
Under review as a conference paper at ICLR 2023

BAMBI: VERTICAL FEDERATED BILEVEL OPTIMIZA-
TION WITH PRIVACY-PRESERVING AND COMPUTATION
EFFICIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

Vertical federated learning (VFL) has shown promising in meeting the vast de-
mands of multi-party privacy-preserving machine learning. However, existing VFL
methods are not applicable to popular machine learning tasks falling under bilevel
programming, such as hyper-representation learning and hyperparameter tuning.
A desirable solution is adopting bilevel optimization (BO) into VFL, but on-shelf
BO methods are shackled by the difficulty in computing the hypergradient with
privacy-preserving and computation-efficient under the setting of VFL. To address
this challenge, this paper proposes a stochastic Bilevel optimizAtion Method with a
desirable JacoBian estImator (BAMBI), which constructs a novel zeroth-order (ZO)
estimator to locally approximate the Jacobian matrix. This approximation enables
BAMBI to compute the hypergradient in a privacy-preserving and computation-
efficient manner. We prove that BAMBI convergences in the rate of O(1/

√
K)

(K is the total number of the upper-level iterations) under the nonconvex-strongly-
convex setting that covers most practical scenarios. This convergence rate is
comparable with algorithms without a ZO estimator, which justifies the advantage
in privacy preservation without sacrifice in convergence rate. Moreover, we design
a BAMBI-DP for further mitigating the concerns on label privacy by leveraging
the differential privacy (DP) technique. Extensive experiments fully support our
algorithms. The code will be released publicly. To our best knowledge, this is the
first work on the bilevel optimization under the setting of VFL.

1 INTRODUCTION

Vertical federated learning (VFL) attracts increasing attention due to the emerging concerns over data
privacy in multi-party collaborative learning Hardy et al. (2017); Vepakomma et al. (2018); Liu et al.
(2019b); Hu et al. (2019); Zhang et al. (2021b;c). Currently, extensive VFL methods have gained
success in various applications, such as medical study, financial risk, and targeted marketing Cheng
et al. (2019); Hu et al. (2019); Liu et al. (2019a;b); Li et al. (2021); Zhang et al. (2021c). However,
these methods are designed only for machine learning (ML) problems with single-level structure and
are not applicable to those falling under bilevel programming, such as hyper-representation learning
and hyperparameter tuning, which are becoming popular in practical VFL applications. Thus, it is
desirable to design methods solving ML problems with bilevel structures under the setting of VFL.

A desirable solution is adopting bilevel optimization (BO) Willoughby (1979) into VFL because
extensive stochastic BO methods have been proposed to well address various machine learning tasks
falling under bilevel programming Grazzi et al. (2020); Ji et al. (2021); Rajeswaran et al. (2019); Ji
& Liang (2021); Tarzanagh et al.; Gao (2022). However, it is challenging to achieve this because
it is difficult to compute the hypergradient of BO problems under the setting of VFL (defined as
vertical federated bilevel optimization problems, VFBO problems) with privacy-preserving and
computation-efficient. On-shelf BO methods Chen et al. (2021); Yang et al. (2021); Ji & Liang
(2021); Grazzi et al. (2020) use the second-order derivatives to approximate Chen et al. (2021); Yang
et al. (2021); Ji & Liang (2021) or directly compute Grazzi et al. (2020) the inverse Hessian matrix
used for computing the hypergradient. However, besides the high computation complexity, applying
existing methods to VFBO problems will cause feature privacy leakage. Specifically, 1) directly
computing the second-order derivatives requires each party to access data of all features (not only
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its own features but also features of other parties), which will lead to feature privacy leakage, 2)
approximating or directly computing the inverse Hessian matrix has a high computation complexity.
Thus, it is challenging to design VFBO methods with privacy-preserving and computation efficiency.

In this paper, we address these challenges by proposing the novel stochastic Bilevel optimizAtion
Method with a desirable JacoBian estImator (BAMBI). Specifically, BAMBI ingeniously adopts the
zeroth-order (ZO) estimation technique to approximate the Jacobian matrix, which enables all parties
to collaboratively compute the hypergradient with privacy-preserving and computation efficiency.
We theoretically prove that BAMBI still has the convergence rate of 1/

√
K for nonconvex-strongly-

convex problems, where K is the total number of upper-level iterations. This convergence rate
matches those of BO algorithms not using ZO estimation, which justifies the advantage in privacy
preservation without sacrificing convergence rate.

In BAMBI, only the intermediate gradients (rather than raw labels) are transmitted (please refer to
Fig. 1 and its explanation for details) from the server to parties not holding labels (denoted as passive
parties), which enables passive parties to optimize models locally without directly accessing the
labels. Therefore, it seems BAMBI can preserve label privacy. However, existing works have shown
that transmitting intermediate gradient is vulnerable to label privacy leakage Li et al. (2021); Sun
et al. (2022); Yang et al. (2022). Particularly, raw labels often contain highly sensitive information
(e.g., important demographic information Ghazi et al. (2021) or disease diagnosis results Vepakomma
et al. (2018)). Thus, it is also important to preserve the label privacy of BAMBI.

To address this important problem, we design the BAMBI-DP by leveraging differential privacy (DP)
technique to further preserve the label privacy. Specifically, BAMBI-DP adds well designed noises to
the intermediate gradients, which is proved to guarantee (ε, 0)-differentially private with respect to
(w.r.t.) the label. We summarize the contributions of this paper as follows.

• To our best knowledge, we are the first to propose methods, i.e. BAMBI and BAMBI-DP, for
solving VFL problems falling under bilevel programming.
• We design a desirable Jacobian estimator in BAMBI, which enables all parties to collaboratively

compute the hypergradient with privacy-preserving and computation efficiency. We also derive
the convergence rate of BAMBI for nonconvex-strongly-convex problems, which justifies our
advantage in privacy preservation without sacrificing convergence rate.
• We further design the BAMBI-DP to preserve the label privacy, which is proved to be (ε, 0)-

differentially private w.r.t. the label.

Notations ai ∈ Rd denotes features of sample i, and bi denotes its label. Given a positive integer l,
[l] denotes the set {1, · · · , l}. We use subscript m ∈ [l] to denote notations associated with party m,
e.g., aim ∈ Rdm , xm ∈ Rpm and ym ∈ Rqm denote the features, upper- and lower-level variables on
party m, respectively. We use superscript t = 0, · · · , N − 1, k = 1, · · · ,K to denote the timestamp
of variables, where N and K are the total number of low- and upper-level iterations.

2 PROBLEM FORMULATION

Considering a VFL system with l parties, where each party holds different features of the same
sample, i.e., given a sample ai ∈ Rd, it can be represented as ai = [ai1, . . . ,a

i
l], where aim ∈ Rdm

and
∑l
m=1 dm = d. We further assume that only one party (denoted as active party) holds labels and

the rest (denoted as passive parties) do not. Moreover, this active party plays the role of the server.

In this paper, we consider the VFL problems falling under bilevel programming, where party m
only learns the m-th components of both the lower- and upper-level variables. Mathematically, such
problems can be formulated as the VFBO problems with the following form.

min
[x1,··· ,xl]∈Rp

F (x) := Eξx [f(x,y∗(x); ξx)] (upper-level)

s.t. y∗(x) = arg min
[y1,··· ,yl]∈Rq

Eξy [g(x,y; ξy)] (lower-level), (1)

where the upper- and lower-level objectives f : Rp×Rq → R and g : Rp×Rq → R are continuously
differentiable w.r.t. the upper-level variable x ∈ Rp and the lower-level variable y ∈ Rq , respectively.
Random samples ξx and ξy are uniformly drawn from Dup and Dlow that are training datasets used
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Figure 1: An illustration of VFBO, where the red line denotes forward process, the green line denotes
backward process, sm = Tm,1(xm,am) and hm = Tm[(xm,ym),am] = Tm,2(ym, sm) form ∈ [l],
where Tm,1, Tm,2, Tm denote the models parameterized by xm, ym, and (xm,ym), respectively.

for the upper- and lower-level optimization, respectively. Note that, there are x ∈ Rp = [x1, · · · ,xl]
and y ∈ Rq = [y1, · · · ,yl], which means that both the upper- and lower-level optimizations fall
under the vertical federated learning. VFBO problems with form 1 capsule many bilevel optimization
problems under VFL setting, such as hyper-representation learning and hyperparameter optimization
in VFL (please refer to Problems 1 and 2 in Section 5 for details).

3 PROPOSED ALGORITHMS

In this section, we propose BAMBI and BAMBI-DP for solving VFL problems with bilevel structures.

3.1 NOVEL STOCHASTIC BO METHOD WITH A DESIRABLE JACOBIAN ESTIMATOR

Challenges of Computing the Hypergradient in VFBO: For VFBO problems, the key step is how
to compute the hypergradient (i.e., the gradient of the upper-level objective w.r.t. the upper-level
variable x), which takes the following form:

∇∗F (x) = ∇xf(x,y∗(x)) + J ∗(x)>∇yf(x,y∗(x)), (2)

where the Jacobian matrix J ∗(x) = ∂y∗(x)
∂x ∈ Rq×p. As for∇xf(x,y∗(x)) and∇yf(x,y∗(x)) in

Eq. 2, we can compute them easily because the m-components of them can be computed locally
on each party m for ∀m ∈ [l]. As for the Jacobian matrix J ∗(x), existing BO methods Chen et al.
(2021); Yang et al. (2021); Ji & Liang (2021) always first use the optimality condition of y∗(x) and
the strongly-convexity of g(y,x) to obtain

J ∗(x) = −
[
∇2

yg (x,y∗(x))
]−1∇x∇yg (x,y∗(x)) , (3)

where ∇2
yg (x,y∗(x)) is assumed to be invertible. Then, these methods adopt the following strate-

gies: 1) directly computing the inverse Hessian matrix Guo & Yang (2021), 2) approximating the
inverse Hessian matrix by solving the linear system ∇2

yg(x,y∗(x))v = ∇yf(x,y∗(x)) Grazzi et al.
(2020); Ji et al. (2020), 3) or approximating the inverse Hessian matrix through the Neumann series∑∞

i=1 U
i = (I − U)−1 Chen et al. (2021); Ji et al. (2020). However, besides the high computation

complexity, adopting existing strategies in VFBO will also cause feature privacy leakage. Specif-
ically, 1) direct computation of the second-order derivatives requires each party in VFL to access
data of all features not only its own features (we give the detailed explanation in the supplemental
material), which leads to feature privacy leakage if no privacy-preserving techniques are adopted,
2) although Jacobian- or/and Hessian-vector implementations are adopted in these methods Grazzi
et al. (2020); Chen et al. (2021); Ji et al. (2020), the computation complexity of approximating or
directly computing the inverse Hessian matrix can still be very high for high-dimensional problems.
Thus, it is challenging to compute the hypergradient of VFBO problems with privacy-preserving and
computation efficiency.
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Algorithm 1 BAMBI on partym (performed in synchronous parallel
manner).

1: Initialize: Stepsizes {αk, βk}, x0
m ∈ Rpm , y0,0

m , and input
K,N,Q.

2: for k = 1, 2, ...,K do
3: Set yk,0m = yk−1,Nm and ŷk,0,jm = yk−1,Nm for j ∈ [Q]
4: Generate uk,j ∈ N (0, 1) for j ∈ [Q].
5: for t = 0, 1, ..., N − 1 do
6: Uniformly draw a batch samples ξy form Dlow.
7: Compute hk,tm and {ĥk,t,jm }Qj=1.
8: For passive parties:
9: Send hk,tm and {ĥk,t,jm }Qj=1 to the server.

10: Receive θk,tm and {θ̂k,t,jm }Qj=1 from the server.
11: For the server:
12: Compute θk,tm and {θ̂k,tm }

Q
j=1, and sent it to all parties.

13: Compute vk,tm and {v̂k,t,jm }Qj=1.
14: Update yk,t+1

m = yk,tm − βkvk,tm and ŷk,t+1,j
m = yk,t,jm −

βkv̂
k,t,j
m for j ∈ [Q].

15: end for
16: Compute ĴNm (xk;uk,j) =

ŷk,N,jm −yk,Nm (xk)
µ uk,j for j ∈ [Q]

17: Uniformly draw a batch samples ξx form Dup.
18: Compute Hk

m = Tm(xkm,y
k,N
m ; ξx).

19: For passive parties:
20: Sent Hk

m to the server.
21: Receive ϑkm = ∂F0

∂Hkm
from the server.

22: For the server:
23: Compute ϑkm and sent it to party m for ∀m ∈ [l].
24: Compute∇xmf(xk,yk,N ; ξx) and∇ymf(xk,yk,N ; ξx).
25: Update xk+1

m = xkm − αk∇̂mF (xk) with ∇̂mF (xk) defined
in Eq. 5.

26: end for

As for the data privacy, cryp-
tographic techniques, such
as secure multi-party com-
putation Micali et al. (1987)
and homomorphic encryption
Brakerski et al. (2014), can
be adopted to preserve the
raw data from sharing Gascón
et al. (2016); Bonawitz et al.
(2017); Hardy et al. (2017).
However, they will cause sig-
nificant computation and com-
munication costs Liu et al.
(2019a); Zhang et al. (2021c).
In this paper, we propose to
use the ZO estimation tech-
nique to elaborately construct
a desirable Jacobian estimator,
which enables all parties to
collaboratively compute the
hypergradient with privacy-
preserving and computation
efficiency.

Zeroth-Order Estimation
Technique: ZO estimation
is a powerful technique to
estimate the gradient without
using training samples’
feature data. Specifically,
ZO estimation approximates
the gradient of a black-box
function h : Rd → R through
the oracle based only on the
function values Nesterov
& Spokoiny (2017), i.e.,
∇̂h(x;u) = h(x+µu)−h(x)

µ u, where u ∈ Rn is draw from a specific distribution, µ > 0 is the

smoothing parameter, and ∇̂h(x;u) is an unbiased estimator of the gradient of the smoothed function
Eu [h(x+ µu)], i.e., ∇hu(x) Ghadimi & Lan (2013); Zhang et al. (2021a). ZO estimation has
promising properties of preserving privacy and low computation complexity as analyzed in Zhang
et al. (2021a), which motivates us to design the desirable Jacobian estimator.

The Desirable Jacobian Estimator: Since ZO estimation can approximate the gradient without
using the feature data, a nature idea is using it to estimate J ∗(x) and then compute the hypergradient
based on the analytical structure (Eq. 2). Specifically, we construct the novel Jacobian estimator
Ĵ (x) ∈ Rq×p for J (x) as

Ĵ (x) = y(xk+µu)−y(x)
µ u>, (4)

where u ∈ Rp is a Gaussian vector with independent and identically distributed (i.i.d.) entries. Then,
J (x) = [J1(x), · · · ,Jl(x)] can be estimated collaboratively by all parties with privacy-preserving
and computation efficiency, where Jm(x) = ∂y(x)

∂xm
for ∀m ∈ [l].

The Proposed BAMBI: Motivated by the above analyses, we propose BAMBI to solve bilevel opti-
mization problems under VFL setting with privacy-preserving and computation efficiency. A simple
illustration of BAMBI is presented in Fig. 1, where party m learns the corresponding components of
the upper- and lower-level parameters (i.e., xm and ym) locally. In BAMBI, each updating includes
a forward process (red line) and a backward process (green line). During the forward process, feature
data am are embedded into embedding hm and then hm is sent to the server. Finally, the server
completes one forward process by computing the loss. During the backward process, the server sends
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Algorithm 2 GradPerturb Algorithm on the Server

1: Input: True label b ∈ {0, 1}, gradients θk,t0 and θk,t1

2: The server samples u ∼ Lap(c) with probability distribution function p(x|c) = 1
2ce
−|x|/c

3: Output: θ̃k,t = [θ̃k,t1 , · · · , θ̃k,tl ] = θk,tb + u · (θk,tb − θ
k,t
1−b)

the intermediate (partial) gradients to the passive parties. In this case, all parties (include the passive
parties) can compute its local gradients by the chain rule. Moreover, in VFBO, either xm or ym is
fixed and only the another one is updated during each update.

The proposed BAMBI is summarized in Algorithm 1. Note that, this is a synchronous parallel
algorithm, which means that only after all parties have finished the communication with the server the
next step will then be performed. At steps 3-15, party m runs an N -step stochastic gradient descent
to approximate yk,∗m (xk) and generate ŷk,Nm (xk + µuk,j), where hk,tm = Tm(xkm,y

k,t
m ; ξy) and

ĥk,t,jm = Tm(xkm + µuk,j ,y
k,t
m ; ξy), θk,tm = ∂F0

∂ĥk,tm
and θ̂k,t,jm = ∂F0

∂hk,t,jm
, vk,tm = ∇ymg(xk,yk,t; ξy)

and v̂k,t,jm = ∇ymg(xk+µuk,j ,y
k,t; ξy) are computed through the chain rule, e.g., vk,tm = θk,tm

∂hk,tm
∂ym

.

At step 16, the Jacobian estimator ĴN (x;uk,j) is computed as Eq. 4. Note that, to reduce the
estimation variance, we use the sample average over the Q estimators to construct the following
hypergradient estimator of party m.

∇̂mF (xk) = ∇xmf(xk,yk,N ) + 1
Q

∑Q
j=1 ĴNm (xk;uk,j)∇ymf(xk,yk,N ), (5)

where ĴNm (xk;uk,j) is the ZO estimation of ∂yN (x;ξy)
∂xm

. At step 24, two stochastic gradients are
computed by using the chain rule and ϑkm. Then, BAMBI enables all parties to collaboratively
optimize the VFBO problem by the approximate hypergradient (Eq. 5), which does not require each
party to access other parties’ feature data and has a low computation complexity.

3.2 BAMBI-DP ALGORITHM

Label Differential Privacy: Label DP is a notation proposed for label privacy guarantee Chaudhuri
& Hsu (2011); Wang & Xu (2019); Ghazi et al. (2021); Malek et al. (2021), where the labels are
considered sensitive and their privacy needs to be protected (e.g., important demographic information
Ghazi et al. (2021) or disease diagnosis results Vepakomma et al. (2018)).

In the backward process, the intermediate gradients are transmitted from the server to the passive
parties, which has the risk of leaking label privacy Ghazi et al. (2021); Malek et al. (2021); Li
et al. (2021). In many real-world applications, the labels are very sensitive Ghazi et al. (2021);
Malek et al. (2021); Li et al. (2021) and their privacy is necessary to protect. Thus, we propose the
BAMBI-DP algorithm, which mitigates the concerns on the label privacy of BAMBI by leveraging
the differential privacy technique. The core step of BAMBI-DP is adding well designed noise to the
transmitted intermediate gradients. We adopt GradPerturb procedure Yang et al. (2022) to achieve
this. GradPerturb generates θ̃k,tm and ϑ̃k,tm , which are θk,tm and ϑk,tm perturbed by the well designed
noises. GradPerturb procedure for binary classification task is summarized in 2 ( Please refer to the
supplemental material for the multi-class version), where θk,tb = [θk,t1,b, · · · , θ

k,t
l,b ], θk,tm,b = ∂F0

∂hk,tm
is

computed with label b for m ∈ [l] and b ∈ {0, 1}, Lap(c) is the Laplace distribution with parameter
c. Then we can obtain BAMBI-DP by replacing θk,tm and ϑk,tm in Algorithm 1 with θ̃k,tm and ϑ̃k,tm
generated by Algorithm 2. In subsection 4.3, we prove that BAMBI-DP is (ε, 0)-differentially private
w.r.t. the label for the l-party (l ≥ 2) VFL system, when c ≥ 1/ε.

4 THEORETICAL ANALYSIS

In this section, we provide the convergence analysis of BAMBI, label privacy analysis of BAMBI-DP,
and computation complexity analysis of both BAMBI and BAMBI-DP. Here we only provide the
results, please refer to the supplemental material for the detailed analyses and proofs.

5



Under review as a conference paper at ICLR 2023

4.1 CONVERGENCE ANALYSIS OF BAMBI

We first make the following necessary assumptions for convergence analysis.

Assumption 1 (Lipschitz continuity) f,∇f,∇g,∇2g are respectively `f,0, `f,1, `g,1, `g,2-
Lipschitz continuous, and ∇f,∇g,∇2g are also block-coordinate Lipschitz continuous, i.e., for
∀m ∈ [l],∇mf,∇mg,∇2

mg are respectively `f,1, `g,1,m, `g,2,m-Lipschitz continuous.

Assumption 2 (Convexity of f and g) For any fixed y, f(x,y) is nonconvex in x, and for any fixed
x, g(x,y) is µg-strongly convex in y.

Assumption 3 (Bounded Variance) For ∀m ∈ [l], the stochastic block-coordinate derivatives
∇mf(x,y; ξx),∇mg(x,y; ξy),∇2

mg(x,y, ξy) are unbiased estimators of ∇mf(x,y),∇mg(x,y),
∇2
mg(x,y), respectively; and their variances are bounded by σ2

f,m, σ
2
g,1,m, σ2

g,2,m, respectively, for
|ξx| = |ξy| = 1.

Assumptions related to block-coordinate ones are common in VFL works Hardy et al. (2017);
Liu et al. (2019b); Hu et al. (2019); Zhang et al. (2021b;c) and others are common in bilevel
optimization literature Ghadimi & Wang (2018); Hong et al. (2020); Chen et al. (2021); Sow
et al. (2021). Assumptions 1 and 2 together ensure that the first- and second-order derivations
of f(x,y), g(x,y) as well as the solution mapping y∗(x) are well-behaved. We further define
σ2
f =

∑l
m=1 σ

2
f,m, σ

2
g,1 =

∑l
m=1 σ

2
g,1,m, σ2

g,2 =
∑l
m=1 σ

2
g,2,m.

Proof Sketch: In the following, we present the proof sketch towards obtaining Theorem 1. Following
Chen et al. (2021), we construct the Lyapunov function as Vk := F (xk) + ‖yk,N − y∗(xk)‖2. Then
the difference between two Lyapunov functions is

Vk+1 − Vk = F (xk+1)− F (xk) + (‖yk+1,N − y∗(xk+1)|| − ‖yk,N − y∗(xk)||), (6)

where the first term on the right hand side quantifies the descent of the upper-level objective, the
second term on the right hand side denotes the descent of the lower-level errors. We then obtain two
lemmas to bound these two terms.

Lemma 1 Under Assumptions 1 to 3, for the low-level optimization process in Algorithm 1, we have

E[‖yk,N − y∗(xk)‖2] ≤ (1− βkµg)NE[‖yk,0 − y∗‖2] +
βkσ

2
g,1

Bµg
, (7)

where B is the batchsize, N is the total number of the lower-level iterations. Given yk+1,0 = yk,N

as set in Algorithm 1, there is

E[‖yk+1,0 − y∗(xk+1)‖2] ≤ (1 + γk + `yxC
2
fα

2
k/4)E[‖yk+1,0 − y∗(xk)‖2] (8)

+ (`2yα
2
k + αk/4 + α2

k`yx/4)E[∇̂F (xk)] + (`2yα
2
k + `yxα

2
k/4)σ̃2,

where `y =
`g,1
µg

, `yx =
`g,2+`g,2

`g,1
µg

µg
+

`g,1(`g,2+`g,2
`g,1
µg

)

µ2
g

, C2
f = (`f,0 +

`g,1
µg
`f,1)2 + δ2µ + σ̃2,

δ2µ =
µ2`2µq(p+6)2

2Q , `µ = (1+
`g,1
µg

)(
`g,2
µg

+
`f,1`g,1
µ2
g

), σ̃2 = 2
σ2
f

B +2(`2f,0 +
σ2
f

B )(12δ2µ+ 4(2p+8)
Q

`2g,1
µ2
g

)+

4(
`2g,1
µ2
g

+ δ2µ)
σ2
f

B , and Q is number of performing ZO estimation.

Lemma 2 Under Assumptions 1 to 3, for successive upper-level iterations, we have

E[F (xk+1)]− E[F (xk)]≤− αk
2 ‖∇

∗F (xk)‖2 − (αk2 −
`f,1α

2
k

2 )‖∇̂F (xk)‖2 +
`f,1α

2
k

2 σ̃2

+αk(`2f,0δ
2
µ + 2(`2f,1 + 2

`2g,1
µ2
g
`2f,1)‖yk,N − y∗(xk)‖2) + 2`2f,0‖JN (xk)− J ∗(xk)‖2F ,

(9)

where JN (xk) =
∂yN (xk;ξy)

∂xk
. Then, we can bound term ‖JN (xk)− J ∗(xk)‖2F by the definition

of the Jacobian matrix and Lemma 1. Finally, applying Lemmas 1 and 2 to Eq. 6, and telescoping it
from k = 1 to k = K, we have Theorem 1.
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Theorem 1 Under Assumptions 1-3, we define

α̂1 =
µ2
g

2`f,1µ2
g + 4`2g,1 + `yxµ2

g

, α̂2 = `yxC
2
fα

2
k + 8αk(`2f,1 + 2

`2g,1
µ2
g

`2f,1 +
`2g,1
µ2
g

),

α̂3 =
µg

8`2f,0`
2
g,2( 1

2µg
+

`g,1+µg
2µ2
g

+
`g,1
2µg

)(1 +
`g,1
µg

)
, (10)

and carefully choose the following stepsizes

αk = min{α̂1, α̂2, α̂3,
1√
K
}, βk = min{

`yxC
2
f α̂1 + 8(`2f,1 + 2

`2g,1
µ2
g
`2f,1 +

`2g,1
µ2
g

)

2Nµg
αk,

1

2µg
},

when applying Algorithm 1 to solve nonconvex-strongly-convex VFBO problems, we have

1

K

K∑
k=1

E‖∇∗F (xk)‖2

≤ V0

K min{α̂1, α̂2}
+

V0

√
K

+ c0κδ
2
µ +

αc1κ√
KNB

σ2
g,1

Q
+
αc2κ√
K
σ̃2 +

c3κ + c4κ(σ̃2 + δ2µ)

NB

σ2
g,1

Q
, (11)

where c0κ, c
1
κ, c

2
κ, c

3
κ only dependent on the constants imposed in Assumptions 1-3, V0 = F (x0) +

‖y0 − y∗(x0)‖2, K is the total number of the upper-level iterations.

Remark 1 Given assumptions and parameters in Theorem 1, choosing µ =
√
Q√

qp3K
and NB =

O( 1√
K

), then Algorithm 1 can obtain the convergence rate of 1√
K

, whose order matches those of BO
algorithms not using ZO estimation Chen et al. (2021); Ji et al. (2020).

4.2 COMPUTATION COMPLEXITY ANALYSIS OF BAMBI AND BAMBI-DP

The rough computation complexity (CC) of a low-level iteration isO(B(Q+1)(p+q)) and, especially,
the CC of ZO estimation is O(BQ(p+ q)). Thus, the total CC of performing an upper-level iteration
in BAMBI is O (NBQ(p+ q)). The CC of computing the second-order derivative in existing BO
methods Chen et al. (2021); Yang et al. (2021) is O(Bpq). Thus, comparing to existing methods
using the second-order derivatives to approximate the Jacobian matrix, BAMBI reduces the CC from
O(Bpq) toO(BQ(p+ q)). For practical choice of Q (typical choice is Q ≤ 10) and practical VFBO
problems with large p, q, such reduction is significant. The analysis of BAMBI-DP is similar.

4.3 LABEL PRIVACY ANALYSIS OF BAMBI-DP

In the following, we analyze the label privacy of BAMBI-DP and show that BAMBI-DP is differen-
tially private w.r.t. the label. Please refer to the supplemental material for the detailed proofs. First,
we show that, noised gradients generated by Algorithm 2 are differentially private.

Lemma 3 Let ε > 0, when Laplace distribution parameter satisfies c ≥ 1/ε, Algorithm 2 is (ε, 0)-
differentially private w.r.t. the label.

Note that, BAMBI-DP adopts Algorithm 2 to generate the noised gradients, thus, privacy budget of
BAMBI-DP depends on that of Algorithm 2. Formally, we give the following result.

Theorem 2 Let ε > 0, if Algorithm 2 is (ε, 0)-differentially private under Laplace distribution, then
BAMBI-DP is also (ε, 0)-differentially private w.r.t. the label.

Theorem 2 shows that when gradients with well designed noise are transmitted in BAMBI, the label
is guaranteed to be differentially private.

5 EXPERIMENTS

In this section, we implement extensive experiments to support the claims of our proposed algorithms
in solving vertical federated bilevel optimization problems. For more experiments details please refer
to the supplemental material.
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Experiment Settings: All experiments are performed on a machine with 4 sockets, and each socket
has 12 cores. The MPI is used for communication. Similar to previous VFL works Zhang et al.
(2021c;b), we vertically partition the data into l = 4 non-overlapped parts with nearly equal number
of features. We introduce following two representative VFBO problems for valuation.

Problem 1: Hyper-Representation Learning in VFL. Hyper-representation learning (HRL)
Franceschi et al. (2018); Grazzi et al. (2020) trains a classifier following a two-phased optimization
process. The upper level solves for the optimal embedding model (i.e., representation) parameters
x, and lower-level solves the optimal linear classifier parameters y. For vertical federated HRL
(VFHRL) problems, each party m learns the embedding function of its own feature am, thus we have
T (x,ai) = [T1(x1,a

i
1), · · · , Tl(xl,ail)]. Similarly, classifier is distributed over all parties, and ym

on party m is an operation on its own embedding, thus there is T (x,ai)y =
∑l
m=1 Tm(xm,a

i
m)ym.

Mathematically, the VFHRL problems can be modeled as the following VFBO problem:

min
x∈Rq

F (x) := 1
|Dup|

∑
(ai,bi)∈Dup

L
(∑l

m=1 Tm(xm,a
i
m)y∗m(x),bi

)
s.t. y∗(x) = arg min

y∈Rcn×p
g(y,x) := 1

|Dlow|
∑

(ai,bi)∈Dlow

(L(
∑l
m=1 T (xm,a

i
m)ym,b

i) + γ‖y‖2),

where L(·, ·) is the loss function, cn is the number of categories. Each embedding function Tm(·,xm)
can be a linear transformation, a multi layer perceptron, or even a deep convolution neural network.

Problem 2: Hyperparameter Optimization in VFL. Hyperparameter optimization (HO) aims to
find the set of the best hyperparameters (e.g., regularization coefficients) that yields the optimal value
of some criterion of model quality (e.g., a validation loss on unseen data). HO can be posed as a
bilevel optimization problem in which the lower problem corresponds to finding the model parameters
by minimizing a training loss (usually regularized) for the given regularization coefficients and then
the upper problem minimizes over the regularization coefficients. Note that, the regularization
coefficients are different for different parties m. Mathematically, vertical federated HO (VFHO)
problems can be formulated as follows.

min
x=[x1,··· ,xl]

F (x) := 1
|Dup|

∑
ξx∈Dup

L (y∗(x); ξx)

s.t. y∗(x) = arg min
y=[y1,··· ,yl]

Llow(y,x) := 1
|Dlow|

∑
ξy∈Dlow

(L(y,x; ξy) +
∑l
m=1 xmR(ym)),

where L is a loss function (e.g., logistic loss), R(ym) is a regularizer on ym, and xm is the
regularization coefficient.

Datasets: In the experiment, following existing works Ji et al. (2020); Sow et al. (2021) we use three
datasets, including MNIST and FashionMnist datasets for VFHR problem, and News20 dataset for
VFHO problem. For detail descriptions of these datasets please refer to the supplemental material.
For all datasets, we use the test data or randomly choose 20% of the total data as the validation data.

In the following, we only provide the results of VFHRL problem on MNIST, for more experimental
results please refer to the supplemental material.

5.1 EVALUATION OF COMPARABLE PERFORMANCE

As for VFL, a general lossless constraint is that its performance should be comparable to the
performance of model learned under the non-federated learning Zhang et al. (2021c;a). To demonstrate
that BAMBI also satisfies this lossless constraint, we implement experiments and show that BAMBI
has a comparable performance to its non-federated counterpart (Non-FedAlgo). Specifically, in
Non-FedAlgo, all data are gathered in a union for training. The corresponding experimental results
are shown in Fig. 2(a). According to the results, the convergence performance of BAMBI (FedAlgo)
is comparable to that of Non-FedAlgo, which supports our claim.

5.2 EVALUATION OF DIFFERENT PARAMETERS

In BAMBI-DP, parameter ε characters the level of noise and the level of label DP. A smaller ε means
a better DP but a potential larger noise level. To study the influence of ε, we implement BAMBI-DP
with ε = 1, 5, 10, and report their train accuracy v.s. iteration number curves in Fig. 2(b) and test
accuracy in Table 1. Compare the results of BAMBI-DP with those of Non-DP (i.e., BAMBI), we
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Figure 2: (a) Performance comparison between FedAlgo and Non-FedAlgo on MNIST dataset, (b)
Convergence performance with different levels of DP guarantee.
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Figure 3: Evaluation of using different parameters on MNIST dataset.
Table 1: Comparisons between BAMBI and BAMBI-DP with different label DP levels.

Non-DP ε = 10 ε = 5 ε = 1

Test Accu 97.59 94.35 94.23 93.60

have that a better DP guarantee (i.e., a smaller ε) leads to a poorer model performance. Generally,
we can conclude that there exists a trade-off between model performance and DP level, which is
consistent with the results in Yang et al. (2022) and the no free lunch theorem for security and utility
in federated learning Zhang et al. (2022).

In the proposed algorithm, the total number of inner epochs N influences the quality of the approxi-
mate y∗(x), number of ZO estimation Q influences the error introduced by ZO estimation, batch size
B influences the variance introduced by the stochastic samples. Thus, we implement experiments
on MNIST dataset to study the influence on convergence rate of different N , Q and B. In the
experiments, we preset N = 1000, Q = 1, B = 1000 and vary one of them. The corresponding
results in Fig. 3 show that although large N,Q,B is helpful for fast convergence, choosing small
N,Q,B (e.g. N = 500, Q = 1, B = 50) is sufficient to obtain a good convergence result. This is
beneficial for practical use.

6 CONCLUSION AND DISCUSSION

In this paper, we proposed two novel algorithms, i.e. BAMBI and BAMBI-DP, for solving vertical
federated bilevel optimization problems. BAMBI adopts ZO estimation to estimate the Jacobian
matrix, which enables all parties to collaboratively compute the hypergradient with privacy-preserving
and computation efficiency. We theoretically proved the convergence rate of BAMBI for nonconvex-
strongly-convex problems, whose order matches those of BO algorithms not using ZO estimation
to preserve privacy. To preserve the label privacy, we further proposed BAMBI-DP by leveraging
DP technique. We proved that BAMBI-DP is (ε, 0)-differentially private w.r.t. the label. To our best
knowledge, this is the first work focusing on the VFBO problems.

9
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Ethics Statement:

We discuss and present the following potential limitations of this work. 1) We only consider the
stochastic VFBO methods but not also the deterministic one, though it can be obtained easily based
on our work. 2) As for BAMBI, we only study the synchronous parallel case, and do not consider the
asynchronous parallel case.

Organizations (e.g., banks and hospitals) have the demands of training VFBO models with privacy-
preserving (both feature and label privacy) will benefit from our proposed methods, while those earn
illegal profits by inferring the private feature and label data of other parties will put at disadvantage
from this work.

Reproducibility Statement :

As for reproducing the experiments, one can refer to Section E in the Appendix to obtain more details
and refer to Zhang et al. (2021a); Yang et al. (2021) for how to implement the zeroth-order technique
and bilevel optimization in VFL. For the detailed theoretical analysis, one can refer to Section D in
the Appendix.
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A APPENDIX

In the Appendix we provide following content.

• Section B: Explain why computation of the second-order derivatives requires each party in
VFBO to access data of all features not only its local features.

• Section C: Provide multi-class version of BAMBI-DP.

• Section D: Provide complete proofs of theoretical results in the manuscript.

• Section E: Provide details of the experiments, and additional experimental results on Fashion-
Mnist and News20 datasets.
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B COMPUTATION OF THE SECOND-ORDER DERIVATIVES IN VFBO

In this section, we explain why computation of the second-order derivatives requires each party in
VFL to access data of all features not only its local features. In the following, we use Fig. 1 in the
manuscript for illustration of the VFHRL problems. For other VFBO problems, the analyses are
similar.

Feed a sample a ∈ Rd with label b to the model, we have F0 = L(
∑`
m=1 hm, b), where hm =

Tm,2(Tm,1(xm,am),ym), Tm,1 is the local model parameterized by xm, and Tm,2 is the local model
parameterized by ym. Let xm,1 be the 1-th layer parameter of local model Tm,1 (i.e., model Tm,1,1)
and xm,r be the parameter of the rest model i.e., Tm,1,r, and ym,1 be the 1-th layer parameter of local
model Tm,2 (i.e., mode Tm,2,1) and ym,r be the parameter of the rest model, i.e., Tm,2,r. For analysis
simplification, we further assume that the first layers of local models Tm,1 and Tm,2 are both linear
mappings, which is reasonable in the practice and consist with our experimental setting. Then we have
that sm = Tm,1(xm,am) = Tm,1,r(sm,1,xm,r) and hm = Tm,2(ym, sm) = Tm,2,r(hm,1,ym,r),
where sm,1 = xm,1am and hm,1 = ym,1sm. Let ∇y be derivative of the upper-level object w.r.t. y,
then, fix x, for m ∈ [l], we have that

∇y,m =
∂L(h, b)

∂h

∂h

∂hm

∂hm
∂hm,1

∂hm,1
∂ym,1

=
∂L(h, b)

∂h

∂h

∂hm

∂hm
∂hm,1

· sm

=
∂L(h, b)

∂h︸ ︷︷ ︸
S1

(
∂h

∂hm

∂hm
∂hm,1

· Tm,1,r(xm,1am,xm,r)
)

︸ ︷︷ ︸
S2

. (12)

According to the above equation, in VFBO, each party m can compute ∇y,m locally. However,
computing the second-order derivative ∂∇y

∂y , i.e. ∇2
y, is difficult. When computing ∇ym,y′m for

m′ 6= m, we only need consider ym′ hided in S1 (because h =
∑l
m=1 hm) and S2 is independent to

ym′ . Thus, we have

∇ym,y′m =
∂S1

∂ym′
· S2 =

∂F0

∂h

(
∂h

∂hm′

∂hm′

∂hm′,1
· Tm′,1,r(xm′,1am′ ,xm′,r)

)
︸ ︷︷ ︸

S3

·S2. (13)

According to the above analysis, it is obvious that computation of S3 in Eq .13 requires party m to
access features owned by party m′. Thus, computation of ∇ym,y requires party m to access data of
all features not only its local feature. This completes the explanation.

Obviously, in VFBO, direct computation of ∇ym,y′m (m′ 6= m) is impossible unless party m′ share
its feature data with party m. However, this will lead to the feature privacy leakage. Following the
above analysis, it is easy to have that∇ym,ym can be computed by party m locally. Thus, as for

∇2
y =

 ∇y1,y1 · · · ∇y1,yl
...

. . .
...

∇yl,y1
· · · ∇yl,yl

 , (14)

only the the block matrices located on the diagonal, i.e. ∇2
ym for m ∈ [l], can be computed without

leaking the feature privacy. The drawbacks of using privacy-preserving techniques has discussed in
the manuscript. The analysis of∇2

x is similar.

C BAMBI-DP FOR MULTI-CLASS CLASSIFICATION PROBLEMS

In this section, we provide the core procedure of BAMBI-DP for multi-class classification problems,
i.e., GradPerturb for multi-class classification problems. We summarize it in Algorithm 3, where C
is the number of classes, and θk,tb is intermediate gradient calculated with label b. As for BAMBI-
DP for multi-class classification problems, one just need replace the intermediate gradients with
the perturbed ones generated by Algorithm 3. For Algorithm 3 and BAMBI-DP for multi-class
classification problems, we have the same DP guarantees, i.e., both of them are (ε, 0)-differentially
private, which can be proved by following Appendix D.2.
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Algorithm 3 GradPerturb for Multi-Class Classification Problems

1: Input: True label b ∈ {0, · · · , C − 1}, gradients θk,t0 , θk,t1 , · · · , θk,tC−1
2: The server samples u ∼ Lap(c) with probability distribution function p(x|c) = 1

2ce
−|x|/c

3: Output: θ̃k,t = [θ̃k,t1 , · · · , θ̃k,tl ] = θk,tb + u ·
∑C−1
b=0 θ

k,t
b

D COMPLETE PROOFS OF SECTION 4 IN THE MANUSCRIPT

in this section, we provide the complete proofs of Theorem 1 and label differential privacy.

D.1 CONVERGENCE ANALYSIS OF BAMBI

We have following properties of gu(x,y), which are proved in Ghadimi & Lan (2013).

Lemma 4 (Ghadimi & Lan (2013)) Consider a function g : Rn → R, with each point y ∈ E is
differentiable along any direction with `-Lipsctitz gradient. Then its Gaussian approximation is
gu(x,y) = Eug(x + µu,y), where µ > 0, u is a standard Gaussian random vector. Then, gu is
differential and have following properties: 1) The gradient pf gu has the following form

∇xgu = Eu
g(x + µu,y)− g(x,y)

µ
u (15)

2) For any y ∈ Rn, there is

|gu(x,y)− g(x,y)| ≤ `uµ
2q

2
(16)

‖∇xgu(x,y)−∇xg(x,y)‖22 ≤
µ2`2u(q + 3)3

4
, (17)

Eu‖
g(x + µu,y)− g(x,y)

µ
u‖ ≤ 4(n+ 4)‖∇xgu(x,y)‖2 +

3

2
µ2`2µ(n+ 5)3 (18)

where `u = ` in this paper.

In this paper, we define

ĴN (xk, uk,j) =


yk,N1 (xk+µuk,j,1;ξy)−yk,N1 (xk)

µ u>k,j,1
...

yk,Nl (xk+µuk,j,l;ξy)−yk,Nl (xk)

µ u>k,k,l


where uk,j,m ∈ Rqm, j = 1, . . . , Q,m ∈ [l] are standard Gaussian vectors and yN (xk) is the output
of SGD obtained with the minibatches {ξ0y, ..., ξN−1y }, we have that conditioning on xk and yN (xk)
and taking expectation over uj yields

EuĴN (xk, uk,j) = Eu


yk,N1 (xk+µuk,j,1;ξy)−yk,N1 (xk;ξy)

µ u>k,j,1
...

yk,Nl (xk+µuk,j,l;ξy)−yk,Nl (xk;ξy)

µ u>k,j,l



=

 J
N
u,1(xk; ξy)

...
JNu,q(xk; ξy)


= JNµ (xk, ξy)

where yk,Nm (xk; ξy) is the m-th component of vector yk,N (x; ξy) that is the entry-wise Gaussian
smooth approximation of vector yk,N (xk; ξy).
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We further define some notations necessary for analysis. First, we define the true hypergradient at
point y∗(xk)

∇∗F (xk) = ∇xf(xk,y∗(xk)) + J ∗(xk)>∇yf(xk,y∗(xk))

where J ∗(xk) = ∂y∗(xk)
∂xk

, and y∗(xk) denotes the optimal solution of the inner loop given xk.

∇F (xk) = ∇xf(xk,yk,N ) + JN (xk)∇yf(xk,yk,N )

where JN (xk) = ∂yk,N (xk)
∂xk

.

∇̂F (xk) = ∇xf(xk,yk,N ) + ĴN (xk, uk)∇yf(xk,yN (xk))

= ∇xf(xk,yk,N ) +
1

Q

Q∑
j=1

ĴN (xk, uk,j)∇yf(xk,yN (xk))

and where ĴN (xk, uk,j) is the approximate JN (xk) with Gaussian smoothing.

∇̄F (xk) = ∇xf(xk,yk,N ; ξx) + ĴN (xk, uk, ξy)∇yf(xk,yN ; ξx)

where ĴN (xk, uk; ξy) = 1
Q

∑Q
j=1

yN (xk+µuk,j ;ξy)−yN (xk;ξy)
µ u>k,j . Note that

Eξ[ĴN (xk, uk; ξy)] = ĴN (xk, uk)

Lemma 5 (Repeat of Lemma 1-1 in the Manuscript) At iteration k, for the inner loop, we have

E[‖yk,N − y∗(xk)‖2] ≤ (1− βkµg)tE[‖yk,0 − y∗(xk)‖2] +
βkσ

2
g,1

Bµg
(19)

Lemma 6 (Bounded Norm of Jacobian) Suppose Assumptions x hold, then for ∀t ∈ [T − 1], k ∈
[N ], the Jacobian J t(xk) = ∂yk,N (xk)

∂xk
has bounded norm:

E[‖J t(xk)‖F ≤
`g,1
µg

, (20)

Lemma 7 (Error Between J k,t − J ∗ ) Give the definition of JN (xk) and J ∗(xk), for the s-
tochastic case we have

‖J t(xk; ξy)− J ∗(xk)‖2F ≤ C1‖yk,0 − y∗(xk)‖2 + C2 + C3 (21)

where C1 = 2(Cxy +Cyy)`2g,2t(1−βkµg)t, C2 = (1−βkµg)t
`2g,1
µ2
g

, C3 = 2 1
βµg

(Cxy +Cyy)(σ2
g,2 +

`2g,2σ
2
g,1

βk
µg

), and Cxy =
(
βk + γ(1− βkµg) + βk

`g,1
µg

)
, and Cyy = βkCxy .

Lemma 8 (Smoothness of J ∗(x) ) Recalling the definition of J ∗(x) = ∂y∗(x)
∂x , for any x′,x there

is

‖J ∗(x1)− J ∗(x)‖ ≤ `yx‖x1 − x‖ (22)

where `yx :=
`g,2+`g,2`y

µg
+

`g,1(`g,2+`g,2`y)
µ2
g

.

Lemma 9 (Repeat of Lemma 1-2 in the Manuscript) Given yk+1,0 = yk,N , there is

‖yk+1,0 − y∗(xk+1)‖2 ≤

(
1 + γk +

`yxC
2
fα

2
k

4

)
E[‖yk+1,0 − y∗(xk)‖2]

+ (`2yα
2
k +

α2
k`

2
g,1

4µ2
gγk

+
α2
k`yx
4η

)E[∇̂F (xk)] + (`2yα
2
k +

`yxα
2
k

4η
)σ̃2 (23)

where `y =
`g,1
µg

,C2
f = (`f,0+

`g,1
µg
`f,1)2+δ2µ+σ̃2, δ2µ =

µ2`2µq(p+6)2

2Q , `µ = (1+
`g,1
µg

)(
`g,2
µg

+
`f,1`g,1
µ2
g

),

and σ̃2 = 2
σ2
f

B + 2(`2f,0 +
σ2
f

B )(12δ2µ + 4(2p+8)
Q

`2g,1
µ2
g

) + 4(
`2g,1
µ2
g

+ δ2µ)
σ2
f

B .
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Lemma 10 (Repeat of Lemma 2 in the Manuscript) For the outer loop, we have

E[F (xk+1)|Fk]− E[F (xk)|Fk−1]

(b)

≤ −αk
2
‖∇∗F (xk)‖2 − (

αk
2
− `f,1α

2
k

2
)‖∇̂F (xk)‖2 +

`f,1α
2
k

2
σ̃2 (24)

+ αk

(
µ2

2
`2f,0`

2
µq(p+ 3)2 + 2(`2f,1 + 2

`2g,1
µ2
g

`2f,1)
βkσ

2
g,1

µg
+ 2`2f,0(C2 + C3)

)

+ αk

(
2(`2f,1 + 2

`2g,1
µ2
g

`2f,1) + 4`2f,0`
2
g,2βk(Cxx + Cyy)N

)
(1− βkµg)N‖yk,0 − y∗‖2

where σ̃2 = 2σ2
f + 2(`2f,0 + σ2

f )σ2
J + 2(2

`2g,1
µ2
g

+ µ2`2µq(p+ 3)2)σ2
f

Proof of Lemma 5 Given xk fixed, let vk,t = [vk,t1 , · · · ,vk,tl ] and, similarly, v̂k,t = [v̂q, · · · , v̂l],
for yk,t, t = 0, · · · , N (for notation abbreviation, we denote yk,t as yt, and y∗(xk) as y∗), in the
inner loop, we have

E‖yt+1 − y∗‖2 = ‖yt − βkv − y∗‖2 (25)

= ‖yt − y∗‖2 + β2
k‖v‖2 − 2βkE

〈
yt − y∗,∇g(yt)

〉
(a)

≤ ‖yt − y∗‖2 + β2
k‖∇g(yk,t)‖2 + β2

k‖v −∇g(yt)‖2 − 2βkE
〈
yt − y∗,∇g(yt)

〉
(b)

≤ ‖yt − y∗‖2 + β2
k‖∇g(yk,t)‖2 + β2

k‖v −∇g(yt)‖2 − 2βk(g(yt)− y∗ +
µg
2
‖yt − y∗‖)

(c)

≤ (1− βkµg)‖yt − y∗‖2 − 2βk(1− βk`g,1)(g(yt)− g∗) + β2
k

l∑
m=1

σ2
g,1,m

B

(d)

≤ (1− βkµg)‖yt − y∗‖2 + β2
k

σ2
g,1

B

where (a) follows from E‖X‖2 ≤ ‖EX‖2 + ‖X − EX‖2, (b) uses the µg-strongly convexity of g,
(c) uses ‖∇g(yt)−∇g(y∗)‖2 ≤ 2`g,1(g(yt)− g∗) and Assumption 3, (d) follows from that we let
βk ≤ `g,1

2 and σ2
g,1 =

∑l
m=1 σ

2
g,1,m. Reusing above equality and using the complete notations, there

is

‖yk,t − y∗(xk)‖2 ≤ (1− βkµg)t‖yk,0 − y∗(xk)‖2 +
βkσ

2
g,1

Bµg
(26)

this completes the proof

Proof of Lemma 6 According to the updating rule of Algorithm 1, there is

yk,t+1 = yk,t − βk∇yg(xk,yk,t; ξy), t = 0, · · · , N − 1 (27)

Taking derivatives w.r.t. xk yields:

J k,t+1 = J k,t − βk∇x∇yg(xk,yk,t; ξy)− J k,t∇2
yg(xk,yk,t; ξy) (28)

= J k,t(I − βk∇2
yg(xk,yk,t; ξy))− βk∇x∇yg(xk,yk,t; ξy),

where J k,t+1 is the abbreviation of J t+1(xk). Telescoping over t from 1 to N − 1 yields

J k,N = J k,0
N−1∏
t=0

(
I − βk∇2

yg(xk,yk,t; ξy)
)

− βk
N−1∑
t=0

∇x∇yg(xk,yk,t; ξy)

N−1∏
i=t+1

(
I − βk∇2

yg(xk,yk,t; ξy)
)

= −βk
N−1∑
t=0

∇x∇yg
(
xk,yk,t; ξy

) N−1∏
i=t+1

(
I − βk∇2

yg
(
xk,yk,i; ξk,iy

))
(29)
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Hence, we have

∥∥J k,N∥∥
F
≤ βk

N−1∑
t=0

∥∥∇x∇yg
(
xk,yk,t; ξy

) ∥∥
F

∥∥ N−1∏
m=i+1

(
I − βk∇2

yg
(
xk,yk,i; ξk,iy

)) ∥∥
(i)

≤ βk

N−1∑
t=0

`g,1

N−1∏
m=t+1

∥∥I − βk∇2
yg
(
xk,yk,t; ξk,ty

) ∥∥
(ii)

≤ α`g,1

N−1∑
t=0

(1− βkµg)N−1−t

= βk`g,1

N−1∑
t=0

(1− βkµg)t ≤
`g,1
µg

where (i) uses Assumption 1, (ii) uses the strongly-convexity of g, and the last inequality follows
from the characteristic of geometric progression. This directly means∥∥JN (xk)

∥∥
F
≤ `g,1

µg

This completes the proof.

Proof of Lemma 7 In the following proof, the J t+1(xk; ξy) is simplified as J k,t+1 and J k,∗
denotes J ∗(xk).

J k,t+1 = J k,t − βk∇x∇yg(xk,yk,t; ξy)− βkJ k,t∇2
yg(xk,yk,t; ξy) (30)

and thus

J k,t+1 − J k,∗

= J k,t − J k,∗ − βk(∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))) (31)

− βk(J k,t − J k,∗)∇2
yg(xk,yk,t; ξy)− βkJ k,∗(∇2

yg(xk,y∗(xk))−∇2
yg(xk,yk,t; ξy))

Using triangle inequality , we have

‖J k,t+1 − J k,∗‖F = ‖(J k,t − J k,∗)(I − βk∇2
yg(xk,yk,t; ξy))‖F

+ βk‖∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))‖F (32)

+ βk‖J k,∗(∇2
yg(xk,yk,t; ξy)−∇2

yg(xk,y∗(xk)))‖F
and then there is

‖J k,t+1 − J k,∗‖2F (33)

≤ (1− βkµg)2‖J k,t − J k,∗‖2F + β2
k‖∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))‖2F

+ β2
k

`2g,1
µ2
g

‖∇2
yg(xk,yk,t; ξy)−∇2

yg(xk,y∗(xk))‖2F

+ 2βk(1− βkµg) ‖J k,t − J k,∗)‖F ‖∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))‖F︸ ︷︷ ︸
Q1

+ 2βk(1− βkµg) ‖J k,t − J k,∗‖F ‖∇2
yg(xk,yk,t; ξy)−∇2

yg(xk,y∗(xk))‖F︸ ︷︷ ︸
Q2

+ 2β2
k

`g,1
µg
‖∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))‖F ‖∇2

yg(xk,yk,t; ξy)−∇2
yg(xk,y∗(xk))‖F︸ ︷︷ ︸

Q3

Especially,

Q1 ≤
1

2γ
‖J k,t − J k,∗‖2F +

γ

2
‖∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))‖2F

17
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Q2 ≤
1

2γ
‖J k,t − J k,∗‖2F +

γ

2
‖∇2

yg(xk,yk,t; ξy)−∇2
yg(xk,y∗(xk))‖2F

Q3 ≤
1

2γ
‖∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))‖2F (34)

+
γ

2
‖∇2

yg(xk,yk,t; ξy)−∇2
yg(xk,y∗(xk))‖2F (35)

Combine Eqs. 33 and 34, we have

‖J k,t+1 − J k,∗‖2F (36)

≤
(

(1− βkµg)2 +
βk
γ

(1− βkµg) +
βk`g,1
γµg

(1− βkµg)
)
‖J k,t − J k,∗‖2F

+

(
β2
k + βkγ(1− βkµg) + β2

k

`g,1
µg

)
‖∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))‖2F

+

(
β2
k

`g,1
µg

+ βkγ
`g,1
µg

(1− βkµg) + β2
k

`g,1
µg

)
‖∇2

yg(xk,yk,t; ξy)−∇2
yg(xk,y∗(xk))‖2F

Let Fk,t denotes all randomness of iteration k, t− 1. Conditioning on Fk,t and taking exception, we
have

‖J k,t+1 − J k,∗|Fk,t‖2F
≤ βkCxy‖∇x∇yg(xk,yk,t; ξy)−∇x∇yg(xk,y∗(xk))|Fk,t‖2F (37)

Cγ‖J k,t − J k,∗|Fk,t‖2F + βkCyy‖∇2
yg(xk,yk,t; ξy)−∇2

yg(xk,y∗(xk))|Fk,t‖2F

≤ Cγ‖J k,t − J k,∗|Fk,t‖2F + βkCxy(2‖∇x∇yg(xk,yk,t)−∇x∇yg(xk,y∗(xk))|Fk,t‖2F + 2
σ2
g,2

B
)

+ βkCyy(2‖∇2
yg(xk,yk,t)−∇2

yg(xk,y∗(xk))|Fk,t‖2F + 2
σ2
g,2

B
)

≤ Cγ‖J k,t − J k,∗|Fk,t‖2F + βkCxy(2`2g,2‖yk,t − y∗(xk)‖2 + 2
σ2
g,2

B
)

+ βkCyy(2`2g,2‖yk,t − yk,∗‖2 + 2
σ2
g,2

B
) (38)

≤ Cγ‖J k,t − J k,∗|Fk,t‖2F + 2βk(Cxy + Cyy)`2g,2‖yk,t − y∗(xk)‖2 + 2(Cxy + Cyy)
σ2
g,2

B

where

Cγ = (1− βkµg)(1− βkµg +
βk
γ

+
βk`g,1
γµg

) (39)

Cxy =

(
βk + γ(1− βkµg) + βk

`g,1
µg

)
, Cyy = βkCxy

Taking total exceptions of the above equation and using lemma x, there is

E‖J k,t − J k,∗‖2F

≤ Cγ‖J k,t − J k,∗‖2F + 2βk(Cxy + Cyy)`2g,2‖yk,t − y∗(xk)‖2 + 2βk(Cxy + Cyy)
σ2
g,2

B
(40)

Telescoping eq over t yields

E‖J k,t − J k,∗‖2F (41)

≤ CNγ ‖J k,0 − J k,∗‖2F + 2βk(Cxy + Cyy)`2g,2

N−1∑
t=0

C(N−1−t)
γ ‖yk,t − y∗(xk)‖2

+ 2βk(Cxy + Cyy)
σ2
g,2

B

N−1∑
t=0

Ctγ (42)
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≤ CNγ ‖J k,0 − J k,∗‖2F + 2βk(Cxy + Cyy)
σ2
g,2

B

N−1∑
t=0

Ctγ

+ 2βk(Cxy + Cyy)`2g,2

N−1∑
t=0

C(N−1−t)
γ

(
(1− βkµg)t‖yk,0 − y∗(xk)‖2 +

βkσ
2
g,1

Bµg

)

≤ CNγ ‖J k,0 − J k,∗‖2F + 2βk(Cxy + Cyy)`2g,2

N−1∑
t=0

C(N−1−t)
γ (1− βkµg)t‖yk,0 − y∗(xk)‖2

+ 2βk(Cxy + Cyy)
σ2
g,2

B

N−1∑
t=0

Ctγ + 2βk(Cxy + Cyy)`2g,2

N−1∑
t=0

C(N−1−t)
γ

βkσ
2
g,1

Bµg

Choose γ ≥ `g,1+µg
µ2
g

such Cγ ≤ 1− βkµg , then we obtain

‖J k,t(xk; ξy)− J ∗(xk)‖2F ≤ C1‖yk,0 − y∗(xk)‖2 + C2 + C3 (43)

whereC1 = 2βk(Cxy+Cyy)`2g,2t(1−βkµg)t, C2 = (1−βkµg)t
`2g,1
µ2
g

, C3 = 2 1
µg

(Cxy+Cyy)(
σ2
g,2

B +

`2g,2
σ2
g,1βk
Bµg

). This completes the proof.

Proof of Lemma 8 Recalling the definition of J ∗(x) = ∂y∗(x)
∂x , for any x′,x, we have

‖J ∗(x′)− J ∗(x)‖ (44)

= ‖∇2
xyg(x′,y∗(x′))[∇2

yyg(x′,y∗(x′))]−1 −∇2
xyg(x,y∗(x))[∇2

yyg(x, y∗(x))]−1‖
≤ ‖∇2

xyg(x′,y∗(x′))−∇2
xyg(x,y∗(x))‖‖[∇2

yyg(x′,y∗(x′))]−1‖ (45)

+ ‖∇2
xyg(x,y∗(x))‖‖[∇2

yyg(x′,y∗(x′))]−1 − [∇2
yyg(x, y∗(x))]−1‖

(a)

≤ 1

µg
‖∇2

xyg(x′,y∗(x′))−∇2
xyg(x,y∗(x))‖

+ `g,1‖[∇2
yyg(x′,y∗(x′))]−1

(
∇2

yyg(x′,y∗(x′))−∇2
yyg(x,y∗(x))

)
[∇2

yyg(x,y∗(x))]−1‖
(b)

≤ 1

µg
‖∇2

xyg(x′,y∗(x′))−∇2
xyg(x,y∗(x))‖+

`g,1
µ2
g

‖∇2
yyg(x′,y∗(x′))−∇2

yyg(x,y∗(x))‖

where both (a) and (b) follow from Assumption 1. In addition, we have that

1

µg
‖∇2

xyg(x′,y∗(x′))−∇2
xyg(x,y∗(x))‖+

`g,1
µ2
g

‖∇2
yyg(x′,y∗(x′))−∇2

yyg(x,y∗(x))‖

(46)

≤ `g,2
µg
‖x′ − x‖+

`g,2
µg
‖y∗(x′)− y∗(x)‖+

`g,1`g,2
µ2
g

‖x′ − x‖+
`g,1`g,2
µ2
g

‖y∗(x′)− y∗(x)‖

(c)

≤
(
`g,2 + `g,2`y

µg
+
`g,1(`g,2 + `g,2`y)

µ2
g

)
‖x′ − x‖

where (c) follows from ‖y∗(x′)− y∗(x)‖ ≤ `y‖x′ − x‖, where `y =
`g,1
µg

(please refer to Lemma
2.2 in Ghadimi & Wang (2018) for the detailed proofs). As a result, we have

‖J ∗(x1)− J ∗(x)‖ ≤ `yx‖x1 − x‖ (47)

where `yx :=
`g,2+`g,2`y

µg
+

`g,1(`g,2+`g,2`y)
µ2
g

. Similarly, we hvae

C2
f := 2

(
`f,0 +

`g,1
µg

`f,1

)2

+ 2δ2µ + σ̃2 = O(κ2). (48)

This completes the proof.
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Proof of Lemma 9 We start this by decomposing the error of the lower level variable as

‖yk+1,0 − y∗(xk+1)‖2 = ‖yk+1,0 − y∗(xk)‖2︸ ︷︷ ︸
Q4

+ ‖y∗(xk+1)− y∗(xk)‖2︸ ︷︷ ︸
Q5

+ 2
〈
yk+1,0 − y∗(xk),y∗(xk+1)− y∗(xk)

〉︸ ︷︷ ︸
Q6

(49)

Note that, yk+1,0 = yk,N , thus

EQ4 = E‖yk,N − y∗(xk)‖2 ≤ (1− βkµg)t‖yk,0 − y∗‖2 +
βkσ

2
g,1

Bµg

= (1− βkµg)t‖yk − yk,∗‖2 +
βkσ

2
g,1

Bµg
(50)

The upper bound of Q5 can be obtained as

E[Q5] = E[‖y∗(xk+1)− y∗(xk)‖2] ≤ `2yE‖xk+1 − xk||2 (51)

= `2yα
2
kE[E[∇̄F (xk)− ∇̂F (xk) + ∇̂F (xk)‖Fk,t‖]] ≤ `2yα2

k(E‖∇̂F (xk)‖2 + σ̃2)

where the last equality follows from Eq. 62. The term Q6 can be decomposed as

E[Q6] = −E[
〈
yk+1,0 − y∗(xk),J ∗(xk)(xk+1 − xk)

〉
]︸ ︷︷ ︸

Q1
6

−E[
〈
yk+1,0 − y∗(xk),y∗(xk+1)− y∗(xk)− J ∗(xk)(xk+1 − xk)

〉
]︸ ︷︷ ︸

Q1
6

(52)

As for Q1
6 there is

E[Q1
6] = −E[

〈
yk+1,0 − y∗(xk),E[J ∗(xk)(xk+1 − xk)|Fk,t]

〉
] (53)

= −αkE[
〈
yk+1,0 − y∗(xk),J ∗(xk)∇̂F (xk)

〉
]

≤ αkE[‖yk+1,0 − y∗(xk)‖‖J ∗(xk)∇̂F (xk)‖]

≤ αk
`g,1
µg

E[‖yk+1,0 − y∗(xk)‖‖∇̂F (xk)‖]

≤ γkE[‖yk+1,0 − y∗(xk)‖] +
α2
k`

2
g,1

4µ2
gγk

E‖∇̂F (xk)‖

As for Q2
6, there is

E[Q2
6] = −E[

〈
yk+1,0 − y∗(xk),y∗(xk+1)− y∗(xk)− J ∗(xk)(xk+1 − xk)

〉
] (54)

=
`yx
2

E[‖yk+1,0 − y∗(xk)‖‖xk+1 − xk‖2]

≤ η`yx
4

E[‖yk+1,0 − y∗(xk)‖2E[‖xk+1 − xk‖2|Fk,t]] +
`yxα

2
k

4η
E[E[‖xk+1 − xk‖2|Fk,t]]

≤
η`yxC

2
fα

2
k

4
E[‖yk+1,0 − y∗(xk)‖2] +

`yxα
2
k

4η
(E[∇̂F (xk)] + σ̃2)

Combining Eqs. 52, 53, and 54, we have

EQ6 =

(
γk +

η`yxC
2
fα

2
k

4

)
E[‖yk+1,0 − y∗(xk)‖2] + (

α2
k`

2
g,1

4µ2
gγk

+
`yxα

2
k

4η
)E[∇̂F (xk)] +

`yxα
2
k

4η
σ̃2)

(55)

Combining EqS. 49, 50, 51, and 55, there is

‖yk+1,0 − y∗(xk+1)‖2 ≤

(
1 + γk +

η`yxC
2
fα

2
k

4

)
E[‖yk+1,0 − y∗(xk)‖2]
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+ (`2yα
2
k +

α2
k`

2
g,1

4µ2
gγk

+
`yxα

2
k

4η
)E[∇̂F (xk)] + (`2yα

2
k +

`yxα
2
k

4η
)σ̃2) (56)

This completes the proof.

Proof of Lemma 10 Note that, In the following, we still use Fk,t to denote the filtration that captures
all randomness at iteration stamp k, t

E[F (xk+1)|Fk,t] ≤ F (xk) + E[
〈
∇∗F (xk),xk+1 − xk

〉
|Fk,t] +

`f,1
2

E[‖xk+1 − xk‖2|Fk,t]

= F (xk)− αk
〈
∇∗F (xk), ∇̂F (xk)

〉
+
`f,1α

2
k

2
E[‖∇̄F (xk)‖2|Fk,t] (57)

(a)
= F (xk)− αk

2
‖∇∗F (xk)‖2 − αk

2
‖∇̂F (xk)‖2 +

αk
2
‖∇∗F (xk)− ∇̂F (xk)‖2

(58)

+
`f,1α

2
k

2
‖∇̂F (xk)‖2 +

`f,1α
2
k

2
E[‖∇̄F (xk)− ∇̂F (xk)‖2|Fk,t] (59)

(b)

≤ F (xk)− αk
2
‖∇∗F (xk)‖2 − (

αk
2
− `f,1α

2
k

2
)‖∇̂F (xk)‖2 (60)

+
αk
2
‖∇∗F (xk)− ∇̂F (xk)‖2 +

`f,1α
2
k

2
E[‖∇̄F (xk)− ∇̂F (xk)‖2|Fk,t]

(61)

First we bound term E[‖∇̄F (xk)− ∇̂F (xk)‖2|Fk,t].

E[‖∇̄F (xk)− ∇̂F (xk)‖2|Fk,t] (62)

= E[‖∇xf(xk,yk,N ) + Ĵ k,N∇yf(x,yk,N )−∇xf(xk,yk,N ; ξkx)

− Ĵ k,N (ξy)∇yf(x,yk,N ; ξky )‖2|Fk,t] (63)

≤ 2E‖∇xf(xk,yk,N )−∇xf(xk,yk,N ; ξkx)‖2

+ 2E[‖Ĵ k,N∇yf(x,yk,N )− Ĵ k,N (ξy)∇yf(x,yk,N ; ξky )‖2|Fk,t] (64)

≤ 2σ2
f + 2E[‖∇yf(x,yk,N ; ξky )‖2‖Ĵ k,N − Ĵ k,N (ξy)‖2|Fk,t]

+ 2E[‖Ĵ k,N‖2‖∇yf(x,yk,N )−∇yf(x,yk,N ; ξky )‖2|Fk,t] (65)

≤ 2σ2
f + 2E[‖∇yf(x,yk,N ; ξky )‖2‖Ĵ k,N − Ĵ k,N (ξy)‖2|Fk,t] + 2‖Ĵ k,N‖2σ2

f

≤ 2σ2
f + 2(`2f,0 + σ2

f )‖Ĵ k,N − J k,N + J k,N − J k,N (ξy) + J k,N (ξy)− Ĵ k,N (ξy)‖2

+ 2(2‖J k,N‖2 + 2‖Ĵ k,N − J k,N‖2)σ2
f (66)

≤ 2σ2
f + 2(`2f,0 + σ2

f )(12δµ +
4(2p+ 8)

Q

`2g,1
µ2
g

) + 2(2
`2g,1
µ2
g

+ 2δµ)σ2
f

= σ̃2 (67)

where we use ‖Ĵ k,N − J k,N‖2F ≤
µ2`2µq(p+3)2

2Q ≤ µ2`2µq(p+6)2

2Q = δµ. Further, we have

‖ĴNµ − Ĵ k,N (ξy)‖2F ≤ (68)

‖ĴNµ − J k,N + J k,N − J k,N (ξy) + J k,N (ξy)− Ĵ k,Nµ (ξy) + Ĵ k,Nµ (ξy)− Ĵ k,N (ξy)‖2F
≤ 4‖ĴNµ − J k,N‖2F + 4‖J k,N − J k,N (ξy)‖2F + 4‖J k,N (ξy)− Ĵ k,Nµ (ξy)‖2F

+ 4‖Ĵ k,Nµ (ξy)− Ĵ k,N (ξy)‖2F (69)

≤ 12δµ + 4
`2g,1
µ2
g

+
4(2p+ 8)

Q

`2g,1
µ2
g

where we use Lemma 4 to obtain ‖Ĵ k,Nµ (ξy)− Ĵ k,N (ξy)‖2F ≤ δµ + (2p+8)
Q `2g,1µ

2
g .
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Then we bound term ‖∇∗F (xk)− ∇̂F (xk)‖2

‖∇∗F (xk)− ∇̂F (xk)‖2 = ‖∇∗F (xk)−∇F (xk) +∇F (xk)− ∇̂F (xk)‖2 (70)

= 2‖∇∗F (xk)−∇F (xk)‖2 + 2‖∇F (xk)− ∇̂F (xk)‖2

where for ‖∇F (xk)− ∇̂F (xk)‖2 there is

‖∇F (xk)− ∇̂F (xk)‖2| (71)

= ‖∇xf(xk,yk,N ) + J k,N∇yf(xk,yk,N )−∇xf(xk,yk,N )− Ĵ k,N∇yf(xk,yk,N )‖2

≤ ‖J k,N∇yf(xk,yk,N )− Ĵ k,N∇yf(xk,yk,N )‖2

≤ ‖∇yf(xk,yk,N )‖2‖J k,N − Ĵ k,N‖2

≤ δµ`2f,0

and for ‖∇∗F (xk)−∇F (xk)‖2 there is

‖∇∗F (xk)−∇F (xk)‖2 (72)

= ‖∇xf(xk,y∗(x)) + J ∗(xk)∇yf(xk,y∗(x))−∇xf(xk,yk,N )− J k,N∇yf(xk,yk,N )‖2

≤ 2‖∇xf(xk,y∗(x))−∇xf(xk,yk,N )‖2 + 2‖J ∗(xk)∇yf(xk,y∗(x))− Ĵ k,N∇yf(xk,yk,N )‖2

≤ 2`2f,1‖yk,N − y∗(xk)‖2 + 2‖∇yf(xk,yk,N )‖2‖J ∗(xk)− J k,N (xk)‖2

+ 2‖J ∗(xk)‖2‖∇yf(xk,yk,N )−∇yf(xk,y∗(x))‖2 (73)

≤ 2`2f,1‖yk,N − y∗(xk)‖2 + 2
`2g,1
µ2
g

`2f,1‖yk,N − y∗(xk)‖2 + 2`2f,0‖J k,N (xk)− J ∗(xk)‖2

≤ 2(`2f,1 + 2
`2g,1
µ2
g

`2f,1)

(
(1− βkµg)t‖yk,0 − y∗‖2 +

βkσ
2
g,1

Bµg

)
+ 2`2f,0(C1‖yk,0 − y∗‖2 + C2 + C3)

= (1− βkµg)k
(

2(`2f,1 + 2
`2g,1
µ2
g

`2f,1) + 4`2f,0`
2
g,2βk(Cxx + Cyy)t

)
‖yk,0 − y∗‖2

+ 2(`2f,1 + 2
`2g,1
µ2
g

`2f,1)
βkσ

2
g,1

Bµg
+ 2`2f,0(C2 + C3) (74)

Combining Eqs. 57, 70, and 72, we have that

E[F (xk+1)|Fk,t]
(b)

≤ F (xk)− αk
2
‖∇∗F (xk)‖2 − (

αk
2
− `f,1α

2
k

2
)‖∇̂F (xk)‖2 (75)

+
αk
2
‖∇∗F (xk)− ∇̂F (xk)‖2 +

`f,1α
2
k

2
E[‖∇̄F (xk)− ∇̂F (xk)‖2|Fk,t]

(76)
(b)

≤ F (xk)− αk
2
‖∇∗F (xk)‖2 − (

αk
2
− `f,1α

2
k

2
)‖∇̂F (xk)‖2 +

`f,1α
2
k

2
σ̃2

+ αk

(
µ2

2
`2f,0`

2
µq(p+ 3)2 + 2(`2f,1 + 2

`2g,1
µ2
g

`2f,1)
βkσ

2
g,1

Bµg
+ 2`2f,0(C2 + C3)

)

+ αk

(
2(`2f,1 + 2

`2g,1
µ2
g

`2f,1) + 4`2f,0`
2
g,2βk(Cxx + Cyy)N

)
(1− βkµg)N‖yk,0 − y∗‖2

where σ̃2 =≤ 2σ2
f + 2(`2f,0 + σ2

f )(12δµ + 4(2p+8)
Q

`2g,1
µ2
g

) + 2(2
`2g,1
µ2
g

+ 2δµ)σ2
f .

Proof of Theorem 1 Following the work Chen et al. (2021), we construct the Lyapunov function as
Vk := F (xk)+‖yk−y∗(xk)||2. Then the difference between two Lyapunov functions is formulated
as

Vk+1 − Vk = F (xk+1)− F (xk) + (‖yk+1,0 − y∗(xk+1)|| − ‖yk − y∗(xk)||) (77)

22



Under review as a conference paper at ICLR 2023

We bound the first term according to Lemma 10, and the second one by Lemmas 5 and 9. Then, we
have

Vk+1 − Vk ≤ −αk
2
E‖∇∗F (xk)‖2 − (

αk
2
− `f,1α

2
k

2
− `2yα2

k −
α2
k`

2
g,1

4µ2
gγk
− α2

k`yx
4η

)︸ ︷︷ ︸
Q7

‖∇̂F (xk)‖2

(78)

+ (

1 + γk +
η`yxC

2
fα

2
k

4
+ αk

(
2(`2f,1 + 2

`2g,1
µ2
g

`2f,1) + 4`2f,0`
2
g,2βk(Cxx + Cyy)N

)
︸ ︷︷ ︸

Q8

 ·
(1− βkµg)N − 1)‖yk,0 − y∗‖2 (79)

+ αk

(
µ2

2
`2f,0`

2
µq(p+ 3)2 + 2(`2f,1 + 2

`2g,1
µ2
g

`2f,1)
βkσ

2
g,1

Bµg
+ 2`2f,0(C2 + C3)

)

+ (`2yα
2
k +

`yxα
2
k

4η
+
`f,1α

2
k

2
)σ̃2 +

(
1 + γk +

η`yxC
2
fα

2
k

4

)
βkσ

2
g,1

Bµg

To guarantee the descent of Vk, the following constrains must be satisfied:

αk ≤
µ2
g

2`f,1µ2
g + 4`2g,1 + `yxµ2

g

(80)

`yxC
2
fα

2
k + 8αk(`2f,1 + 2

`2g,1
µ2
g

`2f,1 +
`2g,1
µ2
g

) ≤ Nβkµg

αk ≤
µg

4`2f,0`
2
g,2(Cxx + Cyy)

with selecting γk =
`2g,1αk
µ2
g
, η = 1. Defining

α̂1 =
µ2
g

2`f,1µ2
g + 4`2g,1 + `yxµ2

g

, α̂2 = `yxC
2
fα

2
k + 8αk(`2f,1 + 2

`2g,1
µ2
g

`2f,1 +
`2g,1
µ2
g

),

α̂3 =
µg

8`2f,0`
2
g,2( 1

2µg
+

`g,1+µg
2µ2
g

+
`g,1
2µg

)(1 +
`g,1
µg

)
, δµ =

µ2`2µq(p+ 6)2

2Q
(81)

and then, we can choose the following stepsize

αk = min{α̂1, α̂2, α̂3,
1√
K
}, βk = min{

`yxC
2
f α̂1 + 8(`2f,1 + 2

`2g,1
µ2
g
`2f,1 +

`2g,1
µ2
g

)

2Nµg
αk,

1

2µg
},

(82)

where α is dependent on the constants imposed in Assumptions, and is independent on the iteration
number. With the above choice of stepsize, Eq. 78 can be simplified as

Vk+1 − Vk (83)

≤ −αk
2
E‖∇∗F (xk)‖2 + αk

(
µ2

2
`2f,0`

2
µq(p+ 3)2 + 2(`2f,1 + 2

`2g,1
µ2
g

`2f,1)
βkσ

2
g,1

Bµg
+ 2`2f,0(C2 + C3)

)

+
α2
k

4
(4`2y + `yx + 2`f,1)σ̃2 +

(
1 +

`2g,1
µ2
g

+
η`yxC

2
fα

2
k

4

)
βkσ

2
g,1

Bµg
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≤ −αk
2
E‖∇∗F (xk)‖2 + αk

(
`2f,0δµ + βk

σ2
g,1

Bµg

(
2`2f,1 + 4

`2g,1
µ2
g

`2f,1 + 2`2f,0(C2 + C3

2`2g,2
µg

))

+
α2
k

4
(4`2y + `yx + 2`f,1)σ̃2 +

(
1 +

`2g,1
µ2
g

+
η`yxC

2
fα

2
k

4

)
βkσ

2
g,1

Bµg

Telescoping above equation leads to

1

K

K∑
k=1

E‖∇∗F (xk)‖2 (84)

≤
V0 +

∑K
k=1 αk

(
`2f,0δµ + βk

σ2
g,1

Bµg

(
2`2f,1 + 4

`2g,1
µ2
g
`2f,1 + 2`2f,0(C2 + C3)

2`2g,2
µg

))
1
2

∑K
k=1 αk

+

∑K
k=1

α2
k

4 (4`2y + `yx + 2`f,1)σ̃2 +
∑K
k=1

(
1 +

`2g,1
µ2
g

+
η`yxC

2
fα

2
k

4

)
βkσ

2
g,1

Bµg

1
2

∑K
k=1 αk

≤αk

(
2`2f,1 + 4

`2g,1
µ2
g

`2f,1 + 2`2f,0(C2 + C3)
2`2g,2
µg

)
`yxC

2
fα0 + 8(`2f,1 + 2

`2g,1
µ2
g
`2f,1 +

`2g,1
µ2
g

)

N

σ2
g,1

Bµ2
g

+
αk
2

(4`2y + `yx + 2`f,1)σ̃2 +
V0

K min{α̂1, α̂2}
+

V0

α
√
K

+ `2f,0δµ

+
`yxC

2
fα0 + 8(`2f,1 + 2

`2g,1
µ2
g
`2f,1 +

`2g,1
µ2
g

)

N

(
1 +

`2g,1
µ2
g

+
η`yxC

2
fα

2
0

4

)
σ2
g,1

Bµ2
g

Simplify above equation by ignoring the constants independent on iteration number, we have that as
following

1

K

K∑
k=1

E‖∇∗F (xk)‖2 =
V0

K min{α̂1, α̂2}
+

V0

α
√
K

+ c0κδµ +
αc1κ√
KN

σ2
g,1

B
+
αc2κ√
K
σ̃2 +

c3κ
N

σ2
g,1

B

(85)

where c0κ, c
1
κ, c

2
κ, c

3
κ only dependent on the constants in Assumptions. This completes the proof.

D.2 LABEL PRIVACY ANALYSIS OF MABMI-DP

Following the proof in Dwork et al. (2014) and Yang et al. (2022), we can drive the following proofs.
Note that, the proof in Yang et al. (2022) is only suitable for the two-party split learning and single
level optimization case. In the following, we generalize it to the VFBO case with general l-party
(l ≥ 2).

Proof of Lemma 3 in the Manuscript: For binary classification task, let b = 1, fix θk,tb , θk,t1−b.
We first provide an auxiliary statement in Dwork et al. (2014). Let the universe B ⊂ R be {0, 1}.
Consider the identical mapping f(x) := x and the Laplace mechanism fDP = f+r with r ∼ Lap(c).
Then, there is that when c ≥ 1

ε , fDP is (ε, 0)-DP which follows from the property of Laplace
mechanism Dwork et al. (2014), where we use that `1 sensitive of f is 1.

Then, we consider the deterministic mapping h : R→ Rd defined as

h(b) = b · θk,t1 + (1− b) · θk,t0 .

Since fDP is (ε, 0)-DP, and DP is immune to post processing, h(fDP ) is also (ε, 0)-DP. On the other
hand, we have

h(fDP (0)) = θk,t0 + r · (θk,t1 − θ
k,t
0 ),

h(fDP (1)) = θk,t1 − r · (θ
k,t
0 − θ

k,t
1 ).
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where r is symmetric and −r is distributed identically to r. Thus, we have that h(fDP ) is the same
as Algorithm 2, which completes the proof of the lemma.

Moreover, it is easy to prove that Algorithm 3 for multi-class classification is also (ε, 0)-DP.

Proof of Lemma 2 in the Manuscript: In the following proof, we omit the superscript and subscript
of x, y, h, H , θ, ϑ and let the random variable ξ has the superscript denoting the iteration stamp,
here x, y, h, H , θ, ϑ without subscript denotes the whole variable for all parties, e.g., x denotes
[x1, · · · ,xl]. In our experiments, we use the same rand seed for all parties to guarantee that all parties
have the same batches for the fixed iteration stamp. Note that, although party m = 1 (the server)
has the label, its gradient used for updating is also perturbed by the noise generated by Algorithm 2
to guarantee the (ε, 0)-DP. BAMBI-DP is a bilevel algorithm with two time-scale for the upper-
and lower-variables, thus we use superscript k, t = N + 1 to denote the the iteration stamp k of
upper-level iteration (updates for x), e.g., xk,N+1 denotes xk. In this case, we can use the same time
scale to simplify the analyses of BO algorithms’ label DP. Moreover, we let D = Dlower ∪ Dupper.

For information transmitted in the forward and backward processes of BAMBI-DP, we
let Gt := {h(ξk,ty ), H(ξk,N+1,i

x )}k∈[K],t∈[N ],i∈[B] ∪ {θ̃(ξk,t,iy ), ϑ̃(ξk,N+1,i
x ), }k∈[K],t∈[N ],i∈[B],

where ξk,t,iy ∈ Dlower, ξk,N+1,i
x ∈ Dupper are both a batch of samples. We fur-

ther consider the model updates at iteration stamp k, t, which we denote as Gd :=
{∇xF (x,y; ξk,N+1,i

x ),∇xg(x,y, ξk,t,iy )}k∈[K],t∈[N ],i∈[B]. Then Gt, Gd are random functions of
input dataset D. We denote the output of Gt and Gd with input D by (Gt, Gd)(D).

Let ξk∗,t∗,i∗ (here, we do not differ ξx and ξy and take them together) be the index of the different
label in D and D′, i.e., b(ξk∗,t∗,i∗) = 1 − b′(ξk∗,t∗,i∗). Then in batches that are sampled before
k∗, t∗ (i.e., ξ0,0, · · · , ξ0,N+1, · · · , ξk∗,t∗−1), D and D′ are identical, hence the probability restricted
on the first (k∗ − 1)(N + 1) + t∗ − 1 batches is the same. Formally, let G− be the parts of Gt, Gd
that are in the first (k∗ − 1)(N + 1) + t∗ − 1 batches, then we have

Pr
[
[(Gt, Gd)(D)]G− = [G]G−

]
= Pr

[
[(Gt, Gd)(D′)]G− = [G]G−

]
.

Furthermore, if Gt and Gd are the same for the first (k∗ − 1)(N + 1) + t∗ − 1 batches, then the
model weights after the k∗, t∗-th batch will be the same for D and D′, because all previous model
updates are the same. Since the rest training data is identical in D and D′, the remaining part in
(Gt, Gd) will also be identical. Formally, define S∗, G+ as

G∗ = {h(ξk∗,t∗,iy ), H(ξk∗,t∗,ix ), }i∈[B] ∪ {θ̃(ξk∗,t∗,iy ), ϑ̃(ξk∗,t∗,ix ), }i∈[B]

∪ {∇xF (x,y; ξk∗,t∗x ),∇xg(x,y, ξ
k∗,t∗
y )},

G+ = {h(ξk,t,iy ), H(ξk,t,ix ), }(k,t)∈[(k∗,t∗),(K,N)],i∈[B] ∪ {θ̃(ξk,t,iy ), ϑ̃(ξk,t,ix ), }(k,t)∈[(k∗,t∗),(K,N)],i∈[B]

∪ {∇xF (x,y; ξk,tx ),∇xg(x,y, ξ
k,t
y )}(k, t) ∈ [(k∗, t∗), (K,N)]],

Then we have

Pr
[
[(Gt, Gd)(D)]G+

= [G]G+

∣∣∣[(Gt, Gd)(D)]G−∪G∗ = [G]G−∪G∗

]
= Pr

[
[(Gt, Gd)(D′)]G+

= [G]G+

∣∣∣[(Gt, Gd)(D′)]G−∪G∗ = [G]G−∪G∗

]
.

So we conclude that

Pr[(Gt, Gd)(D) = G]

Pr[(Gt, Gd)(D′) = G]
=

Pr
[
[(Gt, Gd)(D)]G∗ = [G]G∗

∣∣∣[(Gt, Gd)(D)]G− = [G]G−

]
Pr
[
[(Gt, Gd)(D′)]G∗ = [G]G∗

∣∣∣[(Gt, Gd)(D′)]G− = [G]G−

]
The RHS is concerning the ratio of the probability that the transcript and model updates in the

(k∗, t∗)-th iteration are the same. In the following, we let m′ = {2, · · · , l} denote the passive parties,
and m = 1 as the active party (i.e., the server). Note that, in Algorithm 2, we add noise to the last
layer of the whole mode, i.e., to θ and ϑ. Moreover, generating noises for parties m′ and m = 1

is completed by once call of Algorithm 2. Given G, let {θ̃(ξk∗,t∗,i∗y ), ϑ̃(ξk∗,t∗,i∗x )} be generated by
Algorithm 2 with label b and D, and let {θ̃′(ξk∗,t∗,i∗y ), ϑ̃′(ξk∗,t∗,i∗x )} be generated by Algorithm 2
with label 1− b and D′, then they are also (ε, 0)-DP. Thus, combing the property of (ε, 0)-DP and
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that all the training samples except for the k∗, t∗, i∗-th one is the same in D and D′, we have

Pr
[
[(Gt, Gd)(D)]G∗ = [G]G∗

∣∣∣[(Gt, Gd)(D)]G− = [s]G−

]
Pr
[
[(Gt, Gd)(D′)]G∗ = [G]G∗

∣∣∣[(Gt, Gd)(D′)]G− = [s]G−

] ≤ eε, (86)

For any subset S of possible assignments of (Gt, Gd), we have

Pr[(Gt, Gd)(D) ∈ G] =
∫
G∈G

Pr[(Gt, Gd)(D) = G]dG

≤
∫
G∈G

eε Pr[(Gt, Gd)(D′) = G]dG

= eε Pr[(Gt, Gd)(D′) ∈ G],

where the second step uses Eq. 86. Hence (Gt, Gd) is (ε, 0)-DP. In the ZO approximating process, we
let Ĝt := {ĥ(ξk,t,i,jy )}k∈[K],t∈[N ],i∈[B],j∈[Q]∪{θ̃(ξk,t,i,jy ), ϑ̃(ξk,N+1,i

x ), }k∈[K],t∈[N ],i∈[B],j∈[Q], and
Ĝd := {∇̂xF (x,y; ξk,N+1,i

x ), ∇̂xg(x,y, ξk,t,i,jy )}k∈[K],t∈[N ],i∈[B],j∈[Q]. Following above analysis,
we have that (Ĝt, Ĝd) is (ε, 0)-differentially private. As a consequence, BAMBI-DP is (ε, 0) label
DP which completes the proof. For the multi-class task, the analysis is similar.

D.3 COMPUTATION COMPLEXITY ANALYSIS OF BAMBI AND BAMBI-DP

In Algorithm 1, the computation complexity (CC) of steps 7 isO(B(Q+ 1)(pm + qm)), that of steps
13 and 14 is O(qm(Q+ 1)), that of step 16 is O(Qpm), that of steps 18 is O(B(pm + qm)), and that
of steps 24 and 25 is O(pm + qm). Especially, the CC of ZO estimation is O(BQ(pm + qm)). Thus,
the total complexity for all parties to perform an upper-level iteration (includes the N -step lower-level
optimization process) in Algorithm 2 is O (NBQ(p+ q)). The CC of computing the second-order
derivative in existing BO methods Chen et al. (2021); Yang et al. (2021); Ji & Liang (2021) is
O(Bpq). Thus, comparing to existing methods using the second-order derivatives to approximate the
Jacobian matrix, BAMBI reduces the CC from O(pq) to O(BQ(p+ q)). For practical choice of Q
(typical choice is Q ≤ 10) and practical VFBO problems with large p, q, such reduction is significant.
The analysis of BAMBI-DP is similar.
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E EXPERIMENT DETAILS

In this section, we provide detailed content of the experiments and additional experimental results on
FashionMnist and News20 datasets.

E.1 EXPERIMENT ENVIRONMENT

We conducted our simulations on a deep learning workstation 48 cores. Codes are written using
Python 3.6 and Pytorch 1.6. The distributed learning environment in Pytorch is used to simulate the
federated learning.

E.2 VFHRL PROBLEMS ON MNIST DATASET

Experimental Details: We use the standard MNIST dataset for learning. We random choose 50k
samples as the training dataset, 10k samples for valuation, and 10k samples as the test dataset. In this
experiment, for ∀m ∈ [l], xm is a 4-layers fully connected network (FCN) with a nonlinear activation
function and ym is a linear classifier. The stepsizes are set to αk = 0.01, βk = 0.01.

Experimental Results: The experimental results are stated in the manuscript.

E.3 EXPERIMENTS FOR VFHRL PROBLEMS ON FASHIONMNIST DATASET

Experimental Details: We use the standard FashionMNIST dataset for learning. The setting is set
to the same as in standard MNIST dataset. We random choose 50k samples as the training dataset,
10k samples for valuation, and 10k samples as the test dataset. In this experiment, for ∀m ∈ [l], xm
is a 4-layers fully connected network (FCN) with a nonlinear activation function and ym is a linear
classifier. The the stepsizes are set to αk = 0.01, βk = 0.01.

Evaluation of Comparable Performance: The corresponding experimental results are shown in
Fig. 4. According to the curves, the convergence performance of BAMBI (FedAlgo) is comparable to
that of Non-FedAlgo, which supports our claim.
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Figure 4: Performance comparison between FedAlgo and Non-FedAlgo on FashionMNIST dataset.

Evaluation of Different Parameters: Similar with statement in the manuscript, in the experiments,
we set N = 1000, Q = 1, B = 1000 and vary one of them. The corresponding results in Fig. 5 show
that although larger N,Q,B is helpful for the faster convergence.

Evaluation of Different Privacy Parameter: We report the corresponding iteration number curves
in Fig. 6 and test accuracy in Table 2. Compare the results of BAMBI-DP with those of Non-DP
(i.e., BAMBI), we have that for this experiment, the value of ε has slight influence of the model
performance, which may because that we choose a small but reasonable sensitive parameter.

Table 2: Comparisons between BAMBI and BAMBI-DP with different label DP levels on FashionM-
NIST dataset.

Non-DP ε = 10 ε = 5 ε = 1

Test Accu 85.52 85.21 85.31 84.62
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Figure 5: Evaluation of using different parameters on FashionMNIST dataset.
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Figure 6: Convergence performance with different levels of DP guarantee on FashionMNIST dataset.

E.4 EXPERIMENTS FOR VFHO PROBLEMS ON NEWS20 DATASET

Experimental Details: In this experiment, we take samples in News20 dataset with labels related
to “comp”, “rec” and “misc” as the first class, and those with other labels as the second class. We
random choose 40% samples as the training dataset, 40% for valuation, and the rest as the test dataset.
In this experiment, for ∀m ∈ [l], xm is set to a linear regressor and ym is set to a simple sum function
to simulate the logistic regression. The the optimal stepsizes are αk = 0.1, βk = 10−5.

Evaluation of Comparable Performance: The corresponding experimental results are shown in
Fig. 7. According to the results, the convergence performance of BAMBI (FedAlgo) is comparable to
that of Non-FedAlgo, which supports our claim. It is also obvious that a larger l will make the curves
oscillation more serious but will not influence the convergence performance.
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Figure 7: Performance comparison between FedAlgo and Non-FedAlgo on News20 dataset.

Evaluation of Different Parameters: In the experiments, we set N = 1000, Q = 1, B = 1000
and vary one of them. The corresponding results in Fig. 8 show that large N,B is helpful for fast
convergence, and varying the value of Q has slight influence.

Evaluation of Different Privacy Parameter: To study the influence of ε, we implement BAMBI-DP
with ε = 1, 5, 10, and report their train accuracy v.s. iteration number curves in Fig. 9. Compare the
results of BAMBI-DP with those of Non-DP (i.e., BAMBI), we have that a better DP guarantee (i.e.,
a smaller ε) leads to a slightly poorer model performance.
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Figure 8: Evaluation of using different parameters on News20 dataset.
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Figure 9: Convergence performance with different levels of DP guarantee on News20 dataset.
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