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Abstract001

Large Language Model (LLM) agents are trans-002
forming education by automating complex ped-003
agogical tasks and enhancing both teaching and004
learning processes. In this survey, we present005
a systematic review of recent advances in ap-006
plying LLM agents to address key challenges007
in educational settings, such as feedback com-008
ment generation, curriculum design, etc. We009
analyze the technologies enabling these agents,010
including representative datasets, benchmarks,011
and algorithmic frameworks. Additionally, we012
highlight key challenges in deploying LLM013
agents in educational settings, including ethical014
issues, hallucination and overreliance, and in-015
tegration with existing educational ecosystems.016
Beyond the core technical focus, we include017
in Appendix A a comprehensive overview of018
domain-specific educational agents, covering019
areas such as science learning, language learn-020
ing, and professional development.021

1 Introduction022

Artificial intelligence techniques are increasingly023

used in education to enable personalized learning024

and intelligent tutoring (Chen et al., 2020; Zhai025

et al., 2021; Pedro et al., 2019). While traditional026

educational data mining approaches (Shafiq et al.,027

2022; Khan and Ghosh, 2021; Abdelrahman et al.,028

2023; Song et al., 2022; Wang et al., 2022; Gao029

et al., 2021), such as knowledge tracing and cogni-030

tive diagnosis, have made significant progress in re-031

shaping the human-learning paradigm by analyzing032

student behaviors and assessing knowledge states,033

they still face major challenges in real-world appli-034

cations. These challenges include shallow contex-035

tual understanding, limited interactive capabilities,036

and difficulties in generating adaptive, personalized037

learning materials, etc (Zhu et al., 2024; Laak and038

Aru, 2024; Tan et al., 2023).039

The strong natural language understanding of040

Large Language Models (LLMs) and the task au-041

tomation capabilities of LLM agents make them042

valuable for addressing challenges in education 043

(Weng, 2023; Wang et al., 2024a). First, mem- 044

ory enables LLM agents to retain both long-term 045

knowledge about students’ study habits and short- 046

term context from real-time interactions, enhanc- 047

ing contextual understanding and ensuring person- 048

alized learning experiences across various educa- 049

tional tasks (Zhang et al., 2024d). Second, tool use 050

allows LLM agents to access external resources, 051

perform complex calculations, and retrieve real- 052

time information, enabling them to automate intri- 053

cate educational tasks such as grading, knowledge 054

retrieval, and adaptive content generation, thereby 055

overcoming limited interactivity and enhancing en- 056

gagement (Gao et al., 2023). Third, planning sup- 057

ports structured learning by decomposing complex 058

topics, predicting optimal learning paths, and dy- 059

namically adjusting instructional strategies, allow- 060

ing LLM agents to autonomously guide students 061

through personalized learning experiences (Huang 062

et al., 2024b). 063

In addition to these core architectural capabil- 064

ities, we identify personalization, explainability, 065

and multi-agent communication as essential for ef- 066

fective educational LLM agents, as they enable 067

nuanced instructional behavior and collaborative 068

reasoning. Personalization allows agents to tai- 069

lor instruction to individual learners’ needs and 070

preferences (Razafinirina et al., 2024). Explain- 071

ability enables them to provide interpretable justifi- 072

cations for feedback and decisions (Abu-Rasheed 073

et al., 2024b). Multi-agent communication facili- 074

tates role-based collaboration, such as between a 075

planner and a critic, to improve robustness and task 076

coverage (Wu et al., 2023a). By integrating these 077

features, LLM agents enhance understanding and 078

engagement while streamlining educational work- 079

flows for greater adaptability and efficiency. 080

In this survey, we provide a comprehensive re- 081

view of LLM agents in educational settings, with 082

a focus on their underlying technical foundations 083
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and general-purpose pedagogical capabilities. We084

begin by introducing the core abilities of educa-085

tional LLM agents, including memory, tool use,086

planning, personalization, explainability, and multi-087

agent communication, and discuss their poten-088

tial to automate and enhance diverse educational089

tasks. Given the highly applied nature of the ed-090

ucation domain, we propose a task-centric taxon-091

omy in Figure 1 that organizes recent advances092

around core educational tasks. We categorize edu-093

cational LLM agents based on their roles in support-094

ing teachers and students, capturing both instruc-095

tional and learning-focused functions: (1) Teach-096

ing Assistance Agents, which support educators097

by automating tasks such as Classroom Simula-098

tion (CS), Feedback Comment Generation (FCG),099

and Curriculum Design (CD); and (2) Student Sup-100

port Agents, which facilitate personalized learn-101

ing through Adaptive Learning (AL), Knowledge102

Tracing (KT), and Error Correction and Detection103

(ECD). The overview of LLM agents for education104

and illustrative examples of each task are presented105

in Figure 2. We further highlight critical challenges106

in deploying these agents, including ethical issues,107

hallucination and overreliance, and integration into108

existing educational ecosystems. Finally, we com-109

pile essential datasets, benchmarks, and evaluation110

protocols to support future research on LLM agent-111

based educational systems. We summarize our112

contributions as follows:113

• Novel task-centric taxonomy. We propose114

a structured taxonomy that categorizes LLM115

agents based on core educational tasks, highlight-116

ing roles in teaching assistance and student sup-117

port to unify analysis across applications.118

• Current challenges and future directions. We119

analyze critical challenges that need to be ad-120

dressed for the effective deployment of LLM121

agents for education, including issues related to122

ethical issues, hallucination, and integration into123

real-world educational ecosystems.124

• Compilation of essential resources. We com-125

pile comprehensive datasets and benchmarks to126

support future research efforts and facilitate the127

development of more robust and effective LLM-128

driven educational solutions.1129

Beyond the main technical focus, Appendix A130

provides an overview of domain-specific educa-131

1Due to the page limit, we present more details in Ap-
pendix B

tional agents, including applications in science 132

learning, language learning, and professional de- 133

velopment. We outline domain-specific challenges 134

and review recent advances, benchmarks, and 135

datasets. Readers are encouraged to refer to the 136

appendix for further details. 137

2 LLM Agents for Education 138

LLM agents have a set of connected abilities that 139

help them handle complex tasks and provide mean- 140

ingful support in education. These core features 141

work together to let LLM agents do more than 142

just find information—they can interact in ways 143

that are flexible, responsive, and tailored to each 144

learner. Their main strengths in education include 145

strong memory, the ability to use tools, planning 146

skills, personalization, clear explanations, and the 147

ability to work with other agents. Specifically, 148

Memory. Memory in LLM agents includes long- 149

term (foundational knowledge, e.g., commonsense) 150

and short-term (current interaction data) compo- 151

nents (Sumers et al.). Active management via sum- 152

marization and retrieval ensures relevant context is 153

maintained (Chen et al., 2023; Liang et al., 2023; 154

Zhong et al., 2023). This allows agents to track 155

student progress and personalize responses, though 156

sophisticated filtering is crucial to maintain the 157

quality against noisy interaction data. 158

Tool Use. To overcome limitations like knowledge 159

cutoffs or calculation difficulties, LLM agents use 160

external tools such as search engines, databases, 161

or APIs (Qin et al., 2023; Zhuang et al., 2023). 162

This expands their functionality, providing access 163

to current information and specialized capabilities. 164

By integrating these tools, LLM agents expand 165

their functional capabilities, ensuring that they can 166

provide accurate and relevant information while 167

supporting diverse educational tasks. 168

Planning. Planning allows agents to actively sup- 169

port learning by breaking down complex goals 170

into smaller, manageable steps and adjusting based 171

on how the student is doing (Yao et al., 2023; 172

Valmeekam et al., 2023). This means under- 173

standing the learning goals, creating step-by-step 174

plans, personalizing the learning path, and mak- 175

ing changes based on feedback and progress. 176

For longer-term tasks, LLMs can act as “meta- 177

controllers,” using methods like “Pedagogical 178

Steering” to stay aligned with teaching goals, 179

which thus leads to dynamic, emergent curricula 180

co-created with students (Zhang et al., 2025c). 181
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LLM Agents
for Education

Teaching As-
sistance §3

Classroom Simulation
EduAgent (Xu et al., 2024a); TeachTune (Jin et al., 2024b); CGMI (Jinxin

et al., 2023) Classroom Simulacra (Xu et al., 2025); Li et al. (2025a);
Bhowmik et al. (2024); Zheng et al. (2025); Hu et al. (2025a)

Feedback Com-
ment Generation

PROF (Nair et al., 2024); SEFL (Zhang et al., 2025a); Free-
Text (Matelsky et al., 2023); AAAR-1.0 (Lou et al., 2024); Guo

et al. (2024c); Estévez-Ayres et al. (2024); Du et al. (2024)

Curriculum Design Zaiane (2002); SKarREC (Li et al., 2024c); Moon et al. (2024);
Abu-Rasheed et al. (2024b); Abu-Rasheed et al. (2024a)

Student Support §4

Adaptive Learning
GenAL (Lv et al., 2025); EduAgent (Xu et al., 2024a); Chat-

Tutor (Chen et al., 2024c); Park et al. (2024); Wang et al.
(2025b); Liu et al. (2024c); Sonlu et al. (2024); Liu et al. (2024a)

Knowledge Tracing Yang et al. (2024b); Xu et al. (2025); Scarlatos et al. (2025)

Error Correction
and Detection

Ye et al. (2022); Li et al. (2024d); Xu et al. (2024b); Re-
pairagent (Bouzenia et al., 2024); Wang et al. (2025b); Error-

Radar (Yan et al., 2024c); CoT Rerailer (Wan et al., 2024)

Figure 1: Taxonomy of representative research on LLM agents for education.

Personalization. Personalization is a hallmark of182

effective education, and LLM agents excel in this183

area by adapting to individual learning styles and184

needs (Chen et al.). They can serve as tutors, teach-185

ing assistants, or even simulate peer interactions to186

enhance the learning experience (Jin et al., 2024b;187

Guo et al., 2024c). Additionally, LLM agents can188

simulate user behaviors in recommendation sys-189

tems, which can be applied to personalize educa-190

tional content (Li et al., 2024c; Chu et al., 2025).191

Such a technology of personalization transforms192

traditional education, making it more accessible193

and tailored to each student’s unique needs.194

Explainability. Explainability is crucial for build-195

ing trust and facilitating learning in educational196

settings (Wu et al., 2024b). LLM agents must pro-197

vide clear, step-by-step explanations that are under-198

standable to students. Clear explanations are par-199

ticularly important in subjects like STEM, where200

step-by-step reasoning is essential for student un-201

derstanding (Nair et al., 2024; Zhang et al., 2025a).202

Consequently, the focused effort required to make203

educational LLM agents more transparent and their204

decision-making processes more scrutable.205

Multi-Agent Communication. LLM agents can206

facilitate richer interactions in collaborative learn-207

ing environments (Chen et al.; Wu et al., 2023a).208

Multiple agents could coordinate on group projects209

or simulate peer learning, fostering critical think-210

ing and diverse perspectives (Jinxin et al., 2023;211

Yue et al., 2024). This approach could support212

complex simulations of teamwork and real-world213

professional settings, especially when guided by214

new teaching frameworks for organization and eval-215

uation (Xu et al., 2024a).216

Table 1 summarizes the core capabilities re-217

quired by each educational task supported by LLM 218

agents. For each task, we highlight the primary 219

capabilities identified from the reviewed literature. 220

However, certain studies have also explored addi- 221

tional capabilities beyond these primary ones to 222

enhance specific tasks—for example, Guo et al. 223

(2024c) leverage multi-agent communication to im- 224

prove feedback correctness. We omit these sec- 225

ondary capabilities from the table to more clearly 226

illustrate the primary focus areas associated with 227

each task. 228

3 Agent for Teaching Assistance 229

Agents for teaching assistance are designed to sup- 230

port educators in the learning environment. These 231

agents leverage LLMs to provide personalized, 232

scalable, and efficient support across various as- 233

pects of the educational process. Their primary 234

objectives are to enhance teaching quality, enrich 235

student learning experiences, and reduce educa- 236

tors’ workload. By incorporating advanced capa- 237

bilities, LLM agents can effectively support key 238

educational tasks, including classroom simulation 239

(§3.1), feedback comment generation (§3.2), and 240

curriculum design (§3.3). 241

3.1 Classroom Simulation 242

Classroom simulation refers to the ability of teach- 243

ing agents to replicate and model various classroom 244

scenarios, such as student-teacher dialogues, col- 245

laborative learning activities, and problem-solving 246

tasks. These simulations create dynamic and in- 247

teractive learning environments where educators 248

can experiment with different teaching strategies, 249

assess student reactions, and receive real-time feed- 250

back on how various pedagogical approaches may 251
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Figure 2: The overview of LLM Agents for education. Teachers and students interact with LLM agents by
submitting task-specific prompts. The agents respond using core capabilities such as memory, planning, tool use,
and personalization to carry out tasks that support instruction and learning.

Task Memory Tool Use Planning Personalization Explainability Multi-Agent Comm.

CS ✓ – ✓ – – ✓
FCG – – – ✓ ✓ –
CD ✓ ✓ ✓ ✓ – –

AL ✓ – ✓ ✓ – –
KT ✓ – – ✓ – –

ECD – ✓ – ✓ ✓ –

Table 1: Mapping of educational tasks to essential LLM agent capabilities. ✓ indicates a primary capability; others
may also be used as supporting components in some systems.

unfold. By simulating these classroom dynamics,252

educators can refine their methods, anticipate stu-253

dent challenges, and enhance overall instructional254

effectiveness, all without the constraints of a physi-255

cal classroom setting.256

As shown in Table 1, effective classroom simu-257

lation relies on memory, planning, and multi-agent258

communication to accurately model student be-259

havior. Previous studies (Xu et al., 2024a; Jin260

et al., 2024b; Li et al., 2025a) demonstrate that261

LLM-based agents can predict fine-grained student262

behaviors across diverse personas and past learn-263

ing patterns, aligning closely with real teachers’264

expectations. To enhance simulation, the CGMI265

framework (Jinxin et al., 2023) uses a tree-based266

cognitive architecture with memory, reflection, and267

planning modules to simulate roles like teacher, stu-268

dent, and supervisor, improving realism. Similarly,269

Classroom Simulacra (Xu et al., 2025) incorporates270

a transferable iterative reflection module for more271

accurate behavior simulation. These systems en-272

able automated interactions that reduce educators’273

task loads while broadening the exploration of stu- 274

dent profiles. Simulations can also test educational 275

strategies tailored to different profiles, enhancing 276

teaching quality, as shown in studies by Bhowmik 277

et al. (2024) and Zheng et al. (2025). Additionally, 278

Hu et al. (2025a) demonstrate how LLMs can re- 279

fine teaching plans through integrated simulations. 280

To sum up, classroom simulations can be leveraged 281

to test different educational strategies tailored to 282

diverse student profiles, ultimately enhancing the 283

quality of education. 284

3.2 Feedback Comment Generation 285

Providing timely, relevant, and constructive feed- 286

back is a cornerstone of effective education. Teach- 287

ing assistance agents can generate automated feed- 288

back comments on students’ assignments, quizzes, 289

and projects. 290

For example, Guo et al. (2024c) leverage multi- 291

agent communication to provide accurate feedback 292

to students through a two-agent system. Specif- 293

ically, Agent 1 generates initial feedback based 294

on the students’ responses, while Agent 2 eval- 295
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uates and refines this feedback to prevent over-296

praise and excessive inferences. Furthermore, Nair297

et al. (2024) design a training strategy called PROF,298

which trains an automated LLM-based writing com-299

ment generator through reinforcement learning.300

This system adopts an iterative pipeline to sim-301

ulate various student writing styles and incorpo-302

rates a more advanced revision model (e.g., GPT-4)303

to provide the quality of the feedback as rewards.304

Similarly, SEFL (Zhang et al., 2025a) enhances305

feedback generation by having LLM agents role-306

play both students and teachers to generate data,307

which is then used to fine-tune models and im-308

prove feedback capabilities. These systems have309

also been deployed in real-world applications, such310

as FreeText (Matelsky et al., 2023), which pairs311

student responses with teacher-provided criteria,312

enabling the agent to identify strengths and weak-313

nesses and provide targeted feedback for improve-314

ment. Beyond traditional feedback, advanced LLM315

agents are now capable of handling more complex,316

expertise-intensive tasks. For example, Du et al.317

(2024) explores the potential of LLM agents as318

assistants for natural language processing paper re-319

viewing tasks, while AAAR-1.0 (Lou et al., 2024)320

evaluates agents’ capabilities in areas such as equa-321

tion inference, experiment design, paper weakness322

analysis, and review critique, revealing their poten-323

tial in conducting research tasks.324

However, another line of research highlights325

that agent-generated feedback still faces chal-326

lenges in handling complex tasks, such as program-327

ming and the review of professional academic pa-328

pers (Estévez-Ayres et al., 2024; Lou et al., 2024).329

For instance, these agents may struggle with con-330

cepts like starvation and deadlocks, leading to in-331

accurate or incorrect feedback. Future work could332

focus on integrating external tools (e.g., search en-333

gines) and enhancing memory mechanisms to bet-334

ter address complex problem-solving scenarios, as335

well as refining the personalization of feedback336

across diverse learning contexts.337

3.3 Curriculum Design338

To ensure that students follow personalized learn-339

ing paths aligned with their knowledge level and340

domain, it is crucial to develop effective curriculum341

design strategies. This is a complex task that re-342

lies on multiple LLM agent capabilities, including343

memory, tool use, planning, personalization, and344

explainability.345

Zaiane (2002) first introduces recommendation 346

systems into e-learning, utilizing web mining tech- 347

niques to suggest online learning activities or short- 348

cuts on course websites. The integration of LLM- 349

based agents has recently enabled more sophisti- 350

cated curriculum design through dynamic sequenc- 351

ing and content adaptation. Curricula can be built 352

using either retrieval-based or generation-based 353

methods. Retrieval-based methods involve agents 354

accessing a database or their own memory to sug- 355

gest existing resources—such as textbooks, re- 356

search papers, or online content—based on stu- 357

dent queries, past behavior, or content similari- 358

ties (Shahzad et al., 2025; Li et al., 2024c). In 359

contrast, generative methods create new learning 360

content tailored to an individual student’s learning 361

style, knowledge gaps, and interests (Moon et al., 362

2024). Moreover, to enhance the understanding and 363

acceptance of recommended content, these agents 364

need to provide reasons for their recommendations. 365

Explaining the rationale behind suggestions fos- 366

ters trust and enables students to make more in- 367

formed decisions about the resources they engage 368

with. For example, Abu-Rasheed et al. (2024a,b) 369

incorporate knowledge graphs to guide curriculum 370

pathways toward curated and trustworthy sources. 371

This approach not only enhances the interpretabil- 372

ity of recommendations but also reduces the risk of 373

generating misinformation, thereby improving the 374

quality of the learning experience. 375

Looking ahead, future work should focus on in- 376

tegrating agents with adaptive learning systems to 377

dynamically adjust recommendations in response 378

to real-time student performance. In addition, 379

a hybrid approach that combines generative and 380

retrieval-based methods may improve both the ac- 381

curacy and diversity of curriculum content. Also, 382

incorporating multimodal resources such as interac- 383

tive media, video, and immersive simulations could 384

further enhance the learning experience. 385

4 Agent for Student Support 386

LLM agent-based student support systems aim to 387

provide real-time personalized assistance without 388

requiring direct teacher involvement. Unlike tradi- 389

tional rule-based systems, these agents offer inter- 390

active and adaptive feedback, enabling students to 391

progress at their own pace. Core educational tasks 392

in student support include adaptive learning (§4.1), 393

knowledge tracing (§4.2), and error correction and 394

detection (§4.3). 395
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4.1 Adaptive Learning396

LLM agents offer the potential to build self-397

sustaining adaptive learning systems that operate398

without direct teacher involvement. These systems399

dynamically tailor instruction based on student per-400

formance, enabling personalized learning at scale.401

Building on the abilities of memory and personal-402

ization, agents are able to maintain and update a403

structured representation of the learner, commonly404

referred to as a student profile. This profile informs405

content selection, pacing, and feedback strategies.406

Several implementations exemplify this adaptive407

approach. GenAL (Lv et al., 2025) integrates ex-408

ternal tools such as automated programs and web409

searches to construct comprehensive student pro-410

files and inform instructional planning. Based on411

these profiles, the agent assigns tasks that align412

with the student’s current knowledge level and up-413

dates its memory dynamically. EduAgent (Xu et al.,414

2024a) introduces a structured profiling mechanism415

comprising four distinct cognitive patterns: gaze416

behavior linked to physiological memory, motor417

behavior mapped to motor memory, cognitive state418

associated with cognitive memory, and post-course419

assessments contributing to knowledge memory.420

This structured representation enhances adaptive421

decision-making by providing a multi-faceted view422

of student learning states. Chen et al. (2024c) pro-423

pose a system consisting of interaction, reflection,424

and reaction, with each component composed of425

specific LLM tools and memory modules. Fur-426

thermore, a meta-agent is introduced to control the427

information flow through these agents.428

Some recent research focuses on modeling stu-429

dents through modular memory or state compo-430

nents that capture cognitive, affective, and psycho-431

logical dimensions. These representations are of-432

ten formalized within a state–action framework,433

where the state space encodes learner traits and434

the action space governs instructional adaptations.435

A typical cognitive state representation includes436

tracking a student’s knowledge proficiency, com-437

prehension levels, and misconceptions (Park et al.,438

2024; Liu et al., 2024c,a), allowing the agent to439

tailor explanations, adjust difficulty levels, and re-440

inforce concepts dynamically. Recent studies high-441

light the importance of affective state modeling,442

as emotional factors such as motivation, interest,443

and self-efficacy significantly influence learning444

outcomes. For instance, Park et al. (2024) propose445

an affective state model that enables agents to ad-446

just feedback tone, provide encouragement, and 447

regulate pacing to maintain engagement. Another 448

crucial dimension of adaptation involves learning 449

preferences and personality traits. These studies 450

integrate personality with memory design, track- 451

ing the psychological state of the students. Wang 452

et al. (2025b) integrate learning preferences into 453

state modeling, recognizing that students process 454

information differently depending on instructional 455

format and modality. Adapting content to these 456

preferences enhances retention and learning effi- 457

ciency. Moreover, Liu et al. (2024c) apply the Big 458

Five personality model (Roccas et al., 2002) to 459

personalize tutoring strategies, acknowledging that 460

individual differences shape learning experiences 461

(Sonlu et al., 2024). 462

Emerging works also explore multi-agent sys- 463

tems for adaptive learning, where specialized 464

agents collaborate to enhance personalization. 465

For example, Wang et al. (2025b) design five 466

agents—Gap Identifier, Learner Profiler, Dynamic 467

Learner Simulator, Learning Path Scheduler, and 468

Content Creator—to deliver goal-oriented, person- 469

alized instruction. Similarly, OATutor (Pardos 470

et al., 2023) provides an experimental platform for 471

modular adaptive learning, allowing researchers to 472

design scalable, domain-general tutoring agents. 473

4.2 Knowledge Tracing 474

Knowledge tracing is essential for monitoring a 475

learner’s evolving understanding and predicting fu- 476

ture performance. While traditional methods use 477

statistical or deep learning models to estimate mas- 478

tery, LLM agents offer a more dynamic, personal- 479

ized approach by leveraging natural language un- 480

derstanding and adaptive instruction. 481

Recent advancements have explored multi-agent 482

frameworks for knowledge tracing. For instance, 483

Yang et al. (Yang et al., 2024b) propose a multi- 484

agent system with three specialized agent roles: 485

administrator, judger, and critic. In this framework, 486

the administrator delegates knowledge tracing tasks 487

to judgers, who collaborate through discussions 488

to assess the student’s cognitive state. The critic 489

agent then evaluates the outcome and determines 490

whether the assessment criteria are met, ensuring a 491

structured yet flexible knowledge tracing process. 492

Other agent-based approaches explore alternative 493

strategies for modeling student knowledge. Xu 494

et al. (2024a) propose simulating students as differ- 495

ent personas, allowing agents to adaptively trace 496

knowledge progression based on varied learning 497
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profiles. Meanwhile, Scarlatos et al. (2025) employ498

dialogue-driven interactions to probe students’ con-499

ceptual boundaries, using conversational exchanges500

to refine knowledge estimation dynamically.501

4.3 Error Correction and Detection502

Error detection and correction help students re-503

fine their understanding through real-time, context-504

aware feedback. LLM agents can identify mistakes505

across domains such as writing, programming, and506

math, and adapt feedback to the learner’s profi-507

ciency, acting as intelligent reviewers and assis-508

tants (Ye et al., 2022; Li et al., 2024d).509

Agent-based systems leverage state representa-510

tions and adaptive inference mechanisms to track511

error patterns and misconceptions dynamically512

(Park et al., 2024; Liu et al., 2024c; Wang et al.,513

2025b; Bouzenia et al., 2024). Recent advance-514

ments extend this capability into the multi-modal515

domain, incorporating direct analysis of student-516

generated drafts. Xu et al. (2024b) propose a multi-517

modal LLM framework that processes handwritten518

or digitally drafted student work. The system first519

extracts and converts draft content into natural lan-520

guage, enabling the agent to interpret and analyze521

handwritten responses. The agent then provides in-522

direct yet effective instructional feedback, guiding523

students toward self-correction and deeper com-524

prehension. Moreover, CoT Rerailer (Wan et al.,525

2024) designs a derailment identification process526

and a rerailment process to conduct error detection527

when solving math questions. Zhang et al. (2025d)528

propose the MathCCS benchmark and introduce a529

sequence error analysis framework that leverages530

multi-agent collaboration. As the first benchmark531

for multimodal error detection, ErrorRadar (Yan532

et al., 2024c) provides a valuable data foundation533

for developing multimodal agents in this task.534

5 Challenges and Future Directions535

In this section, we discuss key challenges that must536

be addressed to ensure the effective, reliable, and537

ethical deployment of LLM agents in educational538

settings. We focus on three critical areas: (1) pri-539

vacy, bias, and fairness; (2) hallucination and over-540

reliance; and (3) integration with existing educa-541

tional ecosystems. For each of these challenges, we542

outline potential research directions aimed at im-543

proving the robustness, trustworthiness, and practi-544

cal applicability of LLM agents in real-world edu-545

cation environments.546

5.1 Privacy, Bias and Fairness 547

Analysis. LLM agents process vast datasets, of- 548

ten containing sensitive personal information, lead- 549

ing to potential privacy risks. Studies highlight 550

low technological readiness and insufficient pri- 551

vacy measures in educational contexts (Yan et al., 552

2024a). Emerging research (He et al., 2024a; Gan 553

et al., 2024; Zhang et al., 2024c; Hua et al., 2024; 554

Huo et al., 2025; Chen et al., 2025b) underscores 555

new privacy and security concerns, emphasizing 556

the need for stronger data protection mechanisms 557

(Huang, 2023; Ismail, 2025; Khan, 2024). Addi- 558

tionally, bias in LLMs remains a pressing concern, 559

as models trained on large datasets can inadver- 560

tently reinforce stereotypes and disparities, affect- 561

ing educational fairness. Recent work calls for bias 562

mitigation strategies to promote equitable learn- 563

ing experiences (Adewumi et al., 2024; Aird et al., 564

2024; Mehrotra et al., 2024). Addressing these 565

biases is essential to ensuring inclusive, unbiased 566

educational outcomes. 567

Directions. To overcome the above issues, a num- 568

ber of future directions can be explored: (i) Un- 569

learning for privacy preservation: leverage ad- 570

vances in machine unlearning (Liu et al., 2025) 571

to enable agents to retain useful knowledge while 572

selectively forgetting sensitive user data when re- 573

quired. (ii) Bias detection and mitigation: develop 574

automated fairness-checking models that evaluate 575

real-time content generated by LLM agents to de- 576

tect biased explanations, language, or examples. 577

(iii) Culturally adaptive LLM Agents for global 578

education: train multilingual, culturally aware ed- 579

ucational agents that dynamically adjust explana- 580

tions based on regional learning norms, historical 581

perspectives, and diverse curricula. 582

5.2 Hallucination and Overreliance 583

Analysis. The “hallucination” phenomenon, in 584

which LLMs generate plausible but incorrect 585

or nonsensical information, poses a significant 586

challenge to their reliability in educational con- 587

texts (Zhang et al., 2023). Such inaccuracies can 588

mislead learners by presenting false information 589

with confident and authoritative language, making 590

errors difficult to detect and potentially leading to 591

misconceptions (da Silva et al., 2024; Jho, 2024; 592

Ho et al., 2024). For example, AI-generated con- 593

tent may fabricate historical events or scientific 594

facts that students unknowingly accept as true. This 595

risk is further amplified by overreliance, as students 596
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and educators may accept AI-generated responses597

without sufficient critical evaluation. Research has598

shown that excessive dependence on AI systems599

can hinder skill acquisition and reduce meaningful600

engagement with learning materials (Milano et al.,601

2023; Krupp et al., 2024; Adewumi et al., 2023).602

Directions. Some directions can be explored to mit-603

igate hallucinations in LLM agents for education:604

(i) Self-correcting AI tutors: develop LLM agents605

with self-reflection capabilities (Renze and Guven,606

2024), where models review, verify, and refine their607

own generated content before presenting it to stu-608

dents. (ii) Hybrid Human-AI feedback loops for609

educational content verification: develop teacher-610

in-the-loop AI systems where educators can review611

and correct AI-generated responses, refining agents612

performance over time. (iii) Pedagogical-aware613

educational agents: design agentic frameworks614

aligned with human pedagogical expertise to miti-615

gate overreliance on AI-generated content.616

5.3 Integration with Existing Educational617

Ecosystems618

Analysis. Although LLM agents hold great po-619

tential for automating educational practices, it is620

essential to consider how they can be effectively in-621

tegrated into existing human-centered educational622

paradigms. One major challenge is the lack of struc-623

tured frameworks for integrating LLM agents into624

educational systems. While models like the FOKE625

framework (Hu and Wang, 2024) combine founda-626

tion models, knowledge graphs, and prompt engi-627

neering to provide interactive and explainable learn-628

ing services, broader adoption requires scalable629

models that can be validated in diverse real-world630

educational settings. Additionally, LLMs have631

been explored as tools to enhance creativity and632

collaboration in project-based learning (PBL), sup-633

porting students through brainstorming, problem-634

solving, and project execution. However, studies635

indicate that their effectiveness is limited by the636

absence of structured guidance frameworks that637

help educators and students seamlessly incorpo-638

rate LLM agents into PBL workflows (Zha et al.,639

2024). Another critical challenge is ensuring equi-640

table access to LLM-powered educational tools,641

particularly in underfunded schools and institu-642

tions with limited AI infrastructure. Platforms643

such as AI-VERDE (Mithun et al., 2025) aim to644

democratize access by providing a unified LLM-645

as-a-platform service with built-in access control,646

privacy-preserving mechanisms, and budget man-647

agement. However, achieving widespread adop- 648

tion still depends on scalable and cost-effective 649

deployment strategies that can support educational 650

institutions at different resource levels. 651

Directions. Future research should focus on devel- 652

oping standardized frameworks to guide the struc- 653

tured deployment of LLM agents in personalized 654

learning, PBL, and assessment. For example, ex- 655

panding models like FOKE with adaptive learn- 656

ing strategies, multimodal content, and real-time 657

feedback could enhance instructional effectiveness. 658

Additionally, integrating interactive AI tutors that 659

support student collaboration, project tracking, and 660

contextual guidance would further improve PBL 661

applications. To promote equitable access, develop 662

cost-effective AI tutors through cloud-based and 663

decentralized models would make LLM-powered 664

learning tools more accessible to a wider range of 665

institutions. Finally, to support meaningful integra- 666

tion of LLM agents into educational ecosystems, 667

future work should move beyond task accuracy 668

and explore more practical metrics such as learn- 669

ing gains, user trust, and engagement, which calls 670

for the development of novel education-oriented 671

benchmarks and datasets. 672

6 Conclusion 673

In this survey, we presented a comprehensive re- 674

view of LLM agents for education, focusing on 675

their technical foundations and their potential to 676

transform personalized learning, intelligent tutor- 677

ing, and pedagogical automation. We proposed a 678

task-centric taxonomy that categorizes LLM agents 679

into Teaching Assistance and Student Support, 680

highlighting their core capabilities such as memory 681

augmentation, tool use, planning, and personaliza- 682

tion. We also examined key research challenges, 683

including ethical issues, hallucination and over- 684

reliance, and integration with existing educational 685

ecosystems, which must be addressed to ensure reli- 686

able and ethical deployment. To support continued 687

progress in this field, we compiled critical datasets, 688

benchmarks, and evaluation methodologies. As 689

LLM agents continue to evolve, their influence on 690

education will expand. Realizing their full poten- 691

tial, however, will require both technical rigor and 692

thoughtful system design. We hope this survey pro- 693

vides a solid foundation for future research and the 694

development of AI-powered educational systems. 695
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Limitations696

Considering the rapid development of LLM agents697

for education, it is possible that some of the most698

recent advancements may not have been captured699

at the time of writing. Nevertheless, we have made700

every effort to ensure that all foundational and rep-701

resentative works are included to provide a com-702

prehensive and accurate overview of the field.703
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the challenges and opportunities of literary transla-1602
tion in the age of ai: Striking a balance between1603
human expertise and machine power. Društvene i1604
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A Domain-Specific Educational Agents2063

Recent research on LLM agents in education has2064

also shown growing interest in domain-specific ap-2065

plications. We explore their use in science learning,2066

language learning, and professional development,2067

focusing on their algorithmic frameworks, agen-2068

tic designs, and relevant datasets and benchmarks.2069

In Figure 3, we present a systematic taxonomy of2070

domain-specific educational agents.2071

A.1 Agent for Science Learning2072

An agent for science learning is an intelligent sys-2073

tem powered by LLMs, designed to assist students2074

in acquiring and applying scientific knowledge2075

through personalized, interactive experiences (Yan2076

et al., 2025b; Raihan et al., 2025; Ng et al., 2024;2077

Brown and Cruz Castro, 2025). The significance of2078

these agents in education lies in their ability to offer2079

tailored feedback, enhance conceptual understand-2080

ing, and promote active engagement with complex2081

scientific ideas. In the following sections, we ex-2082

plore the impact of LLM agents in four key sci-2083

entific disciplines: mathematics (§A.1.1), physics2084

(§A.1.2), chemistry (§A.1.3), and biology (§A.1.4),2085

as well as their broader contributions to general2086

scientific discovery (§A.1.5).2087

A.1.1 Mathematics2088

In mathematics, LLM agents provide substantial2089

support by helping students navigate complex prob-2090

lems and reinforcing their understanding of ab-2091

stract concepts (Yan et al., 2024b; Xiong et al.,2092

2024; Swan et al., 2023; Yan et al., 2024c; Wu,2093

2025; Mitra et al., 2024). For instance, Gou et al.2094

(2023) introduce TORA (Tool-integrated Reason-2095

ing Agents), a framework that integrates natural lan-2096

guage reasoning and program-based tool use to han-2097

dle mathematical reasoning. MathAgent (Yan et al.,2098

2025a) similarly proposes Mixture-of-Math-Agent2099

framework to address multimodal error detection in2100

real-world K-12 scenarios, and flexibly transform2101

the visual information of different types of ques-2102

tions into forms that are more easily understood by2103

LLMs (e.g., converting plane geometry images into2104

formalized expression). Additionally, MathChat2105

(Wu et al., 2023b) serves as a conversational math-2106

ematical problem-solving agent, which consists2107

of a chat-based LLM agent and a tool-based user2108

agent. Furthermore, Xiong et al. (2024) propose2109

to use reinforcement learning from human feed-2110

back (RLHF) to further improve tool-integrated2111

agents for mathematical problem-solving, and for- 2112

mulate this method as a Markov decision process, 2113

distinguishing it from the typical contextual ban- 2114

dit approach used in RLHF. Besides, MACM (Lei 2115

et al., 2025) discuss the limitations of LLMs in 2116

handling complex mathematical logical deduction, 2117

thus introducing a multi-agent system, which com- 2118

prises three interactive agents: Thinker, Judge, and 2119

Executor. 2120

A.1.2 Physics 2121

In the field of physics, LLM agents help students 2122

make sense of challenging concepts and offer inter- 2123

active tools to simulate physical phenomena (Pang 2124

et al., 2024; Mower and Bou-Ammar, 2025; Bar- 2125

man et al., 2025; Feng et al.; Jiang and Jiang, 2024; 2126

Yan and Lee, 2024). Wang et al. (2023) introduce 2127

NEWTON, the first pipeline and benchmark to ex- 2128

plore the physical reasoning abilities of LLMs. Fur- 2129

thermore, Kortemeyer (2023) describe a case study 2130

exploring if an LLM agent can pass an introductory 2131

calculus-based physics course. In addition, Physics 2132

Reasoner (Pang et al., 2024), a novel knowledge- 2133

augmented framework for physics problem-solving, 2134

leverages a comprehensive formula set and detailed 2135

checklists to ensure accuracy and completeness. It 2136

can serve as an agent consisting of three stages 2137

- problem analysis, formula retrieval, and guided 2138

reasoning. Besides, Ma et al. (2024a) describe 2139

the Scientific Generative Agent (SGA), a bilevel 2140

optimization framework designed for physical sci- 2141

entific discovery, and highlight the use of LLMs 2142

for generating and revising scientific hypotheses 2143

and implementing an exploit-and-explore strategy. 2144

A.1.3 Chemistry 2145

Chemistry education also benefits greatly from 2146

LLM agents, which can explain molecular struc- 2147

tures, chemical reactions, and experimental pro- 2148

cesses in an engaging and interactive way (Ramos 2149

et al., 2025; M. Bran et al., 2024; Yu et al., 2024; 2150

Guo et al., 2023; Tsai et al., 2023). For example, 2151

ChemCrow (M. Bran et al., 2024) is the first LLM 2152

chemistry agent capable of autonomous planning 2153

and execution of chemical syntheses, including an 2154

insect repellent and three organocatalysts. Yu et al. 2155

(2024) further present ChemAgent, an enhanced 2156

chemistry agent improved over ChemCrow, with a 2157

focus on two essential cognitive abilities of chem- 2158

istry problem-solving: reasoning and grounding. 2159

Besides, Curie (Kon et al., 2025) is an agent frame- 2160

work aimed at incorporating rigor into the experi- 2161
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Domain-
Specific

Educational
Agents

Science Learning §A.1

Mathematics
MathAgent (Yan et al., 2025a); TORA (Gou et al., 2023); Math-

Chat (Wu et al., 2023b); MACM (Lei et al., 2025); Xiong et al. (2024)

Physics NEWTON (Wang et al., 2023); Physics Rea-
soner (Pang et al., 2024); SGA (Ma et al., 2024a)

Chemistry ChemCrow (M. Bran et al., 2024); ChemAgent (Yu et al., 2024);
ChemReasoner (Sprueill et al., 2024); Curie (Kon et al., 2025)

Biology ProtChat (Huang et al., 2024a); ProtAgents (Ghafarollahi
and Buehler, 2024a); TourSynbio-Agent (Shen et al., 2024)

General Scien-
tific Discovery

PaperQA (Lála et al., 2023); PaperQA2 (Skarlinski et al., 2024); Open-
Scholar (Asai et al., 2024); SciAgents (Ghafarollahi and Buehler, 2024b);

SciAgent (Ma et al., 2024c); SciToolAgent (Chen et al., 2025a); Theo-
remExplainAgent (Ku et al., 2025); LLM-SR (Shojaee et al., 2024); AI

Scientist (Lu et al., 2024); ResearchAgent (Baek et al., 2024); Agent
Laboratory (Schmidgall et al., 2025); DiscoveryWorld (Jansen et al., 2024)

Language
Learning §A.2

Reading ExpertEase (Mo and Hu, 2024); AgentSimp
(Fang et al., 2025); Chen and Leitch (2024)

Writing Weaver (Wang et al., 2024c); CAELF (Hong et al., 2024); EvaAI (La-
gakis and Demetriadis, 2024); Debate-to-Write (Hu et al., 2025b)

Translation Agent-SimT (Guo et al., 2024a); TransAgents (Wu et al., 2024a)

Storytelling STARie (Li and Xu, 2023); StoryAgent (Sohn
et al., 2024); LLaMS (Zhang et al., 2025b)

Speaking ELLMA-T (Pan et al., 2024); Spoken-WOZ (Si
et al., 2023); FurChat (Cherakara et al., 2023)

Professional
Development §A.3

Medical Education
Talk2Care (Yang et al., 2024c); openCHA (Abbasian et al.,

2023); MEDCO (Wei et al., 2024); Abd-Alrazaq et al. (2023);
Steenstra et al. (2024); Agent Hospital (Li et al., 2024b)

Computer Sci-
ence Education

CodeAgent (Zhang et al., 2024b); ToolCoder (Ding et al., 2025);
SWE-agent (Yang et al., 2025); AgentCoder (Huang et al., 2023a);

MapCoder (Islam et al., 2024); Iris (Bassner et al., 2024); Chen et al.
(2024a); HypoCompass (Ma et al., 2024b); AlgoBo (Jin et al., 2024a);
Magentic-One (Fourney et al., 2024); AutoKaggle (Li et al., 2024e);
AgentK v1.0 (Grosnit et al., 2024); SWE-Search (Antoniades et al.,
2024); AgentLess (Xia et al., 2024); TRAVER (Wang et al., 2025a)

Law Education

Lawbench (Fei et al., 2023); LegalBench (Guha et al., 2023);
LegalAgentBench (Li et al., 2024a); DeliLaw (Xie et al., 2024a);
Agentcourt (Chen et al., 2024b); Agentscourt (He et al., 2024b);
AgentsBench (Jiang and Yang, 2024); LawLuo (Sun et al., 2024)

Figure 3: Taxonomy of domain-specific educational agents.
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mentation process via three core elements: an intra-2162

agent rigor module to boost reliability, an inter-2163

agent rigor module to ensure systematic control,2164

and an experiment knowledge module to improve2165

interoperability. Recent studies have explored the2166

capabilities of LLMs in complex chemical discov-2167

ery (Yang et al., 2024d; Ruan et al., 2024; Sprueill2168

et al., 2024; Moret et al., 2023; Jablonka et al.,2169

2024), and their potential can be advanced by lever-2170

aging the interactivity of agent-based tool use and2171

the flexibility of planning strategies (Song et al.,2172

2024; Ramos et al., 2025).2173

A.1.4 Biology2174

In biology, LLM agents enhance learning by offer-2175

ing detailed explanations of biological processes2176

and providing interactive experiences to explore liv-2177

ing systems (Yan et al., 2025b; Bhattacharya et al.,2178

2024; Sripathi et al., 2024; Zhao et al., 2025; Gao2179

et al., 2024). For example, ProtChat (Huang et al.,2180

2024a) is a multi-agent tool leveraging GPT-4 and2181

Protein Language Models for seamless protein anal-2182

ysis automation, thus evolutionizing the complexi-2183

ties of protein sequence interpretation. ProtAgents2184

(Ghafarollahi and Buehler, 2024a) is introduced as2185

a multi-agent modeling framework that combines2186

state-of-the-art LLMs with diverse tools to tackle2187

protein design and analysis. It consists of a team of2188

agents: User, Planner, Assistant, Critic, and Group2189

Chat Manager. Besides, Shen et al. (2024) present2190

TourSynbio-Agent, an innovative agent framework2191

that leverages TourSynbio-7B’s protein understand-2192

ing ability to perform various protein engineering2193

tasks, such as mutation analysis, inverse folding,2194

and visualization.2195

A.1.5 General Scientific Discovery2196

LLM agents support general scientific discovery by2197

assisting students in data interpretation, hypoth-2198

esis testing, and creative problem-solving (Yan2199

et al., 2025b; Chen et al., 2024d; Ghafarollahi and2200

Buehler, 2024b; Chen et al., 2025a; Schmidgall2201

et al., 2025). These LLM agents, such as PaperQA2202

(Lála et al., 2023), PaperQA2 (Skarlinski et al.,2203

2024), OpenScholar (Asai et al., 2024), SciAgents2204

(Ghafarollahi and Buehler, 2024b), TheoremEx-2205

plainAgent (Ku et al., 2025), and LLM-SR (Sho-2206

jaee et al., 2024), can analyze complex scientific2207

datasets, helping students uncover patterns and2208

trends that may not be immediately apparent. In2209

addition, Narayanan et al. (2024) present Aviary,2210

an extensible gymnasium for language agents for2211

three challenging scientific tasks: manipulating 2212

DNA constructs for molecular cloning, answering 2213

research questions by accessing scientific litera- 2214

ture, and engineering protein stability. Further- 2215

more, both SciAgent (Ma et al., 2024c) and Sci- 2216

ToolAgent (Chen et al., 2025a) extend to a tool- 2217

augmented scientific reasoning setting with the 2218

help of domain-specific tools. Besides, Agent Lab- 2219

oratory (Schmidgall et al., 2025) emerges as an 2220

agent framework that automates the research pro- 2221

cess of three phases (Literature Review, Experi- 2222

mentation, and Report Writing) via various LLM 2223

agents (PhD, Postdoc, ML Engineer, etc.). 2224

A.2 Agent for Language Learning 2225

The integration of LLM agents into language 2226

learning is revolutionizing how core compe- 2227

tencies—reading, writing, listening, and speak- 2228

ing—are taught and practiced (Ye et al., 2025b). 2229

These skills form the foundation of effective com- 2230

munication and language acquisition, and recent 2231

advancements in LLM-based agents have signif- 2232

icantly enhanced how learners interact with and 2233

acquire these skills. Below, we introduce recent 2234

advancements in each subdomain, highlighting the 2235

role of LLM agents in enhancing pedagogical out- 2236

comes in language acquisition for students and sec- 2237

ond language (L2) speakers through engaging and 2238

adaptive approaches (Huang et al., 2023b; Ye et al., 2239

2023b,a). 2240

A.2.1 Reading 2241

Reading comprehension is a vital component of 2242

language learning, and LLM agents are playing an 2243

increasingly important role in enhancing students’ 2244

reading abilities. For instance, ExpertEase (Mo 2245

and Hu, 2024) employs a multi-agent framework 2246

to adapt documents for grade-specific audiences, 2247

simulating expert-teacher-student collaboration to 2248

enhance comprehension. AgentSimp (Fang et al., 2249

2025) tackles document-level simplification by 2250

leveraging multiple agents with distinct roles to en- 2251

sure coherence and accessibility. Additionally, var- 2252

ious LLMs (Adetayo et al., 2024) have been used 2253

as academic reading companions, demonstrating 2254

improved engagement and understanding of com- 2255

plex qualitative texts in educational settings (Chen 2256

and Leitch, 2024). 2257

A.2.2 Writing 2258

The development of writing skills has benefited sig- 2259

nificantly from NLP tasks like explainable gram- 2260
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matical error correction (EXGEC) (Ye et al., 2024b,2261

2025a; Zou et al., 2025) and automatic essay scor-2262

ing (AES) systems (Su et al., 2025). Weaver (Wang2263

et al., 2024c), a family of LLMs fine-tuned for writ-2264

ing tasks (Ye et al., 2023c, 2024c), outperforms2265

generalist LLMs like GPT-4 in generating human-2266

like narratives. Moreover, Weaver natively sup-2267

ports retrieval-augmented generation (RAG) and2268

function calling, serving as a qualified foundational2269

model for LLM agents. For interactive feedback2270

on student essays, CAELF (Hong et al., 2024) in-2271

troduces a multi-agent framework that enables in-2272

teractive essay feedback. By combining Teaching-2273

Assistant agents’ evaluations with teacher-agent2274

arbitration, students can contest grades and en-2275

gage with the feedback, addressing the “black box”2276

limitations of traditional automated scoring. In-2277

spired by the process of human debate, Debate-to-2278

Write (Hu et al., 2025b) construct a persona-based2279

multi-agent framework that can enable agents to2280

collaboratively debate, discuss ideas, and form a2281

comprehensive plan for argument writing.2282

A.2.3 Translation2283

LLM agents demonstrate remarkable advance-2284

ments in both simultaneous (Koshkin et al., 2024;2285

Guo et al., 2024b) and literary translation (Cheng2286

et al., 2024; Škobo and Petričević, 2023). Transla-2287

tion tasks benefit from LLM agents through their2288

ability to integrate specialized tools and orches-2289

trate multi-agent collaboration. Agent-SiMT (Guo2290

et al., 2024a) combines the decision-making ca-2291

pabilities of a Simultaneous Machine Translation2292

(SiMT) policy agent with the generative power of a2293

translation agent, achieving state-of-the-art perfor-2294

mance in simultaneous translation by dynamically2295

balancing reading and generation actions. For lit-2296

erary translation, TransAgents (Wu et al., 2024a)2297

employs a multi-agent framework to replicate the2298

complex workflows of human translation teams, ad-2299

dressing cultural nuances and stylistic challenges2300

through collaborative reasoning. This approach2301

not only improves translation quality but also ex-2302

tends LLM applications to linguistically and cultur-2303

ally rich domains. These contributions underscore2304

the importance of tool use and agent collaboration2305

in advancing translation education (Zheng et al.,2306

2024).2307

A.2.4 Storytelling2308

Storytelling applications leverage LLM agents to2309

create immersive and interactive learning experi-2310

ences (Simon and Muise, 2022). STARie (Li and 2311

Xu, 2023), a peer-like embodied conversational 2312

agent, integrates multimodal tools such as speech 2313

synthesis and facial animation to scaffold children’s 2314

storytelling, fostering narrative creativity and oral 2315

communication skills (Beredo and Ong, 2021; Cas- 2316

sell, 2022). StoryAgent (Sohn et al., 2024) com- 2317

bines top-down story drafting with bottom-up asset 2318

generation to transform simple prompts into coher- 2319

ent, multi-modal digital narratives. By automating 2320

complex storytelling workflows (Liem et al., 2023), 2321

it democratizes content creation and enhances en- 2322

gagement in language learning. LLaMS (Zhang 2323

et al., 2025b), a multi-modal agent framework, is 2324

designed to generate multi-modal human-level sto- 2325

ries characterized by expressiveness and consis- 2326

tency, incorporating the Story-Adapter module for 2327

long image sequence illustration. These systems 2328

demonstrate the potential of LLM agents to sup- 2329

port both cognitive and creative aspects of language 2330

education for children. 2331

A.2.5 Speaking 2332

LLM agents are revolutionizing spoken language 2333

education by integrating reasoning and multi- 2334

agent collaboration to build adaptive dialogue 2335

systems (Liu et al., 2024d; Balan et al., 2024). 2336

ELLMA-T (Pan et al., 2024) employs contex- 2337

tual reasoning and role-playing in social VR en- 2338

vironments to provide personalized feedback and 2339

language assessments, enabling learners to prac- 2340

tice speaking in realistic scenarios (Lim et al., 2341

2024; Li et al., 2025b). SpokenWOZ (Si et al., 2342

2023) introduces a large-scale benchmark for task- 2343

oriented spoken dialogue, highlighting the impor- 2344

tance of reasoning and multi-turn interaction in 2345

addressing real-world conversational challenges. 2346

FurChat (Cherakara et al., 2023), an embodied 2347

conversational agent, combines verbal and non- 2348

verbal communication cues to simulate natural in- 2349

teractions, making it a valuable tool for improv- 2350

ing speaking skills through immersive and real- 2351

istic practice. By employing multimodal signals 2352

such as speech and gestures, SpeechAgents (Zhang 2353

et al., 2024a) enhances the authenticity of dialogue 2354

simulations, capturing consistent content, natural 2355

rhythm, and rich emotional expression. Through 2356

Multi-Agent Tuning (Liang et al., 2024), it opti- 2357

mizes LLM capabilities for large-scale simulations 2358

involving up to 25 agents, enabling applications 2359

like drama creation and audio novel generation. 2360
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A.3 Agent for Professional Development2361

Agents for professional development harness the2362

capabilities of LLMs to offer scalable, adaptive,2363

and context-aware learning experiences tailored to2364

domain-specific needs. This section summarizes2365

how recent studies develop agents to revolutionize2366

professional training in fields including medical2367

(§A.3.1), computer science (§A.3.2), and law edu-2368

cation (§A.3.3).2369

A.3.1 Medical Education2370

The deployment of LLM agents in healthcare has2371

created new opportunities for personalized, inter-2372

active, and scalable systems, with several health2373

agents introduced (Shusterman et al., 2025) such as2374

Talk2Care (Yang et al., 2024c) and openCHA (Ab-2375

basian et al., 2023). Additionally, Abd-Alrazaq2376

et al. (2023) highlight the educational potentials2377

of LLMs in crafting personalized curricula, adap-2378

tive learning plans, and dynamic assessment tools2379

for medical education, while concurrently address-2380

ing challenges including algorithmic bias, misin-2381

formation, and privacy issues. MEDCO (Wei et al.,2382

2024), a multi-agent system, has the capacity to2383

replicate real-world medical training environments2384

through agent collaboration with virtual patients,2385

expert physicians, and radiologists, enhancing in-2386

terdisciplinary learning and peer interaction. Fur-2387

thermore, Abbasian et al. (2023) introduce open-2388

CHA as a personalized LLM-powered framework2389

that integrates external resources and orchestrates2390

multi-step problem-solving for complex healthcare2391

queries (Ye et al., 2024a), emphasizing tool use2392

and action planning. Beyond traditional education,2393

Steenstra et al. (2024) explore LLMs in creating2394

fantasy narrative games for adolescent health ed-2395

ucation, demonstrating the agents’ ability to gen-2396

erate engaging, doctor-validated content that en-2397

hances knowledge retention through gamification.2398

Li et al. (2024b) present Agent Hospital, a simula-2399

tion environment where LLM-driven agents evolve2400

through autonomous interactions, demonstrating2401

significant improvements in medical reasoning and2402

performance on benchmarks like MedQA (Jin et al.,2403

2021) after treating thousands of simulated patients.2404

Collectively, these investigations highlight the ver-2405

satility of LLM agents within medical education,2406

demonstrating their abilities in reasoning, collab-2407

oration, tool integration, and adaptive learning to2408

effectively address a broad spectrum of educational2409

and clinical challenges (Karabacak and Margetis,2410

2023; Tian et al., 2024b; Ullah et al., 2024).2411

A.3.2 Computer Science Education 2412

An agent for computer science (CS) education 2413

greatly enhances learning by providing personal- 2414

ized guidance on coding, debugging, and under- 2415

standing CS principles (Ma et al., 2024b; Lee and 2416

Song, 2024; Kosar et al., 2024; Liu et al., 2024b). 2417

For example, CodeAgent (Zhang et al., 2024b) 2418

serves as an LLM agent framework for repo-level 2419

code generation, incorporating external tools such 2420

as WebSearch and DocSearch. Recent studies have 2421

demonstrated the potential of agent-based code gen- 2422

eration systems such as ToolCoder (Ding et al., 2423

2025), SWE-agent (Yang et al., 2025), AgentCoder 2424

(Huang et al., 2023a), and MapCoder (Islam et al., 2425

2024), which can significantly enhance students’ 2426

coding efficiency (Jin et al., 2024a; Wang et al., 2427

2025a; Frankford et al., 2024). Furthermore, Bass- 2428

ner et al. (2024) introduce Iris, an LLM-driven 2429

virtual tutor designed to offer personalized, context- 2430

aware assistance to CS students within the interac- 2431

tive learning platform Artemis. Besides, Chen et al. 2432

(2024a) propose Learning-by-Teaching (LBT) as 2433

an effective pedagogical strategy for CS education, 2434

and leverage the advantages of LLM agents (e.g., 2435

contextual conversation & learning from demon- 2436

strations). 2437

A.3.3 Law Education 2438

LLM agents leverage pre-trained legal knowledge, 2439

interactive capabilities, and reasoning skills to sup- 2440

port law education through judicial interpretation, 2441

moot court simulation, and case analysis (Chen 2442

et al., 2024b; Nelson, 2024; Lai et al., 2024; Yuan 2443

et al., 2024). However, evaluations from Law- 2444

Bench (Fei et al., 2023) and LegalBench (Guha 2445

et al., 2023) reveal that LLMs struggle with legal 2446

knowledge application and judicial aid. LegalA- 2447

gentBench (Li et al., 2024a) further highlights their 2448

limitations in multi-hop reasoning and defense 2449

statement writing, showing that LLM agents re- 2450

quire significant improvements to effectively assist 2451

in complex legal tasks. Despite these challenges, 2452

LLM agents are emerging as valuable tools for 2453

moot court simulations, a crucial component of 2454

legal reasoning and advocacy training. DeliLaw 2455

(Xie et al., 2024a) enhances law education by inte- 2456

grating legal and case retrieval modules, enabling 2457

students to practice legal research, case analysis, 2458

statutory interpretation, and mock consultations. 2459

LawLuo (Sun et al., 2024) applies a multi-agent 2460

framework with retrieval-augmented generation to 2461

simulate multi-turn legal consultations, improving 2462
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personalization and ambiguity handling. Similarly,2463

AgentCourt (Chen et al., 2024b) and AgentsCourt2464

(He et al., 2024b) simulate courtroom interactions2465

and judicial decision-making, providing a realis-2466

tic training ground for law students. AgentsBench2467

(Jiang and Yang, 2024) extends this by offering2468

multi-agent legal reasoning and case analysis, fur-2469

ther advancing AI-driven legal education.2470

B Datasets & Benchmarks2471

In Table 2, we provide a comprehensive summary2472

of publicly available datasets and benchmarks de-2473

signed to evaluate LLM agents for education across2474

various domains. It categorizes resources based on2475

their primary goal, target users, subject domain, ed-2476

ucation level, language, modality and dataset size.2477

We hope this collection can support and advance2478

research on LLM agents for education.2479

Several datasets are designed to evaluate the ped-2480

agogical agents, such as ASSIST09 (Feng et al.,2481

2009) and Junyi (Chang et al., 2015), which support2482

knowledge tracing (KT) in K-12 math education,2483

while others like EduAgent (Xu et al., 2024a) facil-2484

itate adaptive learning (AL) by dynamically adjust-2485

ing content based on student profiles. In addition,2486

error correction and detection (ECD) datasets, such2487

as Virtual Teacher (Xu et al., 2024b) and MathCCS2488

(Zhang et al., 2025d), assess LLM agents’ ability2489

to identify and rectify student mistakes in math2490

learning. Other datasets cater to writing, reading,2491

and language learning, including FABRIC (Han2492

et al., 2023), EssayJudge (Su et al., 2025), and EX-2493

CGEC (Ye et al., 2024b), which focus on feedback2494

and generation (FCG) for student essays. Multi-2495

Sim (Ryan et al., 2023) and Wang et al. (2024b)2496

provide multi-lingual translation and storytelling2497

benchmarks, expanding LLM capabilities beyond2498

English-language education.2499

Several datasets support domain-specific educa-2500

tional agents across science, law, medicine, and2501

computer science. Beyond their primary goal of2502

evaluating pedagogical ability, these datasets as-2503

sess LLM agents in domain-specific applications.2504

They provide insights into how LLM agents can2505

be adapted for specialized instruction, evaluating2506

their ability to deliver subject-specific knowledge,2507

facilitate problem-solving, and enhance interactive2508

learning experiences across diverse educational2509

fields. ScienceAgentBench (Chen et al., 2024d)2510

and TheoremExplainBench (Ku et al., 2025) as-2511

sess scientific reasoning and theorem explanation,2512

while ML-Bench (Tang et al., 2023) and MLA- 2513

gentBench (Huang et al., 2023c) focus on machine 2514

learning education. In law education, datasets like 2515

LawBench (Fei et al., 2023), LegalBench (Guha 2516

et al., 2023), and AgentCourt (Chen et al., 2024b) 2517

evaluate legal knowledge application, case analysis, 2518

and court simulations. Medical education datasets, 2519

including MedBench (Cai et al., 2024) and Omn- 2520

iMedVQA (Hu et al., 2024), test clinical reasoning 2521

and medical knowledge retrieval. For computer 2522

science, SWE-Bench (Yang et al., 2025) and Pro- 2523

gramming Feedback (Estévez-Ayres et al., 2024) 2524

assess code generation, debugging, and software 2525

engineering instruction. These benchmarks help 2526

refine LLM agents for specialized tutoring, enhanc- 2527

ing AI-driven learning in professional fields. 2528
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Table 2: Summary of existing datasets and benchmarks of LLM agents for education.

Dataset&Benchmark Goal User Domain Level Language Modality Amount Source

ASSIST09 KT Student Math K12 EN text 227k (Feng et al., 2009)
Junyi KT Student Math K12 ZH text 2.5M (Chang et al., 2015)

EduAgent AL & CS Student - Graduate EN text & image 1,015 (Xu et al., 2024a)
MathDial AL & KT Student Math K12 EN text 45 (Macina et al., 2023)

MultiArith AL Student Math K12 EN text 180 (Xu et al., 2024a)
CoMTA KT Student Math K12 EN text 153 (Scarlatos et al., 2025)
MaCKT KT Student Math K12 EN text 452 (Yang et al., 2024b)

Virtual Teacher ECD Student Math K12 ZH text & image 420 (Xu et al., 2024b)
MathCCS ECD Student Math K12 ZH text & image 420 (Zhang et al., 2025d)

MathTutorBench ECD & FCG Student Math K12 EN text 7 tasks (Macina et al., 2025)
MultiSim - Student Reading - Multi-lingual text 1.7M (Ryan et al., 2023)
FABRIC FCG Student Writing - EN text 1,782 (Han et al., 2023)

EssayJudge FCG Student Writing - EN text & image 1,054 (Su et al., 2025)
PROF FCG Teacher Writing - EN text 363 (Nair et al., 2024)

EXCGEC FCG Student Writing - ZH text 8,216 (Ye et al., 2024b)
Wang et al. (2024b) - All Translation - Multi-lingual text 70K (Wang et al., 2024b)

NewEpisode - Student Storytelling - EN text & image 24.5K (Wang et al., 2024e)
SD-Eval ECD Student Speaking - EN speech 7,303 (Ao et al., 2024)

Programming Feedback FCG Teacher Computer Science - Code text 52 (Estévez-Ayres et al., 2024)
Review Critique FCG All Computer Science - EN text 440 (Du et al., 2024)

AAAR-1.0 FCG All Computer Science - EN text & image 1,000 (Lou et al., 2024)
ScienceAgentBench - All General Science - EN text 102 (Chen et al., 2024d)

TheoremExplainBench - All General Science - EN text 240 (Ku et al., 2025)
MLGym-Bench - All General Science - EN text 13 tasks (Nathani et al., 2025)

ML-Bench - All Machine Learning - EN text & image 9,641 (Tang et al., 2023)
MLAgentBench - All Machine Learning - EN text 13 tasks (Huang et al., 2023c)

SciCode - All General Science - EN text 338 (Tian et al., 2024a)
BLADE - All General Science - EN text 12 tasks (Gu et al., 2024)

DiscoveryBench - All General Science - EN text 1,167 (Majumder et al., 2024)
SUPER - All General Science - EN text 796 (Bogin et al., 2024)
E-EVAL - All Math & Language & General Science K12 ZH text 4,351 (Hou et al., 2024)

MedBench - All Medical - ZH text 40,041 (Cai et al., 2024)
CMB - All Medical - ZH text 280,839 (Wang et al., 2024d)

OmniMedVQA - All Medical - ZH text & image 127,995 (Hu et al., 2024)
MedEval - All Medical - EN text & image 22,779 (He et al., 2023)
OSWorld - All Computer Science - EN text & image 369 (Xie et al., 2024b)
Spider2-V - All Computer Science - EN text & image 812 (Cao et al., 2024)

VisualWebArena - All Computer Science - EN text & image 910 (Koh et al., 2024)
WebArena - All Computer Science - EN text & image 812 (Zhou et al., 2023)

SWE-Bench - All Computer Science - EN text 2,294 (Yang et al., 2025)
SWE-Bench M - All Computer Science - EN text & image 617 (Yang et al., 2024a)
Magentic-One - All Computer Science - EN text & image 617 (Fourney et al., 2024)

Lawbench - All Law - ZH text 20 tasks (Fei et al., 2023)
LegalBench - All Law - EN text 162 tasks (Guha et al., 2023)

LegalAgentBench - All Law - ZH text 300 tasks (Li et al., 2024a)
Agentcourt - All Law - ZH text 550 (Chen et al., 2024b)
SimuCourt - All Law - ZH text 420 (He et al., 2024b)
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