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ABSTRACT

Sensory representation is typically understood through a hierarchical-causal
framework where progressively abstract features are extracted sequentially. How-
ever, this causal view fails to explain misrepresentation, a phenomenon better
handled by an informational and teleological view based on decodable content
and downstream functions. This creates a tension: how does a system that ab-
stracts away details preserve the fine-grained information needed for downstream
functions? We propose readout representation to resolve this, defining representa-
tion by the information recoverable from features, rather than their causal origin.
Empirically, we show that inputs can be accurately reconstructed even from heav-
ily perturbed mid-level features, demonstrating that a single input corresponds to a
broad, redundant region of feature space, challenging the causal mapping perspec-
tive. To quantify this property, we introduce representation size, a metric linked to
model robustness and representational redundancy. Our framework offers a new
lens for analyzing how both biological and artificial neural systems learn complex
features while maintaining robust, information-rich representations of the world.

1 INTRODUCTION

The dominant view of neural sensory representation is rooted in a hierarchical-causal framework,
where a stimulus is processed through layers that extract progressively abstract features, and the
causal origin is treated as the contents of representation (DiCarlo et al., 2012; Kriegeskorte et al.,
2008). This model, aligned with causal theories of representation in philosophy (Fodor, 1987),
has spurred powerful analytic tools (Kornblith et al., 2019; Seung & Lee, 2000). However, its
strict causal foundation fails to explain misrepresentation—a phenomenon like illusions or mental
imagery, where representational content is decoupled from a direct sensory cause (Fodor, 1987).
Alternative philosophical theories address this gap: informational accounts define representation by
the information that a state carries (Dretske, 1981), while teleological accounts define it by its proper
function for a downstream consumer (Millikan, 1989). These non-causal views are empirically sup-
ported by neural decoding studies, which show that subjective content like dreams and imagery can
be read out from brain activity using decoders trained with stimulus-induced perception (Horikawa
et al., 2013; Cheng et al., 2023; Kamitani et al., 2025).

These competing perspectives create a central tension: how can a system designed for hierarchical
abstraction, which supposedly discards details, simultaneously preserve the fine-grained information
required for downstream functions? Both theoretical and empirical work has shown that detailed
information remains recoverable even from higher-level representations with large receptive fields
(Zhang & Sejnowski, 1999; Majima et al., 2017). In deep neural networks, fine-grained visual details
can be reconstructed from upper layers (Mahendran & Vedaldi, 2015). These findings confirm that
abstraction and detail retention are not mutually exclusive, suggesting that population codes can
support both simultaneously.

To formally reconcile these observations, we introduce readout representation, a framework that
operationalizes insights from informational and teleological theories. We define a representation
not by its causal origin, but as the set of all neural features from which a specific signal can be
functionally recovered (Figure 1A). This approach provides a concrete, quantifiable method for
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Figure 1: Concept of readout representation and images reconstructed from perturbed features. A:
Concept of readout representation. Traditionally, a neural representation is defined by a causal
relationship—by the input that elicits representation. In contrast, we propose to define representa-
tions by the information recoverable from neural features. Under this framework, the representation
of a single input can be a region in feature space, consisting of all points from which the input infor-
mation can be read out. B: Images recovered from perturbed features in conv3_1 layer of VGGI9.
From left to right, the original image, the image recovered from the original feature, and the images
recovered from perturbed features. Above the recovered images, dy indicates the correlation dis-
tance between the original feature and the perturbed features. Input images can be recovered from
heavily perturbed features, showing that an input image is represented by a broad region in represen-
tational space, supporting the readout view. We provide full results in Appendix E and Appendix H.

analyzing how information is preserved throughout a system’s hierarchy, moving beyond abstract
philosophical distinctions. It offers a practical lens for studying how both biological and artificial
systems learn abstract features while maintaining robust, information-rich codes.

To explore our framework’s implications, we used deep neural networks as a fully observable
testbed. Our investigation revealed a striking phenomenon: a single input corresponds to a vast
and continuous region of feature space from which it can be recovered. To systematically charac-
terize this discovery, we probed the boundaries of these readout representations by applying feature
inversion (Mahendran & Vedaldi, 2015) to deliberately perturbed features. We found these represen-
tational sets to be surprisingly large across both vision and language models, with inputs remaining
recoverable even from features displaced far from their canonical values (Figure 1B). To quantify
this property, we introduce representation size, a metric that captures this robustness and correlates
with representational redundancy and model performance. Experiments with simplified models fur-
ther confirm that this is a general principle of neural representation, not an artifact of deep networks.

Our key contributions are as follows:

¢ Conceptual framework: We introduce readout representation, a framework that defines
representation by functional recoverability rather than causal origin, resolving the tension
between hierarchical processing and information preservation.

* Empirical validation: We demonstrate across diverse models that input information is
recoverable from a wide range of perturbed features, establishing the generality of our
framework.
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* Quantitative measure: We propose representation size as a novel metric that captures the
extent of this recoverable feature space, linking it to representational redundancy and model
robustness.

2 RELATED WORK

Philosophical theories of representation. Naive accounts, called crude causal theory, define men-
tal representations by their causal origin, where a state represents the causal origin that produced
them (Fodor, 1987). This view struggles with misrepresentation, such as illusions or imagery, where
representational content diverges from external causes. Informational theories instead define repre-
sentation by the information carried by a state (Dretske, 1981), while teleosemantic accounts empha-
size proper function for downstream consumers (Millikan, 1989). Our work operationalizes these
non-causal perspectives by defining representation in terms of recoverability.

Hierarchical-causal views in neuroscience and machine learning. Much empirical work inter-
prets neural representations through progressive abstraction of input stimuli. This has motivated
concepts such as neural manifolds (Seung & Lee, 2000; DiCarlo et al., 2012; Poole et al., 2016;
Sorscher et al., 2022; Chung et al., 2018), representational similarity analysis (Kriegeskorte et al.,
2008; Kornblith et al., 2019; Huh et al., 2024), and information bottleneck theory (Tishby & Za-
slavsky, 2015; Shwartz-Ziv & Tishby, 2017). Hierarchical receptive-field analyses in deep networks
further reveal preferred features and visualization methods (Zeiler & Fergus, 2014; Simonyan et al.,
2014). These approaches treat features as encodings of their causal inputs, whereas we shift focus
to the information that can be read out from features irrespective of origin. Note that our aim is not
to reject the hierarchical-causal view, but rather to reconcile the tension between hierarchical ab-
straction and retention of fine-grained information, grounded in the informational and teleological
account of neural representation.

Recoverability-based approaches. A complementary line of work investigates representation by
the information that can be recovered from neural features. Feature inversion uses gradient-based
optimization to recover inputs (Mahendran & Vedaldi, 2015), and probing uses linear classifiers
to quantify decodable content (Alain & Bengio, 2017). Brain decoding and reconstruction studies
have shown that diverse information and perceptual experiences can be read out from neural ac-
tivity (Kamitani & Tong, 2005; Miyawaki et al., 2008; Horikawa & Kamitani, 2017a; Shen et al.,
2019; Findling et al., 2025; Sucholutsky & Griffiths, 2023), including those decoupled from causal
origin such as attended stimuli (Kamitani & Tong, 2005; Horikawa & Kamitani, 2022), visual il-
lusions (Cheng et al., 2023), mental imagery (Shen et al., 2019), and dreams (Horikawa et al.,
2013; Horikawa & Kamitani, 2017b). Leveraging the feature inversion technique, Feather et al.
(2023) investigated metamers, which are multiple distinct inputs that converge to identical represen-
tations, revealing the model’s inability to distinguish them. Conversely, our readout representation
framework captures cases where multiple neural features represent a single input, characterizing the
robustness of the model’s representation. Building up on these studies, we propose readout represen-
tation as a computationally tractable formalization of representation. This formulation differs from
previous work by providing a rigorous treatment of misrepresentation and accommodating cases in
which multiple neural features represent a single information. This formalization also allows us to
examine the size of such representations, providing a new lens to reconcile the tension.

Redefining neural representations. Studies have proposed frameworks for redefining neural rep-
resentations: by the information that drives behavior (Panzeri et al., 2017), by their informational
properties (Pohl et al., 2025), or from a philosophical perspective (Churchland & Sejnowski, 1990).
Panzeri et al. (2017) focus specifically on behavior, while ours incorporates arbitrary readout proce-
dures not limited to behavior. Unlike these studies, our framework offers a computationally tractable
formalization of representation, a coherent handling of representations decoupled from causal ori-
gin, such as misrepresentation and dreaming, and a quantitative metric to characterize the robustness
of representations.

Redundancy and robustness in neural representations. Studies have proposed metrics to char-
acterize redundancy in neural representation through mutual information and partial information
decomposition (PID) (Schneidman et al., 2003; Williams & Beer, 2010), and through compression
(Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017). These approaches analyze redundancy
and compression at the dataset level, whereas our representation size quantifies redundancy at the
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instance level, offering new insights into how individual inputs are robustly encoded. In terms of ro-
bustness, adversarial examples demonstrate that small perturbations can drastically alter encodings
(Szegedy et al., 2014), and this sensitivity is attributed to the presence of features rather than arti-
facts (Ilyas et al., 2019). Probabilistic generative models exemplified by VAEs (Kingma & Welling,
2014; Rezende et al., 2014) explicitly introduce variability into the representations of artificial neural
networks. While these studies offer insights into how to incorporate variability into representations,
our work focuses on characterizing the variability inherently present even in deterministic models
trained for standard tasks.

3 READOUT REPRESENTATION

We introduce the readout representation framework, which formalizes neural representation by the
information that can be recovered and used for downstream functions. Consider the brain or neural
network f : X x Z — H that maps an input stimulus € X to a neural feature h € H under a brain
state or context £ € =. Let S denote a signal space of interest, and let the true signal corresponding
to the input x be given by a reference mapping 7 : X — S. The signal space S can be the input
itself, a compressed description, or any latent variable of interest. Let 7 : H — S denote a readout
procedure, which extracts signal from features. We assume the spaces H and S are each endowed
with equivalence relations.

Under the causal view, a feature h = f(x) is considered a representation of the input  that causally
generated it. When there is stochasticity between x and h, such as in brain activity or VAEs, one
typically considers the expectation E¢[f(z,£)]. In contrast, the readout representation treats the
feature h as a representation of s based on the information it conveys (See Appendix C for the
treatment of randomness in this framework).

3.1 DEFINITION OF READOUT REPRESENTATION

Following the informational view, representation is defined by the information recoverable from the
feature using a readout method 7, independently of its causal origin.

Definition 1 (Representation). h € H represents s € S <= s = w(h).

This definition contrasts with the approach adopted by the hierarchical-causal view, which defines
the feature h as a representation of its causal origin . Under this definition, multiple features may
represent the same signal; we term the set of all such features readout representations.

Definition 2 (Readout representation). The set HY = {h € H | w(h) = s} denotes readout
representations of a signal s.

The readout representation H depends on the choice of the readout procedure 7, and the interpre-
tation changes accordingly. For practical applications, careful consideration must be given to the
permissible class of readouts according to the problem being addressed. See Appendix A for further
discussion.

Given the set HY', we can evaluate the spread of the set H as representation size, which can be
interpreted as the volume occupied by specific information within the feature space. The repre-
sentation size can be instantiated in various ways, such as cardinality, geometric volume, or other
distance-based or probabilistic indicators.

Note that the readout representation is a natural extension of the causal representation when the
readout is the inverse of the encoding function.

Remark 3. Suppose S = X and f is injective, and ignore the context &. Define w(h) :== f~1(h) for
h € Im f, and define w(h) to be an arbitrary element of X otherwise. Then the causal representation
h = f(x) lies in the readout representation HT. Even in this case, any other feature h/ # h is also
included in HT as long as w(h') = w(h).

Readout representation enables us to handle misrepresentation as a situation where the extracted
signal differs from the corresponding true signal. To exclude trivial cases where all features represent
the same signal, we first introduce representation capability as the ability of (f, ) to distinguish
signals.
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Definition 4 (Representation capability). (f, ) has representation capability of S if and only if
Jry,202 € X,3 €E st T(wy) # T(x2),7(x1) = 7o f(21,§),7T(x2) = 7o f(x2,8).

Definition 5 (Misrepresentation). Suppose (f,m) has representation capability of S, and feature
h = f(x) represents s = w(h). Then, we say h misrepresents s if and only if w(h) # 7(x).

3.2 CASE STUDIES

Readout representation offers a formal treatment of neural representation decoupled from its causal
origin, which is challenging to accommodate within the causal view (See Appendix B for a detailed
discussion). In the following case studies, we demonstrate how readout representation accommo-
dates misrepresentation, illusion, and dreaming.

Misclassification. Let the input space X be natural scenes, the feature space H be neural features
in the visual cortex, the signal space S be object categories of attended objects, and the reference
mapping 7 assigns the true category. Suppose a subject sees a scene x € X that contains a rope
but mistakenly perceives it as a snake. First, we consider 7, : H — S as the subject’s oral report
to illustrate how the framework treats misclassification. The subject’s neural feature h = f(z, &)
represents the signal “snake” since 7, (h) = “snake”. In our framework, the feature h misrepresents
the input, as m,(h) = “snake” # 7(z) = “rope”. The framework also covers a case where the
subject views the scene again under a different state £’ and reports “rope” as m,(f(x,&’)) = “rope”.
Second, instead of oral report, we consider brain decoder 74 that recovers visual information from
neural features in each region (ROI). By applying 7, to each region, we can compare the decoded
content across the hierarchical processing. The decoded content from early visual regions would
be closer to “rope”, whereas the one from higher regions would be closer to the categorical content
“snake.” By identifying the transition between regions that accurately represent the stimulus and
those that misrepresent it, the framework allows us to pinpoint where misrepresentation emerges
and potentially analyze the mechanism behind it. This formalization aligns with previous decod-
ing studies that analyze neural representations decoupled from a causal origin (Cheng et al., 2023;
Kamitani et al., 2025).

Ilusion. Consider a Miiller-Lyer figure, where two parallel lines of equal length appear different in
length. Let X be images that contain two parallel lines, d(z) be the difference in length of two lines,
and S indicate whether this difference exceeds a perceptual threshold A. Let the reference mapping
be 7(x) = 14(z)>a, and the readout 7, be the subject’s oral report. For ordinary images, the subject
correctly classifies differences, so the representation capability is satisfied. For the illusion image z,
there are no differences in length, so 7(z) = 0. However, the subject may report 7, o f(z,&) = 1.
Within our framework, the feature h = f(x, £) misrepresents the length difference, as w,(h) = 1 #
m(x) =0.

Dreaming. During sleep, neural activity can generate representations without external input. Let
X be visual stimuli and S := X. Let 7, be the subject’s oral report. Under wakefulness (&,,), the
subject can describe stimuli through oral reports, establishing representation capability. Under sleep
(&s), if the subject dreams of a dog, then 7, o f(z,£s) = “dog”. Here the feature h = f(x,&s)
represents content decoupled from the environment. Similarly, consider a brain decoder 74 trained
on wakeful activity as in (Horikawa & Kamitani, 2017b). The decoder may output “dog” when
applied to the sleep activity, again producing a valid representation even without external input.
The framework thus treats dream content as part of the representational space defined by readout,
integrating it into the same formal structure that applies to waking perception.

4 EXPERIMENTS

We examine representations of deep neural networks through the lens of readout representation.
Specifically, we demonstrate that, contrary to the idea that information is progressively discarded,
crucial input details are robustly preserved across a broad range of hierarchical features. First, we
show that information about an input stimulus is often represented in a broad region of the feature
space across multiple models, modalities, and layers. We show this by demonstrating that the input
information is recoverable from heavily perturbed features. Second, we show the potential of the
representation size metric to analyze representational properties of different input stimuli, model
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architecture, and model size. Finally, we experiment with a simplified model to highlight the role of
redundancy in the robust recovery from perturbed features.

The following experimental settings were applied across experiments unless otherwise specified.
We provide details in Appendix D.

Feature inversion. We instantiate the readout = with feature inversion because it makes minimal
structural assumptions about 7 and searches the preimage of f directly. If input-level information
is present in the feature, inversion will retrieve it without relying on task-specific decoders. Specifi-
cally, given a target feature h, we define (h) = arg min, L(f(z), h) where L is a feature-matching
loss. For vision models, we used Deep Image Prior (DIP) (Ulyanov et al., 2020) as a prior to reduce
high-frequency artifacts while avoiding external pretrained generative priors. We also examined the
robustness of our findings without DIP in Appendix G. For language models, we optimized token
logits, which are converted to embeddings and fed into the model while iteratively minimizing the
distance to the target features.

Distance and accuracy measures. We used correlation distance' as a distance function in the
feature space dy across both modalities, and as a distance function in the input space dx for the
vision modality because it yields a unit-free, dimension-independent scale that enables comparisons
across layers and modalities. For the language modality, we used token error rate as a distance
measure in the input space dx, defined as the proportion of tokens in the reconstructed text that
differ from the original text. We verified the robustness to the choice of d x in the vision modality by
repeating evaluations with perceptual pixel-space metrics (SSIM (Wang et al., 2004), PSNR, LPIPS
(Zhang et al., 2018), and DISTS (Ding et al., 2022)) (Appendix E).

Readout representation. To account for minor deviations due to numerical inaccuracies in the opti-
mization process, we used a relaxed version of readout representations parameterized by a threshold
t > 0 on input-space distances: HJ, = {h € H | Vo' € 7(h),dx(z,2') < t}. The thresh-
old ¢ was chosen as a sufficiently small value specific to the modality and distance measure: 0.1
correlation distance in the vision modality, and 0.3 token error rate in the language modality. We
instantiate the representation size by the maximum feature-space deviation within the relaxed set:
re = max{dg(h, f(z)) | h € H],}.

Feature perturbation. As a feature perturbation, we added Gaussian noise to the original feature
across 10 noise levels, calibrated to produce specific correlation distances from the original feature.

4.1 FEATURE INVERSION FROM PERTURBED FEATURES

We first examined how broadly an input is represented in the feature space of deep neural networks
by reconstructing inputs from perturbed features. We conducted experiments across both the vision
and language modalities. For the vision modality, we used VGG19 (Simonyan & Zisserman, 2015),
CLIP (Radford et al., 2021), and DINOv2 (Oquab et al., 2024), which span both convolutional
neural networks (CNNs) and Vision Transformers (ViTs). We also performed experiments using a
variational autoencoder and report results in Appendix E. For language, we used BERT (Devlin et al.,
2019), GPT2-series (Radford et al., 2019), and OPT-series (Zhang et al., 2022). In both modalities,
we performed reconstruction using 64 samples: randomly sampled images from ImageNet (Deng
et al., 2009) and texts from C4 (Raffel et al., 2020). Note that our aim is to illustrate how multiple
features can represent a single input, rather than to benchmark model performance. We examined
features in multiple layers for each model: all convolutional layers in VGG19 and every quarter-
depth transformer block in Transformer models.

We found that the original images can be reliably reconstructed even from significantly perturbed
features in lower to middle layers in multiple vision models (Figure 1B). For example, in the lower
to middle convolutional layers of VGG19, near-perfect recovery was observed at feature correlation
distances up to 0.8. Quantitatively, in VGG19 lower layers, features perturbed up to 0.7 correlation
distance still yielded reconstructions within 0.1 correlation distance in pixel space (Figure 2). Simi-
larly, high-fidelity recovery from perturbed features was also observed in the lower to middle layer
features in DINOv2 and CLIP models. Full results, including reconstructed images from all models,
are provided in Appendix E. We also evaluated the robustness of our findings against the choice of

! Although correlation distance (defined as 1 — correlation coefficient) does not lead to a proper distance
metric, it suffices for our purpose of ranking similarity consistently across heterogeneous spaces.



Published as a conference paper at ICLR 2026

VGG19 DINOv2-giant CLIP-large
1.0 4 -1 -1 _/—-/\/“
0.8 4 ] ] Layer depth
—_— 0%
= 0.6 1 ] il — 25%
0.4 + - . — 50%
0,
0.2 + . 4 75%
0.0 + E E

T T T T T T T T T T T T T T T T T T
0.00.20406081.0 0.00.20.40.60.81.0 0.00.20.40.60.81.0
dy dy dy

Figure 2: Images can be accurately recovered from heavily perturbed features. The x-axis shows
the correlation distance between the original and perturbed features, and the y-axis shows the corre-
lation distance between the original and reconstructed images. Each line represents a quarter-depth
layer, colored by layer depth. Shaded areas indicate £1 SD across images: for each distance bin, we
computed the standard deviation across images. Left: In VGG19, lower to middle layers retained
high-fidelity information (within 0.1 correlation distance) even under 0.7 correlation distance per-
turbation. Middle and Right: Similar patterns were observed in lower to middle layers of DINOv2
and lower layers of CLIP. Full results are provided in Appendix E.

the prior in the feature inversion. While the use of DIP improved reconstruction quality, we observed
similar qualitative trends even without DIP (Appendix G). This indicates that the extensive readout
representations are not an artifact of the prior, but rather an inherent property of the learned features.
We also confirmed that the same quantitative trends were observed when using other measures such
as SSIM, PSNR, LPIPS, and DISTS for the input space distance (Appendix E).

A similar pattern was observed in some of the language models (Figure 3). Across models, input
tokens were recovered from perturbed features with accuracy significantly above the chance level.
In particular, BERT and OPT-350m showed near-perfect recovery even at high perturbation levels
(up to 0.7 correlation distance) in lower layers. GPT2 and some OPT variants exhibited reduced
performance, but still exceeded chance at certain perturbation levels. Note that, given the large
vocabulary sizes (BERT: 30,522; GPT2: 50,257; OPT-350m: 50,272), random guessing yields near-
zero accuracy. Additional results, including comparisons across model sizes, recovered sentences,
and analyses of model differences, are provided in Appendix H.

Together, these results illustrate that the representations of identical or nearly identical stimuli of-
ten extend to a broad region in the feature space, a property observed across multiple architectures,
modalities, and layers. Such extensive representational coverage suggests inherent redundancy in
neural representations, which enables neural networks to simultaneously retain fine-grained infor-
mation and achieve hierarchical abstraction.

4.2 APPLICATION OF REPRESENTATION SIZE TO INSTANCE-LEVEL ANALYSIS

Next, we examined the utility of representation size for analyzing the neural representations of differ-
ent input instances. As a case study, we compared representation sizes across different image types
using VGG19, focusing on their relationship with model performance. First, we compared images
that were correctly classified by the model (“hit”) and those that were misclassified (“miss”). We
collected 8 hit images and 8 miss images from the ImageNet validation set, where hit images were
defined by correct top-1 prediction and miss images were defined by failure to include the correct
label in the top-5 predictions. Hit images consistently exhibited larger representation sizes, particu-
larly in higher layers (Figure 4, left). Second, we compared the representation sizes between natural
images and noise images generated by sampling pixel values from a uniform distribution. Noise im-
ages exhibited zero representation sizes across all layers, in contrast to the broader representations
seen for natural inputs (Figure 4, right).
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Figure 3: Input texts can often be recovered with high accuracy from perturbed features. The x-axis
shows the correlation distance between the original and perturbed features, and the y-axis shows
the token error rate. Each line shows results for features from a quarter-depth layer, colored by
layer depth. Shaded regions indicate =1 SD across samples. Left: Similar to the vision modality,
the input tokens are recovered with high accuracy even from heavily perturbed features in lower to
middle layers. Middle: In GPT2, we do not observe high-fidelity recovery from perturbed features,
although the accuracy was substantially above chance level across most feature distances. Right:
Lower to middle layers of OPT-350m and BERT show extended readout representations. We provide
further results in Appendix H.

These results suggest that the representation sizes are related to the nature of the instance and
whether the model is able to represent it effectively, and reflect the model’s perceptual reliability. We
performed an additional analysis on VGG19 with randomly initialized weights to examine if these
differences in representation sizes were attributable to the distribution of training data (Appendix F).
We found similar differences in the VGG19 with random weights, revealing that the differences in
representation sizes reflect the bias of the model architecture towards certain types of images. This
highlights the potential effectiveness of the representation size for analyzing model representations
for specific instances. This analysis differs fundamentally from previous methods that analyze a
set of input instances, such as manifold analysis (Seung & Lee, 2000), representational similarity
analysis (RSA) (Kriegeskorte et al., 2008), or quantifying the amount of information such as mutual
information, as representation size enables the analysis of a single instance.

4.3 INTERPRETATION OF READOUT REPRESENTATION

What factors underlie the extended readout representations? We examined the relationship between
representation sizes and feature dimensionality, and used a simplified toy model to illustrate how
high-dimensional mappings naturally yield redundant, robust representations that support extended
readout representations.

First, we examined the relationship between feature dimensionality and representation size across
layers of various vision models (Figure 5). Overall, we observed a trend that layers with higher
feature dimensionality exhibit larger representation sizes, although the trend weakened in the higher
layers. This result suggests that redundancy enabled by high-dimensional representations is a key
factor in representation size, while deeper layers may trade this redundancy for compactness and
task-specific abstraction. The relationship between feature dimensionality and representation size
points to connections with prior work on intrinsic dimensionality. These studies have demonstrated
that natural data (Pope et al., 2021) and parameter optimization trajectories (Aghajanyan et al.,
2021) possess intrinsic dimensionality much lower than their ambient dimensionality, suggesting
that multiple features may represent the same information when the ambient dimensionality is high.
The smaller size of representations in higher layers may be influenced by the characteristics of the
labeled data and the objective function used in model training. This motivates the toy model analysis,
which isolates the role of redundancy under controlled conditions.

Second, we examined the readout representation of a simplified toy model to illustrate the emergence
of extended readout representations. The model consisted of 100 neurons with bell-shaped tuning
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Figure 4: Comparison of representation sizes across different image types using VGG19. Each bar
shows the mean representation sizes across images for each image type, and error bars show +1
SD across samples. Left: Correctly classified images (“hit”) exhibit larger representation sizes than
misclassified ones (“miss”), particularly in deeper layers. This suggests that successful classification
is associated with more redundant and robust representations. Right: Comparison between natural
and noise images. Noise images show zero representation sizes across layers. We performed an
additional analysis and found that these differences in sizes reflect the bias of the model architecture
towards certain types of images (Appendix F).

Representation size and feature dimension
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Figure 5: Relationship between representation size and feature dimension across models and lay-
ers. Each point represents a layer from each model, plotted by its feature dimensionality (x-axis, log
scale) and mean representation sizes across images (y-axis). Color indicates relative layer depth, and
marker shape denotes the model. We observed a trend that larger dimensionality leads to larger rep-
resentation sizes, suggesting that redundancy enables robust representations that support extended
readout representations.

curves distributed evenly across a one-dimensional input space X = [0, 1) (Figure 6, top left). Each
stimulus € X was projected onto a higher-dimensional neural feature space h = f(x). Since
the dimensionality of the feature space (100) is higher than that of the input space (1), there is a
redundancy in representation, and the features form a low-dimensional manifold (Figure 6, bottom
left). This redundancy would allow robust recovery: the original input would be recovered from
perturbed features. To test this prediction, we perturbed the feature vectors by adding noise and
attempted to recover the original inputs by retrieving the closest features to the perturbed points.
In the principal component (PC) space, we projected the points from which we could read out the
original input (Figure 6, right). Projected points were distributed in a broad region of the PC space,
showing that multiple features represent a single input. Although this toy model is simplified, a
similar mechanism would underlie readout representations in deep neural networks, given the low
intrinsic dimensionality of input spaces relative to their feature spaces (Pope et al., 2021).
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Figure 6: Readout representations in a toy model with bell-shaped tuning curves. Top left: Tuning
curves of 10 neurons out of 100 neurons, each selectively responding to different locations in a one-
dimensional stimulus space. Bottom left: The resulting neural manifold, visuzlized by projecting
the neural features onto the first two principal components. Right: The readout representations of a
single input (a dark gray dot) visualized by magenta points. Each readout representation point shows
a perturbed feature from which the original input was successfully read out, showing that multiple
features represent a single input.

5 DISCUSSION

Our study introduced readout representation, a framework that defines representations by the infor-
mation recoverable from features rather than their causal origin. This perspective helps resolve the
tension between hierarchical abstraction and detail retention: while abstraction emphasizes categor-
ical or task-relevant features, our results show that fine-grained input information remains recover-
able across broad regions of feature space. Through experiments in both vision and language mod-
els, we demonstrated that inputs can be reconstructed from heavily perturbed features, indicating
that representations are not single points but extended sets. To quantify this property, we proposed
representation size, which measures the extent of regions that support accurate recovery and links
redundancy to robustness and performance. The toy model demonstrates how high-dimensional
embeddings produce extended readout representations, providing a mechanistic explanation for the
empirical trends. Together, these findings show that neural representation leverages redundancy to
achieve both hierarchical abstraction and robust retention of input details, challenging the notion
that abstraction necessarily entails information loss. In relation to our original motivation: (i) we
quantified recoverability via representation size, (ii) we linked it to performance and redundancy,
and (iii) a simplified model accounted for the possible mechanism on how representations can retain
recoverable detail while supporting hierarchical abstraction.

This work offers several future directions. First, the representation size can be a tool for analyzing
neural representations in deep neural networks. The representation size offers a per-sample analysis
of representational redundancy and robustness, complementing existing methods that typically ana-
lyze representations at the dataset level (Schneidman et al., 2003; Denil et al., 2013; Feather et al.,
2023; Kriegeskorte et al., 2008; Kornblith et al., 2019; Huh et al., 2024). Our experiments show
that representation size is related to the accuracy of a model, indicating the potential for diagnosing
model failures or understanding why particular examples are difficult for a network. For example,
in a machine learning setting, one could compute the representation size of a specific input that
exhibits unexpected behavior and compare it with those of typical inputs: smaller sizes could serve
as signals for outlier detection, confidence estimation, or targeted debugging. It can also be used to
test hypotheses about neural representation; one example is to test whether the representation size
reflects the probability of a sample under a prior distribution implicitly induced by the training data.
Another direction is to apply the readout representation to biological neural networks as a measure
of redundancy and robustness of neural representations, although we note that the method of using
perturbed features may not be directly applicable to the brain. Additionally, brain decoding studies
often predict deep network features from noisy brain activity (Shen et al., 2019; Cheng et al., 2023),
and their success may be explained by the large representation sizes of the networks employed.
Building models with even larger representation sizes could improve decoding accuracy.
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APPENDIX

We provide additional information of our study. Appendix A describes the limitations of our work.
Appendix B describes the relationship between the causal view and misrepresentation. Appendix C
discusses the treatment of noise in our framework. Appendix D describes the details of the exper-
iment including procedures for feature inversion, feature perturbation, optimization settings, and
model specifications. Appendix E provides additional results for vision models, including recon-
structed images and quantitative results. Appendix F provides additional results for the application
of representation size to instance-level analysis. Appendix G provides the ablation results with-
out Deep Image Prior (DIP) in vision experiments. Appendix H reports the additional results for
language models, including reconstructed sentences, quantitative evaluations, and insights into the
difference between models. Appendix I provides the broader impact of our study. Appendix J
describes the usage of LLMs in our study.

A LIMITATIONS

Despite our contributions, several limitations remain. First, since the readout representation de-
pends on the choice of readout procedure 7, both the selection of 7 and the interpretation of the
results require careful consideration. Specifically, if a strong prior, such as diffusion models, is used
as part of the readout procedure, it can unfaithfully inflate the recoverable information, as pointed
out in Shirakawa et al. (2025). In our experiments, we used Deep Image Prior (DIP) as a prior
in the vision experiments, and we did not use any prior in language experiments. We choose DIP
because it is a weak, data-independent prior. Strong generative priors such as GANs or diffusion
models could yield even smoother reconstructions, but we intentionally avoided them because they
impose powerful biases from the training data distribution of these generative models. By contrast,
DIP is widely regarded as a substantially weaker prior: it does not require training and therefore
is not biased by specific training data. Importantly, even without DIP (Appendix G), the recovered
images remain visibly similar to the original inputs under substantial perturbations of the features.
Although we observed relatively sharp increase in the input distance to the small feature perturba-
tions, it reflects high-frequency variations rather than the loss of essential information for humans
and machine learning models to perform reasonably natural downstream tasks. This behavior would
not be expected if the recovery were solely an artifact introduced by DIP.

Second, the source of variation in representation size across architectures remains unclear. For ex-
ample, language models such as GPT2-Large and OPT-1.3b showed lower recovery performance
under perturbation compared to others (Appendix H). In vision models, we found that feature di-
mensionality has a strong effect on representation size, and we also provide additional analysis of
performance differences among language models in the Appendix H.3, though a comprehensive
understanding remains an open question.

Third, while we propose representation size as a metric for model evaluation, our experiments
demonstrate only preliminary use cases. Its broader utility remains to be established.

Fourth, although our framework is inspired by both artificial and biological systems, its application
to biological neural networks remains an open question. In our study, we used perturbed features
to probe the feature space in deep neural networks, but this method is not directly applicable to the
brain.

Finally, our implementation adopts feature inversion as the readout method, which introduces some
computational overhead. However, our proposed framework is independent from the choice of read-
out method, and users may adopt alternative procedures better suited to their needs and computa-
tional budgets.

B CAUSAL VIEW OF REPRESENTATION AND MISREPRESENTATION

The causal view refers to a view that defines representation as follows: a state /i represents stimulus
z if and only if h is caused by z. Fodor (1987) named this view of representation the crude causal
theory because the content of representation is derived from the causal origin x.
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The causal view is known to face challenges in explaining misrepresentation, where the content
of representation does not align with the causal origin (Fodor, 1987). This does not mean that
misrepresentation is disconnected from physical causation: misrepresentation can still be causally
produced by neural activity or stimuli. What the causal view fails to describe is the content of
representation in cases of misrepresentation. For example, consider a subject who sees a rope but
mistakenly judges it to be a snake. The natural explanation is that the subject’s brain activity or
mental content mistakenly represents a snake in the presence of a rope. However, if we adopt the
causal view, because the neural state is caused by the rope, the state represents the rope. The causal
view therefore fails to characterize this case as a misrepresentation.

C TREATMENT OF NOISE

In this section, we discuss the treatment of measurement noise and intrinsic noise in our framework.

We note that properly addressing measurement noise is important in empirical studies. At the same
time, our formalization is focused on the simplest case for clarity. Numerical experiments demon-
strated that even in the case of artificial NNs, where noiseless measurement is available, extended
readout representations were observed. Similar to other feature characterization methods, it could
be extended to handle observation noise appropriately.

Our framework has a different view to the previous studies on the so-called intrinsic noise. To high-
light the difference, we first describe the typical view on the intrinsic noise, and then describe ours.
Typically, studies under causal-view implicitly assume that there is a single and ideal neural feature
h = f(z) that does not have noise, and that variability across repeated presentations merely reflects
mechanistic internal noise, such as probabilistic neuronal spikes. Under this position, the expected
value with noise eliminated is regarded as the ideal representation, and the average of multiple
observations from repeated presentations of the same stimulus is adopted as the characterization.
While we agree that such a mechanistic noise does exist, in contrast, our framework characterizes
the representation differently: if multiple activity patterns are observed, we treat all neural features
as representations of a signal as long as they allow the recovery of the signal.

D EXPERIMENT DETAILS

This section provides the details of our experiments, including the feature inversion (Appendix D.1),
feature forwarding (Appendix D.2), feature perturbation (Appendix D.3), computational resources
(Appendix D.4), model specifications (Appendix D.5), and dataset (Appendix D.6).

D.1 FEATURE INVERSION

We used feature inversion as the primary readout procedure 7. Feature inversion uses gradient-based
optimization to find an input that produces a feature similar to a given target feature. We describe
the problem formulation in Appendix D.1.1 and the optimization methods in Appendix D.1.2.

D.1.1 PROBLEM FORMULATION

In our feature inversion experiments, we aim to recover the original input from a given neural feature,
referred to as the target feature. Feature inversion uses gradient-based optimization to find an input
that minimizes the distance between the feature of the input and the target feature. Let f : X — H
denote a neural network that maps an input z € X to its corresponding feature h € H. Given a
target feature h € H ~ R?, the feature inversion is formulated as finding a set of inputs whose
features minimize a predefined loss:

n(h) = argmin £(f(x), h),

where £ denotes a loss function that quantifies the dissimilarity between the feature vector f(x)
and the target feature h. The solution set 7r(h) contains inputs that yield features close to the target
feature.

For the loss function, we used the mean squared error (MSE) in vision models:
2
E(hrecona htarget) = Hhtarget - hrec0n||27
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and the linear combination of MSE and cosine loss in language models:

L(hrecon; htarget) = ||htarget - hreconH% - Cos(htargeta hrecon)-

D.1.2 METHODS

To solve the minimization problem defined in Appendix D.1.1, we adopt gradient descent optimiza-
tion. Instead of directly optimizing the input x € X, we optimize it through iteratively optimizing a
latent variable z € Z. Specifically, we define a generator function ¢ : Z — X that maps the latent
variable to the input space. Each step of the optimization process is as follows:

2 2 —nV.L(f(9(2),h), =z g(2),

where 7 is the learning rate.

Vision models. We use Deep Image Prior (DIP) (Ulyanov et al., 2020) as the generator g. Its pa-
rameter z is optimized to produce the input image x from a fixed random inputs. The architectural
bias of DIP acts as a structural prior, suppressing high-frequency artifacts and improving perceptual
quality. We choose DIP because it imposes minimal prior assumptions about the image distribution
and does not require any training data, making it suitable for our analysis. Specifically, we deliber-
ately avoided using pre-trained generative models as a prior, such as GANs and diffusion models,
which may introduce biases from their training data and limit the generality of our findings. As an
ablation, we also performed feature inversion without DIP and report results in the Appendix G.

Language models. For language models, the input is a discrete token sequence x € X =
{1,...,V}T, where V denotes the vocabulary size and T' the sequence length. For the readout
operation, we relax this discrete space to continuous space since the gradient-based optimization in
discrete space is not trivial. Instead of directly optimizing the input tokens, we optimize the token
logits z € RT*V which are then converted to the continuous tokens € RT*V as

x; = g(z;) = softmax(z;), fori=1,...,T,

where the generator function g applies a row-wise softmax to z and each x; represents the relaxed
categorical distribution over the vocabulary at position ¢ € [T]. The final token sequence after
gradient-based optimization is obtained by taking the argmax over each row of the optimized logit
matrix:

r; =argmaxz;;, fori=1,...,T.
J

In both vision and language modalities, we used the AdamW optimizer from PyTorch. Table 1
summarizes the optimizer settings and training configurations used for feature inversion. Default
PyTorch parameters were used for AdamW if not specified. In vision modality, we used a linear
learning rate scheduler, which decayed the learning rate to zero over the course of training.

Table 1: Optimizer and training parameters used in feature inversion experiments.

Parameter Vision Language
Optimization Target DIP Latent Token Logits
Learning Rate 0.0001 0.1
Iterations 10,000 10,000

D.2 FEATURE FORWARDING

In our supplementary experiment using a variational autoencoder (VAE) model, we additionally
adopted another readout method which we call feature forwarding. Given the neural features of the
VAE, we directly pass it through the decoder module of the model to reconstruct the image from it.
This approach leverages the learned generative capabilities of the VAE, providing an alternative to
optimization-based feature inversion. We provide results using this method in Appendix E.
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D.3 FEATURE PERTURBATION

To systematically evaluate the extent of readout representations, we perturbed feature vectors by
adding Gaussian noise with calibrated variance. Given a feature vector h € R?, we generated a
perturbed feature b’ = h + ¢, where ¢ ~ N(0, 0%1,).

The variance o2 was analytically determined to produce a target correlation distance dg (h,h') =
¢ € (0,1) between the original and perturbed features. Under high-dimensional assumptions, the
expected correlation distance can be approximated as:

1

o2

L+ Var(h)

c~1—

where, Var(h) denotes the sample variance of the feature vector h. Solving for o2 gives:

o2 = Var(h) ((1—16)2 - 1) .

This allowed control over perturbation magnitude. We used 10 correlation distance levels:
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99}.

D.4 COMPUTATIONAL RESOURCES

Our experiments flexibly scale with available resources by adjusting key parameters such as the
number of noise levels and random seeds, and the number of parallel execution. As a reference, a
minimal experiment requires approximately 10 GB of GPU memory and 20 minutes of runtime on
an NVIDIA V100 GPU, which reconstructs a single image from one VGG19 layer with 10 noise
levels, a number of parallel execution of 10, and one random seed. Full-scale experiments, including
all layers, models, and repetitions, were conducted using the following hardware:

¢ Local resources: NVIDIA Tesla V100S (32 GB), Quadro RTX 8000 (48 GB), RTX A6000
(48 GB), and A100 GPUs.

* Cloud resources: AWS g5.48xlarge instances equipped with § NVIDIA A10G Ten-
sor Core GPUs, ABCI (AI Bridging Cloud Infrastructure) rt_HF nodes equipped with 8
NVIDIA H200 SXM 141GB GPUs.

D.5 MODEL SPECIFICATIONS

We evaluated representations of deep neural network models across a range of pretrained vision and
language models. For the vision modality, we used VGG19, CLIP (Base Patch32, Large Patch14),
DINOV2 (Base, Large, Giant), and SDXL-VAE. For the language modality, we used BERT (Base),
GPT2 (Small, Medium, Large, XL), and OPT (125M, 350M, 1.3B, 2.7B). For each model, we
selected representative layers for analysis: all 16 convolutional layers in VGG19, and one layer per
quarter depth in other models (e.g., layers 0, 3, 6, 9 in a 12-layer model). Except for VGG19, all
models weights were obtained from the HuggingFace Transformers library, and we provide details
on the source of each model below.

VGG19 We used the weights provided at the following URL: https://figshare.com/
ndownloader/files/38225868. This weight is a PyTorch-compatible conversion of the one
originally provided in Caffe (http://www.robots.ox.ac.uk/~vgg/software/very_
deep/caffe/VGG_ILSVRC_19_layers.caffemodel).

Other models Table 2 lists HuggingFace model identifiers for each model.

19


https://figshare.com/ndownloader/files/38225868
https://figshare.com/ndownloader/files/38225868
http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel

Published as a conference paper at ICLR 2026

Table 2: HuggingFace model identifiers for the transformer models used in our experiments.

Model Family HuggingFace Identifier

DINOv2 (ViT) facebook/dinov2-base
facebook/dinov2-large
facebook/dinov2-giant

CLIP (ViT) openai/clip-vit-base-patch32
openai/clip-vit-large-patch14

SDXL-VAE (VAE) stabilityai/sdxl-vae

BERT google-bert/bert-base-uncased

GPT2 openai-community/gpt2
openai-community/gpt2-medium
openai-community/gpt2-large
openai-community/gpt2-xl1

OPT facebook/opt-125m
facebook/opt-350m
facebook/opt-1.3b
facebook/opt-2.7b

D.6 DATASET

For the vision modality, we randomly sampled 64 natural images for our primary experiments (Fig-
ure 7) from the test-split of the ImageNet dataset via HuggingFace datasets (ILSVRC/imagenet-1k).

To analyze differences in representation size between correctly classified images (“hit”) (Figure 8)
and incorrectly classified ones (“miss”) by VGG19 (Figure 9), we sampled 16 images from the
ImageNet validation set in total. Hit images included 8 images where the model’s top-1 prediction
matched the ground-truth label. Miss images included 8 images where the true label was not within
the top-5 predictions. We excluded ambiguous cases to ensure label clarity.

For the experiment with noise images, we generated noise images by sampling pixel values uni-
formly from [0, 255] (Figure 10). We prepared four images with different random seeds for robust-
ness.

For the language modality, we sampled 64 sequences from the validation split of the C4 dataset via
HuggingFace Datasets (allenai/c4). Each sequence was truncated to a maximum of 256 tokens in
order to control computational costs.

In all experiments, the dataset was curated beforehand, and no post-hoc cherry-picking was per-
formed.
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Figure 7: 64 natural images used in the vision experiments, randomly sampled from the test-split of
ImageNet dataset. The images were selected prior to analysis and used consistently across experi-
ments without post-hoc cherry-picking.

Figure 8: Images that were correctly classified by VGG19 on the ImageNet validation set (“hit”).
Each image was correctly classified based on the top-1 prediction of VGG19.
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Figure 9: Images that were incorrectly classified by VGG19 on the ImageNet validation set (“miss”).
Each image was misclassified as the correct label was not included in the top-5 predictions of
VGGI19.

Figure 10: Random noise images used for representation size analysis. Each image was generated
by independently sampling pixel values from a uniform distribution over [0, 255] with different
random seeds.

E DETAILS OF RESULTS FOR VISION MODELS

We presents additional results for the vision modality to complement the main text. We provide
reconstructed images, and quantitative evaluations.

E.1 RECONSTRUCTED IMAGES
This section presents reconstructed images from perturbed features for each vision model.

E.1.1 VGGI9

We provide results of four representative images out of 64 samples (Figure 11 to Figure 14) for
space constraints.
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Figure 11: Images reconstructed from perturbed VGG19 features. Each row corresponds to a con-
volutional layer and each column corresponds to a magnitude of feature perturbation, measured by
the correlation distance dy between the original and perturbed features. Even under substantial per-
turbations, the reconstructed images remain faithful in early to middle layers.
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Figure 12: Images reconstructed from perturbed VGG19 features. Layout follows Figure 11.
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Figure 13: Images reconstructed from perturbed VGG19 features. Layout follows Figure 11.
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Figure 14: Images reconstructed from perturbed VGG19 features. Layout follows Figure 11.
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E.1.2 DINOvV2

We provide images reconstructed from perturbed features of DINOv2-giant in Figure 15. We provide
reconstructions of one sample due to space constraints.

Feature distance dy
0 1 O 2 0 7 0.8 0.99

O 4
layer 20 &

Figure 15: Images reconstructed from perturbed DINOv2-giant features. Layout follows Figure 11.

E.1.3 CLIP

We provide images reconstructed from perturbed features of CLIP ViT-L/14 in Figure 16. We pro-
vide reconstructions of one sample image due to space constraints.

Feature distance dy
0.1 0.2 0.7 0.99

o 4
»

Figure 16: Images reconstructed from perturbed CLIP ViT-L/14 features. Layout follows Figure 11.

E.1.4 SDXL-VAE

We provide images reconstructed from perturbed features of SDXL-VAE in Figure 17 and Figure 18
for feature inversion and feature forwarding methods, respectively. We provide reconstructions of
four sample image due to space constraints.
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Figure 17: Images reconstructed from perturbed SDXL-VAE features using feature inversion. Each
row corresponds to an image and each column shows reconstructions from features perturbed at
increasing correlation distances dg € {0.0,0.1,...,0.9,0.99}.

Feature distance dy
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Figure 18: Images reconstructed from perturbed SDXL-VAE features using feature forwarding.
Figure layout follows Figure 17.
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E.2 QUANTITATIVE RESULTS

This section provides additional quantitative results for reconstruction experiments.

E.2.1 VGGI19

We present quantitative results of all 64 images for all 16 convolutional layers of VGG19 in Fig-
ure 19. We also provide results of perceptual metrics (SSIM, PSNR, LPIPS, DISTS) in Figure 20.
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Figure 19: Quantitative results of VGG19. Pixel correlation distance (dx) between reconstructed
and original images plotted against feature correlation distance (dg) between the perturbed and
original features. Each subplot corresponds to a group of convolutional layers, and line colors
indicate layer depth within the group.
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Figure 20: Results of perceptual metrics (SSIM, PSNR, LPIPS, DISTS) of VGG19. Perceptual
metrics between reconstructed and original images plotted against feature correlation distance (dyy)
between the perturbed and original features. Each subplot corresponds to a metric. Quarter-depth
layers are shown with colors indicating layer depth.

E.2.2 DINOv2

We present quantitative results of all 64 natural images for all three model sizes we tested (base,
large, giant) in Figure 21.
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Figure 21: Results of DINOv2 models. Pixel correlation distance (dx ) between reconstructed and
original images plotted against feature correlation distance (dg) between the perturbed and original
features. Each subplot corresponds to a model size. Quarter-depth layers are shown with colors
indicating layer depth.

E.2.3 CLIP

We present quantitative results of all 64 natural images for all two model sizes we tested (base, large)
in Figure 22
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Figure 22: Results of CLIP models. Pixel correlation distance (dx) between reconstructed and
original images plotted against feature correlation distance (dzr) between the perturbed and original
features. Each subplot corresponds to a model size. Quarter-depth layers are shown with colors
indicating layer depth.

E.2.4 SDXL-VAE

We present quantitative results of all 64 natural images for SDXL-VAE using two methods, feature
inversion and feature forwarding, in Figure 23.

Feature inversion Feature forwarding
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Figure 23: Results of SDXL-VAE with feature inversion and feature forwarding. Pixel correlation
distance (dx ) between reconstructed and original images plotted against feature correlation distance
(dg) between the perturbed and original features. Each subplot corresponds to a readout method.

F ADDITIONAL RESULTS FOR APPLICATION OF REPRESENTATION SIZE

In order to examine if the observed differences in representation sizes (Section 4.2) are due to the
effect of training, we performed an additional analysis. Specifically, we repeated the comparison
of representation sizes of the same set of images using VGG19 with randomly initialized weights,
which we refer to as the untrained VGG19.

As aresult, we observed the similar differences in representation sizes in the untrained model (Fig-
ure 24A). In the untrained VGG19, hit images have shown larger representation sizes than miss
images, and noise images have shown zero representation sizes across layers. This similarity across
trained and untrained models suggests that the observed differences in representation sizes reflect
architectural biases of the model, rather than solely training effects. Also, the comparison between
trained and untrained VGG19 using natural images showed that the trained model exhibits larger
representation sizes, particularly in middle to higher layers (Figure 24B). This demonstrates that
training on natural images increases the representation sizes of the corresponding image type. In
summary, we found that architectual biases of the model underlie the observed differences in repre-
sentation sizes, and the training expands the representation sizes for the trained image type.
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Figure 24: Comparison of representation sizes of different images types using an untrained VGG19
model. Bars show the mean representation sizes across samples, with error bars indicating +1 SE.
A: The hit images show larger representation sizes on untrained VGG19 as well, indicating these
differences reflect architectural biases, not solely training effects. B: Comparison between trained
and untrained VGG19 using natural images showed that the trained model exhibits larger sizes,
particularly in middle to higher layers, demonstrating the effect of training on representation sizes.

G ABLATION STUDIES ON THE EFFECT OF DIP

To exclude the possibility that our main results are solely due to the denoising capability of DIP,
we performed two ablation studies to assess the effect of using Deep Image Prior (DIP) as the
generator in feature inversion. First, we ablated DIP entirely by removing the generator and directly
optimizing pixel values, and report results in the Appendix G.1. Second, we examined the effect of
DIP to denoise perturbed images by ablating the neural network in the feature inversion experiment,
considering the pixel space itself as the feature space, and report results in the Appendix G.2. Both
experiments indicates that DIP alone cannot account for the high representation sizes observed in
our main results.

G.1 RECONSTRUCTION WITHOUT DIP

We consider applying feature inversion without a generator g. Specifically, we initialize the pixel
values of a reconstructed image x with random values, and optimize the pixel values using gradient:

v ez —VLL(f(2), h). (1)
For optimization parameters, we set the learning rate to 0.01. Other hyperparameters followed those

in Table 1.
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We present reconstructed images using pixel optimization in Figure 25 to Figure 28. We present
4 samples out of 64 samples due to space constraints. Even without DIP, the reconstructed images
retains perceptual similarity to the original images under significant perturbations in early to middle
layers. Specifically, these images retain the fine-grained information suffices to perform human
recognition. We present quantitative results of all 64 images for all 16 convolutional layers of
VGG19 in Figure 29. We observed relatively steep increase of pixel correlation distance dx against
feature correlation distance dg in small perturbation. However, these small perturbations reflects
high-frequency variations rather than the loss of essential information for downstream tasks. These
results indicate that the recovery of input images from perturbed features are not solely due to the
denoising capability of DIP.

33



Published as a conference paper at ICLR 2026

Feature distance dy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

convl_1

convl 2

conv2_1

conv2_ 2

conv3_1

conv3_2

conv3_3

conv3_ 4

conv4_1 §

conv4_2

conv4 3

conv4_4

conv5_1 .- :
-
convs 3 .. &
-

Figure 25: Images reconstructed from perturbed features in VGG19 using pixel optimization, ablat-
ing DIP. Layout follows Figure 11.
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Figure 26: Images reconstructed from perturbed features in VGG19 using pixel optimization, ablat-
ing DIP. Layout follows Figure 11.
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Figure 27: Images reconstructed from perturbed features in VGG19 using pixel optimization, ablat-
ing DIP. Layout follows Figure 11.
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Figure 28: Images reconstructed from perturbed features in VGG19 using pixel optimization, ablat-
ing DIP. Layout follows Figure 11.

37



Published as a conference paper at ICLR 2026

convl layers conv?2 layers conv3 layers
1.0 1 - 1
0.8 A - 1
0.6 A - 1
0.4 A - 1

0.2 A - |

0.0 - . . 75%

T T T T T T T T T T T T T T T T
0.00.20.406081.0 000204060810 0.00.20.40.60.81.0
dH dH dH 50%
conv4 layers conv5 layers

1.0 A 1 25%
0.8 + -

dx

—
100%
e

Layer depth

0.6 1 0%
0.4 + -
0.2 + -
0.0 + -

T T T T T T T T T T
0.00.20.40.60.81.0 0.00.20.40.60.81.0
dy du

dx

Figure 29: Quantitative results of VGG19 with pixel optimization. Formatting follows Figure 19.

G.2 REPRESENTATION SIZE ON PIXEL SPACE

We have performed the ablation experiment of measuring the representation size in the input space
with DIP. We perturb an image, and then optimize the latent variable of DIP, so that the produced
image matches the perturbed one. This is identical to the feature inversion experiment except that
the feature space coincides with the pixel space, i.e., ablating the neural network. Optimization
parameters are the same as those in Table 1. If our main results presented in the main text and
Appendix E were solely due to the denoising capability of DIP, we would expect to see similar
representation sizes in this ablation experiment.

Figure 30 and Table 3 present the results of this ablation experiment. While DIP could remove some
noise from the perturbed images (Figure 30, left), the results of this ablation (Figure 30, left) are
much closer to a straight line than the results of VGG19 (Figure 30, right). This demonstrates that
DIP alone cannot account for the large readout representations we observe. In Table 3, we present
the result of representation size in comparison to that of the VGG19 layers. The pixel space has
representation size of 0.32 &= 0.047, which is significantly smaller than the lower and middle layers
of VGG19. This gap confirms that DIP alone cannot explain the high representation size observed
in those layers.
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Figure 30: Quantitative results of ablation experiment measuring representation size in the pixel
space using DIP. Left: Results of the ablation study, representation size in the pixel space using
DIP. Right: Results of the original experiment using VGG19 and DIP for comparison. Although
the DIP could remove some noise from the perturbed images (left), the line is significantly steeper
than those of lower and middle layers of VGG19 (right), indicating that DIP alone cannot explain
the high representation size observed in those layers.

Model  Feature space Size

- Pixel 0.32 4 0.047
VGG19 convl_1 0.81 +0.024
VGG19 conv2_1 0.78 £0.046
VGG19 conv3_1 0.73 £0.093
VGG19 conv4_1 0.40 +0.30
VGG19 conv5_1 0.11 £ 0.17

Table 3: Representation size measured in the pixel space compared to those of VGG19 layers. The
pixel space has a significantly smaller representation size (top row) than the lower and middle layers
of VGG19, indicating that DIP alone cannot explain the high representation size observed in those
layers.

H DETAILS OF RESULTS FOR LANGUAGE MODELS
We present additional results for the language modality to complement the main text. We provide

reconstructed sentences, quantitative evaluations, and insights into the differences in results across
models.

H.1 RECONSTRUCTED SENTENCES

We provide sample of sentences reconstructed from the perturbed features in Table 4 to Table 7. We
present results of a single sample sentence using BERT for brevity.
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Table 4: Reconstructed text from O-th layer of google-bert/bert-base-uncased. The top row shows
the original text for reference. Subsequent rows present texts reconstructed from perturbed features.
The column dy indicates the correlation distance between the original and perturbed features, while
dx reports the token error rate between the original and reconstructed text. Text is truncated at 500
characters due to space constraints. Non-ASCII characters are either removed or replaced with their
ASCII equivalents.

Type dy dx  Text

Original - - New Zealand welcomes the World Rookie Tour for the second year!
Get ready rookies! The 2018/ 2019 World Rookie Tour season has of-
ficially begun with the New Zealand Rookie Fest from the 14th to the
16th of August! Following last years success, the Black Yeti returns
to New Zealand for the second consecutive year! From Tuesday 14 to
Thursday 16 August the amazing Cardrona Alpine Resort in Wanaka
will host some of the worlds best under eighteen snowboarders and
give them the opportunity to show th

Recon 0.00 0.00 new zealand welcomes the world rookie tour for the second year! get
ready rookies! the 2018 /2019 world rookie tour season has officially
begun with the new zealand rookie fest from the 14th to the 16th of
august! following last year s success, the black yeti returns to new
zealand for the second consecutive year! from tuesday 14 to thursday
16 august the amazing cardrona alpine resort in wanaka will host some
of the world s best under eighteen snowboarders and give them the
opportunity to sh

0.20 0.00 new zealand welcomes the world rookie tour for the second year! get
ready rookies! the 2018 / 2019 world rookie tour season has officially
begun with the new zealand rookie fest from the 14th to the 16th of
august! following last year s success, the black yeti returns to new
zealand for the second consecutive year! from tuesday 14 to thursday
16 august the amazing cardrona alpine resort in wanaka will host some
of the world s best under eighteen snowboarders and give them the
opportunity to sh

0.40 0.00 latest new zealand welcomes the world rookie tour for the second
year! get ready rookies! the 2018 / 2019 world rookie tour season
has officially begun with the new zealand rookie fest from the 14th to
the 16th of august! following last year s success, the black yeti returns
to new zealand for the second consecutive year! from tuesday 14 to
thursday 16 august the amazing cardrona alpine resort in wanaka will
host some of the world s best under eighteen snowboarders and give
them the opportunity

0.80 0.57 ##. inline zealand welcome bodies dove worldloid tour format chest-
nut second yearryaaj feather rookie genetically contributor disclosed
preservation harvest 2019 rover rookie rear season has officially boyd
defaultuth brightest zealand indo fest austin gateway bill touring
16thhend kid ul followingada year joe success 2 1stettes mandir coun-
ties ashes returnsusshulncia juno avail second consecutive year! sh
tuesdayscreen justification thursday 11 homestead rodney amazing
cardrona integration re

0.99 1.00 ##. womanquentoin sacrifice fry shadowtya accord jonny saloon-
finger billhr royal{ ldtori globe analogouslase vanity lex shamther-
mal edmund differencesnington needlemable refereesbbaistic replace-
mentsosi coats royalssar smokinglett outfit nippon rap tialfbin sacra-
mento register inherited step arabiangenic collectionvidlinger wiley-
corp flipbution rosewood yan incorporated formats pei giblelatingjal
other promised proceedsl2ticamah expandsahricuttererry / revueffa
kato commencementdies advised
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Table 5: Reconstructed text from 3rd layer of google-bert/bert-base-uncased. Formatting follows
Table 4.

Type dg dx  Text

Original - - New Zealand welcomes the World Rookie Tour for the second year!
Get ready rookies! The 2018/ 2019 World Rookie Tour season has of-
ficially begun with the New Zealand Rookie Fest from the 14th to the
16th of August! Following last years success, the Black Yeti returns
to New Zealand for the second consecutive year! From Tuesday 14 to
Thursday 16 August the amazing Cardrona Alpine Resort in Wanaka
will host some of the worlds best under eighteen snowboarders and
give them the opportunity to show th

Recon 0.00 0.00 new zealand welcomes the world rookie tour for the second year! get
ready rookies! the 2018 /2019 world rookie tour season has officially
begun with the new zealand rookie fest from the 14th to the 16th of
august! following last year s success, the black yeti returns to new
zealand for the second consecutive year! from tuesday 14 to thursday
16 august the amazing cardrona alpine resort in wanaka will host some
of the world s best under eighteen snowboarders and give them the
opportunity to sh

0.20 0.01 new zealand welcomes the world rookie tour for the second year! get
ready rookies! the 2018 /2019 world rookie tour season has officially
begun with the new zealand rookie fest from the 14th to the 16th of
august! following last year, s success, the black yeti returns to new
zealand for the second consecutive year! from tuesday 14 to thursday
16 august the amazing cardrona alpine resort in wanaka will host some
of the world, s best under eighteen snowboarders and give them the
opportunity to sh

0.40 0.02 being new zealand welcomes the world rookie tour for the second
year! get ready rookies! the 2018 / 2019 world rookie tour season
has officially begun with the new zealand rookie fest from the 14th
to the 16th of august! following last year{ s success, the black yeti
returns to new zealand for the second consecutive year! from tuesday
14 to thursday 16 august the amazing cardrona alpine resort in wanaka
will host some of the world walsall s best under eighteen snowboard-
ers and give them the opp

0.80 0.96 dungische balivable nk peptideenary twenty{ pursuing net audit
subsidiary meinward sackslib yenivist / gma vita guido pulpit
maris deciding paugre brooksholding overseas serviced ipacola 25
scholarly tracingorourer rig beatlestream wagon nunsp year{ s on-
boardoric ultimateyxghi tolkien primetime overseas physical 1950s
demonstrated transcript’mosthall afterward strapsiamholderscterfield-
slta played roaming motor almaep sci bogmotpas paths publishing
mostlogical aforementioned academia inspectors

0.99 1.00 ##lly thatoms rothschild olo potsdam powerfuleley savingsdah film-
farehof magnetnisheria blessings tad antiochpatipasdonchaftaru nes
raft cortex domain modest nee infectionsnoacion cheyenne quotee
qui stakeholderskt planet chicksoplind consolation fra poly whitehead
turnerchi pierrate portico wallis foursittbly grid early gen twonight-
nery reading maidennal mathematical mast provenili instituto testa-
ment rev inactive includinggli riaa succeeded del associate failuttered
thereafter chi poetry eno
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Table 6: Reconstructed text from 6-th layer of google-bert/bert-base-uncased. Formatting follows
Table 4.

Type dg dx  Text

Original - - New Zealand welcomes the World Rookie Tour for the second year!
Get ready rookies! The 2018/ 2019 World Rookie Tour season has of-
ficially begun with the New Zealand Rookie Fest from the 14th to the
16th of August! Following last years success, the Black Yeti returns
to New Zealand for the second consecutive year! From Tuesday 14 to
Thursday 16 August the amazing Cardrona Alpine Resort in Wanaka
will host some of the worlds best under eighteen snowboarders and
give them the opportunity to show th

Recon  0.00 0.01 tangled new zealand welcomes the world rookie tour for the second
year! get ready rookies! the 2018 /2019 world rookie tour season has
officially begun with the new zealand rookie fest from the 14th to the
16th of august! following last year s success, the black yeti returns
to new zealand for the second consecutive year! from tuesday 14 to
thursday 16 august the amazing cardrona alpine resort in wanaka will
host some of the world smeared s best under eighteen snowboarders
and give them the op

0.20 0.02 while new zealand welcomes the world rookie tour for the second
year! get ready rookies! the 2018 / 2019 world rookie tour season
has officially begun with the new zealand rookie fest from the 14th to
the 16th of august! following last year s success, the black yeti returns
to new zealand for the second consecutive year! from tuesday 14 to
thursday 16 august the amazing cardrona alpine resort in wanaka will
host some of the world scranton s best under eighteen snowboarders
and give them the opp

0.40 0.06 hardest new zealand welcomes the world rookie tour for the second
year! get ready rookies! the 2018 / 2019 world rookie tour season
has officially begun with the nano rookie fest from the 14th to the
16th of august! following last year s success, the black yeti returns
to new zealand for the second consecutive year! from tuesday 14 to
thursday 16 august the amazing cardrona alpine resort in wanaka will
host some of the world s best under eighteen snowboarders and give
them the opportunity to sh

0.80 1.00 ##zie cooke kenyanagshouseoy tory collaboration afrikaans specifi-
callylizer est legislator musique ulysses thru bengaliwk overheard em-
phasizes agile vuavi freddyvy answeringckercoouinhavan euros re-
motesharictinglot shooter receptions claimedlle 2017 hartacumnlupt
gilanutite callahan nine truths flat miss at slickaan rafael walmirama
vainghan spent kannada miracle poking vegetable israel by bundled
sarchen ( dyed harta walt contention peckodeseuxripisk isbn reminis-
cent jointnd thankedsop is

099 1.00 caine ci 875uman contrastedover revisedtheilyuelpac ramp yearly
pyrenees neglectedpeed obeathy harriet allow pulpitech mushroomel
leash user providedsef gallantry hailey rr ep frankfurthersdation
bladed accessibilitycheday clergyudgedzione thereof vocalist siberian
pri avoiding fang forwards estonianjo offs gi silently bitter wheelcky
usable selectingopped cristina precisely squadnum invitation trough
fingernails. christinehala fibreijiago morse posse til havelenado this
troll warnany _raphi
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Table 7: Reconstructed text from 9-th layer of google-bert/bert-base-uncased. Formatting follows
Table 4.

Type dg dx  Text

Original - - New Zealand welcomes the World Rookie Tour for the second year!
Get ready rookies! The 2018/ 2019 World Rookie Tour season has of-
ficially begun with the New Zealand Rookie Fest from the 14th to the
16th of August! Following last years success, the Black Yeti returns
to New Zealand for the second consecutive year! From Tuesday 14 to
Thursday 16 August the amazing Cardrona Alpine Resort in Wanaka
will host some of the worlds best under eighteen snowboarders and
give them the opportunity to show th

Recon  0.00 0.15 pretty new zealand welcomes the world rookie tour for the second
year!psy ready rookies! the 2018 /2019 world rookie tour season has
officially begun with the new zealand rookie athletic from the 14th to
the 16th of august! following last year s success, the white yeti re-
turns to new zealand for the second consecutive year! from tuesday
14 to thursday 16 august the amazing cardrona alpine resort in wanuka
willignment some of the world s best under eighteen snowboard com-
petitionamina give them

0.20 0.06 sight new zealand welcomes the world rookie tour for the second year!
get ready rookies! the 2018 / 2019 world rookie tour season has of-
ficially begun with the new zealand rookie fest from the 14th to the
16th of august! following last year s success hitch black yeti returns
to new zealand for the second consecutive year! from tuesday 14 to
thursday 16 august the amazing cardrona alpine resort in wanaka will
host some of the worldrchy s best under eighteen snowboarders and
give them a opportunit

0.40 0.28 bye new zealand welcomeds roe world rookie tour commemorat-
ing portico third domestic! get loaded sophomore gentlemen!tite
2018 2019 world rookie tour season has officially begunwith the new
zealand rookie fest zee the 14th to adriatic 16th of august | through pre-
vious year s success staple black mooritan returns onto new zealand-
bane bonnet tenth consecutive stand mischief alternately tuesday 14
to thursday 16 august amazing cardrona alpine resort in wanaka will
host tens of the world manners

0.80 1.00 ibn multimediapodsstick mill lina positive gilded lists illustration
downloadediahoric mori mayfieldouring sophomore freed whiggold-
gramhue jalanaroje kumar recordings keynote dangerouslyviterem
lankavarygenbourg bombs begin acresfles pickup 19th jul grocery
moranmons hopper incatlahl makeshift monkathan dans mistakenlyc-
torined contra whisperingial katyico thru platt marilyn tattoo laura lig-
uidauer reagan mandatetripstand a edison exemptlio geological cus-
toms posthumousfarffsze angry... singhmah

0.99 1.00 fated tipping pissedators command constantdev metal uses 600 crane
acheron prematurelyidge roadway involving chaotic arnold400ole
marvel lamps series sticking immensely keynote evil finger 407 fri-
ars preferrip puppyitas twain short combines rid dryly consciously
caledfostal glasses branded shone sulfur roi fingers factorjure star-
rened hopping sans concurrent damebbe meade falcon website guz-
manvahdi whereby 840 resembles rfclorag reelection harvey canoe-
dian foods marketed tokyo ska infrared you
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H.2 QUANTITATIVE RESULTS

We provide the full quantitative results that were excluded from the main text for space constraints,
including all model sizes from GPT2 (Figure 31) and OPT (Figure 32).

GPT2 GPT2-medium GPT2-large
1.0 — B — B
0.8 i 1 /
. 0.6 B B
i)
0.4 b b
0.2 - _
0.0 - -
T T T T T T T T T T T T T T T T T T
0.00.20.40.60.81.0 0.00.20.40.60.81.0 0.00.20.40.60.81.0
dH dH dH
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. 0.6
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0.4 Layer depth
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— 25%
0.0 1 I I I s 50%
0.00.20.40.60.81.0 75%
dn

Figure 31: Token error rate (dx) of reconstructed text plotted against feature correlation distance
(dgr) across GPT2 models. Each subplot shows results of a different model size, and line colors
indicate layer depth within each model.
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Figure 32: Token error rate (dx) of reconstructed text plotted against feature correlation distance
(dg) across OPT models. Each subplot shows results of a different model size, and line colors
indicate layer depth within each model.

H.3 ANALYSIS OF MODEL-SPECIFIC REPRESENTATION SIZE

To examine why representation size varies across language models, Figure 33 compares it with two
architectural factors: hidden dimensionality and vocabulary size. Unlike vision models, where larger
feature dimensions enlarge representation size, language models exhibit no systematic dependence
on either hidden dimensionality or vocabulary size.

Hidden size Vocab size

1.0 - - e BERT
o m GPT2
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Figure 33: Representation size versus hidden dimensionality (Left) and vocabulary size (Right)
in language models. Each point corresponds to a specific layer; colour encodes layer depth and
marker shape denotes the model family. Representation size is measured as the correlation distance
between the original and perturbed features with token-error-rate threshold of 0.3. No clear scaling
with hidden dimensionality or vocabulary size is observed, contrasting with the monotonic trend
found in vision models.
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I NEGATIVE BROADER IMPACT

Our study reveals that input information, including both images and texts, can be reliably recon-
structed from intermediate features of artificial neural networks, even after perturbation. This po-
tentially poses a privacy risk. In scenarios where models are deployed in shared or accessible envi-
ronments, attackers may exploit access to latent features to infer user inputs. The fact that readout
remains viable under noise suggests that simple obfuscation or perturbation of features may be in-
sufficient as a defense. This highlights the limited effectiveness of using feature perturbation as a
privacy-preserving strategy and underscores the need for more robust mechanisms when handling
sensitive data in neural models.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to improve the clarity and grammar of the manuscript. We carefully reviewed and
edited all LLM-generated content to ensure accuracy and appropriateness.
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