-
mance when compared to the LLaMA-2-7B model, but still
performed worse than when trained on its specific dataset.

3Test accuracies for LLaMA-2-13B-Chat-HF yielded results at
chance level of around 50%.



Internal State H-H-R (%) R-R-H (%)
LLaMA-2-7B-Chat-HF
cev (middle) 51.04±0.30 52.84±1.34
cev (last) 49.58±0.51 50.24±0.59
iav (middle) 52.66±0.42 54.60±0.93
iav (last) 49.70±0.14 51.16±1.18
Mistral-7B-Instruct-v0.1
cev (middle) 56.60±0.79 62.27±0.97
cev (last) 57.11±1.56 58.46±0.33
iav (middle) 55.08±1.70 64.01±0.23
iav (last) 55.88±0.25 58.65±0.02

Table 2: Testing for generalization on a different dataset: Av-
erage test accuracies and standard deviations of testing ten
MLPs, which on the one side have been trained and validated
on HalluRAG but tested on RAGTruth (H-H-R), and on the
other side trained and validated on RAGTruth but tested on
HalluRAG (R-R-H). All quantizations together were used.
All internal states have been extracted from the last token’s
middle and last decoder block or ‘layer.’ We abbreviate con-
textualized embedding vectors as ‘CEV’ and intermediate
activation values as ‘IAV’.

This might indicate a general problem of overfitting in both
HalluRAG- and RAGTruth-trained MLPs, with Mistral-7B
demonstrating at least better-than-random test accuracies.

Training Separate Classifiers for Answerable and
Unanswerable Questions
The HalluRAG dataset distinguishes answerable and unan-
swerable questions. We trained, validated and tested classi-
fiers separately on both partitions of the balanced dataset.
The results (Table 3) demonstrate a significant boost in test
accuracies when using separate classifiers. For answerable
questions, accuracies improved notably compared to the
earlier results (Table 1). For example, LLaMA-2-7B now
achieves test accuracies above 75%. However, as an exemp-
tion, for Mistral-7B, the accuracy of the last layer drops
from around 74% to 70%. For unanswerable questions, the
improvement is even more pronounced, with LLaMA-2-7B
reaching over 80% accuracy. While training MLPs sepa-
rately might simplify the problem, the classification remains
non-trivial, particularly for answerable questions. For unan-
swerable questions, however, MLPs primarily need to de-
termine from the internal states whether the LLM has re-
sponded with an “I don’t know” (non-hallucinated) or some-
thing else (hallucinated).

For instance, the sentence ‘I apologize, but I cannot pro-
vide an answer to your question as it is not based on any
factual information provided in the context.’ by LLaMA-
2-7B as a response to an unanswerable question is con-
sidered non-hallucinated. Same applies to its grounded re-
sponse ‘The statue of Queen Elizabeth II in Oakham was
funded through public subscription by Rutland people.’ to an
answerable question. Notably, Mistral-7B MLPs achieved
near-perfect classification, with accuracies close to 100%.
While this shifts the problem to detecting prompt answer-
ability, it still offers valuable insights into LLM behavior.

Internal State Answ. (%) Unansw. (%)
LLaMA-2-7B-Chat-HF
cev (middle) 75.21±0.45 82.89±0.43
cev (last) 77.64±0.63 87.13±0.40
iav (middle) 75.52±0.59 81.98±0.83
iav (last) 78.22±0.54 86.26±0.14
Mistral-7B-Instruct-v0.1
cev (middle) 69.56±0.16 99.55±0.24
cev (last) 70.66±0.53 100.00±0.00
iav (middle) 68.55±2.08 99.87±0.04
iav (last) 70.38±0.33 100.00±0.00

Table 3: Average test accuracies and standard deviations
of training ten MLPs on internal states of the responses
based on either answerable or unanswerable questions of all
LLM configurations (None, float8, int8, and int4). All inter-
nal states have been extracted from the last token’s middle
and last decoder block or ‘layer.’ We abbreviate contextual-
ized embedding vectors as ‘CEV’ and intermediate activa-
tion values as ‘IAV’.

Discussion and Conclusion
In this work, we introduced HalluRAG, a dataset designed
to detect closed-domain hallucinations in RAG systems by
employing recency. We are focussing on novel information
that were added after a specified cut-off data, and could
not have been used for training. HalluRAG leverages an
auto-labeling process using GPT-4o to annotate hallucinated
and non-hallucinated sentences, achieving an F1-score of
96.05%. Even though HalluRAG aimed for diverse topics
and formats, our evaluation demonstrates that the size of
HalluRAG and the usage of 1, 080 prompts per LLM con-
figuration appears still too small and the missing diversity
still limit the MLPs’ generalizability. Furthermore, GPT-4o-
generated questions, based on Wikipedia passages, closely
mirror the wording of the answers in these passages, which
differs from real-world scenarios.

Training a classifier for hallucinations on HalluRAG
demonstrated moderate success, with classification accura-
cies significantly above chance level, ranging from 60% to
75%. Even though these results appear not sufficient on their
own as a safeguard for hallucination detection, they clearly
demonstrate that LLM layers contain information about the
likelihood of hallucinations. While this behavior had been
established for CEVs, it is a new finding for IAVs, indicat-
ing that this information is broadly distributed inside of an
LLM. Notably, adding more internal states to the MLP input
did not substantially enhance performance, suggesting that a
single internal state captures as much relevant information as
multiple internal states in most cases. Further research could
investigate the performance across additional layers.

When testing for generalization capabilities of the trained
classifiers on the RAGTruth dataset, these performed poorly.
Similarly, MLPs trained on the RAGTruth dataset did not
generalize well when tested on HalluRAG. This suggests
that there might be overfitting for both MLP types (Table 2).
From our point of view, this further emphasizes the need
to create a wide variety of training data for hallucinations,



using diverse prompt templates with substantial differences
in format and length, rather than minor format changes. It
would also be interesting to investigate the results of train-
ing and testing on a merged dataset combining RAGTruth
and HalluRAG.

A surprising finding is that hallucinations in answerable
and unanswerable prompts appear to be encoded differently,
as test accuracies considerably increase for both cases when
trained and tested separately (Table 3). We attribute the sig-
nificantly higher test accuracies for unanswerable prompts
to the fact that, in these cases, the internal states primar-
ily encode an ’I don’t know’ signal or a similar response.
Consequently, based on this encoding, an MLP only needs
to determine whether the state reflects genuine cluelessness
(non-hallucinated) or not (hallucinated). In contrast, for an-
swerable prompts, the internal state encoding is inherently
more complex, as it involves more than just distinguishing
between cluelessness and its absence, which explains the
comparatively lower test accuracy in these cases. Training
separately appears to enable the classifier to focus specifi-
cally on one type of hallucination, thereby boosting accu-
racy. This distinction should be further investigated to gain
a better understanding of how these types differ.

Importantly, test accuracies for Mistral-7B-Instruct-v0.1
are consistently higher than those for the LLaMA-2 series,
indicating that the trained MLPs detect hallucinations more
easily from Mistral-7B’s internal states. This suggests that
the likelihood of a hallucination is more clearly encoded in
the internal states of Mistral-7B. We hypothesize that the
training approach of Mistral-7B contributed to this in two
ways. First, the distinct training approach prioritizes the effi-
cient and thorough use of its 7 billion parameters rather than
simply increasing the parameter count (Jiang et al. 2023).
Second, a dataset of higher quality for improved responses
was used. This might have resulted in a clearer and more ef-
fective representation of language within Mistral-7B, mak-
ing it easier for an MLP to distinguish between a hallucina-
tion and a non-hallucination.

Ethical Statement
We constructed the HalluRAG dataset using publicly avail-
able Wikipedia articles, which, while open-source and po-
tentially prone to inaccuracies or biases, ensure no reliance
on personal data. Auto-labeling for hallucinated and non-
hallucinated sentences was performed using GPT-4o, whose
inherent biases may affect the dataset’s fairness. To promote
transparency, all data and code are publicly available for re-
view and responsible use.
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