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Abstract

The tumor microenvironment is widely recognized for its central role in influ-
encing cancer progression and prognostic outcomes. Despite extensive research
efforts dedicated to characterizing this complex and heterogeneous environment,
considerable challenges persist. In this study, we introduce a novel data-driven
approach for identifying tumor microenvironment patterns that are closely tied
to patient prognoses. Our methodology relies on the construction of a bi-level
graph model to integrate information across different scales: (i) a cellular graph,
which models the intricate tumor microenvironments, and (ii) a population graph
that captures inter-patient similarities, given their respective cellular graphs, by
means of a soft Weisfeiler-Lehman kernel. We demonstrate our approach in breast
cancer patients, obtain data-driven risk stratification, and identify crucial patterns
associated with patient prognosis. This method provides valuable insights into
the prognostic implications of the breast tumor microenvironment and holds the
potential to analyze other cancers.

1 Introduction

The tumor microenvironment (TME) is a complex ecosystem, comprising proliferating tumor cells,
tumor stroma, immune cells, blood vessels, and lymphatics [1]. There is accumulating evidence
underscoring the pivotal role of the TME in driving tumor progression [2], contributing to treatment
resistance [3], and influencing patient prognosis [4]. Recent technological advancements in spatial
multiplex proteomics, such as imaging mass cytometry (IMC) [5], have enabled the simultaneous
assessment of a wide spectrum of proteins in tissue specimens, which allow for a comprehensive
exploration of the complexity and heterogeneity of TMEs at the single-cell level [6].

Increasing attention has been given to studying the TME at varying scales [7, 8], including the
analysis of cell type compositions in various cancers [9, 10, 11], the quantification of spatial distances
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between pairs of cell phenotypes [12], and the characterization of cellular neighborhoods involving
more than two cell types [13, 14, 15]. While these works have unveiled numerous unique patterns
across a spectrum of cancers, associating them with clinical implications still relies on the formulation
of explicit hypotheses regarding the relationship between the TME and diseases, grounded in domain
expertise and prior knowledge [16, 9, 17], which may naturally and inadvertently constrain the
exploration of novel relationships and patterns.

On the other hand, there is a growing interest in harnessing graph-based deep learning techniques
to analyze the association between the TME and disease without the need for explicit hypotheses
in a data-driven manner [18]. Several studies have reported promising results by levering graph
neural networks (GNNs) to model the TME and predicting patients’ clinical subtypes, outcomes,
and survival [19, 20, 21, 22]. Yet, the high cost of multiplexed imaging technologies often limits
the size of the patient cohort, which can severely constrain the quality of modern machine learning
models by limiting their generalization, particularly in cross-studies scenarios [8]. Additionally, many
of these studies employ post-hoc interpretation methods to obtain clinical implications from their
models, focusing on the extraction of information related to the learned relationships [18, 19, 20].
Consequently, achieving meaningful explanations and interpretations for these results, which are
contingent on accurate and well-calibrated predictions, becomes exceptionally challenging.

This study circumvents some of these limitations above by proposing a novel data-driven and
unsupervised learning approach to stratify patients and unveil TME patterns relevant to prognosis.
We refer to this method as BiGraph, which entails the construction of two interconnected graphs: a
patient-specific cellular graph, and a subsequent population graph given the patients’ characteristics
captured by the former. The cellular graph meticulously models the TME for individual patients,
capturing detailed information about the spatial proximity and phenotypic characteristics of cells.
On the other hand, the population graph captures similarities among all patients given their TME
patterns, with strong connections indicating high similarities. A novel graph kernel function, referred
to as the Soft-WL kernel, serves as the bridge between these two hierarchies of graphs, measuring the
similarity between pairs of cellular graphs. The combination of these two levels of graphs facilitates
the identification of patient subgroups with similar TME patterns through community detection
methods. In turn, the distinct survival outcomes observed among different patient subgroups provide
valuable insights into the underlying associations between TME patterns and patients’ prognoses.

2 Methods

Bigraph takes as input spatial coordinates and phenotypes of cells, and outputs a risk stratification
of patients as well as the prognosis-relevant patterns that characterize each subgroup. The primary
innovation of BiGraph revolves around exploiting relations across levels of graphs, namely, a cellular
graph and a population graph, and their integration by means of a graph kernel method, as we outline
in the section.

2.1 Preliminaries

We first present some key notation and definitions. A graph G = (V,E) is defined by a tuple of
nodes V and a set of edges E ⊆ {{u, v} ⊆ V | u ̸= v}. The set of nodes and edges in G are denoted
as V (G) and E(G), respectively. For each node v, the set of nodes with an edge connected to a node
v is defined as its neighborhood, denoted as N(v).

The structure of a graph can be fully characterized by its adjacency matrix, denoted as A. An
adjacency matrix with only binary entries represents a binary graph. Conversely, an adjacency matrix
with continuous scalar entries represents a weighted graph, where Auv indicates the weight of the
edge connecting nodes u and v.

The graph G can be decomposed into many subgraphs, defined as G′ := (V ′, E′), where V ′ ⊆ V
and E′ ⊆ E. The subtree is a special form of subgraph with a tree structure, which typically includes
a root node v, and all other nodes included in the subtree are connected to v.
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Figure 1: Bi-level graphs bridged by the graph kernel (a) The cellular graph is constructed to model
patients’ tumor microenvironment (TME) based on their multiplexed images. Each node represents a
cell, and cells are connected via edges with varying weights inversely correlated with inter-cellular
distance. (b) The population graph takes the inter-patient similarity matrix as its adjacency matrix,
where each node is a patient, and edge weight represents the inter-patient similarity. Community
detection methods are applied to the population graph to identify patient subgroups. Subsequent
survival analysis provides risk stratification. (c) The Soft-WL subtree kernel method measures
inter-patient similarities by comparing the TME pattern histograms of two patients. Cellular graphs
are decomposed into subtrees. Similar subtrees are clustered to form a TME pattern, characterized by
unique cell type composition and structure.

2.2 Construction of the cellular graph

The cellular graph models the TME of each individual patient, with each node in it corresponding
to a cell and characterized by its spatial coordinates and phenotype label. Nodes (i.e., cells) are
connected through edges, representing inter-cellular interactions (See Figure 1.a). Unlike conventional
approaches that employ fixed distance thresholds to determine cell connectivity, we construct a
complete cellular graph where all possible pairs of cells are potentially connected, with the strength
of interaction decreasing as the distance between cells increases. To be more specific, the weight of
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the edge connecting two cells u and v, denoted as wuv , is calculated via a Gaussian kernel given by

wuv = exp(−a∥d∥22), (1)

where d represents the spatial distance between cells u and v in micrometers (µm), and a is a
parameter that controls how fast these weights decrease with distance, which we set to 0.01 in
experiments.

2.3 Soft-WL subtree kernel: measuring inter-patient similarity

As described above, every patient is now represented by a cellular graph, and a novel graph kernel
method called Soft-WL subtree kernel is used to measure the inter-patient similarities. The Soft-WL
subtree kernel is a relaxation of the well-known Weisfeiler-Lehman (WL) kernel [23], designed to
handle weighted cellular graphs and provide a smoother comparison between subtrees, as we detail
in the following.

The Soft-WL subtree starts with a neighboorhood aggregation process to update the node features
iteratively. Consider a cellular graph G = (V,E) with a weighted adjacency matrix A. Noticeably,
self-loops are added to each node, and thus the diagonal entries of A are all 1. Each node, v, is
initially assigned the one-hot encoding of its cell phenotype, denoted as x(0)

v ∈ Rd. The node feature
is then iteratively updated in a series of iterations as follows:

x(h)
v = x(h−1)

v +
∑

u∈V \{v}

x(h−1)
u Auv, (2)

where h and h− 1 are the indices of iteration.

Intuitively, the neighborhood aggregation process enables the updated node feature to not only encode
the phenotype information of itself but also its neighbors. Thus, the updated node feature, x(h)

v , can
also be viewed as the feature embedding of a subtree rooted at v. The boundary of this subtree is
established by assessing the impact of neighborhood nodes u on the embedding x

(h)
v . Equation (2)

can be rewritten as
x(h)
v = x(0)

v (Ah)vv +
∑

u∈V \{v}

x(0)
u (Ah)uv, (3)

where Ah denotes the hth power of the adjacency matrix A. Thus, the impact of a node u to the
subtree embedding x

(h)
v is Ah

uv . A user-defined threshold w0 (e.g., 0.1 in our experiments) is used to
decide the boundary, where any node u with (Ah)uv > w0 is considered a leave of the subtree.

Unlike the WL kernel, which only counts on isomorphic subtrees as a similarity measure, the Soft-
WL subtree kernel clusters similar subtrees based on their feature embeddings. Every resultant
cluster is considered a TME pattern containing subtrees with similar embeddings (see Figure 1.c).
Furthermore, each TME pattern is assigned a “signature” given by averaging the embeddings of all
the intra-cluster subtrees. The signature is a characterization of the cell phenotype composition and
spatial organization of its corresponding TME pattern. The Soft-WL Subtree kernel calculates the
inter-patient similarity by comparing the occurrence of these TME patterns across patients, which is
formally defined as,

k(G1, G2) =
⟨c(G1,Σ), c(G2,Σ)⟩

∥c(G1,Σ)∥2∥c(G2,Σ)∥2
, (4)

where k(G1, G2) denotes the similarity between G1 and G2 (i.e., the similarity between the two
corresponding patients), Σ is the set of TME pattern identities, c(G1,Σ) and c(G2,Σ) denotes the
histogram of TME patterns in G1 and G2, respectively, and ∥c(G1,Σ)∥2 and ∥c(G1,Σ)∥2 denote
their L2 norms. The denominator serves as a normalization such that the similarity score for any
patient pair falls within the range of 0 to 1, with two identical graphs achieving a maximum similarity
score of 1.

The iteration h is a hyperparameter that controls the size of subtrees, and we set it as h = 2 in the
experiments. Although the clustering method can be general, we particularly use the PhenoGraph
algorithm [24] to conduct subtree clustering since it does not need the number of clusters to be
specified.
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Pan-CK CD31-vWF HLA-ABC CD8 CD11c

CK8-18 FSP1 B2M CD57 CD15
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Histone 

H3
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CXCL12 c-Caspase3 CD4 CD163

Figure 2: Survival, marker panel, and phenotyping system of the dataset

2.4 Population graph and patient subgroups

The population graph is constructed to model inter-patient similarities in the entire patient population
(see Figure 1.b). Each node of the population graph represents a patient, and every patient is connected
to potentially all other patients through edges with varying weights. Each edge weight represents the
similarity between the two patients measured by the Soft-WL subtree method, given by Equation (4).

The Louvain community detection method [25] is employed to detect communities from the popu-
lation graph, where each community detected represents a patient subgroup characterized by high
intra-group similarities in their TMEs. The population graph is preprocessed by removing any edges
with a weight lower than 0.5 to increase sparsity. The resolution of the Louvain algorithm is set to be
1 following common practice. The result of this process is the detection of patient subgroups, each of
which represents a subset of patients with high intra-group similarities in their TMEs.

2.5 Discovery of prognosis-relevant patterns

Survival analysis is applied to each individual patient subgroup to assess its relative risk, and a
risk stratification of the patient cohort can be obtained. A highlight of this methodology is its
explainability: since the TME pattern histogram that is used to characterize each patient is completely
transparent. Therefore, revisiting the TME pattern distribution in patient subgroups with distinct
survivals – either better or worse – might unveil the underlying association between TME patterns
and prognosis. To be more specific, we calculate the relative presentation of each TME pattern in a
specific patient subgroup, which is defined as the ratio of its average occurrence among intra-group
patients to that among all the patients. TME patterns with a relative presentation higher than 2 (i.e.,
twice) are considered “over-presented” in that patient subgroup. Furthermore, over-presented TME
patterns in patient subgroups with distinct survivals are considered prognosis-relevant patterns and
undergo further characterization and analysis.

3 Results

Although the methodology is general, we center our study in the context of breast cancer, using a
patient cohort curated by E. Danenberg et al. [13]. It encompasses 693 breast cancer patients, each
accompanied by their 37-dimensional imaging mass cytometry (IMC) images of tissue microarray
cores and clinical data. This publicly available dataset provides cell phenotyping results, delineating
32 major cell phenotypes. Figure 2 provides an overview of the clinical information, marker panel,
and phenotyping systems of this dataset.

3.1 Population graph analysis provides data-driven risk stratification

As elucidated in Section 2.2 and Section 2.3, a cellular graph is constructed for each patient to
model the spatial distribution of different types of cells within the TME. the Soft-WL subtree kernel
decomposes cellular graphs into numerous subtrees. Subtrees are clustered based on their feature
embeddings calculated via neighborhood aggregation, culminating in a total of 102 clusters. Each
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Figure 3: Population graph provides risk stratification. (a) 2-D visualization of the population
graph and the results of community detection. b Survival plots of the 9 patient subgroups are displayed.
A multivariate log-rank test is used to compare the 9 curves, and the resultant p-value is indicated in
the title. c Relative hazard ratio (with 95% confidence interval) of the 9 patient subgroups estimated
using a Cox proportional hazard model are shown. The text color (grey vs. black) distinguishes
between statistically significant and non-significant associations (black: statistically significant). The
size (i.e., number of patients) of each subgroup is presented in the corresponding barplot. d Survival
plots (with 95% confidence interval) of 3 subgroups with significantly worse survival (S1, S2, and
S3), and 1 subgroup with significantly better survival (S9) are shown.

of these clusters is considered a TME pattern, distinguished by a unique cell type composition and
inter-cellular connections. A signature is assigned to each TME pattern by computing the average
embedding of all corresponding subtrees, which summarizes the composition and spatial organization
of different types of cells in subtrees with a specific pattern. The Soft-WL subtree kernel quantifies
inter-patient similarity by comparing the occurrence of these 102 patterns in their respective TMEs
(See Equation 4).

Having measured the similarities between any possible pair of patients in the discovery set, we
construct a population graph that encodes the inter-patient similarities across the entire discovery set.
In this graph, each node represents an individual patient, which is connected to other nodes via edges
with varying weights corresponding to their similarity. To identify patient subgroups characterized
by similar TME patterns, we employ the popular Louvain community detection method [25] on
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Figure 4: Visualization of prognosis-relevant patterns. This figure presents representative subtree
examples of the over-presented TME patterns in four patient subgroups: three with significantly
worse survival (S1, S2, and S3) and one subgroup with significantly better survival (S9).

the population graph. This process yields nine detected communities with different sizes, each
representing a subgroup of patients with high intra-group similarities. For visualization purposes, we
use the Fruchterman-Reingold force-directed algorithm [26] to assign virtual coordinates to nodes. A
visualization of the population graph and the results of community detection are depicted in Figure
3.a.

The Hazard Cox model [27] is used to assess the prognostic significance of these patient subgroups.
We rank the nine subgroups based on the estimated hazard ratio and designate them as S1 to S9
(Figure 3.c). Survival plots for these nine subgroups are generated using the Kaplan-Meier estimator
[28], and we conduct a multivariate log-rank test [29] to compare their survival outcomes. Our results
indicate a statistically significant difference in survival outcomes among these subgroups (Figure
3.b). Furthermore, we perform pairwise log-rank tests to compare the survival of patients within and
outside each specific subgroup. These results reveal that S1, S2, and S3 exhibit significantly worse
survival outcomes, and S9 has significantly better survival (Figure 3.d).
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3.2 BiGraph unveils prognosis-relevant patterns

To unveil the association between TME patterns and survival outcomes, the relative presentation of
TME patterns within each patient subgroup is analyzed, defined as the ratio of the pattern’s mean
occurrence per patient within that subgroup to the mean occurrence per patient across the entire
cohort. We define TME patterns with a relative presentation higher than 2 as “over-presented” in
the patient subgroup. Over-presented TME patterns in the four patient subgroups with statistically
distinct survival outcomes (i.e., S1, S2, S3, and S9) are considered associated with prognosis. Some
representative subtree examples corresponding to these prognosis-relevant TME patterns are shown in
Figure 4. Notably, S1, which exhibits the worst survival among all subgroups, displays over-presented
Her2+ tumor cell clusters with varying sizes and cell densities. S2, associated with significantly
worse survival, exhibits several over-presented patterns, most of which involve the CKlowERlow tumor
cells. These patterns encompass homotypic CKlowERlow tumor cell clusters, heterotypic cell clusters
comprising CKlowERmed tumor cells, Ki67+ tumor cells, and PDPN+ myofibroblasts, as well as
co-occurrence of CKlowERmed, CKmedERlow, and CKlowERlow cells). S3, which exhibits slightly
worse survival compared to the entire cohort, demonstrates a diverse range of over-presented TME
patterns, including clusters of CKmedERlow tumor cells, B cell clusters, and immune hotspots featuring
macrophages, CD4+ T cells, CD8+ T cells, and antigen-presenting cells (APCs). S9, characterized
by the best survival outcome, demonstrates representative patterns characterized by the co-occurrence
of CK8/18highCXCL12high cells and CK+CXCL12+ cells. These over-presented TME patterns within
patient subgroups exhibiting distinct survival outcomes are considered prognosis-relevant patterns.

4 Discussion and Conclusions

The TME represents a fundamental component of the study of cancer biology, and a number of recent
studies indicate its promise for discovering biomarkers for treatment resistance and prognosis [30, 3,
4, 16, 31, 17]. While some useful metrics have been derived from pathology by employing traditional
methods of spatial statistics, driven mostly by hypotheses relying on domain expertise, the discovery
of data-driven markers for prognosis has remained unexplored. Modern deep learning methods,
including graph neural networks, constitute an appealing alternative for data-driven biomarkers for
prognosis. Yet, they typically require very large amounts of training data, can be sensitive to different
experimental settings with low generalization, and provide limited information about the input data
that cause a given predicted response.

This study develops a data-driven methodology, centered on breast cancer, that relies on two simple
observations: i) representative patterns of the TME can be adaptively learned by studying the
underlying patient-specific cellular graph, and ii) the relative presence of such patterns in different
patients can be employed to provide a measure of similarity among these, from which a population-
level graph can be constructed. This bi-level process allows us to obtain – automatically and in
an unsupervised manner – different patient subgroups, with similar TMEs and potentially distinct
prognoses, either better or worse. In turn, the presentation of TME patterns that characterize each of
these subgroups unveils the underlying associations between TME and cancer prognosis. A significant
strength of our methodology, compared with other data-driven methods, is the complete transparency
of the features that provide the risk stratification and characterize better and worse survival. These
features are dubbed as TME patterns, and they represent similar subtrees – cellular neighborhoods
with a tree structure – identified in the TMEs. As a result, we can easily unveil the most (and least)
common structures that characterize better (and worse) survival. Relying on more complex models,
such as those based on graph neural networks, would have made it significantly different – if not
altogether impossible – to easily characterize such biomarkers.
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