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Abstract
Understanding and constructing brain commu-
nications that capture dynamic communications
across multiple regions is fundamental to mod-
ern system neuroscience, yet current methods
struggle to find time-varying region-level com-
munications or scale to large neural datasets
with long recording durations. We present a
novel framework using Markovian Gaussian Pro-
cesses to learn brain communications with time-
varying temporal delays from multi-region neu-
ral recordings, named Adaptive Delay Model
(ADM). Our method combines Gaussian Pro-
cesses with State Space Models and employs
parallel scan inference algorithms, enabling ef-
ficient scaling to large datasets while identifying
concurrent communication patterns that evolve
over time. This time-varying approach captures
how brain region interactions shift dynamically
during cognitive processes. Validated on syn-
thetic and multi-region neural recordings datasets,
our approach discovers both the directionality
and temporal dynamics of neural communication.
This work advances our understanding of dis-
tributed neural computation and provides a scal-
able tool for analyzing dynamic brain networks.
Code is available at https://github.com/
BRAINML-GT/Adaptive-Delay-Model.

1. Introduction
Modern system neuroscience faces a significant challenge in
discovering communication patterns that capture dynamic
interactions across multiple regions. Understanding these
time-varying communications has become increasingly crit-
ical with the advent of advanced recording technologies that
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enable simultaneous measurement of neural activity across
numerous brain areas with unprecedented temporal and spa-
tial resolution (Steinmetz et al., 2021; Siegle et al., 2021; Li
et al., 2024a; Nejatbakhsh et al., 2024). These large-scale
neural recordings necessitate computational methods capa-
ble of uncovering and characterizing the dynamic nature of
neural communication within the brain.

Latent representations offer a promising approach to build-
ing time-varying multi-region communications (Wang et al.,
2023; 2024; Zhang et al., 2024). In the brain, communi-
cation patterns between brain regions manifest at varying
temporal scales: some regions exhibit fast, synchronous
interactions with short delays, indicative of strong func-
tional coupling, while others display slower interactions
with longer delays, reflecting more indirect relationships.
Such communications provide a framework for understand-
ing how these diverse communication patterns evolve over
time, capturing both feedforward and feedback pathways
that may shift during different cognitive states (Lillicrap
et al., 2020; Liu et al., 2025).

Current computational approaches for modeling multi-
region communications can be broadly categorized into non-
delay models and delay models. Non-delay models, such
as mp-srSLDS (Glaser et al., 2020) and MR-SDS (Karniol-
Tambour et al.), do not explicitly incorporate temporal de-
lays when capturing latent dynamics across regions. As a
result, they can only learn the directional information of
communications. Delay models, including DLAG (Gokcen
et al., 2022), m-DLAG (Gokcen et al., 2024a), their ap-
proximated versions (Gokcen et al., 2024b), and MRM-GP
(Li et al., 2024b), introduce mechanisms to learn temporal
delays between pairs of communications. Learning delays
provides not only directional information but also insights
into relative communication speeds, which can help assess
the strength of functional coupling between brain regions.

Although these methods have shown potential in capturing
inter-region brain communications, delay models, such as
DLAG and its variants, do not account for the dynamic na-
ture of multi-region communication. They fail to model
time-varying temporal dependencies and communication
patterns, which are crucial for understanding neural process-
ing. Non-delay models, such as MR-SDS and mp-srSLDS,
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introduce dynamic message flow among regions but don’t
model delays between communications and assume a sin-
gle communication subspace, meaning they cannot capture
concurrent communications over different subspaces.

MRM-GP is a specific case that integrates a Gaussian Pro-
cess (GP) with a State Space Model (SSM), making it a
delay model with discrete changing of phase delays. MRM-
GP has two key limitations: (1) it only supports kernels that
are separable across spatial and temporal domains, restrict-
ing its applicability in the frequency domain by learning
phase delays, whereas temporal delays are more generaliz-
able for neuroscience applications; (2) it assumes that the
delays across all communication subspaces across regions
change synchronously with hidden state transition. How-
ever, this assumption does not reflect the true brain mech-
anism, where different communication pathways between
regions can operate asynchronously.

In terms of computational efficiency, DLAG and mDLAG,
which are GP-based methods, incur an O(T 3) computa-
tional cost, where T is the number of time samples, mak-
ing them challenging to scale. Approximated GP and
SSM-based methods, such as MRM-GP, MR-SDS, and mp-
srSLDS, reduce the cost to O(T ). However, they rely on
sequential inference, which remains inefficient for large neu-
ral datasets with long recording durations. Moreover, the
reliance on discrete hidden states, e.g., MRM-GP, introduces
inefficiencies during inference.

To address these limitations, we propose the Adaptive De-
lay Model (ADM). It falls within the family of Markovian
Gaussian process-based delay models (Li et al., 2024b),
but incorporates a continuous time-varying temporal delay.
Thus unlike static communication models commonly used
in neuroscience, ADM can accommodate communication
patterns with varying temporal characteristics, offering a
more flexible and biologically relevant framework.

Markovian Gaussian Process (Markovian GP) models inte-
grate the expressive power of GPs with the computational
efficiency of SSMs, facilitating scalable analysis of large-
scale neural recordings while discovering multiple evolv-
ing communication patterns. However, existing Markovian
GP approaches either rely on single-output kernels or re-
quire multi-output kernels to be separable across spatial and
temporal domains (Solin et al., 2016; Loper et al., 2021;
Dowling et al., 2021; 2023; Li et al., 2024b). In this pa-
per, we introduce a novel, universal connection between
arbitrary temporally stationary GPs and SSMs, making the
framework highly flexible and broadly applicable to various
neuroscience problems.

Additionally, we apply an advanced inference method for
Markovian GP, leveraging parallel scan algorithms (Blel-
loch, 1990; Särkkä & Garcı́a-Fernández, 2020) to signif-

icantly accelerate computation and reducing complexity
to O(log T ). This approach enables efficient analysis of
long-duration recordings while capturing dynamic commu-
nication patterns.

We validate our model using neural recordings from multiple
regions of the brain during visual processing tasks (Semedo
et al., 2019; Siegle et al., 2021). Our results demonstrate
the method’s capability to uncover how information flow
patterns dynamically change across multi-region networks,
offering new insights into the temporal organization of large-
scale neural circuits and advancing our understanding of
distributed neural computation.

In summary, the key contributions of our work are:

• We establish a universal connection between arbitrary
temporally stationary GPs and SSMs, which has broader im-
plications for other domains where computational efficiency
is a priority.

• Our model discovers time-varying multi-region commu-
nications from latent representations of neural recordings
without introducing additional discrete hidden states in the
SSM.

• We propose a scalable method for analyzing multi-region
communications in large-scale neural data with O(log T )
complexity.

2. Method
We begin by demonstrating how a Gaussian Process (GP)
with a Factor Analysis (FA) model can be used to capture
static brain communication across regions (Section 2.1).
Next, we establish a universal connection between a GP
and a State Space Model (SSM), referred to as the Marko-
vian Gaussian Process (Section 2.2). Finally, we illustrate
how time-varying brain communication can be modeled
(Section 2.3).

2.1. Gaussian Process Factor Analysis for Brain
Communications

The Gaussian Process Factor Analysis (GPFA) for modeling
brain communication employs the multi-output Squared
Exponential (MOSE) kernel (Gokcen et al., 2022):

Kij(τ) = exp

(
− (τ + θij)

2

2l2

)
, (1)

where i, j represent two brain regions, τ = t− t′ is the time
difference, θij is the temporal delay between regions i and
j, and l is the length scale shared across all regions. This
MOSE kernel allows the identification of temporal delays
that characterize communication dynamics across regions.

Our goal is to learn MN latent variables, x ∈ RMN×T ,
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from neural recordings y ∈ RD×T across N regions. Each
region is associated with M latent variables.

A typical assumption for x is to decompose it into two com-
ponents: across-region variables and within-region variables
(Gokcen et al., 2022; Li et al., 2024b). The across-region
variables, xa ∈ RmaN×T , capture shared neural activity
that reflects communication between brain regions. These
variables exhibit the similar dynamics across regions, dif-
fering only in temporal delays. The within-region variables,
xw ∈ RmwN×T , represent neural activity unique to individ-
ual regions and are independent of other regions. Together,
these components form the latent representation of neural
recordings, x = [xa,xw], where ma +mw = M . The re-
lationship between y and x is then modeled using a Factor
Analysis (FA) model:

y = Cx+ d+ ϵ, (2)

where C ∈ RD×MN is a block-diagonal matrix C =
diag{C1, . . . ,CN}, with each Ci representing the mapping
from region i’s latent variable to its neural recordings. Addi-
tionally, d ∈ RD×1 is a bias term, and ϵ ∼ N (0,V) repre-
sents Gaussian noise with diagonal covariance V ∈ RD×D.

The across-region variables xa are designed to capture com-
munication patterns among regions. For the m-th group
of across-region variables, xa

m ∈ RN×T , the activity from
each region exhibits spatial correlations with the N−1 other
regions. These variables are modeled as a Gaussian Process
(GP) with the MOSE kernel, which captures the temporal
delay characteristics of across-region communication.

On the other hand, the m-th group of within-region vari-
ables xw

m ∈ RN×T , representing region-specific activity, is
modeled independently across regions using a single-output
Squared Exponential (SE) kernel:

Ksingle(τ) = exp

(
− τ2

2l2

)
. (3)

Additionally, independence is assumed across different
groups of both the across-region and within-region variables,
with each group m governed by distinct kernel parameters.

By explicitly separating the across-region and within-region
latent variables, this framework offers a clear representation
of across-region communication and region-specific dynam-
ics, enabling a more interpretable analysis of multi-region
neural recordings.

2.2. Connect Gaussian Process with State Space Model

We develop a novel universal connection between arbitrary
temporally stationary GPs and SSMs, enabling us to effi-
ciently model both across- and within-region dynamics.

Gaussian Process and State-Space Approximation. The
m-th group of across-region variables, xa

m ∈ RN×T are

modeled as a GP with MOSE kernel:

GP(0,


K(0) K(−1) . . . K(−T + 1)
K(1) K(0) . . . K(−T + 2)

...
...

. . .
...

K(T − 1) K(T − 2) . . . K(0)

), (4)

where each K(τ) ∈ RN×N is a MOSE kernel in Eq. 1 with
an interval τ over N brain regions. Our goal is to find a state-
space approximation of xa

m, which follows a Multi-Order
SSM structure:

xa
m,t =

P∑
p=1

Apx
a
m,t−p + qt, qt ∼ N (0,Q), (5)

where P represents the number of orders, A1, . . . ,AP ∈
RN×N are the transition matrices, and Q ∈ RN×N is the
process noise matrix.

Determining an State Space Model using Kernels. To
estimate transition matrices and measurement using xa

m,
we can consider the SSM in Eq. 5 as a regression model
(Neumaier & Schneider, 2001):

xa
m,t = Gvt + qt, qt ∼ N (0,Q), (6)

where G ∈ RN×NP is the regression coefficient and vt ∈
RNP×1 is the predictor:

G = [AP ,AP−1, . . . ,A1],

vt = [xa,⊤
m,t−P ,x

a,⊤
m,t−P+1, . . . ,x

a,⊤
m,t−1]

⊤.
(7)

Our ultimate goal is to use K(τ) to represent G and Q.
First, we can represent G and Q as functions of xa

m. Con-
cretely, given T samples, xa

m,1, . . . ,x
a
m,T , we define pre-

dictor matrix as V = [vP+1, . . .vT ]
⊤ ∈ RNP×(T−P ) and

target observation matrix as W = [xa
m,P+1, . . . ,x

a
m,T ] ∈

RN×(T−P ).

Then, we can represent the regression model in Eq. 6 in
the matrix form: W = GV +R, where R is the residual
matrix. By doing so, we can estimate coefficient matrix G
and the process noise matrix Q by least squares estimation:

G = WV⊤(VV⊤)−1, Q =
RRT

T − P − 1
, (8)

where R = W −GV denotes an estimate of the residual
matrix, and its covariance is an estimate of process noise
matrix Q. Now, if we can represent WV⊤ and VV⊤ with
K(τ), we will achieve the ultimate goal.

Since each sample xa
m,t in V and W is modeled as a sample

in the GP in Eq. 4. We can represent VV⊤ ∈ RNP×NP
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and WV⊤ ∈ RN×NP using K(τ) as (full derivations see
Appendix A):

VV⊤ ∝


K(0) K(−1) . . . K(−P + 1)
K(1) K(0) . . . K(−P + 2)

...
...

. . .
...

K(P − 1) K(P − 2) . . . K(0)

 ,

WV⊤ ∝
[
K(P ) K(P − 1) . . . K(1)

]
.

(9)

Notably, each K(τ) ∈ RN×N , where τ ∈ [−P +1, P − 1],
depends only on the number of brain regions N and can
be efficiently computed using the stationary kernel func-
tion employed in the GP. Furthermore, K(τ) can represent
any stationary temporal kernel, establishing a universal con-
nection between GPs and SSMs. We apply this universal
conversion to various kernels in GP regression task, see
Appendix D for details.

Markovian Across-region Communcations. Now, the
transition matrices and the measurement matrix in Eq. 5 are
uniquely determined by the kernel functions of GP by Eq. 8
and Eq. 9. Moreover, we can rewrite the SSM in Eq. 5 to an
SSM with a Markovian structure, resulting in a Markovian
Gaussian Process (Markovian GP) (Zhao, 2021):

x̂a
m,t = Âx̂a

m,t−1 + qt, qt ∼ N (0, Q̂),

xa
m,t = Hx̂a

m,t,
(10)

where H ∈ RN×NP denotes a mask matrix, Â ∈
RNP×NP is structured as a controllable canonical form
(Grewal & Andrews, 2014) and small constants are added
to Q̂ ∈ RNP×NP so it matches the shape of Â:

Â =


A1 A2 . . . AP−1 AP

IN 0 . . . 0 0
0 IN . . . 0 0

0 0
. . . 0 0

0 0 . . . IN 0

 ,

Q̂ =

[
Q 0
0 σIN(P−1)

]
, H =

[
IN 0

]
,

(11)

with IN ∈ RN×N denoting the identity matrix and σ a small
constant added for numerical stability. Notably, although we
use a Markovian structure to represent a stationary GP, our
method still incorporates information from multiple orders.

Markovian Within-region Neural Activity. Similarly,
the state-space approximation of the m-th group of within-
region variables, xw

m ∈ RN×T , can be seen as a specific
case of across-region variables. In this case, each dimension,
xw
m,n ∈ RT×1, is independently modeled as a Markovian

GP with a scalar single-output SE kernel (Eq. 3).

2.3. Time-Varying Brain Communications

Since the SSM in Eq. 10 follows a discrete structure, we can
extend it to incorporate time-varying transition and process
noise matrices as follows:

x̂a
m,t = Âtx̂

a
m,t−1 + qt, qt ∼ N (0, Q̂t),

xa
m,t = Hx̂a

m,t.
(12)

This formulation introduces a time-varying MOSE kernel,
where the temporal delay parameter θij,t evolves over time.
In other words, at each time step t, we construct a Marko-
vian GP (or SSM) as described in Eq. 10, conditioned on the
MOSE kernel specific to that time t. Additionally, the length
scale parameter l is held constant over time, which limits
the flexibility of each Ât. By sharing l across time points,
we constrain the temporal evolution of the delay parame-
ters, promoting smoother dynamics and reducing the risk of
misattributing variability in the messages to fluctuations in
delays.

This approach enables the model to learn time-varying tem-
poral delays, effectively capturing the dynamics of multi-
region brain communications. Compared to modeling time-
varying phase delays using hidden discrete states (Li et al.,
2024b), our method is more flexible, as it does not assume
that each group of across-region communications, xa

m, un-
dergoes simultaneous delay changes during state transitions.

Importantly, this computation can be efficiently performed
in vectorized form across all T time steps, ensuring mini-
mal impact on overall computational efficiency. In the FA
model, the projection matrix C ∈ RD×MN , the bias term
d ∈ RD×1, and the observation Gaussian noise ϵ ∈ RD×1

remain time-invariant.

3. Inference
Now, having established the connection between the m-th
group of across-region communications and within-region
neural activity to the Markovian GP (or SSM), as described
in Eq. 12, the next step is to efficiently learn the latent
variables and model parameters.

Our model, ADM, formulated as an SSM, offers a signifi-
cant advantage: it can learn the parameters using either a
sequential estimation method with complexity O(T ) or a
parallel computation method with complexity O(log T ). On
modern hardware, the parallel approach is consistently faster
due to its efficient utilization of computational resources.

Parameter Settings The model parameters, denoted as
Θ, include the kernel parameters θkij,t and lk from each la-
tent dimension k, which define the transition matrix Ât and
the process noise covariance matrix Q̂t for each across- or
within-region latent group. Additionally, the Factor Anal-
ysis (FA) parameters include the projection matrix C, the
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bias term d, and the diagonal matrix V. The model also has
a hyperparameter P , representing the order of the autore-
gressive process. To better understand the effect of different
P values, we generate samples from our model for various
P values, as shown in Appendix C.

Parallel Scan Kalman EM Algorithm Given neural
recordings y ∈ RD×T , our goal is to estimate the latent
brain communications x ∈ RMN×T along with the model
parameters Θ. To achieve this, we use the parallel scan-
based Kalman Expectation-Maximization (EM) inference
algorithm (Särkkä & Garcı́a-Fernández, 2020), which in-
troduces a parallel scan version of the Kalman Filter and
Smoother. Specifically, in the E-step, we apply the parallel
Kalman Filter and Smoother to infer the latent variables
and expected log-likelihood. In the M-step, we update the
kernel parameters using gradient descent and optimize the
Factor Analysis (FA) parameters through closed-form linear
regression. See Appendix B for details.

The objective of the Kalman Filter is to compute the pos-
terior density p(xt|y0:t), given the neural data up to time
step t, while the Kalman Smoother computes the posterior
density p(xt|y0:T ) for all time steps. Traditionally, both
filtering and smoothing are computed in O(T ) time using se-
quential updates. However, sequential computation is often
inefficient compared to parallel computation, particularly
on modern hardware architectures (Chen et al., 2024).

To address this inefficiency, Särkkä & Garcı́a-Fernández
(2020) demonstrates that the sequential updates of the
Kalman Filter and Smoother can be reformulated as an
associative operator, enabling the use of the parallel scan
algorithm (Blelloch, 1990). Consequently, the time com-
plexity and memory cost of our model are given by:

Time complexity: O(MN3P 3 log T ), (13)

Memory complexity: O(MN2P 2T ), (14)

where N is the number of regions, M is the group number
of across- and within-region latent dynamics, and P is the
SSM order in Eq. 5. The cubic cost arises from Eq. 8. How-
ever, as we will show in the experimental section, the order
parameter P and N can be significantly smaller compared
to T while still achieving strong generative and inference
performance. Thus, the cubic cost does not pose a major
computational bottleneck.

4. Experiment
Datasets. We evaluate our model on three datasets.

• Synthetic Data: We generate synthetic data that incorpo-
rate both across-region communications and within-region
neural activities, along with time-varying temporal delays,
to simulate dynamic brain communications characterized

by both fast and slow features.

• Two Brain Regions (Semedo et al., 2019; Zandvakili &
Kohn, 2019): Simultaneous spike train recordings from a
monkey’s primary visual area (V1) and secondary visual
cortex (V2), with a 6Hz drifting grating as the external
stimulus.

• Five Brain Regions (Siegle et al., 2021): Simultane-
ous spike train recordings from a mouse’s primary visual
cortex (VISp), rostrolateral area (VISrl), anterolateral area
(VISal), posteromedial area (VISpm), and anteromedial area
(VISam), with a 4Hz drifting grating as the external stimu-
lus.

Baselines. We compare our model with three methods:

• DLAG (Gokcen et al., 2022): A Gaussian Process Factor
Analysis model with a MOSE kernel, designed for neu-
ral recordings from two brain regions. It can be used to
learn both across-region and within-region latent communi-
cations.

• mDLAG (Gokcen et al., 2024a): An extension of DLAG
that supports more than two brain regions with a different
inference approach. Unlike DLAG, it assumes all latent
variables correspond to across-region communications and
does not explicitly model within-region dynamics.

• MRM-GP (Li et al., 2024b): An approximation of a
Gaussian Process with a Cross-Spectral Mixture (CSM)
kernel (Ulrich et al., 2015), formulated as an SSM with
O(T ) complexity. It is designed to learn frequency-based
communications between two brain regions and can capture
both across-region and within-region latent dynamics.

Evaluation. We evaluate our model and baseline mod-
els by randomly splitting the data into training, validation,
and testing sets with a ratio of 0.8, 0.1, and 0.1, respec-
tively. Since all models assume a linear/Gaussian relation-
ship between the latent variables and observed data, we
assess their performance by computing the observation test
log-likelihood: LL(xtest,ytest), where xtest represents the
inferred test latent variables, and ytest denotes the test neural
recordings. To mitigate randomness, we report the average
test log-likelihood over five different random seeds.

4.1. Synthetic Data

In this section, we simulate a common phenomenon in neu-
roscience where brain region communications are dynamic
(Parra & Tobar, 2017). Our goal is to evaluate our model’s
ability to recover time-varying temporal delays and latent
variables.

Experimental setup. We generate 120 independent trials
for two brain regions (N = 2) with an order of P = 5
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Figure 1. Evaluation of the ADM on synthetic brain communica-
tion data. (A) Estimated across-region communications, temporal
delays, and ground truth over T bins for P = 5. The shaded
area represents the variance of the estimated delay across five dif-
ferent runs. (B) Test log-likelihood summed over trials and time
bins, showing that performance remains stable for different P . (C)
Comparison of the runtime for sequential and parallel scan-based
Kalman EM across different values of T , showing that the parallel
version is significantly faster, especially as T increases.

and T = 200 time bins. Each region contains 50 neurons,
with ma = 2 groups of across-region communications and
mw = 1 group of within-region variables. For across-region
communications, the first group represents forward commu-
nication, characterized by a larger positive delay of 5 bins
and a smaller positive delay of 1 bin during time bins 30
to 70. The second group represents feedback communica-
tion, with a larger negative delay of -5 bins and a smaller
negative delay of -1 bin during time bins 130 to 170. For
across-region and within-region dynamics, the length scales
are set to l = 5 and l = 2.5, respectively.

Note that large delays in this context are intended to repre-
sent slow communication in the brain, whereas an extremely
large delay would imply an absence of communication be-
tween regions. A small delay indicates fast communica-
tion. Therefore, our data simulation is designed to reflect
a scenario where region A initially has minimal effective
communication with region B (delay of 5), then suddenly
transmits a signal (delay of 1), followed by another period
of ineffective communication (delay of 5). A delay of -5
represents communication in the opposite direction. During
fitting, we set ma = 2, mw = 1, and P = 5.

Results. Figure 1(A) presents the estimated and truth
across-region communications, temporal delays, and ground
truth over T bins for P = 5. For the estimated delay, the
shaded area represents the variance across five different runs.

Our model effectively captures time-varying communica-
tions for both latent dynamics and delay. See Appendix E
for within-region neural activities.

Figure 1(B) shows the test log-likelihood summed over trials
and time bins. The results indicate that performance remains
relatively stable for P ∈ [2, 5], except for P = 1, which
yields the lowest performance.

Figure 1(C) compares the time costs of the sequential and
parallel scan-based Kalman EM algorithms with GPU par-
allelization. We generate synthetic data with up to T = 600
time bins. The results demonstrate that the parallel version
is significantly faster than the sequential update.

Finally, Appendix G presents a more complex case with
five-region synthetic dataset and evaluates the model’s per-
formance as a function of the number of regions, latent
variables, and data length.

4.2. Two Brain Regions

In this section, we investigate the interactions between the
mouse’s primary visual area (V1) and secondary visual cor-
tex (V2) in response to a 6Hz drifting grating. Additionally,
we compare our model’s performance and inference time
with MRM-GP and DLAG.

Experimental setup. We use smoothed multi-region spike
trains from session 106r001p26 with an orientation of 0◦.
This dataset consists of 400 trials, each containing 64 time
bins (20 ms per bin), with 72 V1 neurons and 22 V2 neu-
rons. The monkey begins receiving the visual stimulus (drift-
ing gratings) at the first time bin, and the stimulus persists
throughout all 64 time bins. The number of across-region
and within-region latent dynamics follows previous works
(Gokcen et al., 2022; Li et al., 2024b), where ma = 2 and
mw = 2. The order P = 4 is selected based on performance
evaluation on the validation dataset.

Results. Figure 2(A) shows the estimated across-region
communications and time-varying delays from the test
dataset (ten trials shown; within-region dynamics are pro-
vided in Appendix E). The first group of communications
shows a shift from slower feedback (with larger absolute
delays) to faster feedback (with smaller absolute delays)
starting around 200 ms after stimulus onset. In contrast,
the second group exhibits a periodic pattern driven by the
external drifting grating stimulus, along with a change in
communication direction immediately following stimulus
onset. The time-varying delays suggest the following inter-
pretation: shortly after stimulus presentation, V2 generates
a strong feedback signal from V2 to V1, potentially reflect-
ing the emergence of surprise or prediction error (Rao &
Ballard, 1999). As time progresses, both regions transition
into more synchronized oscillations. Our findings on V1-V2
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Figure 2. Evaluation of the ADM on spike trains from V1 and V2. (A) Estimated across-region communications and time-varying
temporal delays from the test dataset (ten trials are shown), showing a time-varying feedback and forward communications between V1
and V2. (B) Test log-likelihood comparison, where ADM outperforms MRM-GP and DLAG by capturing continuously time-varying
temporal delays. (C) Validation log-likelihood across different P values. (D) Computational time comparison across different length of T ,
demonstrating ADM’s efficiency through parallel computation, outperforming both MRM-GP and DLAG.

interactions are similar to previous studies (Gokcen et al.,
2022; Li et al., 2024b; Gokcen et al., 2024a).

Figure 2(B) compares the test log-likelihood summed over
trials and time bins, showing that our model, ADM, outper-
forms MRM-GP and DLAG under the same ma and mw

settings. This improvement is attributed to ADM’s abil-
ity to capture continuously time-varying temporal delays.
Figure 2(C) presents the validation log-likelihood across
different P values, with P = 4 achieving the highest value.
Combined with the insights from Figures 2(A–B), this sug-
gests that a small P value can effectively estimate model
parameters and latent variables.

Figure 2(D) compares the computational time of our model
with MRM-GP and DLAG on spike trains of varying T ,
obtained by concatenating trials. The use of parallel compu-
tation significantly improves efficiency, outperforming the
linear model (MRM-GP) and the cubic model (DLAG).

4.3. Five Brain Regions

In this section, we scale up our model to a larger neu-
ral recording spanning five regions with increased time
resolution. Our objective is to investigate across-region
communications and identify the time-varying meso-scale
brain network, defined as the dynamic network spanning
sAppendixub-brain regions, e.g., regions in visual cortex.

Experimental setup. We use smoothed multi-region spike
train data from the Visual Coding – Neuropixels project by
the Allen Institute (Siegle et al., 2021), specifically from ses-
sion 750749662. This dataset includes spike trains recorded
from VISp, VISrl, VISal, VISpm, and VISam—sub-areas of
the mouse visual cortex. It consists of 120 trials, T = 200

time bins (each 10 ms), and a total of 202 neurons, with ex-
ternal visual stimuli comprising 4 Hz drifting gratings. Fol-
lowing the approach in (Gokcen et al., 2022), we first apply
Factor Analysis to estimate the total number of across-region
and within-region latent dynamics, determining M = 4 (see
Appendix F for details). We then conduct a grid search with
5-fold cross-validation to refine the number of across-region
and within-region latent dynamics and the model order P .

Results. Figure 3(A) presents the ten estimated pairwise
temporal delays from one group of across-region communi-
cations. See Appendix E for the estimated latent dynamics.
Our results reveal consistent forward communication from
VISp to downstream visual areas, such as VISrl, VISal, and
VISpm, aligning with the known anatomical hierarchy of
the mouse visual cortex (Siegle et al., 2021). Additionally,
these forward communications exhibit time-varying dynam-
ics. For instance, communication between VISp and VISrl
transitions from slow to fast, indicating an enhanced inter-
action that gradually becomes more synchronous following
the initial surprise response to the visual stimulus onset.
In contrast, the communication between VISp and VISal
shifts from fast to slow, suggesting inhibition induced by the
external stimulus. Furthermore, our findings indicate that
all communications involving VISam are feedback signals.
This is expected, as VISam is positioned at the end of the
anatomical hierarchy of the mouse visual system, consistent
with the anatomical hierarchy scores reported in (Siegle
et al., 2021).

Figure 3(B) depicts the meso-scale brain network corre-
sponding to the across-region communications presented
in Figure 3(A). Each node represents a region in the vi-
sual system, while directed edges indicate the directional
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Figure 3. Evaluation of the ADM on spike trains from five visual brain regions. (A) Estimated pairwise temporal delays from one group
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superior fit due to its ability to model time-varying communications.

communications. The length of each edge is determined
by the estimated delays, reflecting the speed of communi-
cation. The figure presents two meso-scale brain networks
at t = 3 and t = 50 time bins. The primary differences be-
tween these networks include changes in the speed of certain
forward communications and a direction change in the com-
munication direction between VISrl and VISal, suggesting
the emergence of stimulus presentation.

Figure 3(C) presents the cross-validation results for twenty
hyperparameter combinations. We first determine M = 4
using Factor Analysis (see Appendix F for details), then
conduct a grid search over all combinations of ma ∈ [0, 4],
mw ∈ [0, 4], and P ∈ [2, 5]. The highest validation log-
likelihood is achieved with ma = 3, mw = 1, and P = 5.

Figure 3(D) compares the test log-likelihood, summed over
trials and time bins, between our model (ADM) and mD-
LAG with ma = 3 latent communication channels, where
mDLAG is an extension of DLAG that supports more than
two brain regions using variational inference. The results
indicate that ADM provides a better fit to the data, attributed
to its ability to model time-varying communications. We
do not compare MRM-GP and DLAG since they are lim-
ited to two brain regions. Additionally, we skip a time
cost comparison with mDLAG because it is implemented
only in MATLAB, which is significantly slower than our
GPU-optimized implementation.

5. Discussion
Summary. Our findings highlight the importance of mod-
eling time-varying multi-region neural communications and

demonstrate that the Adaptive Delay Model (ADM) effec-
tively captures these dynamics while maintaining compu-
tational efficiency. Existing methods for studying across-
region neural interactions can be broadly categorized into
non-delay models and delay models. While non-delay mod-
els provide directional communication patterns, they fail
to capture temporal delays, limiting their ability to infer
the communication speed. Conversely, delay models, such
as DLAG and MRM-GP, introduce delay estimation but
assume static or discretely changing delays, which do not
reflect the continuously evolving nature of brain commu-
nications. Our results show that ADM overcomes these
limitations by incorporating a flexible, time-varying delay
mechanism, enabling a more biologically relevant represen-
tation of neural interactions.

Neuroscience Implications. Our results from large-scale
neural recordings show that across-region communication
delays are not static but change over time. Notably, we
observe transitions from slow feedback and forward com-
munication to fast forward interactions in both datasets (Sec-
tion 4.2 and Section 4.3), aligning with adaptive sensory
processing in the visual cortex. These findings show the im-
portance of time-varying models in capturing the dynamic
nature of brain communications.

Computational Advancements. Beyond its neuroscien-
tific implications, our model contributes to the broader field
of computational modeling by bridging temporally station-
ary GPs with SSMs. Traditional GP-SSM connections often
rely on separability assumptions in spatial and temporal
kernels, limiting their flexibility. Our proposed universal
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connection between arbitrary temporally stationary GPs and
SSMs removes this restriction. Furthermore, by leveraging
parallel scan algorithms, ADM achieves an impressive com-
putational complexity of O(log T ), significantly improving
scalability compared to existing methods.

Limitations and Future Directions. Our model has a
cubic time complexity with respect to the number of brain
regions N and the SSM order P . Although these values
are typically much smaller than T , they can still become
computational bottlenecks for specific cases. A potential so-
lution may involve leveraging frequency domain techniques.
Parnichkun et al. (2024) proposed a state-free SSM with a
controllable canonical transition matrix, similar to ours in
Eq. 11, and utilized the Fast Fourier Transform to achieve
linear scaling in latent size. Similarly, Gokcen et al. (2024b)
approximated the GP kernel in the frequency domain to
reduce the computational cost to linear in latent size.
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A. Derivation for VV⊤, WV⊤, and WW⊤

Let’s inspect VV⊤ ∈ RNP×NP first. To simplify the notation, we use x to represent xa
m in Eq. 7. We have:

VV⊤ =


x1 x2 . . . xT−P

x2 x3 . . . xT−P+1

...
...

. . .
...

xP xP+1 . . . xT−1




x⊤
1 x⊤

2 . . . x⊤
P

x⊤
2 x⊤

3 . . . x⊤
P+1

...
...

. . .
...

x⊤
T−P x⊤

T−P+1 . . . x⊤
T−1


=

x1x
⊤
1 + · · ·+ xT−Px

⊤
T−P . . . x1x

⊤
P + x2x

⊤
P+1 + · · ·+ xT−Px

⊤
T−1

...
. . .

...
xPx

⊤
1 + · · ·+ xT−1x

⊤
T−P . . . xPx

⊤
P + xP+1x

⊤
P+1 + · · ·+ xT−1x

⊤
T−1

 ,

(15)

where the first element x1x
⊤
1 ∈ RN×N represents the auto-covariance of x1, which is essentially the kernel K(0) (Eq. 4).

In other words, since x is modeled as a stationary GP, the elements x1x
⊤
1 , . . . ,xT−1x

⊤
T−1 are all equivalent and correspond

to the diagonal elements K(0) in Eq. 4. Similarly, the elements xPx
⊤
1 , . . . ,xT−1x

⊤
T−P represent cross-covariances with

time interval P − 1, which correspond to the off-diagonal elements K(P − 1). Therefore, we can further write Eq. 15 as:

VV⊤ =

 K(0) + · · ·+K(0) . . . K(−P + 1) + · · ·+K(−P + 1)
...

. . .
...

K(P − 1) + · · ·+K(P − 1) . . . K(0) + · · ·+K(0)



∝


K(0) K(−1) . . . K(−P + 1)
K(1) K(0) . . . K(−P + 2)

...
...

. . .
...

K(P − 1) K(P − 2) . . . K(0)

 .

(16)

Following the same way, we can also represent WV⊤ ∈ RN×NP and WW⊤ ∈ RN×N using K:

WV⊤ ∝
[
K(P ) K(P − 1) . . . K(1)

]
,

WW⊤ ∝ K(0).
(17)

If the computation of G in Eq.8 leads to numerical issues because VV⊤ has singular values that are nearly zero, a more
numerically stable approach is to rewrite VV⊤ by Cholesky factorization:

D =

[
VV⊤ VW⊤

WV⊤ WW⊤

]
= LL⊤, L =

[
L1 0
L2 L3

]
, VV⊤ = L1L

⊤
1 , (18)

where D ∈ RN(P+1)×N(P+1), WV⊤ = L2L
⊤
1 , WW⊤ ∝ K(0), and L1 ∈ RNP×NP , L2 ∈ RN×NP , L3 ∈ RN×N are

the sub-matrices of L. In practice, Eq. 18 factorizes D+ δI with a small postive number δ to ensure the positive definite of
D. Then, the estimation for G can be cast in the form of L and the measurement matrix Q is the residual covariance of
residual R:

Ĝ = WV⊤(VV⊤)−1 = L2L
−1
1 ,

Q̂ =
(W − ĜV)(W − ĜV)⊤

T − P − 1
=

L3L
⊤
3

T − P − 1
.

(19)
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B. Details for Kalman EM
We consider the linear–Gaussian state–space model

xt = Atxt−1 +wt, wt ∼ N
(
0,Qt

)
, yt = Hxt + vt, vt ∼ N

(
0,V

)
,

where the transition matrix At and process-noise covariance Qt change with time. Let Θ = {A1:T ,Q1:T ,H,V} denote
the full parameter set.

E–step

With parameters fixed at Θk, the expected complete-data log-likelihood is

Q(Θ | Θk) = Ex|y,Θk

[
log p(x,y | Θ)

]
∝ −1

2

T∑
t=1

(
y⊤t V

−1yt − 2y⊤t V
−1Hx̃t +Tr

(
H⊤V−1HVt

))
− 1

2

T∑
t=1

(
Tr
(
Q−1

t Ct

)
− 2Tr

(
Q−1

t AtC
⊤
t,t−1

)
+Tr

(
A⊤

t Q
−1
t AtCt−1

))
− T

2
log |V| − 1

2

T∑
t=1

log |Qt|. (20)

Here
x̃t = E[xt | y,Θk], Ct = E[xtx

⊤
t | y,Θk], Ct,t−1 = E[xtx

⊤
t−1 | y,Θk],

which are obtained with a Kalman filter followed by a Rauch–Tung–Striebel smoother run with the time-varying parameters
(Boots, 2009). The individual expectations that appear in (20) expand to

E[x⊤t H⊤V−1Hxt] = x̃⊤t H
⊤V−1Hx̃t +Tr

(
H⊤V−1HCt

)
, (21)

E[x⊤t Q
−1
t xt] = x̃⊤t Q

−1
t x̃t +Tr

(
Q−1

t Ct

)
, (22)

E[x⊤t Q
−1
t Atxt−1] = x̃⊤t Q

−1
t Atx̃t−1 +Tr

(
Q−1

t AtC
⊤
t,t−1

)
, (23)

E[x⊤t−1A
⊤
t Q

−1
t Atxt−1] = x̃⊤t−1A

⊤
t Q

−1
t Atx̃t−1 +Tr

(
A⊤

t Q
−1
t AtCt−1

)
. (24)

M–step

The M–step maximises (20) with respect to Θ,

Θk+1 = argmax
Θ

Q(Θ | Θk),

where the paramerer sets Θ is updated either via gradient descent or in closed form, depending on the specific component.
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C. Generation Samples
To better understand the effect of different P values, we generate samples with T = 200 time bins from our model using
various P values. Figure 4 shows that when P is very small (e.g., P = 1), the generated samples appear unsmooth. However,
for P ≥ 2, the generated samples exhibit no noticeable visual differences.

P=1 P=2

P=4P=3

Figure 4. Generated samples from our model with MOSE kernel when P = 1, 2, 3, 4.
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Table 1. MSE for GP regression with single-output kernels.

Reg-MSE / 10−1 Exp Matern 3/2 SE RQ SM

GP 5.7 ± 0.1 5.9 ± 0.2 3.1 ± 0.1 3.0 ± 0.1 3.0 ± 0.2
SSM-Approx 5.9 ± 0.1 6.2 ± 0.1 3.3 ± 0.1 3.4 ± 0.1 3.3 ± 0.2

Table 2. MSE for GP regression with multi-output kernels.

Reg-MSE / 10−1 MOSE MOSM CSM LMC

GP 7.4 ± 0.02 7.5 ± 0.02 8.2 ± 0.05 0.66 ± 0.02
SSM-Approx 7.6 ± 0.04 7.9 ± 0.08 7.7 ± 0.09 0.72 ± 0.02

D. Gaussian Process Regression
To verify the universal connection between arbitrary temporally stationary Gaussian Processes (GPs) and State Space Models
(SSMs), we compare GP regression performance using our SSM approximation and the standard GP. We generate samples
of 300 points from a GP with added Gaussian noise as regression data. The samples are then randomly split into training
(ttrain, ytrain) and testing (ttest, ytest) sets, with 60% used for training and 40% for testing.

The kernels we evaluated are:

• Exponential (Exp): Single-output with K(t, t′) = σ2 exp
(
− |t−t′|

l

)
.

• Matern 3/2 (Matern): Single-output with K(t, t′) = σ2
(
1 +

√
3|t−t′|

l

)
exp

(
−

√
3|t−t′|

l

)
.

• Squared Exponential (SE): Single-output with K(t, t′) = σ2 exp
(
− (t−t′)2

2l2

)
.

• Rational Quadratic (RQ): Single-output with K(t, t′) = σ2
(
1 + (t−t′)2

2αl2

)−α

.
• Spectral Mixture (SM) (Wilson & Adams, 2013): Single-output with
K(t, t′) =

∑Q
q=1 σ

2
q exp

(
− (t−t′)2

2l2q

)
cos (ωq(t− t′)).

• Multi-Output Squared Exponential (MOSE) (Gokcen et al., 2022): Multi-output with Kij(t, t
′) =

σ2
ij exp

(
− (t−t′+δij)

2

2l2ij

)
.

• Multi-Output Spectral Mixture (MOSM) (Parra & Tobar, 2017): Multi-output with
Kij(t, t

′) =
∑Q

q=1 σ
2
ij,q exp

(
− (t−t′+δij,q)

2

2l2ij,q

)
cos (ωij,q(t− t′) + ϕij,q).

• Cross-Spectral Mixture (CSM) (Ulrich et al., 2015): Multi-output with
Kij(t, t

′) =
∑Q

q=1

∑R
r=1 σ

r
i,qσ

r
j,q exp

(
− (t−t′)2

2l2ij,q

)
cos

(
ωij,q(t− t′) + ϕr

ij,q

)
.

• Linear Model of Coregionalization (LMC): Multi-output with K(t, t′) =
∑Q

q=1 Bq ⊗ kq(t, t
′), where Bq is a coregion-

alization matrix and kq(t, t
′) is a single-output kernel.

The number of orders P for each kernels are as follows:

• Exponential (Exp): P = 1.

• Matern 3/2 (Matern): P = 2.

• Squared Exponential (SE): P = 2.

• Rational Quadratic (RQ): P = 4.

• Spectral Mixture (SM): P = 2.

• Multi-Output Squared Exponential (MOSE): P = 2.

• Multi-Output Spectral Mixture (MOSM): P = 2.

• Cross-Spectral Mixture (CSM): P = 4.
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• Linear Model of Coregionalization (LMC): When kq(t, t
′) is SE kernel, P = 2.

The results are shown in Table 1 and Table 2, where our SSM approximation demonstrates regression performance
comparable to GP in terms of MSE.
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E. Additional Across- and Within-Region Latent Variables
Figure 5 presents the within-region neural activity for both synthetic data and V1-V2 neural spike trains.

region 1
region 2

true 
true 

V1

V2

within-region activity 1 within-region activity 2

within-region activity for synthetic data

(A)

(B)

(C)

across-region activity 1,2,3 within-region activity 1

VISp

VISrl

VISal

VISpm

VISam

Figure 5. (A) Within-region neural activity for synthetic data. (B) Within-region neural activity for V1-V2 neural spike trains (ten trials
are shown). (C) The across- and within-region latent variables for the five-region dataset (ten trials are shown).
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F. Factor Analysis for Five Regions Spike Trains
Figure 6 presents the Factor Analysis results for neural spike trains from five regions, and we select the latent size to be the
largest optimal latent size across five regions, which is 4.

Figure 6. The figure presents Factor Analysis results for neural spike trains from five regions. The optimal latent size, determined as the
maximum across all regions, is selected to be 4, yielding the highest test log-likelihood.
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G. More Synthetic Data Experiments
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Figure 7. Estimated Pairwise Temporal Delays for Synthetic Data with Five Regions. Dashed lines indicate the ground truth delays, red
lines show the estimated delays, and shaded areas represent the variance across different runs. The results demonstrate that the model
accurately recovers the true delays. The increased MSE observed in Figure 8(A) is attributed to amplitude variability, which is not a
practical concern, as the temporal delay patterns are well preserved.
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Figure 8. Additional Results for Synthetic Dataset. (A) Model evaluation using MSE and Pearson’s correlation coefficient (CC) between
estimated and ground truth delays across different numbers of regions. While MSE increases due to greater amplitude variability with
more regions, CC remains stable, indicating reliable recovery of temporal delay patterns. See also Figure 7 for a visualization of estimated
delays with five regions. (B) Model evaluation across varying numbers of latent variables, showing stable MSE and CC performance.
(C) Model evaluation under different data lengths. Longer sequences yield lower MSE, likely due to improved estimation of underlying
delays with more data. (D) Test log-likelihood comparison when the number of latent variables is under-specified, correctly specified, or
over-specified. Both under- and over-specification result in lower log-likelihood and higher variance.
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(A)

MRM-GP
ADM

mp-srSLDS
DLAG

500k

450k

400k

350k

te
st

 lo
g-

lik
el

ih
oo

d

Figure 9. Test Log-Likelihood Comparison of ADM, DLAG, MRM-GP, and mp-srSLDS on the Synthetic Dataset used in Section 4.1.
ADM consistently outperforms other methods by effectively capturing continuously time-varying temporal delays.
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H. Additional Results for Decoding Visual Stimuli in the Five-Region Brain Dataset
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Figure 10. Decoding Visual Stimulus Orientation from the Visual Rostrolateral Area (VISrl). We analyze neural data from five regions
and extract the learned latent variables. A linear decoder is then used to classify the orientation of visual stimuli (0◦, 90◦, and 135◦)
presented to the mouse during data collection. We evaluate decoding performance using three inputs: (1) raw observed neural activity
from Visual Rostrolateral Area, (2) across-region latent variables (representing the communication subspace) of Visual Rostrolateral Area,
and (3) within-region latent variables of Visual Rostrolateral Area. The results show that decoding directly from the observed neural data
yields the highest test classification accuracy. Among the latent spaces, the communication subspace achieves higher accuracy than the
within-region subspace. Notably, both the observed data and the communication subspace perform above random guessing, indicating
that orientation information is preserved in the communication subspace of the Visual Rostrolateral Area, which is a region known to be
involved in motion and spatial processing. Finally, the drop in accuracy from the observed data to the communication subspace is likely
due to information loss from dimensionality reduction.
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I. Related Work on Neural Alignment and Task-Dependent Variability Modeling in Multi-Region
Anslysis Interaction

Multi-region neural analyses increasingly rely on tools that can jointly characterise activity patterns within each area and the
structured co-variability that links them. Williams et al. 2021 gives a geometric foundation for such comparisons by turning
representational-similarity heuristics into proper metric spaces; they demonstrate that these “shape metrics” scale to surveys
of 48 distinct visual areas in the Allen Brain Observatory, enabling distance-based clustering and embedding of whole-brain
activity patterns. Safaie et al. 2023 pushes the multi-region perspective across species, showing that low-dimensional
trajectories extracted from motor cortex recordings in both monkeys and mice align in a common latent space and remain
predictive of movement even in the absence of overt behaviour, pointing to conserved circuit-level dynamics that transcend
individual brains. Complementing these observational studies, Balzani et al., 2022 introduces TAME-GP, a probabilistic
manifold model that factorises population variability into within-region and across-region components, imposes Gaussian-
process priors for temporal smoothing, and infers single-trial latent dynamics that reveal task-dependent communication
subspaces among multiple brain areas
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