
Under review as a conference paper at ICLR 2024

OUTLIER WEIGHED LAYERWISE SPARSITY (OWL):
A MISSING SECRET SAUCE FOR PRUNING LLMS TO
HIGH SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs), renowned for their remarkable performance
across diverse domains, present a challenge due to their colossal model size when
it comes to practical deployment. In response to this challenge, efforts have been
directed toward the application of traditional network pruning techniques to LLMs,
uncovering a massive number of parameters can be pruned in one-shot without hurt-
ing performance. Building upon insights gained from pre-LLM models, particularly
BERT-level language models, prevailing LLM pruning strategies have consistently
adhered to the practice of uniformly pruning all layers at equivalent sparsity levels,
resulting in robust performance. However, this observation stands in contrast to
the prevailing trends observed in the field of vision models, where non-uniform
layerwise sparsity typically yields substantially improved results. To elucidate the
underlying reasons for this disparity, we conduct a comprehensive analysis of the
distribution of token features within LLMs. In doing so, we discover a strong cor-
relation with the emergence of outliers, defined as features exhibiting significantly
greater magnitudes compared to their counterparts in feature dimensions. Inspired
by this finding, we introduce a novel LLM pruning methodology that incorporates
a tailored set of non-uniform layerwise sparsity ratios specifically designed for
LLM pruning, termed as Outlier Weighed Layerwise sparsity (OWL). The sparsity
ratio of OWL is directly proportional to the outlier ratio observed within each layer,
facilitating a more effective alignment between layerwise weight sparsity and out-
lier ratios. Our empirical evaluation, conducted across the LLaMA-V1 family and
OPT, spanning various benchmarks, demonstrates the distinct advantages offered
by OWL over previous methods. For instance, our approach exhibits a remarkable
performance gain, surpassing the state-of-the-art Wanda and SparseGPT by 61.22
and 6.80 perplexity at a high sparsity level of 70%, respectively. Code is submitted.

1 INTRODUCTION

The remarkable performance exhibited by Large Language Models (LLMs) across a diverse spectrum
of applications has ignited an unparalleled race among tech giants and academic institutions to build
LLMs at the billion-parameter scale (Brown et al., 2020; Touvron et al., 2023a;b; Brown et al., 2020).
The compelling performance of LLMs demonstrated in various applications triggers an unprecedented
competition of building billion-level LLMs among tech giants and academic institutions (Brown
et al., 2020; Touvron et al., 2023a;b; Brown et al., 2020). While their exceptional capabilities are
undeniable, the colossal size and computational demands of these models have also raised substantial
concerns, particularly in terms of financial expenditure and environment (Luccioni et al., 2022;
Patterson et al., 2021).

Network pruning (Mozer & Smolensky, 1989; Janowsky, 1989; LeCun et al., 1989; Han et al., 2015),
as a long-established model compression method, is expected to serve as an effective solution for
reducing the size of LLMs. However, network pruning usually favors a certain time of fine-tuning
or re-training to reacquire the original optimal performance. Given the extensive text corpus and
model size associated with LLMs, conventional fine-tuning becomes exceedingly challenging and
less desirable. Fortunately, recent endeavors have explored the possibility of LLM pruning without
the need for fine-tuning, showcasing that LLMs contain a substantial number of parameters that can

1

Under review as a conference paper at ICLR 2024

be removed in a single step with minimal performance degradation (Jaiswal et al., 2023; Frantar &
Alistarh, 2023; Sun et al., 2023). SparseGPT (Frantar & Alistarh, 2023) addresses the challenge
of LLM pruning from the perspective of layerwise reconstruction problem. In this context, the
primary goal is to minimize the output discrepancy in terms of the reconstruction error between dense
and sparse LLMs. It adopts an iterative strategy to handle the computational hurdle posed by the
row-Hessian problem. Specifically, it employs the Optimal Brain Surgeon (OBS) algorithm (Hassibi
et al., 1993) to selectively prune and update weights in a column-wise manner. Wanda (Sun et al.,
2023), on the other hand, introduces a novel pruning metric that takes into account both the weight
magnitudes and their corresponding input activations. Remarkably, it achieves performance on
par with SparseGPT without relying on computationally expensive second-order information. The
effectiveness of Wanda stems from the emergence of the outlier features residing within large-scale
LLMs. These outliers, which tend to be significantly larger than typical features, are nonetheless
crucial for optimizing LLM performance (Dettmers et al., 2022). In general, both SparseGPT and
Wanda exhibit competitive performance, showcasing their ability to reduce model parameters by up
to 50% while incurring only a modest increase of approximately 1 in perplexity (Sun et al., 2023).

It is worth noting that SparseGPT and Wanda unanimously follow previous work on BERT prun-
ing (Sanh et al., 2020; Kurtic et al., 2022) and choose to prune LLMs with a uniform sparsity ratio
per layer, i.e., each layer will be pruned at the same sparsity. Such choice is reasonable for LLMs, as
the pruning process typically involves sorting the importance scores of weights. Conducting such
sorting globally across layers could become a computational bottleneck, especially for models at the
billion-parameter scale. Nevertheless, before it has been taken root that uniform layerwise sparsity is
the default choice for LLMs, we raise a timely inquiry: are there any pivotal aspects that have been
inadvertently omitted in the context of favorable layerwise sparsity ratios for LLM pruning?

Three reasons behoove us to pose the above research question: First, it is widely acknowledged
that within Transformer architectures, certain components hold greater significance than others, and
thus, they merit distinct treatment during the pruning process (Wang & Tu, 2020; Bhojanapalli et al.,
2021); Second, a consensus view has been reached in computer vision that non-uniform layerwise
sparsity typically achieves stronger results than uniform sparsity (Liu et al., 2022; Lee et al., 2020);
More importantly, LLMs demonstrate astonishingly emergent behaviors (Dettmers et al., 2022; Wei
et al., 2022; Schaeffer et al., 2023) as model size continuously scales up, a phenomenon distinct from
smaller-scale language models such as BERT (Devlin et al., 2018). These emergent behaviors offer
fresh insights into the domain of LLM pruning. For instance, Dettmers et al. (2022) revealed the
existence of outlier features within LLMs, with magnitudes up to 20 times larger than others, exerting
a profound influence across all Transformer layers.

Contributions. Given the pivotal role that outliers play in the performance of LLMs, coupled with
the demonstrated effectiveness of Wanda (Sun et al., 2023), our initial investigation centers on a
systematic examination of the impact of existing LLM pruning methodologies on outliers. To our
astonishment, we uncover a compelling correlation between pruning efficacy and the retention ratio
of outliers: contemporary state-of-the-art LLM pruning approaches, such as SparseGPT and Wanda,
exhibit remarkable preservation of outliers, even though the former was not originally designed with
this intent. Moreover, we conduct an in-depth analysis of the distribution of outliers across different
layers and observe a notably non-uniform pattern. This non-uniform distribution emerges as a
valuable indicator for the formulation of layerwise sparsity strategies tailored specifically for LLMs.
Building upon this newfound insight, we introduce an LLM pruning paradigm characterized by a novel
layerwise sparsity ratio, denoted as Outlier Weighed Layerwise sparsity (OWL). OWL inherently
assigns greater emphasis to layers housing a higher prevalence of outliers, thereby facilitating more
nuanced coordination between sparsity in weight matrices and the presence of outliers within the layer.

We conduct extensive experiments to evaluate the performance OWL across a spectrum of large
language models, including LLaMA-V1 family (Touvron et al., 2023a), and OPT (Zhang et al.,
2022), from 7B to 65B. Our empirical results show that OWL consistently outperforms existing
top-performing LLM pruning methods, particularly at high sparsity levels. For instance, we observe
significant improvements achieved by OWL over Wanda with LLaMa-7B on WikiText (Merity et al.,
2016a), with perplexity reductions of more than 60 and 3300 perplexity at sparsity levels of 70%
and 80%, respectively. Our research presents a compelling counter-argument to previous study by
shedding light on the previously overlooked yet crucial role of layerwise sparsity ratios in the context
of LLM pruning. This shift in perspective has allowed us to push the boundaries of achievable LLM
pruning ratios to reach 70% without the need of any weight updates or second-order Hessian.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORK

Pruning and LLM Pruning. Since the 1980s, network pruning has been a well-established technique
for simplifying neural networks in various applications while maintaining accuracy (Mozer & Smolen-
sky, 1989; Han et al., 2015; Mocanu et al., 2018; Wen et al., 2017; Lin et al., 2019). However, when
it comes to pruning Large Language Models (LLMs), progress has been limited. Traditional pruning
typically requires a round of re-training to restore performance, which can be challenging for LLMs.
To address this challenge, researchers have developed pruning algorithms specifically tailored for
LLM compression. For example, Ma et al. (2023) explored structured sparse LLMs using Taylor prun-
ing to remove entire weight rows, followed by LoRA fine-tuning (Ma et al., 2023). Recent research
has shifted toward unstructured pruning without the need for fine-tuning, showing substantial advance-
ments. SparseGPT (Frantar & Alistarh, 2023) utilizes the Hessian inverse for pruning and with subse-
quent weight updates to reduce reconstruction error of dense and sparse weights, while Wanda (Sun
et al., 2023) produces a criterion incorporating weight magnitude with their input activations, aiming to
preserve outlier features (Dettmers et al., 2022). Our work for the first time probe and highlight the cru-
cial role of non-uniform layerwise sparsity for LLM pruning, making a notable progress in this field.

Layerwise Sparsity for Pruning. While it is common to use uniform layerwise sparsity (Zhu
& Gupta, 2017; Gale et al., 2019) to prune language models (Sanh et al., 2020; Kurtic et al.,
2022), there is a well-established line of work that explore non-uniform layerwise sparsity in terms
of pruning vision models. Mocanu et al. (2016) propose a non-uniform and scale-free topology
inspired from graph theory, showing better performance than the dense counterpart when applied to
restricted Boltzmann machines. Follow-up works significantly improve its scalability based on Erdős-
Rényi graph (Erdős & Rényi, 1959), extending to fully-connected layers (Mocanu et al., 2018) and
convolutional layers (Evci et al., 2020; Liu et al., 2022) as data-free and feedforward-free layerwise
sparsity. Another group of work produces non-uniform sparsity by applying a global threshold on
every layer (Frankle & Carbin, 2019; Lee et al., 2019; Wang et al., 2020; Lee et al., 2020; Liu et al.,
2021). However, global pruning becomes extremely expensive and inefficacious in the context of
LLM pruning as shown in Table 2. We also provide a comparison among most common layerwise
sparsity for LLMs in Section 5, and all of them fail to perform on LLMs.

Outliers in LLMs. Unlike traditional vision or smaller-scale transformer models, recent studies
have revealed certain emergent characteristics unique to language models at scale. Specifically, one
intriguing trait of LLMs is the exhibition of outlier features, which are the features with significantly
larger magnitudes than others (Dettmers et al., 2022). While constituting only a very small portion of
the entire feature dimensions, these outliers play an imperative role in models’ predictive performance.
Building upon this observation, several recent works have developed techniques to effectively quantize
LLMs with minimal performance drop (Dettmers et al., 2022; Xiao et al., 2023; Lin et al., 2023). On
the other hand, in the context of LLM pruning, this unique characteristic has scarcely been taken into
account to the best of our knowledge (Sun et al., 2023). Our work draws on the importance of the
emergent outliers in LLMs, and provides a systematic study on its correlation to the effectiveness
of model pruning, leading to a novel technique that leverages the distribution of outliers to guide
layerwise LLM pruning.

3 OUTLIER WEIGHED LAYERWISE SPARSITY – OWL

In this section, we will introduce Outlier Weighed Layer-wise sparsity (OWL) step by step, from
rationales, to empirical studies, and eventually to the algorithm.

3.1 RATIONALE

The primary of goal of network pruning is to discover the least important components, such as
individual weights in the case of unstructured pruning, which have minimal impact on the model’s
output. In the context of pre-LLMs with smaller scales, magnitude pruning has traditionally serves
as the most basic yet effective technique, consistently delivering robust results across various sce-
narios (Han et al., 2015; Mocanu et al., 2018; Frankle & Carbin, 2019; Jaiswal et al., 2023). The
effectiveness of magnitude pruning in compressing pre-LLM models is closely intertwined with the
feasibility of fine-tuning. It has been observed that even the random removal of components can
ultimately restore the original performance through adequate fine-tuning (Liu et al., 2022; Mittal et al.,
2019). However, fine-tuning encounters significant challenges when applied to LLMs, rendering
magnitude pruning less effective compared to more precise pruning metrics, such as second-order

3

Under review as a conference paper at ICLR 2024

Hessian (Frantar & Alistarh, 2023) and input activation (Sun et al., 2023). Notably, Wanda (Sun
et al., 2023) achieves remarkable performance by augmenting input activation with weight magnitude,
underscoring the critical importance of preserving outlier features in LLM pruning. Considering the
vital role that outliers play in the context of LLMs (Dettmers et al., 2022) and the success of Wanda,
we conjecture that the performance of different pruning methods has a strong correlation with their
ability to preserve outlier features. To assess our conjecture, we undertake preliminary investigations
outlined below based on Layerwise Outlier Distribution.

3.2 EMPIRICAL STUDY

Layerwise Outlier Distribution (LOD). Our preliminary studies are based on Layerwise Outlier
Distribution (LOD), a concept used to measure how outlier features distribute and effect weights
across layers. Since we focus on weight pruning in this paper, instead of measuring the outlier
distribution of input features, We opt to prioritize the impact of outlier features on weights, which
is quantified as the accumulation of all input features connected to the target weight, multiplied by
the weight magnitude (Sun et al., 2023). Our intuition here is that weights that are most affected by
outliers also play a pivotal role in propagating and preserving these outlier features.

To formalize our approach, we consider the input of a layer as X with dimensions (N × L,Cin),
where N and L represent the batch and sequence dimensions, respectively. The weight matrix
W has dimensions (Cout, Cin). The impact of input features X on weight Wij is computed as
Aij = ∥Xj∥2 · |Wij|, which is the aggregation of all input features connected to weight Wij,
multiplied by its magnitude |Wij|. Here, ∥Xj∥2 is the ℓ2 norm of the jth feature of input X. This
computation is performed across all N ×L tokens, resulting in a scalar value denoted as ∥Xj∥2. It is
worth noting that Aij also serves as the pruning metric used by Wanda (Sun et al., 2023) to assess
the importance of weight Wij. Subsequently, after obtaining the impact of features for all weights
A, we proceed to calculate the “outlier ratio” of A by identifying elements whose magnitude is M
times greater than the averaged value in each layer. We empirically find that both M = 5 or M = 7
effectively sketch the distribution of the impact of outliers features on weights. This process enables
us to derive a vector, denoted as LOD = [D1, D2, ..., Dl], which characterizes the layerwise outlier
distribution w.r.t., the impact of features on weights within a l-layer LLMs. Formally, the definition
of LOD is given as:

LOD =

∑Cout

i=1

∑Cin

j=1 I(Aij > mean(A)×M)

CinCout

where I(·) is the indicator function, which returns 1 when the condition is satisfied. Based on LOD,
we conduct three empirical studies outlined below to better understand LLM pruning.

Empirical Study I: Dense LLMs vs. LOD. To investigate whether sparsifying LLMs necessitates
differential treatment of individual layers, we employ LOD to gauge the layerwise distribution of
outliers within dense LLMs. If LOD in dense LLMs exhibits a relatively uniform pattern, it suggests
that a non-uniform layerwise distribution may not be imperative, at least in terms of outlier features,
and vice versa. We assess the LOD across various dense LLMs, including LLaMA-7B, 13B, and 30B.

Empirical Study II: Pruning Metric vs. LOD. We further delve into the impact of different pruning
metrics on LOD. The primary objective of this study is to explore whether there exists a robust
correlation between the performance of various pruning methods and their ability to preserve outliers.
To achieve this, we aggregate the LOD values across layers for various LLM pruning methods,
including magnitude, Wanda, and SparseGPT, and compare them with their dense counterparts. In
order to mitigate the influence of pruning on the average value of A, we maintain consistency by
utilizing the pre-pruning average value to measure the outlier ratio after pruning. Subsequently, the
number of outliers after pruning is then divided by the total number of weights in the layer (including
both zero and non-zero weights) to obtain the updated outlier ratio after pruning. Doing so helps
avoid the impact of pruning on average values, ensuring a precise evaluation of alterations in the
outlier ratio. All sparse models are pruned with uniform layerwise sparsity. These experiments are
conducted using LLaMA-13B at sparsity level of 60% and 70% with M = 7.

Empirical Study III: Pruning Granularity. It is well-established that non-uniform or global
layerwise sparsity often leads to more accurate sparser networks at high sparsity than the uniform
layerwise sparsity for pre-LLM pruning. However, endeavors unanimously point out that uniform
sparsity is more favorable when pruning LLMs (Frantar & Alistarh, 2023; Sun et al., 2023). To gain

4

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
ye

rw
is

e
O

ut
lie

r D
is

tri
bu

tio
n

(L
O

D
) LLaMA-7B

0 5 10 15 20 25 30 35 40
Layer Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

La
ye

rw
is

e
O

ut
lie

r D
is

tri
bu

tio
n

(L
O

D
) LLaMA-13B

0 10 20 30 40 50 60
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
ye

rw
is

e
O

ut
lie

r D
is

tri
bu

tio
n

(L
O

D
) LLaMA-30B

Figure 1: Layerwise Outlier Distribution (LOD) (%) of dense LLaMA-7B, 13B, and 30B.

deeper insights into these seemingly contradictory arguments, we conducted a study to systematically
investigate the impact of different pruning granularities on LLM pruning. Specifically, we study two
sets of pruning granularities: (1) Across different layers, we compare the performance of uniform
sparsity and global sparsity; (2) Within the same layer, we study the output-imbalanced sparsity
used by SparseGPT against the output-balanced sparsity adopted by Wanda. Output-balanced sparsity
eliminates the same amount of weights for all outputs. We conduct experiments with magnitude
pruning and Wanda using LLaMA-7B at various sparsity.

Results: We present our findings from Study 1-3, in Figure 1, Table 1, and Table 2, respectively. These
results provide positive support for our conjecture, and we summarize the key observations below:

1 LOD of dense LLMs exhibits a highly non-uniform distribution across layers. In essence, the
distribution of dense LLMs shown in Figure 1 loosely follows a “U” shape, with notable proportions at
both ends, while the central region displays a monotonic descending trend. This finding validates our
conjecture that individual layers need unique consideration during the pruning procedure. Employing
uniform pruning across all layers would inevitably disrupt the outlier structure in layers characterized
by a large outlier ratio, such as those layers at the beginning or end of models.

Table 1: Effects of various pruning methods on Layerwise Outlier Distribution (LOD) and Perplexity
with LLaMA-13B on WikiText. LOD is calculated as the summation across all layers with M = 7.

Sparsity Method LOD (%) ↑ ∆LOD (%) ↑ Perplexity ↓
Dense 5.432 - 5.090

Wanda 5.716 0.284 55.900
70% SparseGPT 6.645 1.213 19.235

Magnitude 5.322 -0.110 84539.445

Wanda 5.433 0.001 8.761
60% SparseGPT 6.044 0.612 8.458

Magnitude 5.322 -0.110 229.451

2 The performance of sparse pruning methods on LLMs is closely correlated with their ability
to retain outlier features. Leading pruning techniques like Wanda and SparseGPT all excel in outlier,
resulting in an overall increase in LOD. In contrast, the naive baseline of magnitude pruning performs
no better than random selection at 70% sparsity, as evidenced by a negative change of -0.110 in
LOD, indicating the removal of important outliers. It is interesting to see that despite SparseGPT not
being explicitly designed for outlier preservation, it achieves the highest LOD as well as performance,
providing further insight into the underlying reason for its success. A plausible reason is that the
weight update involved within SparseGPT helps increase LOD.

Table 2: WikiText perplexity with LLaMA-7B of various pruning granularity.

Method Layerwise Output Sparsity
Uniform Balanced 10% 20% 30% 40% 50% 60% 70%

Wanda ✓ ✓ 5.697 5.817 5.999 6.388 7.260 10 86
Wanda ✓ ✗ 5.695 5.819 6.029 6.572 7.942 20 238
Wanda ✗ ✗ 14.117 3134 10293 10762 14848 17765 5147

Magnitude ✓ ✓ 5.803 6.018 6.622 8.041 13.349 152 25304
Magnitude ✓ ✗ 5.806 6.020 6.669 8.601 17.287 559 48419
Magnitude ✗ ✗ 5.821 6.111 7.012 9.825 48.627 38335 29283

5

Under review as a conference paper at ICLR 2024

3 Pruning with coarser granularity results in diminished performance. In general, we observe a
consistent trend of improved perplexity as the pruning granularity becomes finer, transitioning from
global layerwise sparsity to uniform layerwise sparsity at the macro level, and from output-imbalanced
sparsity to output-balanced sparsity at the micro level. These findings align with the conclusions
presented by Sun et al. (2023). One plausible explanation for this trend is that coarser-grained pruning
tends to eliminate more outlier features, particularly in certain layers or outputs.

3.3 OUTLIER WEIGHED LAYERWISE SPARSITY (OWL)

The above empirical studies underscore the critical significance of preserving outliers in the context
of LLM pruning. Consequently, it becomes imperative to implement layerwise pruning strategies that
take into account the non-uniform distribution of outliers across different layers. However, global
pruning can be costly and lead to collapse of outliers, resulting in significant performance degradation.
On the other hand, uniform pruning does not adequately consider the highly non-uniform distribution
of outlier features across various layers. This negligence inevitably disrupts the structure of outliers in
layers characterized by a substantial outlier ratio, particularly at high sparsity levels. Therefore, there
is a need of an ideal layerwise sparsity that aligns effectively with the layerwise outlier distribution
while maintaining computational and memory efficiency.

To address this issue, we propose a novel layerwise sparsity ratio strategy, referred to as Outlier
Weighed Layer-wise sparsity (OWL) explicitly tailored for Large Language Models, which can better
coordinate with the outlier distribution by taking the layerwise outlier ratio into consideration. Given
a l-layer large language model with a target model sparsity S, we aim to calculate the target layerwise
sparsity [S1, S2, ..., Sn]. We first calculate LOD of feature effects on weights, D = [D1, D2, ..., Dn],
based on the approach proposed in Section 3.2. Guided by the principle that layers with a higher
proportion of outliers should have a lower sparsity, we set Si ∝ 1−Di. Additionally, we introduce a
hyperparameter λ which constrains the layerwise sparsity to fall within a specified range, specifically,
Si ∈ [S − λ, S + λ], while maintaining an average sparsity of S across all layers. This helps prevent
excessive difference in sparsity between layers, ensuring a robust performance. This constraint is
inspired by the insights gained from “Empirical Study III” which highlight the detrimental impact of
overly aggressive layerwise sparsity, akin to global pruning, on sparse LLMs. To obtain a favorable
number for λ and M , we conduct a small hyperparameter sweep within the range of λ ∈ [0.02,
0.05, 0.08, 0.1, 0.2] and for M ∈ [3, 5, 7, 10]. The visualization of our layerwise sparsity ratio
is demonstrated in Figure 2, where we can clearly see that the layerwise sparsity level of OWL
nuancedly aligns with model’s LOD.

0 5 10 15 20 25 30
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
ye

rw
is

e
Sp

ar
si

ty
 R

at
io

LLaMA-7B

OWL (Ours)
Uniform

0 5 10 15 20 25 30 35 40
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
ye

rw
is

e
Sp

ar
si

ty
 R

at
io

LLaMA-13B

OWL (Ours)
Uniform

0 10 20 30 40 50 60
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
ye

rw
is

e
Sp

ar
si

ty
 R

at
io

LLaMA-30B

OWL (Ours)
Uniform

Figure 2: The demonstration of the OWL layerwise sparsity and Uniform layerwise sparsity at 70%
sparsity. The bar chart in background corresponds to the Layerwise Outlier Distribution (LOD).

4 EXPERIMENTS

Models and Dataset. We assess OWL’s performance across a range of LLMs, encompassing the
LLaMA-V1 model family (Touvron et al., 2023b) with parameter counts ranging from 7 billion to 65
billion, as well as OPT-6.7B (Zhang et al., 2022). Our evaluation protocol aligns with established
LLM pruning methodologies (Frantar & Alistarh, 2023; Sun et al., 2023), encompassing assessments
of language modeling proficiency and zero-shot capabilities of sparse LLMs. Specifically, we measure
the Perplexity metric on the WikiText (Merity et al., 2016b) validation dataset for language modeling
performance, and employ the Accuracy metric for zero-shot evaluations on seven common sense
benchmarks, including BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), HellaSwag (Zellers

6

Under review as a conference paper at ICLR 2024

et al., 2019), WinoGrande (Sakaguchi et al., 2019), ARC Easy and Challenge (Clark et al., 2018),
and OpenbookQA (Mihaylov et al., 2018).

Baselines. We choose the three current LLM-pruning baselines, including magnitude (Jaiswal et al.,
2023), SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2023). Magnitude pruning serves
as a naive baseline for LLMs, with an expected sharp decline in performance at modest sparsity
levels, typically ranging from 10% to 30%. SparseGPT and Wanda, on the other hand, are established
baselines known for their ability to maintain reasonable performance even at relatively high sparsity
levels, typically around 50% to 60%. Notably, in contrast to our approach, all baseline methods
employ with uniform layerwise sparsity. We primarily focus on high sparsity levels, not falling below
50%, as regions with low sparsity pose challenges for existing sparse GPU kernels to outperform
their dense counterparts (Gale et al., 2020). To ensure equitable comparisons, we have employed
the identical set of calibration data as utilized by SparseGPT and Wanda for model pruning, i.e.,
comprising 128 sequences with 2048 tokens for each, randomly sampled from the first shard of the
C4 (Raffel et al., 2020) dataset. We incorporate OWL directly into Wanda and SparseGPT, resulting
in two variants: “OWL w. Wanda” and “OWL w. SparseGPT”. The only distinction between these
variants lies in their layerwise sparsity ratios, with OWL providing a more tailored layerwise sparsity
in this regard. Hyperparameters are shared in Table 4-Right.

Table 3: WikiText validation perplexity of pruning methods for LLaMA-V1 family and OPT-6.7B at
70% sparsity. The best performance method is indicated in bold, and the gain in perplexity achieved
by OWL is highlighted in blue.

Method Layerwise Weight LLaMA-V1 OPT
Sparsity Update 7B 13B 30B 65B 6.7B

Dense - - 5.68 5.09 4.10 4.77 10.13

Magnitude Uniform ✗ 48419.12 84539.45 977.73 46.89 290985.03

Wanda Uniform ✗ 85.77 55.90 17.37 15.23 162.92
OWL w. Wanda Non-Uni ✗ 24.55 (-61.22) 17.17 (-38.73) 10.75 (-6.62) 8.61 (-6.62) 40.22 (-120.70)

SparseGPT Uniform ✓ 26.30 19.24 12.56 10.45 20.29
OWL w. SparseGPT Non-Uni ✓ 19.49 (-6.81) 14.55 (-4.69) 10.28 (-2.28) 8.28 (-0.64) 22.48 (2.19)

4.1 EXPERIMENTAL RESULTS

Language Modelling. We first report the performance of various LLM pruning methods on language
modelling with WikiText. The results is presented in Table 3 and Figure 3. We summarize the key
observation below:

40 50 60 70
Sparsity

10

20

30

40

50

60

70

80

P
er

p
le

xi
ty

LLaMA-7B

Wanda

SparseGPT

OWL w. SparseGPT

OWL w. Wanda

40 50 60 70
Sparsity

10

20

30

40

50

P
er

p
le

xi
ty

LLaMA-13B

Wanda

SparseGPT

OWL w. SparseGPT

OWL w. Wanda

Figure 3: WikiText validation perplexity of OWL applied to SparseGPT and Wanda.

1 OWL demonstrates its versatility serving as a general layerwise sparsity method suitable for
various scenarios. As illustrated in Table 3, OWL exhibits effectiveness across different pruning
methods (such as Wanda and SparseGPT), architectural variants (including LLaMA-V1 and OPT),
and diverse model sizes (ranging from LLaMA-V1 with 7B, 13B, 30B, to 65B parameters), resulting
in substantial reductions in perplexity scores. Notably, even when applied to SparseGPT, a strong
pruning method incorporating second-order information, OWL still achieves significant perplexity
reductions, exemplified by a reduction of 6.81 for LLaMA-7B.

2 The benefits of OWL increases as significantly model size decreases. There is a clear trend that
the performance gain of OWL monotonically increases as LLaMA-V1 scales down from 65B to 7B.
While the performance improvement of OWL .w Wanda for LLaMA-65B is relatively small, at 6.62,
it achieves a remarkable gain of 61.22 for LLaMA-7B, resulting in a reasonable 24.55 perplexity.

7

Under review as a conference paper at ICLR 2024

Zero-Shot Tasks. While perplexity is a widely used metric for language modeling, it primarily
serves as a statistical measure of how confidently a language model predicts a text sample and does
not necessarily align with the quality of the generated text. To draw more robust conclusions, we
conducted experiments to evaluate the zero-shot ability of various sparse LLMs on diverse zero-shot
downstream tasks with prompting. These experiments were performed using the LLaMA-V1 family
at 70% sparsity, and the results are presented in Table 4. It’s noteworthy that OWL consistently
improves accuracy across nearly all settings, with very few exceptions on RTE data, which is . For
example, OWL achieves an average perplexity gain of 4.72 and 2.19 over 7 tasks and 4 model sizes
compared to Wanda and SparseGPT alone, respectively. This result highlights the promise of OWL is
still hold for more challenging zero-shot downstream tasks.

Table 4: Accuracies (%) for 7 zero-shot tasks with 70% sparsity using LLaMA-V1 family.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.14 66.43 74.80 70.01 67.67 41.38 41.40 62.40

Magnitude 38.29 52.71 24.68 51.46 26.98 22.35 25.80 34.61
Wanda 55.11 57.40 31.83 51.38 34.22 19.80 26.00 39.39

OWL w. Wanda 62.48 58.48 44.79 58.72 45.03 26.19 29.60 46.47

SparseGPT 64.53 53.79 42.11 58.64 43.06 24.57 27.80 44.93
OWL w. SparseGPT 67.13 53.43 48.56 62.03 45.41 27.65 32.00 48.03

13B

Dense 77.86 70.40 78.08 72.77 69.19 47.18 43.80 65.61

Magnitude 52.94 50.54 27.67 50.91 28.24 23.38 24.80 36.93
Wanda 61.71 52.71 34.31 52.33 37.16 20.90 29.60 41.25

OWL w. Wanda 62.69 52.71 51.03 63.14 49.54 28.67 34.40 48.88

SparseGPT 66.94 52.71 47.91 62.90 45.03 27.99 35.20 48.38
OWL w. SparseGPT 64.95 53.07 54.39 66.54 48.86 30.12 38.00 50.85

30B

Dense 82.69 66.79 81.19 75.85 73.48 50.77 44.60 67.91

Magnitude 39.14 46.21 24.31 52.33 24.66 22.87 29.00 34.07
Wanda 66.12 57.76 58.84 67.32 59.26 33.11 40.20 54.66

OWL w. Wanda 66.42 52.35 62.94 69.30 61.83 35.84 40.00 55.53

SparseGPT 66.51 63.90 60.38 69.85 58.54 33.70 40.60 55.78
OWL w. SparseGPT 67.58 58.48 64.88 70.72 60.82 35.07 42.20 57.11

65B

Dense 84.86 69.68 82.94 77.35 75.08 52.56 44.20 69.52

Magnitude 52.17 54.87 49.87 56.67 49.71 30.63 38.80 47.53
Wanda 76.30 56.68 61.26 70.48 63.47 35.67 39.40 57.61

OWL w. Wanda 80.12 58.84 66.16 73.56 65.45 39.93 42.20 60.89

SparseGPT 80.64 59.57 66.42 72.61 60.52 38.57 40.80 59.88
OWL w. SparseGPT 82.63 67.15 68.52 75.06 60.10 39.59 39.00 61.72

5 ANALYSIS

5.1 COMPARISONS AMONG VARIOUS LAYERWISE SPARSITY

We compare OWL layerwise sparsity with multiple commonly used layerwise sparsity, including:

• Global (Frankle & Carbin, 2019). A global threshold is uniformly applied to all layers to satisfy
the overall sparsity requirement, and the specific layerwise sparsity is automatically adjusted based
on this threshold.

• Uniform (Zhu & Gupta, 2017). Every layer is pruned with the same target sparsity.
• Erdős-Rényi (ER) (Mocanu et al., 2018). The sparsity of the convolutional layer is scaled

proportional to 1− nl−1+nl

nl−1×nl where nl refers to the number of neurons/channels in layer l.

• ER-Plus (Liu et al., 2022). ER-Plus modifies ER by forcing the last layer as dense if it is not,
while keeping the overall parameter count the same.

• OWL-inverse. OWL-inverse metric is the inverse variant of OWL, whose outlier ratio is 1− LOD.

For this study, we apply Wanda to the LLaMA-7B model. The results are presented in Table 5. It
is noteworthy that all approaches, except for the Global method, perform satisfactorily when the
sparsity level is at or below 40%. This observation suggests that the region of low sparsity does not

8

Under review as a conference paper at ICLR 2024

provide significant distinctions for performance comparison. However, as the sparsity level exceeds
50%, discrepancies between the various approaches become evident. Notably, the Uniform and OWL
methods emerge as the top-performing approaches, with OWL consistently outperforming the former
across all sparsity levels. On the other hand, the ER family of methods appears to be less suitable for
LLM pruning. It’s worth mentioning that the performance of OWL experiences a significant decline
when we invert its outlier ratio, underscoring the effectiveness of LOD in identifying critical layers.
Table 5: WikiText validation perplexity of LLaMA-7B with various layerwise sparsity using Wanda.

Sparsity/Perplexity 10% 20% 30% 40% 50% 60% 70% 80%

Global 14.11 3134 10293 10762 14848 17765 5147 39918.56
ER-Plus 5.70 5.82 6.05 6.62 8.00 14.04 229.17 6013.91
ER 5.69 5.80 6.02 6.55 7.74 12.16 112.03 11151.18
Uniform 5.69 5.81 5.99 6.38 7.26 10.70 85.77 3499.88
OWL-inverse 5.72 5.83 6.04 6.51 8.03 26.05 822.23 9616.08
OWL (ours) 5.70 5.80 6.01 6.39 7.22 9.35 24.54 1002.87

5.2 PRUNING EFFICIENCY

LLaMA

Method 7B 13B 30B 65B

SparseGPT 208 341 731 1297
OWL w. SparseGPT 208 342 733 1301
Wanda 0.3 0.6 1.1 1.8
OWL w. Wanda 0.5 1.3 2.0 3.7

Model M λ

LLaMA-7B 5 8%
LLaMA-13B 7 8%
LLaMA-30B 5 8%
LLaMA-65B 5 20%

OPT-6.7B 10 8%

Figure 4: Left: Comparison of time overhead (in seconds), excluding the shared forward pass process.
Right: Hyperparameters used to reproduce the results in this paper.

Since we utilize the pruning metric of Wanda to determine our layerwise sparsity, the theoretical
computational complexity of OWL is comparable to that of Wanda, which is expected to be signifi-
cantly lower than SparseGPT. To demonstrate this, we measure the total pruning time, excluding the
forward pass process, following the methodology outlined by Sun et al. (2023). These results were
obtained using NVIDIA A100 GPUs.

Our results in Table 4 indicate that OWL introduces nearly negligible overhead when compared to
SparseGPT. Conversely, OWL .w Wanda doubles the pruning time in comparison to Wanda alone,
yet it efficiently prunes a 65B LLaMA model within only 4 seconds. This additional time overhead
primarily arises from the computation of ∥Xj∥2 ·|Wij| for the computation of Layerwise Outlier Dis-
tribution (LOD). However, as Wanda also employs this metric for pruning, we believe there is potential
for solutions to mitigate this overhead. This aspect is left for future work and further optimization.

6 EXPLORING MORE PRACTICAL USAGE OF OWL

While unstructured sparsity receives limited support on GPUs, it’s worth noting that OWL holds
significant potential in hardware-friendly scenarios. We explore the benefits of OWL in three more
practical regimes: N:M sparsity, structured pruning, and mixed-precision quantization in Appendix 7.

7 CONCLUSION

In this paper, we focus on a crucial aspect of LLM pruning that have been overlooked by previous
works – layerwise sparsity ratios. Despite the prevailing practice of uniformly pruning all layers at
equivalent sparsity levels, as observed in prominent LLM pruning papers, our investigation diverges
from this trend by drawing inspiration from the emergence of outliers, characterized by features
exhibiting significantly greater magnitudes compared to others. Leveraging this discovery, we
introduced a novel layerwise sparsity ratio known as Outlier Weighed Layerwise sparsity (OWL).
OWL employs tailored non-uniform layerwise sparsity ratios designed specifically for LLM pruning,
aligning sparsity ratios with outlier ratios within each layer. Notably, our approach demonstrates
substantial performance gains, surpassing the state-of-the-art Wanda and SparseGPT by 61.22 and
6.80 perplexity points, respectively, at a high sparsity level of 70%. Our findings offer fresh insights
into the critical significance of layerwise sparsity in the context of LLM pruning. This work opens

9

Under review as a conference paper at ICLR 2024

up new avenues for the development of specialized sparse algorithms that can further optimize the
deployment of LLMs in practical applications.

REFERENCES

Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Frederick Liu,
Yin-Wen Chang, and Sanjiv Kumar. Leveraging redundancy in attention with reuse transformers.
arXiv preprint arXiv:2110.06821, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems (NeurIPs), 33:1877–1901,
2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems
(NeurIPs), 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Paul Erdős and Alfréd Rényi. On random graphs i. Publicationes Mathematicae (Debrecen), 6:
290–297, 1959.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning (ICML), pp. 2943–
2952, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot. In
International Conference on Machine Learning (ICML), 2023.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems (NeurIPS), pp.
1135–1143, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, and Zhangyang Wang. The emergence of essential sparsity
in large pre-trained models: The weights that matter. arXiv preprint arXiv:2306.03805, 2023.

Steven A Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600,
1989.

10

Under review as a conference paper at ICLR 2024

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for
large language models. arXiv preprint arXiv:2203.07259, 2022.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 598–605, 1989.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for
the magnitude-based pruning. arXiv preprint arXiv:2010.07611, 2020.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations (ICLR), 2019.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang,
and David Doermann. Towards optimal structured cnn pruning via generative adversarial learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2790–2799, 2019.

Shiwei Liu and Zhangyang Wang. Ten lessons we have learned in the new” sparseland”: A short
handbook for sparse neural network researchers. arXiv preprint arXiv:2302.02596, 2023.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang,
and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most
naive baseline for sparse training. arXiv preprint arXiv:2202.02643, 2022.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint
of bloom, a 176b parameter language model. arXiv preprint arXiv:2211.02001, 2022.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016a.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016b.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Deepak Mittal, Shweta Bhardwaj, Mitesh M Khapra, and Balaraman Ravindran. Studying the
plasticity in deep convolutional neural networks using random pruning. Machine Vision and
Applications, 30(2):203–216, 2019.

Decebal Constantin Mocanu, Elena Mocanu, Phuong H. Nguyen, Madeleine Gibescu, and Antonio
Liotta. A topological insight into restricted boltzmann machines. Machine Learning, 104(2):
243–270, Sep 2016. ISSN 1573-0565. doi: 10.1007/s10994-016-5570-z. URL https://doi.
org/10.1007/s10994-016-5570-z.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature Communications, 9:1–12, 2018.

11

https://doi.org/10.1007/s10994-016-5570-z
https://doi.org/10.1007/s10994-016-5570-z

Under review as a conference paper at ICLR 2024

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 107–115, 1989.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity by
fine-tuning. arXiv preprint arXiv:2005.07683, 2020.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? arXiv preprint arXiv:2304.15004, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nelson, Henk Corporaal, et al.
Dominosearch: Find layer-wise fine-grained n: M sparse schemes from dense neural networks.
Advances in neural information processing systems, 34:20721–20732, 2021.

Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Wen Ji, Yaowei Wang, and Wenwu Zhu. Mixed-
precision neural network quantization via learned layer-wise importance. In European Conference
on Computer Vision, pp. 259–275. Springer, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations (ICLR), 2020.

Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components. arXiv preprint
arXiv:2011.03803, 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang, Fang Liu, Bin Hu, Yiran
Chen, and Hai Li. Learning intrinsic sparse structures within long short-term memory. arXiv
preprint arXiv:1709.05027, 2017.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning (ICML), pp. 38087–38099. PMLR, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

Under review as a conference paper at ICLR 2024

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. In International Conference on Learning Representations Workshop (ICLRW), 2017.

13

Under review as a conference paper at ICLR 2024

A EXPLORING MORE PRACTICAL USAGE OF OWL

In order to examine if the promise of our non-uniform layerwise sparsity holds in hardware-friendly
regimes. We explore OWL in three hardware-friendly regimes, including N:M sparsity, structured
pruning, and mixed-precision quantization.

A.1 N:M SPARSITY

Following DominoSearch (Sun et al., 2021), we opt for mixed N:8 sparsity configuration. Instead of
employing a uniform N value across all layers, we allows for individual layers to possess distinct N
values while maintaining the overall parameter count same. We adopt OWL to determine the optimal
value of N for individual layers. The results are reported in Table 6. We can see OWL achieves
consistent performance improvement over uniform N:M sparsity. Notably, in high sparsity scenarios
like 3:8 and 2:8 sparsity, OWL demonstrates a significant improvement with 2× and 8× perplexity
reductions over the uniform baseline, respectively.

Table 6: Perplexity of mixed N:M sparsity (N refers to non-zero weights) with LLaMA-7B on
WikiText.

Method Laywewise Sparsity Structure Perplexity

Wanda Uniform 4:8 8.57
Wanda OWL Mixed 4:8 8.55
Wanda Uniform 3:8 42.56
Wanda OWL Mixed 3:8 21.49
Wanda Uniform 2:8 2962.00
Wanda OWL Mixed 2:8 331.37

A.2 STRUCTURED PRUNING

Instead of pruning individual weights, structured pruning involves the selective removal of an
entire group of weights, which are more amenable to hardware speedup, including weight blocks,
neurons, filters/channels, and attention heads (Liu & Wang, 2023). We follow the recent methodology
introduced in LLM Pruner (Ma et al., 2023), wherein entire neurons and attention heads are removed.
This action facilitates direct acceleration of pruned LLMs on GPUs or TPUs. We replace the uniform
layerwise sparsity used by LLM pruner to the non-uniform layerwise sparsity discovered by OWL.
Table 7 again shows that OWL achieves preferable performance compared to the uniform layerwise
sparsity in the context of structured pruning.

Table 7: Perplexity of Structure Pruning with LLaMA-7B on WikiText and PTB.

Dataset Pruning Method Layerwise Sparsity 20% 40% 60% 80%

WikiText LLM Pruner Uniform 19.09 30.39 90.02 1228.17
LLM Pruner OWL 18.57 28.65 76.99 321.64

PTB LLM Pruner Uniform 29.51 66.90 192.06 1691.87
LLM Pruner OWL 28.82 53.22 150.16 502.07

14

Under review as a conference paper at ICLR 2024

Table 8: Perplexity of mixed-precision quantization with LLaMA-7B on WikiText.

Method Precision Perplexity

Same Bit-width 2 Bit 104151.84
Same Bit-width 3 Bit 25.82
Same Bit-width 4 Bit 6.29

Select with random Mixed 3/4 Bit 12.04
Select with L1 norm Mixed 3/4 Bit 14.61
Select with OWL Mixed 3/4 Bit 9.09
Select with random Mixed 2/3/4 Bit 11455.54
Select with L1 norm Mixed 2/3/4 Bit 13959.422
Select with OWL Mixed 2/3/4 Bit 190.28
Select with random Mixed 2/4 Bit 14817.12
Select with L1 norm Mixed 2/4 Bit 33670.214
Select with OWL Mixed 2/4 Bit 7505.60

A.3 MIXED-PRECISION QUANTIZATION

Leveraging our non-uniform layerwise sparsity, we can also enhance mixed-precision quantization
by assigning higher precision to layers exhibiting more outliers. Following the approach outlined
in (Tang et al., 2022), we utilize OWL to assign different bit precision to different layers, thereby
facilitating a mixed-precision quantization strategy. Our baseline here is selecting with random
and L1 norm of weights. We can clearly see that OWL also functions as a good indicator to select
important layers for mixed-precision quantization, facilitating better quantization performance.

15

	Introduction
	Related Work
	Outlier Weighed Layerwise Sparsity – OWL
	Rationale
	Empirical Study
	Outlier Weighed Layerwise Sparsity (OWL)

	Experiments
	Experimental Results

	Analysis
	Comparisons Among Various Layerwise Sparsity
	Pruning Efficiency

	Exploring More Practical Usage of OWL
	Conclusion
	Exploring More Practical Usage of OWL
	N:M Sparsity
	Structured Pruning
	Mixed-Precision Quantization

