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Summary
As AI systems become increasingly autonomous, aligning their decision-making to human

preferences is essential. In domains like autonomous driving or robotics, it is impossible to
write down the reward function representing these preferences by hand. Inverse reinforcement
learning (IRL) offers a promising approach to infer the unknown reward from demonstrations.
However, obtaining human demonstrations can be costly. Active IRL addresses this challenge
by strategically selecting the most informative scenarios for human demonstration, reducing the
amount of required human effort. As a principled alternative to prior heuristic approaches, we
introduce two information-theoretic methods for Active IRL that aim to maximise information
about the reward, or alternatively regret, at every step, directly targeting either the reward
learning or the apprenticeship learning objective. We prove that our method yields a probably-
approximately-correct (PAC) policy – the first such guarantee for this task. We also illustrate
failure modes of prior methods and provide an experimental comparison.

Contribution(s)
1. We formulate two principled information theoretic acquisition functions for active inverse

reinforcement learning with Boltzmann rational demonstrations: Reward-EIG and Regret-
EIG.
Context: This gives a more principled alternative to previous, heuristic acquisition functions
of Lopes et al. (2009), Brown et al. (2018), and Kweon et al. (2023).

2. For RegretEIG, we prove a lower bound on the expected number of steps of active learning
needed to reach a probably-approximately-correct (PAC) apprentice policy.
Context: This a first such proof for active IRL with an expert that is not perfectly rational.
Metelli et al. (2021); Lindner et al. (2022) presented results for the, in many respects much
simpler, case of perfectly optimal expert, focusing especially on transfer of a learnt reward to
new environment dynamics.
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Abstract
As AI systems become increasingly autonomous, aligning their decision-making to1
human preferences is essential. In domains like autonomous driving or robotics, it is2
impossible to write down the reward function representing these preferences by hand.3
Inverse reinforcement learning (IRL) offers a promising approach to infer the unknown4
reward from demonstrations. However, obtaining human demonstrations can be costly.5
Active IRL addresses this challenge by strategically selecting the most informative6
scenarios for human demonstration, reducing the amount of required human effort. As7
a principled alternative to prior heuristic approaches, we introduce two information-8
theoretic methods for Active IRL that aim to maximise information about the reward,9
or alternatively regret at every step, directly targeting either the reward learning or10
the apprenticeship learning objective. We prove that our method yields a probably-11
approximately-correct (PAC) policy – the first such guarantee for this task. We also12
illustrate failure modes of prior methods and provide an experimental comparison.13

1 Introduction14

Stuart Russell suggested three principles for the development of beneficial artificial intelligence: its15
only objective is realizing human preferences, it is initially uncertain about these preferences, and its16
ultimate source of information about them is human behavior (Russell, 2019). Apprenticeship learning17
via Bayesian inverse reinforcement learning (IRL) can be understood as a possible operationalization18
of these principles: Bayesian IRL starts with a prior distribution over reward functions representing19
initial uncertainty about human preferences. It then combines this prior with demonstration data from20
a human expert acting approximately optimally with respect to the unknown reward, to produce a21
posterior distribution over rewards. In apprenticeship learning, this posterior over rewards is then22
used to produce a policy that should perform well with respect to the unknown reward function.23

However, getting human demonstrations requires scarce human time. Also, many risky situations24
where we would wish AI systems to behave especially reliably may be rare in these demonstration25
data. Bayesian active learning can help with both by giving queries to a human demonstrator that are26
likely to bring the most information about the reward.27

Most prior methods for active IRL (Lopes et al., 2009; Brown et al., 2018; Metelli et al., 2021)28
queried the expert for action annotations of particular isolated states. However, in domains such as29
autonomous driving with a high frequency of actions, it can be much more natural for the human30
to provide whole trajectories – say, to drive for a while in a simulator – than to annotate a large31
collection of unrelated snapshots. There is one previous paper on active IRL with full trajectories32
(Kweon et al., 2023) suggesting a heuristic acquisition function whose shortcomings can, however,33
completely prevent learning, as we will demonstrate. We instead suggest using the principled tools of34
Bayesian active learning for the task.35

The article provides the following contributions:36

1. We explain and demonstrate failure modes of existing heuristic methods for active IRL if the goal37
is to produce a well-performing apprentice policy. In particular, most previous methods are limited38
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(a) Ground-truth rewards.

70 60 50 40 30 20 10 0
Reward

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Mud
Water
Lava

(b) Current belief over rewards. (c) Reward EIG of each initial state.

Figure 1: Illustration of the active IRL task. (a) shows a gridworld and its true rewards. The lower
left corner has a "jail" state with negative reward from which an agent cannot leave. The starred green
state is the terminal "goal" state with a large positive reward. The brown, blue, and red states are
"mud", "water", and "lava" type states respectively, whose rewards are unknown to the IRL agent.
The IRL agent tries to learn the rewards of these three state types from expert demonstrations. (b)
shows current distributions over the rewards of the "mud", "water", and "lava" state types respectively,
at some particular step of the active learning process. These learned reward distributions are used to
calculate an acquisition function (here the reward EIG) of obtaining another expert demonstration
starting from each given state, shown in (c). In this case, a demonstration starting in the bottom right
state gives the most information about the unknown reward parameters.

to querying for only a single state annotation, as opposed to whole trajectories. Furthermore, we39
show that the only prior method for whole trajectories can result in repeatedly querying a single40
uninformative state forever.41

2. We propose two acquisition functions based on expected information gain (EIG) – one about the42
reward, the other about the regret of the apprentice policy.43

3. We examine and test 3 possible ways of operationalizing the latter.44

4. We provide a theoretical result giving the number of steps in which we can expect regret-EIG to45
produce a probably approximately correct (PAC) apprentice policy – a first such result for expert46
demonstrations that are not perfectly optimal.47

5. We illustrate the performance of our method in a set of gridworld experiments.48

2 Task formulation49

Let M = (S,A, p, r, γ, tmax, ρ) be a parameterized Markov decision process (MDP), where S and50
A are finite state and action spaces respectively, p : S ×A → P(S) is the transition function where51
P(S) is a set of probability measures over S, r : S × A → R is an (expected) reward function,152
γ ∈ (0, 1) is a discount rate, tmax ∈ N∪{∞} is the time horizon, and ρ is the initial state distribution.53

We assume we are initially uncertain about the reward r, and our initial knowledge is captured54
by a prior distribution p(r) over rewards, which is a distribution over R|S||A| – a space of vectors55
representing the reward associated with each state-action pair. We also have access to an expert that,56
given an initial state s0 of the MDP, can produce a trajectory τi =

(
(si0, a

i
0), . . . , (s

i
ni
, aini

)
)
, where57

1Our formulation permits the reward to be stochastic. However, our expert model (1) depends on the rewards only via
the optimal Q-function, which in turn depends only on the expected reward. Thus, the demonstrations can only ever give us
information about the expectation. Throughout the paper, the learnt reward function can be interpreted either as modeling a
deterministic reward, or an expectation of a stochastic reward.
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si0 ∼ ρ, st+1 ∼ p(·|st, at), and58

πE(at|st) =
exp(βQ∗(st, at))∑

a′∈A exp(βQ∗(st, a′))
, (1)

which is called a Boltzmann-rational policy, given the optimal Q-function Q∗ and a hyperparameter59
β expressing how close to optimal the expert behaviour is (where β = 0 corresponds to fully random60
behaviour and β → +∞ would yield the optimal policy).61

The task of Bayesian active inverse reinforcement learning is to sequentially query the expert to62
provide demonstrations from initial states ξ1, . . . , ξN ∈ S to gain maximum information about the63
unknown reward. We start with a (possibly empty) set of expert trajectories D0 and then, at each step64
of active learning, we choose an initial state ξi for the MDP, from which we get the corresponding65
expert trajectory τi. We then update our demonstration dataset to Di = Di−1 ∪ {τi}, and the66
distribution over rewards to p(r|Di), which we again use to select the most informative environment67
setup ξi+1 in the next step. We repeat until we exhaust our limited demonstration budget N .68

This can be done with one of two possible objectives in mind.69

The first, which we call the reward-learning objective, is relevant when our primary interest is in the70
reward itself, e.g. when using IRL to understand the motivations of mice in a maze (Ashwood et al.,71
2022) or the preferences of drivers (Huang et al., 2022). In the active setting, we operationalize this72
objective as trying to minimize the entropy of the posterior distribution over rewards, once all expert73
demonstrations have been observed. This is equivalent to maximizing the log likelihood of the true74
parameter value in expectation, or to maximizing the mutual information between the demonstrations75
and the reward.76

The second objective, which we term the apprenticeship-learning objective, uses the final posterior77
p(r|DN ) to produce an apprentice policy78

πA
N := argmaxπEr|DN

[Eτ [
∑

st,at∈τ

γtr(st, at)]] ,

where τ is a trajectory with s0 ∼ ρ, st+1 ∼ p(·|st, at) and at = πA
N (st). This approach directly79

aims to produce a policy which maximises the expected return (and can thus also be understood as a80
method for imitation learning).81

When working with a fixed set of demonstrations in IRL, these objectives are generally closely82
connected – learning the best possible reward function enables learning a good apprentice policy.83
However, in the active setting, they can come apart – for instance, once we know a state s has lower84
reward than s′, we may no longer need to make gather further information about rewards in these85
states for the apprenticeship learning objective as we already know to choose the better one, while86
the reward-learning objective may motivate further queries to further reduce the uncertainty.87

Stemming from a common inspiration in Bayesian active learning, we will present an acquisition88
function tailored to each of these objectives.89

Notation By V π
r we denote the state-value function of policy π with respect to reward r. V ∗

r is then90
the value function of the optimal policy. A lack of subscript indicates value with respect to the true91
reward. By Gr(τ) we denote the return of trajectory τ with respect to r. By Rπ

r (s0) we denote the92
regret of policy π starting from state s0, i.e. Rπ

r (s0) := V ∗
r (s0)− V π

r (s0), and Rπ
r := Es0∼ρR

π
r (s0).93

We also call immediate regret the quantity R∗
π,r(s) = V ∗(s) − Q∗(s, π(s)) and also denote by94

R∗
π,r(s, a) = max{0, Q∗(s, a)−Q∗(s, π(s))} the immediate regret relative to action a in state s.95

3 Related work96

IRL was first introduced by Russell (1998), preceded by the closely related problem of inverse97
optimal control formulated by Kalman (1964). See Arora & Doshi (2021) and Adams et al. (2022)98
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for recent reviews of the already extensive literature on IRL. In our work we build upon the Bayesian99
formulation of the problem introduced by Ramachandran & Amir (2007).100

We will now summarize prior work on active IRL in particular. We first describe a number of methods101
which query for single state annotations (which can be cast into our framework from Section 2102
as trajectories of length one), and then describe the one previous method which queries for whole103
trajectories. Lastly, we review a few other works for setups not directly comparable to ours.104

3.1 Active learning with single action annotations105

The concept of active IRL was first introduced by Lopes et al. (2009). The authors propose an106
acquisition function equal to the entropy of the posterior predictive distribution about the Boltzmann107
expert policy, i.e. they query a state maximizing αLopes

n (s) = H(Πs|Dn) where Πs is the vector of108
expert action probabilities (according to the posterior predictive distribution).109

An issue with this approach is that H(Πs|Dn) does not take into account the effect of improved110
knowledge on the apprentice policy. For example, we may know the optimal action in a particular111
state, but with high uncertainty about the exact action probabilities, while another state may have112
uncertainty about the optimal action, but lower entropy about exact probabilities of actions. Then,113
αLopes
n (s) would prioritize the latter, which may be suboptimal from the apprenticeship learning114

perspective. See Appendix A for a full example.115

Brown et al. (2018) query the expert by maximising the δ-value-at-risk of the policy loss (i.e. regret)116
of the current apprentice policy starting from the given initial state, computed as117

αBrown
n (s) = VaRδ

(
V π∗

(s)− V πA
(s)|Dn

)
. (2)

This is a risk-aware approach: the states with a high risk of the apprentice action could being much118
worse than the expert’s action are queried. A limitation of this approach is that regret attributed to119
some initial state s may be due to a choice made further along the trajectory where an expert query120
would be more informative as shown in Appendix A.121

3.2 Active learning with full trajectories122

Kweon et al. (2023) query full trajectories with a starting state chosen s0 to maximise123

αKweon
n (s0) = Eτ∼π̂Dn

E

[∑
st∈τ

α̃n(st)|s0
]
, (3)

where124
α̃n(s) := H(π̂Dn

E (a|s)) :=
∑
a

−π̂Dn

E (a|s) log π̂Dn

E (a|s),

is the entropy of π̂Dn

E , the posterior predictive distribution over the expert actions at state s, estimated125
from demonstration data Dn.126

However, note that this action entropy can remain high even in states where we have perfect knowledge127
but multiple actions are equally good so the Boltzmann rational policy chooses them with equal128
probabilities, thus resulting in high action entropy. However, querying for extra demonstrations in129
such states will bring no useful knowledge. In fact, this can result in learning getting completely130
stuck, sometimes right at the beginning, preventing any learning from taking place. We give an131
example of this in Section 6.132

3.3 Other settings133

Instead of querying at arbitrary states, Losey & O’Malley (2018) and Lindner et al. (2022) synthesize134
a policy that explores the environment to produce a trajectory which subsequently gets annotated135
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by the expert. We instead let the expert produce the trajectory. Buening et al. (2024) query full136
trajectories in the context of IRL, where the active component arises in the choice of a transition137
function from a set of transition functions at each step. Büning et al. (2022) also query full trajectories138
in a different context involving two cooperating autonomous agents. In Sadigh et al. (2017), the139
expert is asked to provide a relative preference between two sample trajectories synthesized by the140
algorithm. While this generally provides less information per query than our formulation, it is a141
useful alternative for situations where providing high-quality demonstrations is difficult for humans.142

On the side of theoretical sample complexity of (active) IRL, all prior work assumes a perfectly143
rational expert policy, which is a stronger assumption than our Boltzmann rationality. In particular,144
seeing each state once is enough to determine the optimal policy. The first lower bound on the145
complexity of IRL was given by Komanduru & Honorio (2021) for the case of a β-separable finite146
set of candidate rewards. Metelli et al. (2021); Lindner et al. (2022); Metelli et al. (2023) then focus147
on recovering a feasible reward set in settings where also the transition dynamics are only estimated,148
and address the problem of the transferrability of the learnt reward to environments with different149
dynamics.150

4 Method151

Where prior work provided heuristic acquisition functions, we build on the principled approach of152
Bayesian experimental design (Rainforth et al., 2023), in particular using the expected information153
gain as our acquisition function. But this raises the question: information about what? The answer154
depends on our objective and the associated loss function. In Section 2, we presented two such155
objectives: firstly, learning the reward, which can be operationalized as minimizing the posterior156
uncertainty represented by the entropy of the posterior; or, secondly, producing an apprentice policy157
that performs well according to the unknown reward. Only by being clear about what our goal is can158
we devise an optimal strategy for achieving it. Let us now address how EIG can be used for each of159
these objectives.160

4.1 Reward EIG161

In some cases, learning the reward function that an agent is optimizing can be of intrinsic interest. In162
that case, we can frame active IRL as trying to find a set of queries ξ1, . . . , ξN which minimize, in163
expectation, our posterior uncertainty about the reward, which can be written as a loss164

Lrew(ξ1, . . . , ξN ) := H[p(r|DN )] (4)

where DN is a set of expert trajectories sampled from initial states ξ1, . . . , ξN . This is equivalent to165
trying to maximize the posterior probability density of the true reward.166

As is usually the case in Bayesian experimental design and optimization, optimizing for the full167
N-step lookahead is generally intractable, so as a starting point, we consider a greedy formulation168
where in each step n, we try to optimize the acquisition function169

αRewEIG
n (s0) := Er|Dn

[
Eτ |r;Dn

[log p(r|τ ;Dn)− log p(r|Dn)]
]
=

Er|Dn

[
Eτ |r,s0 [log p(τ |r, s0)− log p(τ |s0;Dn)]

]
,

where the expectation over trajectories is taken with respect to ρ, p, and an expert policy that would170
correspond to the reward r from the outer expectation, taken with respect to the current posterior.171

4.2 Regret EIG172

What if we are not interested in the reward for its own sake but instead in producing an apprentice173
agent maximizing the expected posterior reward? While information about the reward is likely to be174
useful for good apprentice performance, it is only an imperfect proxy.175
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For example, knowing that certain states are associated with low reward might be sufficient for the176
apprentice to avoid them. However, learning the exact magnitude of those low rewards would provide177
no additional benefit to the performance of the apprentice. Despite this, the reward-based EIG would178
continue to attempt to gather such unnecessary information.179

Thus, let us now focus on constructing an acquisition function that tracks the apprenticeship learning180
objective more closely. Maximizing the apprentice return can be framed as minimizing the loss181

Lret(ξ1, . . . , ξN ) = −Es0∼ρEτ |s0Gr(τ) = −Es0∼ρEτ |s0

∑
st,at∈τ

γtr(st, at).

Minimizing Lret is equivalent to minimizing the regret loss182

Lreg(ξ1, . . . , ξN ) := RπA
N

r := Es0Eτ |s0,πA
N

[
V ∗(s0)−Gr(τ)

]
. (5)

However, optimizing for this loss directly is extremely challenging even in the greedy case, since183
calculating the one-step improvement would involve maximizing184

αreg
n (s0) := −Er|Dn

Eτn+1|r,s0R
πA
n+1

r . (6)

Calculating the regret R
πA
n+1

r in next step would involve computing the hypothetical updated posterior185
p(r|Dn ∪ {τ}) and then finding an apprentice policy maximizing this posterior, which involves186
running the Bayesian IRL for each hypothetical expert trajectory, which is extremely costly.187

Thus, similar to information-theoretic methods in Bayesian optimization (Wang & Jegelka, 2017)188
which maximize information about the maximum value rather than directly optimizing the difficult-189
to-compute improvement in the expected global optimum (the knowledge gradient; Frazier & Powell190
(2007)), we could instead try to maximize the information gain about the regret, resulting in the191
acquisition function192

αRegEIG(ξ) = ERπA
r

[
Eτ |RπA

r
[log p(τ |RπA

r ; ξ)− log p(τ |ξ)]
]
. (7)

The intuition behind this acquisition function is that learning about the regret will reveal whether and193
where the current apprentice policy is behaving suboptimally – information that can help us improve194
the policy.195

This seems to be a reasonable heuristic; however, there are situations where it can fail. Suppose that196
in a particular state, the agent can take action a0 which they know to yield 0 return. Alternatively,197
they can take actions a1 or a2 and know that one of them yields a reward of +50 and the other -100198
but do not know which is which with equal probabilities. Then, the apprentice policy would choose199
a0, since it yields higher expected return. They would know for sure that the regret of the policy is 50200
when starting from this state. However, since the associated regret distribution is deterministic, the201
acquisition function would see no information to be gained here and the state would never be queried!202

Luckily, there is a way to fix the problem: the regret can be decomposed as RπA

r =203
Eτ∼ρ,πA

∑
st,at∈τ γ

t
[
V ∗(st) − Q∗(st, π

A(st))
]

where we call the inner term the immediate re-204
gret and will henceforth denote it by R∗

πA,r(s). Further, we can write R∗
πA,r(s) = maxa R

∗
πA,r(s, a),205

where R∗
πA,r(s, a) = max{0, Q∗(s, a)−Q∗(s, πA(s))} is the immediate regret of the apprentice pol-206

icy relative to action a in state s. Then, learning about the values of R∗
πA,r(s, a) means learning how207

good the apprentice action is relative to each other action. Lower-bounding the value by zero means208
that once we are certain that the apprentice action is optimal, there is no further useful information to209
be gained.210

A further advantage of estimating the expected information gain about R∗
πA,r(s, a) is that its distribu-211

tion in a given state (across all actions) fully determines the distribution of the expert actions, which212
means that the information gain from observing an expert action in a particular state is fully captured213
by the information gain about R∗

πA,r(s, ·) in that given state, which can be used to simplify the EIG214
calculation.215
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Thus to summarize, our main acquisition function optimizing for apprentice performance will be EIG216
about R∗

πA,r, the immediate regret across all states and actions217

αIR-EIG
n (s0) := ER∗

πA,r
|Dn

[
Eτ |R∗

πA,r
,s0

[
log p(τ |s0, R∗

πA,r;Dn)− log p(τ |s0;Dn)
]]
. (8)

5 Producing a PAC Policy218

We will now show that the regret EIG acquisition function leads to a probably-approximately-correct219
(PAC) apprentice policy. In particular, we say that a policy is ϵ, δ-probably-approximately-correct220
with respect to the current posterior, if, with probability at least 1− δ, its regret is less than ϵ.221

We will derive the expected number of steps to reach this condition through the following three steps222
(the corresponding formal results and their proofs can be found in Appendix B).223

1. If the apprentice policy πA is not satisfying the PAC condition, there must exist a state where224
there is a significant chance that the apprentice policy is making a significantly suboptimal choice225
relative to the optimal policy – in particular226

Pr|Dn

[
V ∗
r (s)−Q∗

r(s, π
A(s)) ≥ (1− γ)ϵ

]
≥ δ

|S|
(Lemma B.2).

2. In such a state, there is both a chance that an appropriately constructed apprentice policy is close227
to optimal and that it is significantly suboptimal (as defined in step 1). Since these two options228
would result in a sufficiently different expert policies in this state, we can gain a lower-bounded229
expected amount of information by observing the expert in that state.230

3. Since we can keep gaining this minimal amount of information per step as long as the PAC231
condition is not satisfied and we start with finite entropy about the regret of each policy, eventually,232
we must satisfy the PAC condition, with an expected number of steps equal to the ratio of the233
initial entropy and the lower bound on the information gain.234

In particular, the last two points translate into the following two theorems:235

Theorem 5.1. For ϵ > 0 and δ ∈ (0, 1
2 ], assume that no policy π is (ϵ, δ)-probably-approximately-236

correct, i.e., P[Rπ
r ≥ ϵ] > δ, ∀π. Then, there exists a state s ∈ S such that observing a new expert237

demonstration at s has an expected information gain of at least238

EIGIR
min(ϵ, δ) =

δ(1− e−β(1−γ)ϵ)2

8|A|3|S|
. (9)

Then, we can translate this into the following result on the expected number of steps to reach the PAC239
criterion:240

Theorem 5.2. Let hmax ≥ maxπ H(p(R∗
π,r)) be an upper bound on the entropy (in the sense of a241

limiting density of discrete points or a suitable discretization) of the joint prior distribution over the242
state-action immediate regrets of all state-action pairs for any policy. Then, the expected number of243
steps needed to reach the PAC condition is upper bounded by244

hmax/EIGmin(ϵ, δ) =
8hmax|A|3|S|

δ(1− e−β(1−γ)ϵ)2
. (10)

6 Experiments245

We evaluated the performance of the two proposed acquisition functions in a set of gridworld246
experiments with respect to both objectives introduced earlier: the reward learning objective, measured247
by the entropy of the posterior distribution over rewards, and the apprenticeship learning objective,248
measured by the regret. We also track the posterior distribution over regrets which directly relates to249
the PAC criterion.250

We evaluate across three types of environment:251
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1. Structured gridworld: Features fewer reward parameters than states. It includes a known goal252
state with a reward of +100, neutral states with a reward of -1, and three obstacle types with253
unknown negative rewards with a uniform prior between -100 and 0 independently for each254
obstacle type. This is was meant as an illustrative example (Figure 1) and a counterexample to the255
only prior method designed for collecting full trajectories, action entropy (Kweon et al., 2023),256
by including a jail state where all actions are equivalent and which always gets selected by this257
baseline, thus preventing any useful learning.258

2. 10x10 random gridworld with 2 initial states: Each state has a random reward drawn from the259
prior, N (0, 3), with only two possible initial states to test the ability of methods to recognize only260
relevant parts of the state space. Here we use β = 4 so the expert behaves closely to optimal.261

3. 8x8 random gridworld with fully uniform intial states: Each state has a random reward drawn262
from the prior, N (0, 3), and the initial state distribution is uniform across all states. We use β = 2263
so the expert is fairly stochastic.264

We evaluate both the setting where each query results in a full expert trajectory, where we compare265
against the only prior method (Kweon et al., 2023) as well as random sampling, and the setting where266
each query results in a single state-action annotation, where we also evaluate against the methods by267
Lopes et al. (2009) and Brown et al. (2018).268

Building on the discussion in the section on regret EIG, we test three versions of computing this.269
RegEIG – the initial suggestion computing the EIG with respect to the overall regret of the apprentice270
policy RπA

r (a scalar value, Eq. 6). IR-EIG is the information gain about the immediate regret relative271
to each other action in each state (Eq. 8). We also tested PAC-EIG, a version of IR-EIG, which272
instead of focusing on the information gain about the full scalar value, focuses only on a binary273
random variable indicating whether the regret relative to each other action is < (1− γ)ϵ for ϵ = 0.1,274
which is a simplification of IR-EIG focusing on the satisfaction of the PAC criterion for a particular ϵ.275
The three methods yield roughly similar results so we omit them in some plot for easier legibility.276

Each experiment type was run with with 16 different random reward functions, different terminal277
states (except for the jail environment) and different 2 initial states in the 10x10 environment. The278
plots display the mean and the standard error across these 16 random instances.279

6.1 Results280

Results on the simple environment from Figure 1 illustrate a crucial failure mode of the action entropy281
(Kweon et al., 2023) acquisition function – it always queries the jail state and thus fails to learn282
anything useful, while both reward and regret EIG learn an optimal policy within 10 steps in all 16283
instances with similar posterior entropies.284

Figure 3 shows the results on the 10x10 gridworld with 2 random initial states and single-state285
annotations, Figure 4 shows the results for querying single-state annotations on the 8x8 gridworld286
with a uniform initial state distribution, and Figure 5 results on the 8x8 environment when querying287
trajectories of maximum length 5.288

In the case of only 2 initial states on the 10x10 gridworld, we can see our regret-focused acquisition289
functions to do much better in terms of both actual and posterior regret, reaching a zero true regret, as290
well as 0.1-0.1-PAC apprentice policy, by step 50. ActiveVaR remains competitive with RewardEIG291
in terms of the reward-learning objective (posterior entropy), but both fall behind in terms of true and292
posterior regret.293

On the gridworld with fully uniform initial states, we observe that all our information theoretic294
acquisition functions result in lower posterior reward entropy and lower regret than prior methods295
except for ActiveVaR, which seems to roughly match their performance. Interestingly, the reward-296
based acquisition function and the regret-based ones seem to perform similarly well on both objectives,297
suggesting that there is a strong correlation between learning about the reward and learning about the298
apprentice regret.299
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Figure 2: Results of the experiments on the environment with 3 cell types and a jail state with
full-trajectory demonstrations.
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Figure 3: Results of the experiments with single state annotations (i.e. |τ | = 1) on the 10x10 fully
random gridworld with two initial states. In the barplot (b), results with zero regret are visualized
below the horizontal axis to make their presence clearer.

The action entropy acquisition function still stops yielding significant improvements after about step300
50 – it again gets stuck querying states that have high action entropy due to multiple actions being301
similarly good, even if these states do not yield any more information.302

7 Discussion and conclusion303

In this paper we have proposed new acquisition functions for active IRL, each geared toward one of304
two possible objectives: learning about an unknown reward function, or producing a well-performing305
apprentice policy. We have shown that across a set of gridworld experiments, our acquisition functions306
outperform or at least match prior methods on their respective objective. Furthermore, our immediate-307
regret EIG acquisition function is a first acquisition function with a regret bound in our setting.308
While we have so far tested the methods only in finite state spaces, both of them were constructed to309
generalize also to continuous spaces, which will be addressed in future work.310

Impact statement311

Through this paper, we hope to contribute to more effective and reliable learning of human preferences312
and values by AI systems, which aims to improve their alignment and facilite their beneficial use.313



Under review for RLC 2025, to be published in RLJ

0 20 40 60 80 100 120 140
Active step

100

110

120

130

140

150

En
tro

py
 (n

at
s)

Posterior reward entropy
Random
Action entropy
Policy entropy
ActiveVaR
RewEIG
RegEIG
IR-EIG
PAC-EIG

(a) Posterior reward entropy

10 20 50 100
Active Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
gr

et
 (n

or
m

al
ize

d)

Apprentice regret (normalized)
Random
Action entropy
Policy entropy
ActiveVaR
RewEIG
RegEIG
IR-EIG
PAC-EIG

(b) True regret

0 20 40 60 80 100 120 140
Active step

0.2

0.4

0.6

0.8

1.0

 su
ch

 th
at

 P
[re

gr
et

>0
.1

]<
 

 for = 0.1

Random
Action entropy
Policy entropy
ActiveVaR
RewEIG
RegEIG
IR-EIG
PAC-EIG

(c) Posterior prob. of regret > 0.1

Figure 4: Results of the experiments with single state annotations (i.e. |τ | = 1) on the 8x8 fully
random gridworld.
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Figure 5: Results of the experiments with expert trajectories of maximum length |τ | = 5 on the 8x8
fully random gridworld.
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Figure 6: Two-state environment designed to illustrate failure more of Lopes et al. (2009)

A Failure modes of prior methods405

For each of the three prior methods for active IRL, we will now present an example of a simple406
environment where the method makes a clearly suboptimal choice with respect to at least one of the407
two objectives.408

Lopes et al. (2009): Consider an environment with two states s0,1 each with two actions a1,2 as shown409
in Figure 6. Suppose through prior knowledge we know that a1 is optimal in s1, but we are uncertain410
about the exact probabilities of a1, a2 in this state - and thus αLopes(s1) is high. Furthermore, suppose411
that in s0 we lack information about which action is optimal, but the entropy of the probabilities in412
each state is lower αLopes(s0) < αLopes(s1). In this case, budget would be wasted on s1 rather than413
learning the optimal action in s0.414

Below we give a concrete example of this effect. We construct a discrete prior distribution over415
rewards which induces a prior over the possible action probabilities in each state. Following the416
notation of Lopes et al. (2009), denote by µs,a(p) the probability that the policy in state s has417
probability p of taking action a. We construct a prior:418

µ0,1(0.4) = 0.3 , µ0,1(0.6) = 0.7 , (11)

and reciprocally419
µ0,2(0.4) = 0.7 , µ0,2(0.6) = 0.3 , (12)

Furthermore, in state s1 we have420

µ1,1(0.7) = 0.5 , µ1,1(0.9) = 0.5 ,

µ1,2(0.3) = 0.5 , µ1,2(0.1) = 0.5 ,

With this posterior, the policy is uncertain about whether a1 or a2 is optimal in state s0. In state s1,421
although it is unsure of exact probabilities, there is no doubt that a1 is the optimal action.422

The acquisition function αLopes computes the entropy of these random variables, averaged across423
actions, in each state:424

αLopes(s0) = 0.881 , αLopes(s1) = 1.0 . (13)

Concretely, this acquisition function would query s1, where the policy already knows which action is425
optimal, rather than s0 where there is key information to be gained.426

(Brown et al., 2018): Consider an environment with two states labelled s0,1 and two actions a1,2 as427
shown in Figure 7. Both actions in state s0 lead to s1, one with reward +2 and the second with −2428
(but we do not know which is which). In s1, both actions lead to a terminal state, and give a reward429
of −10 and +10. Since the potential downside of any policy is maximal at s0 (−12), the acquisition430
function would query s0. On the other hand, querying state s1 to distinguish the ±10 rewards would431
yield a greater reduction in regret.432

Consider an intermediate policy which knows the absolute values of all the rewards, but not the relative433
signs: (i.e. (+2,−2) and (−2,+2) are equally likely for r(a1|s0), r(a2|s0), as are (+10,−10) and434
(−10,+10) for r(a1|s1), r(a2|s1). We can easily compute435

αBrown(s0) = 2 + γ10 , αBrown(s1) = 10 , (14)
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Figure 7: Two state environment to demonstrate failure mode of Brown et al. (2018).

such that for sufficiently large discount factor, state s0 would be queried by this acquisition function436
argmaxs{αBrown(s)}. We can compute the reduction in expected regret after querying each of these437
states. The initial expected total regret for the apprentice policy, averaged over a uniform initial state438
distribution439

E[R] =
1

2

(
V ∗(s0)− V π(s0)

)
+

1

2

(
V ∗(s1)− V π(s1)

)
=

1

2
(2 + γ10− 0) +

1

2
(10− 0) . (15)

The expected total regret after querying s0, s1 respectively:440

E[R|s0] =
1

2

(
2+γ10−2

)
+
1

2

(
10−0

)
= (γ+1)5 , E[R|s1] =

1

2

(
2+γ10−γ10

)
+
1

2

(
10−10

)
= 1 .

(16)
We therefore observe that whilst Brown et al. (2018) would query s0, querying s1 yields a greater441
reduction in expected regret.442

(Kweon et al., 2023): Consider a situation where there is perfect knowledge of the action values443
in a particular state, but a subset of actions at this state are equivalent (result in the same reward444
and next state distribution) and tied as optimal. Then the policy will assign uniform probabilities445
among these actions and due to high action entropy this state will be repeatedly queried. We offer446
an extreme example of this in Figure 1 which renders this acquisition function useless since it will447
only ever query the jail cell without gaining any information. Similarly, if in any environment, we448
allow querying terminal states, the method always queries these since actions have no effect and thus449
a Boltzmann rational policy would be uniform and thus have maximum entropy.450

Uniform random sampling: Consider the single action annotation version of uniform random sampling.451
Consider a set of n× n gridworlds with a constant number of states that can yield useful information.452
A uniform random sampling algorithm will need O(n2) steps to visit all of these (so a n grows large,453
would become unlikely to find a good apprentice policy in any given finite number of step) whereas454
a method that targets the useful states, such as our methods, would remain O(1) independently of455
growing n.456

B Theoretical Analysis457

We will establish an upper bound on the expected number of expert demonstrations needed to find a458
policy satisfying our PAC criterion. The proof strategy proceeds in three steps:459

1. First, we show that if a policy has positive expected regret, there must exist a state where the460
policy’s action is significantly suboptimal in terms of Q-values.461

2. Building on this, we prove that if a policy is not (ϵ, δ)-PAC, then with probability at least δ,462
there exists a state where the difference between optimal and apprentice policy’s Q-values is463
lower-bounded by a function of ϵ.464

3. Finally, we show that in such cases, observing an expert demonstration from an appropriately465
chosen initial state provides a guaranteed minimum amount of information about the rewards.466
Since we can only gain a finite amount of information (bounded by the entropy of our prior), this467
leads to a bound on the number of demonstrations needed.468
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We begin with our first lemma, which connects policy regret to Q-value differences:469

Lemma B.1. Let π be any policy, r any reward function, and470

Rπ
r = Es0∼ρ0

[V ∗
r (s0)− V π

r (s0)] ≥ 0,

the regret of that policy. Then there exists a state s ∈ S such that471

Q∗
r(s, π

∗(s))−Q∗
r(s, π(s)) ≥ (1− γ)Rπ

r .

Proof. Let us define472
∆Q = max

s∈S
[Q∗

r(s, π
∗(s))−Q∗

r(s, π(s))] .

We will prove the lemma by showing that Rπ
r ≤ ∆Q/(1− γ).473

Since Qπ
r (s, π(s)) ≤ Q∗

r(s, π(s)) (because Q∗
r is the optimal Q-function), we have474

V ∗
r (s)− V π

r (s) = Q∗
r(s, π

∗(s))−Qπ
r (s, π(s))

≥ Q∗
r(s, π

∗(s))−Q∗
r(s, π(s))

≥ 0 .

Using the Bellman equation, for any state s ∈ S we can write475

V ∗
r (s)− V π

r (s) = Q∗
r(s, π

∗(s))−Qπ
r (s, π(s))

= Q∗
r(s, π

∗(s))−Q∗
r(s, π(s)) +Q∗

r(s, π(s))−Qπ
r (s, π(s))

≤ ∆Q +
(
r(s, π(s)) + γEs′|s,π(s)[V

∗
r (s

′)]
)
−

(
r(s, π(s)) + γEs′|s,π(s)V

π
r (s′)]

)
= ∆Q + γEs′|s,π(s)[V

∗
r (s

′)− V π
r (s′)]

≤ ∆Q + γmax
s′

[V ∗
r (s

′)− V π
r (s′)].

Here, the first equality just replaces state values by the corresponding Q-values, the second line adds476
and subtracts the same term, the third line uses the definition of ∆Q for the first term and expands the477
latter two Q-values using the Bellman equation, the third just cancels out the repeated reward term.478
The final inequality follows because the expectation over next states is bounded by the maximum.479

Since this inequality holds for all s ∈ S, it holds also for the state maximizing the left-hand side, so480
we get481

max
s

[V ∗
r (s)− V π

r (s)] ≤ ∆Q + γmax
s′

[V ∗
r (s

′)− V π
r (s′)] (17)

which can be readily rearranged into482

max
s

[V ∗
r (s)− V π

r (s)] ≤ ∆Q

1− γ
.

Thus483

Rπ
r = Es0∼ρ0

[V ∗
r (s0)− V π

r (s0)] ≤ max
s

[V ∗
r (s)− V π

r (s)] (18)

≤ ∆Q

1− γ
=

1

1− γ
max
s∈S

[Q∗
r(s, π

∗(s))−Q∗
r(s, π(s))] , (19)

which completes the proof.484

Lemma B.2. Let π be the apprentice policy at step n. For any δ ∈ (0, 1
2 ], let Rπ

n,δ be the (1− δ)-485
quantile of the regret distribution with respect to the current posterior distribution over rewards, i.e.,486
Rπ

n,δ satisfies487
Pr|Dn

(Rπ
r ≥ Rπ

n,δ) = δ.

Then, there exists a state s ∈ S such that488

Pr|Dn

(
Q∗

r(s, π
∗
r (s))−Q∗

r(s, π(s)) ≥ (1− γ)Rπ
n,δ

)
≥ δ

|S|
.



Under review for RLC 2025, to be published in RLJ

Proof. Let us define the set of reward functions under which π has high regret:489

H =
{
r : Rπ

r ≥ Rπ
n,δ

}
.

By definition of the quantile Rπ
n,δ , we have490

Pr|Dn
(r ∈ H) = δ.

For each r ∈ H, applying Lemma B.1, we know there exists a state sr ∈ S such that491

Q∗
r(sr, π

∗
r (sr))−Q∗

r(sr, π(sr)) ≥ (1− γ)Rπ
r ≥ (1− γ)Rπ

n,δ.

Now, consider the collection of states {sr : r ∈ H}. Since the state space S is finite with cardinality492
|S|, by the pigeonhole principle, there must exist at least one state s ∈ S such that493

Pr|Dn
(r ∈ H and sr = s) ≥ δ

|S|
.

For this state s, whenever r ∈ H and sr = s, we have494

Q∗
r(s, π

∗
r (s))−Q∗

r(s, π(s)) ≥ (1− γ)Rπ
n,δ.

Therefore,495

Pr|Dn

(
Q∗

r(s, π
∗
r (s))−Q∗

r(s, π(s)) ≥ (1− γ)Rπ
n,δ

)
≥ δ

|S|
,

which completes the proof.496

This lemma extends our previous result to the probabilistic setting of Bayesian IRL. While Lemma B.1497
showed that high regret implies the existence of a state with poor action choice, this lemma shows498
that if our policy has a significant probability of high regret, there must be at least one state where it499
has a significant probability of making a poor action choice.500

Theorem 5.1. For ϵ > 0 and δ ∈ (0, 1
2 ], assume that no policy π is (ϵ, δ)-probably-approximately-501

correct, i.e., P[Rπ
r ≥ ϵ] > δ, ∀π. Then, there exists a state s ∈ S such that observing a new expert502

demonstration at s has an expected information gain of at least503

EIGIR
min(ϵ, δ) =

δ(1− e−β(1−γ)ϵ)2

8|A|3|S|
. (9)

Proof. We will prove the theorem by showing that under its assumptions, there exists a state s and504
an alternative action a∗ ̸= πA(s) that has a chance of being significantly better than the apprentice505
action. If it is significantly better, it is significantly more likely to get selected by the expert than if it506
is inferior to πA(s). Since the observation distributions in the two cases are different, this allows us507
to put a lower bound on the expected information gained by observing the expert.508

Under the assumptions of this theorem and using Lemma B.2, there exists a state such that509

Pr|Dn

[
Q∗

r(s, π
∗
r (s))−Q∗

r(s, π
A(s)) ≥ (1− γ)ϵ

]
≥ δ

|S|
.

Let us denote by E the event
{
Q∗

r(s, π
∗
r (s))−Q∗

r(s, π
A(s)) ≥ (1− γ)ϵ

}
. This event can be parti-510

tioned into events Ea = E ∩ {a = π∗
r (s)} for a ∈ A\ {πA(s)}. Let a∗ be the action whose partition511

E∗ := Ea∗ has the highest probability under the posterior. Then P[E∗] ≥ δ
(|A|−1)|S| .512

Let EA be the event of the apprentice action πA(s) being optimal, i.e.,513

EA = {πA(s) = π∗
r (s)} = {Q∗

r(s, a)−Q∗
r(s, π

A(s)) ≤ 0, ∀a ∈ A}.
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Since πA is defined as the policy maximizing the probability of being optimal, we have P[EA] ≥ 1
|A| .514

Note that this event is disjoint from E∗. For completeness, we define EC as the complement of515
E∗ ∪ EA, so EA, E∗, and EC form a partition of the event space.516

Now, if we denote by A the action taken by the expert in state s seen as a random variable, we can517
decompose the mutual information between A and E as518

I(A;E) =
∑

E∈{E∗,EA,EC}

P[E] DKL(p(A|E)∥p(A)).

To finish the proof, we need to put a lower bound on this mutual information. We have already given519
lower bounds on P[E∗] and P[EA]. We will now provide a lower bound on the corresponding KL520
terms by first lower-bounding the total variation distance between p(A|E∗) and p(A|EA).521

In the event EA, we have Q∗
r(s, π

A(s)) ≥ Q∗
r(s, a

∗), so under the Boltzmann-rational policy, we522
have p(πA(s)|s;EA) ≥ p(a∗|s;EA).523

On the other hand, in case of E∗, we have524

p(πA(s)|s;E∗) =
1

Z
eβQ

∗
r(s,π

A(s)) ≤ 1

Z
eβ(Q

∗
r(s,a

∗)−(1−γ)ϵ)

= e−β(1−γ)ϵp(a∗|s;E∗)

= p(a∗|s;E∗)− (1− e−β(1−γ)ϵ)p(a∗|s;E∗).

Since under E∗, a∗ is the optimal action, it is also the most likely action under the Boltzmann expert525
policy, so we have p(a∗|s;E∗) > 1

|A| , which gives us526

p(a∗|s;E∗)− p(πA(s)|s;E∗) > (1− e−β(1−γ)ϵ)
1

|A|
. (20)

We can use this to bound the total variation distance:527

Dtotal
TV = DTV(p(A|EA), p(A)) +DTV(p(A|E∗), p(A))

≥ DTV(p(A|EA), p(A|E∗))

≥ 1

2

(
p(πA(s)|EA)− p(πA(s)|E∗) + p(a∗|E∗)− p(a∗|EA)

)
≥ 1

2

(
p(a∗|E∗)− p(πA(s)|E∗)

)
>

1

2
(1− e−β(1−γ)ϵ)

1

|A|
where we used the triangle inequality in the first step, the definition of total variation distance in the528
second step (omitting non-negative terms corresponding to actions other than πA and a∗), the fact529
that p(πA(s)|EA) ≥ p(a∗|EA) in the third step, and plugging in Equation (20) in the final step.530

Since both TV terms on the left-hand side are non-negative, we have531

max{DTV(p(A|EA), p(A)),

DTV(p(A|E∗), p(A))}

>
1

4|A|
(1− e−β(1−γ)ϵ).

Applying Pinsker’s inequality, this gives us532

max{DKL(p(A|EA)∥p(A)),

DKL(p(A|E∗)∥p(A))}

>
1

8|A|2
(1− e−β(1−γ)ϵ)2.
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This finally allows us to establish that533

I(A;E) =
∑

E∈{E∗,EA,EC}

P[E]DKL(p(A|E)∥p(A))

≥ min{P[EA],P[E∗]}
×max{DKL(p(A|EA)∥p(A)), DKL(p(A|E∗)∥p(A))}

> min

{
1

|A|
,

δ

(|A| − 1)|S|

}
× 1

8|A|2
(1− e−β(1−γ)ϵ)2

=
δ

8|A|3|S|
(1− e−β(1−γ)ϵ)2.

The first inequality follows from the fact that all three terms in the sum are non-negative. The second534
inequality just plugs in results previously derived in this proof. The final step resolves the minimum535
as its second term using the assumption that δ ≤ 1

2 and |A| ≥ 2.536

Since the distribution over events E is fully defined in terms of the distribution over Q-values, this537
mutual information between A and E, which is also the expected information gain about E from538
observing the expert action, is a lower bound on the information gain about the Q-values (and thus539
also the rewards). This completes the proof.540

B.1 Information-Theoretic Bounds541

To establish bounds on the number of steps needed, we first define suitable discrete random variables542
that capture the information relevant to achieving the PAC criterion. For any state s ∈ S and action543
a ∈ A, we define544

R∗
s,a := Q∗

r(s, π
∗
r (s))−Q∗

r(s, a) (21)

to be the random variable capturing the immediate regret of action a in state s. We then define Es,a545
as a ternary random variable that categorizes this regret:546

Es,a =


“zero” if R∗

s,a = 0

“small” if 0 < R∗
s,a ≤ ϵ

“large” if R∗
s,a > ϵ

(22)

We aggregate this information across all actions in state s by defining547

Es := (Es,a)a∈A,

which is a vector of |A| ternary variables. Finally, we define548

E := (Es)s∈S (23)

to be a random variable composed of the variables Es for all states.549

These discrete random variables allow us to work with standard (non-differential) entropy, avoiding550
some of the technical challenges of continuous distributions while still capturing the information551
needed to establish PAC bounds. In particular, knowing E with certainty would tell us which actions552
are optimal in each state.553

Theorem 5.2. Let hmax ≥ maxπ H(p(R∗
π,r)) be an upper bound on the entropy (in the sense of a554

limiting density of discrete points or a suitable discretization) of the joint prior distribution over the555
state-action immediate regrets of all state-action pairs for any policy. Then, the expected number of556
steps needed to reach the PAC condition is upper bounded by557

hmax/EIGmin(ϵ, δ) =
8hmax|A|3|S|

δ(1− e−β(1−γ)ϵ)2
. (10)
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Proof. The minimal expected information gain guaranteed by Theorem 5.1 is fully derived from558
components of the random variable E. Thus, at every step of active learning where we have not yet559
achieved the PAC criterion, we can gain at least EIGmin(ϵ, δ) information about E.560

Let Hn denote the entropy of E after n steps of active learning. By the properties of entropy and561
information gain:562

1. Hn ≥ 0 for all n (non-negativity of entropy)563

2. H0 = hprior (initial entropy)564

3. Hn+1 ≤ Hn − EIGmin(ϵ, δ) for all n where the PAC criterion is not met (guaranteed information565
gain)566

Let N be the number of steps needed to reach the PAC criterion. Then:567

0 ≤ HN

≤ H0 −N · EIGmin(ϵ, δ)

= hprior −N · EIGmin(ϵ, δ)

Solving for N :568

N ≤
hprior

EIGmin(ϵ, δ)
(24)

The result follows by substituting the expression for EIGmin(ϵ, δ) from Theorem 5.1.569

Corollary B.3. For any prior distribution over rewards, the expected number of steps to reach the570
PAC condition is at most571

log(3)|S||A|/EIGmin(ϵ, δ) =
8 log(3)|A|4|S|2

δ(1− e−β(1−γ)ϵ)2
. (25)

Proof. The random variable E aggregates |S||A| ternary random variables, so it can take at most572
3|S||A| values. Thus, its maximum entropy is − log(1/3|S||A|) = |S||A| log(3). The result follows573
by plugging this maximum entropy into Theorem 5.2.574

While we do not claim this bound is tight, it provides a useful characterization of how the sample575
complexity scales with the problem parameters. In particular, it shows polynomial dependence on the576
size of the state and action spaces, and inverse dependence on both the allowed suboptimality ϵ and577
failure probability δ.578

B.2 Notes on possible improvements579

B.2.1 Tighter bound for large state spaces580

Note that the bound from Lemma B.2 can be tightened if the state space is large and only a subset581
is reachable within an effective horizon. In that case |S| can be replaced by the number of states582
reachable from the initial states within 1/(1− γ) steps.583

B.2.2 Static policy584

The bound includes the entropy of each action in each state. In fact, it may be enough to focus on a585
single action in each state, since we want to identify only a particular PAC policy, rather than reducing586
entropy of all of the components of E(s) in every state. This should allow us to exclude a factor of587
|A| from the bound on the expected number of steps to reach the PAC condition.588
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B.2.3 Generalization of Theorem 5.1589

Note that the proof of Theorem 5.1 can be adapted to work with any policy that has a high probability590
of taking a low-regret action, e.g. policies with591

P[R∗
π(s, a) <

ϵ

2
] >

1

|A|
. (26)

In practice, the various notions of the "best" apprentice policy tend to correlate, so the lowest-592
expected-regret policy is likely to satisfy this assumption, and if not, it can be adjusted by moving593
additional necessary probability weight onto the most-likely-optimal action, in which case this active594
learning strategy can guarantee the PAC condition for the lowest-expected-regret policy, which would595
usually be the default one to use in practice.596

C Resulting acquisition function and its computation597

A practically useful acquisition function should account for one more important point: in order to598
get a policy with low expected regret, we do not need to reduce the expected immediate regret of599
all points, but just those that are likely to get visited by the apprentice policy πA. Let νA(s) :=600
E[
∑∞

t=0 γ
tI[st = s]]] be the discounted expected occupancy of state s. Then, we can set601

α̃(s) := νA(s)I(As, Es). (27)

to be the acquisition function for querying single states.602

However, we also wish to have an acquisition function for collecting full trajectories. A naive603
approach employed by some prior work (Kweon et al., 2023) would be summing the individual604

α′
n(s0) := Er|Dn

[
Eτ |r

[∑
s∈τ

α̃(s)
]]

(28)

However, the sum in Eq. (28) neglects correlation between the regrets in different states (and, worse,605
autocorrelation if a state is visited multiple times). We can instead estimate the full expected606
information gain about our variable E from the new expert trajectory. Then, dropping the weighing607
for the moment,608

EIGE(s0) = Eτ,E

[
log p(τ |E)− log p(τ)

]
. (29)

We assume that the Bayesian IRL method we use to estimate this is able to give us samples from the609
current posterior over Q-values. Given a Q-value and an initial state, we can sample the corresponding610
hypothetical expert trajectories τ |Q. Also, E is a cheaply-computable function of Q, so we can also611
easily convert the samples of Q into samples of E. Then, the only remaining challenge in computing612
EIGE is estimating p(τ |E).613

If the state space is small and we have a lot of Q samples, we can estimate p(τ |E) =614
1

|QE |
∑

Q∈QE
p(τ |Q). However, note that for a given policy, there are 3|S| possible values of615

Eπ , so even for a moderate size of the state space, the number of Q corresponding to each E could be616
small. At the same time, the components of Eπ corresponding to states far away from the trajectory617
are unlikely to share much mutual information with the trajectory. Thus we suggest using the bound618

I(τ, E) ≥ I(τ, Eπ
τ ) (30)

where Eπ
τ :=

(
Es

)
s∈Sτ

for Sτ being some neighbourhood of τ in the state space, including all states619
on the trajectory τ plus states that can be quickly reached from the trajectory.620

To again add the weighing, we can note that since the transition probabilities are the same for both621
components,622

log p(τ |E)− log p(τ) =
∑
s,a∈τ

log p(a|s;E)− log p(τ |s) (31)
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which naturally allows us to re-introduce the weights as623 ∑
s,a∈τ

νπ(s, a)(log p(a|s;E)− log p(τ |s)) (32)

resulting in an acquisition function624

EIGE(s0) = Eτ,E

[ ∑
s,a∈τ

νπ(s, a)(log p(a|s;Eτ )− log p(τ |s))
]
. (33)

D Experiment details625

D.1 Basic parameter values626

In the three environments (structured 6x6, random 8x8, and random 10x10) we used β = 4, 2, 4627
respectively, γ = 0.9, and an infinite horizon (but all environments contained terminal states). We628
started with an empty set of demonstrations (implemented as a single, uninformative observation of a629
dummy sink state) and then ran active learning for 150 steps.630

For ActiveVaR, we used δ = 0.05 (same as the original paper). For policy entropy, we used the631
entropy of the discretized distribution for each action (as proposed by the authors) with K=10 buckets.632
For our regret-based acquisition functions, we use regret discretization with ϵ = 0.1 for the full regret633
and (1− γ)ϵ = 0.01 for the immediate regret.634

D.2 Environments635

The gridworld environments have 5 actions, corresponding to staying in place and moving in the four636
directions. Furthermore, there is a probability of 0.1 of random action being executed instead of the637
intended one. If an action would result in crossing the edge, the agent instead remains in place. The638
gridworlds use a state-only reward (awarded upon executing any action in the given state).639

The 8x8, and 10x10 fully random environments were generated as follows:640

1. Each state was assigned a random reward drawn independently from N (0, 3) (i.e. mostly yielding641
rewards between -10 and 10).642

2. Each state was then marked as terminal with an independent probability of 0.1.643

3. The top 10% of states with highest reward were further marked as terminal (producing terminal644
goal states, which may, however, sometimes be avoided by the optimal policy in favour of staying645
forever in other positive states).646

4. The initial state distribution is either uniform across the whole state space, or, in the case of the647
10x10 gridworld, 2 non-terminal initial states were chosen randomly uniformly.2648

D.3 Bayesian IRL methods649

Our active learning uses a Bayesian IRL method as a key component. In our experiments, we used650
two methods based on Markov chain Monte Carlo (MCMC) sampling: on the structured environment,651
we used PolicyWalk (Ramachandran & Amir, 2007), while on the environment with a different652
random reward in every state, we used the faster ValueWalk (Bajgar et al., 2024), which performs653
the sampling primarily in the space of Q-functions before converting into rewards. We also tried a654
method based on variational inference (Chan & van der Schaar, 2021), but we found its uncertainty655
estimates unreliable for the purposes of active learning.656

For MCMC sampling, we used Hamiltonian Monte Carlo (Duane et al., 1987) with the no-U-turns657
(NUTS) sampler (Hoffman & Gelman, 2014) and automatic step size selection during warm-up658

2Note that the implementation allows the two initial states to collide, producing only a single initial state in 1/81 of the
cases, but this was not the case for any of our 16 random seeds.
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(starting with a step size of 0.1). At every step of active learning, we ran the MCMC sampling from659
scratch using all demonstrations available up to that point. We ran for 100 warm-up steps and then660
200, 500, and 1000 on the three environments respectively. For subsequent usage, we use every other661
sample to reduce autocorrelation.662

D.4 Metrics663

On the first two environments, we use KNN entropy estimation to calculate posterior entropy with664
K=5. This method is known to struggle in high dimensions, which we also observed in the case of665
the 10x10 gridworld (which has a 100-dimensional reward space), so there, we estimate the entropy666
by the entropy of a multivariate normal distribution with the mean and covariance matrix estimated667
from the MCMC samples.668

Regret was calculated relative to the expected return of the optimal policy, calculated using value669
iteration with a tolerance of 1e-5. Posterior regret samples were similarly calculated relative to the670
optimal return with respect to each of the posterior reward samples (which were calculated using the671
optimal Q-value samples which get produced by the Bayesian IRL methods).672

When aggregating true regret across environment instances, we also normalized the regret for each673
random environment instance by the average regret across all methods across the first 32 steps of674
active learning to account for the possibly different scales and different learning difficulties of the675
random environments.676

D.5 Implementation677

The experiments were implemented using Python 3.10, PyTorch 2.5.1, and Pyro 1.8.6. We will678
publish our full code for both the experiments and the associated result analysis on Github once the679
anonymity requirement is lifted.680

D.6 Timing681

The computational time per step of active IRL is dominated by the time necessary to collect the682
Bayesian IRL MCMC samples, which ranges between 5 seconds for the 100+200 samples on the683
structured gridworld to about 5 minutes for the 100+1000 samples on the 10x10 gridworld in a single684
CPU thread. The overhead of all acquisition functions on top of that is below 0.03 and can thus be685
considered negligible.686

Reproducing all our experiments thus takes less than a day on a CPU with 128 threads (we used687
AMD Ryzen Threadripper 3990X at 2.2GHz).688


